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The space of (principally polarized) abelian varieties

Abelian varieties
For an integer g > 0 let us consider the complex principally
polarized abelian varieties (p.p.a.v.) of dimension g , up to
isomorphism.

They are known to correspond to the complex points Ag (C),
where Ag is a (quasi-projective) algebraic variety, and we have

dimAg =
g(g + 1)

2
.

Example: for g = 1, we find A1 = the affine line A1, where an
elliptic curve up to isomorphism corresponds to its j-invariant.

Jacobians
Inside Ag we have the subvariety Tg (Torelli locus) defined here as
the closure of Jacobians of curves of genus g , so e.g. T1 = A1.

For g > 1 we have (essentially due to Riemann)

dim Tg = 3g − 3.
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Abelian varieties isogenous to Jacobians

Hence dim Tg = dimAg for g ≤ 3, and in fact one has Tg = Ag

for 1 ≤ g ≤ 3.

On the other hand, dimAg > dim Tg for g ≥ 4, so in particular:

Remark: For g ≥ 4 there exist (complex) p.p. abelian varieties of
dimension g and not isomorphic to any Jacobian.

Now, isogeny is a weaker form of isomorphism, and we may ask
whether any complex (p.p.)a.v. is isogenous to a Jacobian.

An isogeny is determined by its kernel, which has countably many
possibilities, and one deduces that

The p.p.a.v. of dimension g isogenous to some Jacobian form a
countable union of algebraic varieties of dimension 3g − 3 in Ag .
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Abelian varieties not isogenous to Jacobians ?
Question of Katz-Oort

Since C is not countable, this implies the improved

Remark: For g ≥ 4 there exist complex a.v. of dimension g and
not isogenous to any Jacobian.

However this argument fails if we work over a countable field, even
if alg. closed, like Q. Indeed, Katz and Oort raised the following

Question: (Katz-Oort) Do there exist a.v. defined over Q and
not isogenous to any Jacobian ?

Intuition seems to suggest an affirmative answer, despite the
failure of the above argument.

However some attempts suggest it might be not easy to prove such
expectation. For instance, we note that the ‘isogeny orbit’ of any
x ∈ Ag (C) is complex-dense.
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Abelian varieties not isogenous to Jacobians ?

Remarks.

(i) Actually Katz was especially interested in the analogue
question over Fp. Recent work of Shankar-Tsimerman provides
some (surprising) evidence we might have a negative answer now.

(ii) This kind of question fits within a general ‘specialization’
motivation, as in Serre’s phrasing (letter to Ribet 1981):
“ Il s’agit de prouver que “tout” ce qui est réalisable sur un corps
de type fini sur Q l’est aussi (par spécialisation) sur un corps de
nombres. ”

Now, a way to attack the Katz-Oort problem could depend on
suitable characterizations of Tg inside Ag .
For instance Arbarello-De Concini gave an important one in
1984 (and then an application of the ideas in 1987).
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Abelian varieties not isogenous to Jacobians

A more general question: The same question arises on replacing
Tg by any prescribed proper (closed) subvariety X ( Ag .
This suggests to seek arguments not using the special nature of Tg .

- Chai-Oort (2012) gave an affirmative answer even to this more
general issue, but conditionally on the André-Oort conjecture.

- Shortly afterwards Tsimerman (2012) reconsidered substantially
their arguments and gave an unconditional proof.
(Later he also did the last step for the André-Oort conjecture.)

Proofs: Both arguments worked with appropriate sequences of a.v.
of Weyl CM type; this is invariant by isogeny, which was the
starting point for proving (with heavy work) that eventually some
member was not isogenous to any Jacobian (or to any x ∈ X ).
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Proofs: Both arguments worked with appropriate sequences of a.v.
of Weyl CM type; this is invariant by isogeny, which was the
starting point for proving (with heavy work) that eventually some
member was not isogenous to any Jacobian (or to any x ∈ X ).



Abelian varieties not isogenous to Jacobians

A more general question: The same question arises on replacing
Tg by any prescribed proper (closed) subvariety X ( Ag .
This suggests to seek arguments not using the special nature of Tg .

- Chai-Oort (2012) gave an affirmative answer even to this more
general issue, but conditionally on the André-Oort conjecture.

- Shortly afterwards Tsimerman (2012) reconsidered substantially
their arguments and gave an unconditional proof.
(Later he also did the last step for the André-Oort conjecture.)
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‘Generic’ abelian varieties

The a.v. so exhibited have strong arithmetical restrictions, and are
highly ‘special’ in several ways.

Then, in the spirit of Serre’s phrasing, it looks natural to ask for

a.v. /Q, not isogenous to any Jacobian and with ‘generic’ properties

in some sense. Let us see a few interpretations, in a hierarchy:

No CM: The CM property is not shared by any continuous family.
Actually Chai-Oort explicitly asked for examples without CM.

Trivial End: A Q-generic point x ∈ Ag has End(x) = Z, in
particular no CM. This could already be a ‘natural’ condition.
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‘Generic’ abelian varieties

Hodge-generic: This requires that the so-called Mumford-Tate
group of x is maximal, i.e. GSp2g .
It implies the former property of a trivial endomorphism ring.

It is again known that the points in Ag (C) which are not
Hodge-generic form a countable union of proper subvarieties.

Galois-generic: A property known to be yet stronger is to be
(`)-Galois-generic (say over Q), defined in terms of the Galois
representation on torsion points (of order a power of the prime `).

This last property has arithmetic nature and is not directly defined
in geometric terms, though believed to be equivalent to
Hodge-generic (as proved in many cases by several authors).
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‘Generic’ abelian varieties not isogenous to Jacobians

Jointly with Masser we have used a different method toward
these issues. We have statements of several types, of which we
offer some examples. We refer to Jacobians of dimension g ≥ 4,
though the results hold for the more general question above.

Theorem 1
There exists a set N ⊂ Ag (Q), complex-dense in Ag (C),
representing pairwise non-isogenous p.p.a.v., each being
`-Galois-generic and not isogenous to any Jacobian.

The method yields further information on such p.p.a.v.. For
instance let us see two aspects:
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Counting abelian varieties not isogenous to Jacobians

(i) Beyond the said complex-denseness, in a sense ‘the majority’ of
p.p.a.v. defined over Q are not isogenous to any Jacobian. We can
express this vague meaning through estimates as follows.

Take first a dominant rational map φ : Ag → AG (G = dimAg ),
defined over Q, and finite above an open set A ⊂ AG . We may
then take e.g. the box B(T ) of integer points (p1, ..., pG ) ∈ A with
|pi | ≤ T and consider the a.v. x ∈ Ag such that φ(x) ∈ B(T ).

Each such x is defined over a number field (of bounded degree)
and their number is � TG . On the other hand, we have:

Theorem 2
The number of x ∈ Ag with φ(x) ∈ B(T ), which either are not
`-Galois-generic or which are isogenous to some Jacobian, is
� TG−γ for some constant γ > 0.
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Fields of definition of a.v. not isogenous to Jacobians

(ii) The very question of Katz-Oort concerns a minimal field of
definition, so one seeks it as small as possible.

- The CM examples coming from the proofs of Chai-Oort and
Tsimerman are automatically defined over Q, though the minimal
degree of a number field of definition is expected to tend to infinity.

- Theorem 2 above instead produces infinitely many examples such
that the degree of a number field of definition is bounded.

- More precisely, one can add to the above theorems the uniform
bound 216g

4
for the degree of a (variable !) number field of

definition for the a.v. in question.
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Uniform number field of definition ?

- For small g , Ag is known to be unirational, even over Q.

Example:

g = 1: We have already noted that A1 = A1.
g = 2: We have dimA2 = 3 and we may parameterize rationally
A2 by points (a, b, c) ∈ A3, corresponding to the Jacobian of the
curve y2 = x(x − 1)(x − a)(x − b)(x − c) (so-called Rosenhain
coordinates).

In these cases (which should include every g ≤ 5) our a.v. can be
also taken to be defined over Q.

- It seems not known whether A6 is unirational, but for g ≥ 7
Freitag, Mumford, Tai proved that Ag is of general type.
Therefore, if we believe in the conjectures of Lang and Vojta,
the points in Ag defined over any given number field should not be
Zariski-dense, and we could not hope to answer affirmatively the
general question with a single number field of definition.
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An analogue for g = 1

When g = 1 the question is not sensible, but we may modify it by
taking a real-algebraic curve X ⊂ A1(C) = C and asking a

Modified question: Do there exist elliptic curves defined over Q
and not isogenous to any curve with j-invariant in X ?

Example: Let X = {z ∈ C : z + z̄ = 0}.
Now we are asking whether all elliptic curves over Q are isogenous
to some E with j(E ) purely imaginary.

We can prove results similar to the above ones, by
(variation/simplification of) the same method. For instance:

Theorem 3
There exist elliptic curves defined over Q(i) and not isogenous to
any elliptic curve E with j(E ) ∈ X .
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An analogue for g = 1

Remarks.

(i) Note that in the theorem we cannot replace Q(i) by Q (take
X = real line).

(ii) Any elliptic curve over Q is isogenous to some elliptic curve
with j-invariant in a(ny) prescribed disk of C.

(iii) In fact, it may be easily proved that there exists a real analytic
curve X ⊂ C such that all elliptic curves over Q are isogenous to
some curve with j-invariant in X . Hence that X is algebraic is
crucial. (Similarly for the case of abitrary g , discussed previously.)



An analogue for g = 1

Remarks.

(i) Note that in the theorem we cannot replace Q(i) by Q (take
X = real line).

(ii) Any elliptic curve over Q is isogenous to some elliptic curve
with j-invariant in a(ny) prescribed disk of C.

(iii) In fact, it may be easily proved that there exists a real analytic
curve X ⊂ C such that all elliptic curves over Q are isogenous to
some curve with j-invariant in X . Hence that X is algebraic is
crucial. (Similarly for the case of abitrary g , discussed previously.)



An analogue for g = 1

Remarks.

(i) Note that in the theorem we cannot replace Q(i) by Q (take
X = real line).

(ii) Any elliptic curve over Q is isogenous to some elliptic curve
with j-invariant in a(ny) prescribed disk of C.

(iii) In fact, it may be easily proved that there exists a real analytic
curve X ⊂ C such that all elliptic curves over Q are isogenous to
some curve with j-invariant in X . Hence that X is algebraic is
crucial. (Similarly for the case of abitrary g , discussed previously.)



About the proofs (g = 1)

We shall illustrate briefly some aspects of the proofs, in the simpler
case of the analogue question for g = 1.

Isogenies between elliptic curves.

Let E1,E2 be elliptic curves with j-invariants u1, u2. We have
ui = j(τi ) for some τi ∈ H = upper-half plane {z : =z > 0}.
We have Ei analytically isomorphic to C/(Zτi + Z).

Write E1 ∼ E2, or u1 ∼ u2, if they are isogenous. This amounts to
(i) Φn(u1, u2) = 0 where Φn is some modular polynomial,

or equivalently
(ii) τ2 = gτ1 for some g ∈ PGL2(Q).

In general it may be quite difficult to decide whether two given
elliptic curves (say over Q) are or are not isogenous (deep
algorithms due to Masser-Wuestholz or Faltings-Serre).
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About the proofs (g = 1)

We want to exhibit a curve not ∼ to anything in X , with its
j-invariant in a ‘large’ integer box B = {a + ib : |a|, |b| ≤ N}.

Step 1. We remove from B all points isogenous to something in
X by means of an isogeny of degree ≤ (logN)3.
Bounding deg Φn one proves there are � N(logN)10 such points.

Step 2. If another point in B is ∼ x ∈ X then the isogeny-degree
m must be > (logN)3. By Masser-Wuestholz we find
m� d5 logN for d = degree of a field of definition of x . Then
d � mc , c > 0. We now take conjugates of x over Q(i) and
obtain ‘many’ points xi ∈ X all isogenous to x .

Step 3. We interpret these isogenies in terms of corresponding
τi ∈ H (transcendental setting). We obtain ‘many’ gi ∈ PGL2(Q),
with estimates for their heights (� mC ).
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About the proofs (g = 1)

Step 4. We view these gi ’s as rational points in a certain
real-analytic variety V ⊂ R4. By results of Pila-Wilkie the
number of rational points in such varieties can be estimated
efficiently (by �ε m

ε) if we stay out of the algebraic part of V .

Step 5. It turns out that either X is modular (and then we
conclude in an even simpler way) or this algebraic part is empty.

Step 6. Then the estimates from above and below for the number
of these rational points are contradictory for large enough N (thus
large m) and 0 < ε < c , concluding the proof.
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About the proofs in the general case

Now H is replaced by the Siegel space Hg , which somewhat
uniformizes Ag .

The above pattern remains, though with new features; in
particular:

(i) One uses Serre’s version of Hilbert-irreducibility for infinite
degree extensions, so to obtain many `-Galois generic objects.

(ii) One has to use the Rosati length in place of the degree of an
isogeny. (This is technical, but crucial.)

(iii) The algebraic part of the relevant V is found to be a union of
so-called weakly special subvarietes of Ag , studied by authors like
Moonen, Oort, Pink,.... The theory yields that a weakly
special proper subvariety containing a Hodge-generic point is itself
a point, which allows to conclude.
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