Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali

TEST D'INGRESSO

$\begin{array}{c} \text{Matematica e Fisica} \\ 2017\text{-}2018 \end{array}$

1.		un parallelogramma due lati consecutivi sono lunghi a e b e l'angolo tra essi è α . Allora l'area del allelogramma è
A.		$ab\coslpha$
В.		ab anlpha
С.		$ab\sinlpha$
D.		2ab
E.		$(a+b)\cos \alpha$
2 .	Qua	anti sono i monomi di grado al più cinque nelle indeterminate x, y, z che sono divisibili per xyz ?
A.		infiniti
В.		nessuno
С.		1
D.		10
E.		5
3.	Qua	anti sono i polinomi di terzo grado che si annullano in -1 , 0 e 1 e valgono 1 in $1/2$?
A.		2
В.		infiniti
С.		3
D.		1
E.		nessuno
4.	Se u	m cubo ha area totale 6, allora la somma della lunghezza dei suoi spigoli è
A.		3
В.		8
С.		24
D.		12
Ε.		6
5 .		$\sin \alpha = 1/2 e \cos \alpha > 0$ allora $\sin 2\alpha$ vale
		$-\sqrt{3}/2$
		$-\sqrt{-3}/2$
		$\sqrt{3}/2$
Ε.		$\sqrt{-3}/2$
6.		ele tra i seguenti è il polinomio di grado minimo che vale -1 in -1 e 1 e vale 1 in 0 ?
A.		$(x-1)^2$
В.		$1 + 2x^2$

С.		1-2x
D.		$1 + x^2$
E.		$1 - 2x^2$
7.	Qua	nti sono i polinomi di secondo grado che hanno radici in 0 e 1 e valgono 1 in $1/2$?
A.		3
В.		2
С.		infiniti
D.		1
E.		nessuno
8.	Se c	os(x) > 0 allora la proposizione " $cos(x/2) > 0$ " è
A.		mai falsa
В.		vera per ogni x
C.		falsa per ogni x
D.		mai vera
E.		dipende da x
9.	Se il	polinomio $ax^2 + bx + c$ ha due radici reali distinte, allora il polinomio $\frac{c}{2}x^2 - bx + 2a$
A.		non ha alcuna radice
В.		ha due radici reali coincidenti
C.		non ha radici reali
D.		ha due radici reali distinte
E.		ha una sola radice reale
1 0.	Se s	ommo $3 \cdot 10^3$ volte il numero $-2 \cdot 10^5$ a sé stesso ottengo
10. A.	Se s	ommo $3 \cdot 10^3$ volte il numero $-2 \cdot 10^5$ a sé stesso ottengo $-6 \cdot 10^8$
A.		$-6\cdot 10^8$
А. В.		$-6 \cdot 10^8$ $6 \cdot 10^2$
А. В. С.		$-6 \cdot 10^{8}$ $6 \cdot 10^{2}$ $-1 \cdot 10^{8}$
A. B. C. D.		$-6 \cdot 10^{8}$ $6 \cdot 10^{2}$ $-1 \cdot 10^{8}$ $5 \cdot 10^{15}$
A.B.C.D.E.		$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$
A. B. C. D. E. 11. A. B.		$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$
A. B. C. D. E. 11. A. B. C.		$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$
A. B. C. D. E. 11. A. B. C. D.		$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$ $p<1/6$
A. B. C. D. E. 11. A. B. C.		$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$
A. B. C. D. E. 11. A. B. C. D.		$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$ $p<1/6$
A. B. C. D. E. 11. A. B. C. D. E.		$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ $p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora p>1/6 p=1 p=1/6 p<1/6 p<1/6 p=0$
A. B. C. D. E. 11. A. B. C. D. E. 12.	Sia	$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ $p \text{ la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora p>1/6 p=1 p=1/6 p<1/6 p<1/6 p=0 \text{û facile ottenere sei lanciando un dado o ottenere una sola testa lanciando cinque monete?}$
A. B. C. D. E. 11. A. B. C. D. E. 12.	Sia;	$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$ $p<1/6$ $p<0$ di facile ottenere sei lanciando un dado o ottenere una sola testa lanciando cinque monete? Le probabilità non si possono confrontare
A. B. C. D. E. 11. A. B. C. D. E. 12. A. B.	Sia 2	$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$ $p<1/6$ $p=0$ ù facile ottenere sei lanciando un dado o ottenere una sola testa lanciando cinque monete? Le probabilità non si possono confrontare Una sola testa con cinque monete
A. B. C. D. E. 11. A. B. C. D. E. 12. A. B. C.	Sia;	$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$ $p<1/6$ $p<0$ iù facile ottenere sei lanciando un dado o ottenere una sola testa lanciando cinque monete? Le probabilità non si possono confrontare Una sola testa con cinque monete Sei con un dado
A. B. C. D. E. 11. A. B. C. D. E. 12. A. B. C. D.	Sia 2	$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$ $p<1/6$ $p<1/6$ $p=0$ ù facile ottenere sei lanciando un dado o ottenere una sola testa lanciando cinque monete? Le probabilità non si possono confrontare Una sola testa con cinque monete Sei con un dado Non si può decidere
A. B. C. D. E. 11. A. B. C. D. E. 12. A. B. C. D. E.	Sia 2	$-6\cdot 10^8$ $6\cdot 10^2$ $-1\cdot 10^8$ $5\cdot 10^{15}$ $1\cdot 10^5$ p la probabilità di ottenere due numeri uguali lanciando due dadi a sei facce. Allora $p>1/6$ $p=1$ $p=1/6$ $p<1/6$ $p<0$ i facile ottenere sei lanciando un dado o ottenere una sola testa lanciando cinque monete? Le probabilità non si possono confrontare Una sola testa con cinque monete Sei con un dado Non si può decidere È la stessa probabilità

С.	\Box $f(x) = -g(x)$ per ogni x in $[0,1]$
D.	$\Box f(x) < g(x)$ per ogni x in $[0,1]$
E.	\Box $f(x)$ è sempre diversa da $g(x)$ in $[0,1]$
1 4.	Se $4^{a+2b} = 25$ e $2^{a-b} = 1$ allora 8^a vale
A.	\Box 5 ⁻³
В.	
С.	\Box 1/25
D.	\square non si può dire nulla, dipende da a e b
Е.	\Box 1/5
1 5.	Quante radici reali distinte ha il polinomio $(x^5-1)^2$?
A.	\square 2
В.	\Box 5
С.	
D.	\Box 10
E.	□ infinite
1 6.	Se un rettangolo ha area 1, allora per la misura $2p$ del suo perimetro vale
	$\Box 2p \leq 4$
	\Box 2 $p=1$
	$\Box 2p \geq 4$
E.	$\Box 2p \geq 8$
17.	Sia $p(n)$ la probabilità di ottenere il numero n lanciando due dadi a sei facce; allora
	$\Box p(2) > p(12)$
	\square $p(n) = 1/12$ per ogni n
18.	Se il punto di coordinate (x_0, y_0) appartiene alla retta di equazione $x + y - 7 = 0$ allora il punto (y_0, x_0)
A.	\square appartiene alla retta $x = 7$
В. С.	□ appartiene alla retta di equazione $x + y + 7 = 0$ □ appartiene alla retta di equazione $-x - y + 7 = 0$
D.	□ appartiene alla retta di equazione $-x - y + 7 = 0$ □ appartiene alla retta $y = 7$
Б. Е.	$\Box \text{ appartiene alla retta } y = 1$ $\Box \text{ appartiene alla retta } x - y = 0$
1 9.	Se una funzione crescente f in $[0,1]$ vale 0 in $1/2$ allora
	$\Box f(0) = 0 \text{ e } f(1) = 0$
	$\Box f(0) \ge 0 \text{ e } f(1) \le 0$
	$\Box f(0) \le 0 \text{ e } f(1) \ge 0$
	$\Box f(0) = 0 e f(1) > 1/2$
	$\Box f(x) = 0 \text{ per ogni } x \text{ in } [0, 1]$
2 0.	Se $2^{a+b}=3$ e $2^{a-b}=12$ allora 2^a vale
A.	\square 2
В	\sqcap 1

С.	
D.	\square non si può dire nulla, dipende da a e b
E.	\Box 6
2 1.	Sia $p(n)$ la probabilità di ottenere il numero n lanciando due dadi a sei facce; allora
A.	
В.	\square $p(n) = 1/6$ per ogni n
С.	\square $p(n) = 1/12$ per ogni n
D.	
E.	
2 2.	Qual è la massima potenza di 2 che divide sicuramente il prodotto di 8 numeri interi consecutivi?
A.	
В.	
С.	\Box 6
D.	\square 2
E.	
2 3.	Quale tra i seguenti è il polinomio di grado minimo che vale 1 in -1 e 1 e vale -1 in 0 ?
Α.	$\square 2x^2 - 1$
В.	$\Box 2x-1$
С.	$\Box (2x-1)^2$
D.	$\Box 2x^2 + 1$
E.	
2 4.	Se il polinomio $ax^2 + bx + c$ non ha radici reali, allora il polinomio $cx^2 - bx + a$
A.	\square non ha alcuna radice
В.	\square ha due radici reali coincidenti
С.	\square ha due radici reali distinte
D.	\square non ha radici reali
E.	\Box ha una sola radice reale
2 5.	Sia $f(x)$ un polinomio di grado 4. Per al massimo quanti valori di x si ha $f(x) = -4$?
A.	\square nessun valore
В.	\square 2
С.	
D.	\square infiniti
E.	\square 4
2 6.	Se il punto di coordinate (x_0, y_0) appartiene alla retta di equazione $-x + y + 3 = 0$ allora il punto (y_0, x_0)
A.	\square appartiene alla retta di equazione $-x+y-3=0$
В.	
С.	\Box appartiene alla retta di equazione $x + y + 3 = 0$
D.	\Box appartiene alla retta $x - y = 0$
E.	\Box appartiene alla retta $y=3$
2 7.	Se una funzione decrescente f in $[-1,1]$ vale 0 in 0 allora
A.	$\Box f(-1) = 0 e f(1) = 0$
В.	$\Box f(-1) > 0 e f(1) < 0$

С.	$\Box f(-1) = 0 e f(1) < 0$
D.	$\Box f(-1) \le 0 \text{ e } f(1) \ge 0$
E.	$\Box f(x) = 0 \text{ per ogni } x \text{ in } [-1, 1]$
2 8.	Per quanti valori di x nell'intervallo $[0, \pi]$ si ha $\cos x = \sin x$?
Α.	
В.	\Box 4
С.	\square 2
D.	\square infiniti
E.	\square nessuno
2 9.	Qual è la probabilità che scelti a caso tre numeri distinti tra 1 e 10 il loro prodotto sia pari?
A.	\Box 1/3
В.	\Box 1/2
С.	
D.	\Box 3/4
E.	\Box 11/12
3 0.	Se $a = 2, 5 \cdot 10^{-20}$ e $b = 4 \cdot 10^{25}$, quanto vale ab ?
A.	$\Box 6, 5 \cdot 10^{-45}$
В.	$\square 0.1 \cdot 10^5$
С.	$\Box 10 \cdot 10^{-6}$
D.	
E.	\Box 1 · 10 ⁶
3 1.	In quanti modi posso sistemare 4 palline di colore diverso in 2 cassetti?
A.	\square 4
В.	\square uno solo
С.	\Box 6
D.	\Box 18
E.	\Box 16
3 2.	Quanti triangoli distinti si possono formare con i vertici di un pentagono regolare?
A.	\square 5
В.	\square 20
С.	\Box 10
D.	\Box 30
E.	□ nessuno
3 3.	Dati 4 punti nello spazio, qual'è il numero massimo di rette distinte che si possono tracciare tra essi?
A.	\square 2
В.	\Box 6
С.	\square 5
D.	\Box 4
E.	
3 4.	Sia f una funzione dall'insieme dei numeri naturali all'insieme dei numeri naturali e supponiamo che $f(a+b)=f(a)+f(b)$ per ogni coppia di naturali a e b . Se $f(1)=3$ allora
A.	$\Box f(a) = 5a - 2 \text{ per ogni } a$

Е	3. $\Box f(a) = a + 2 \text{ per ogni } a$
C	f(a) = 3 per ogni a
Γ	f(2) = 5
E	f(a) = 3a per ogni a
3 5.	Quale tra i seguenti è il polinomio di grado minimo che vale 1 in -1 e 1 e vale -1 in 0 ?
A	$2x^2-1$
Е	3. $\Box (2x-1)^2$
C	2x-1
Γ	$x^2 + 1$
E	$2x^2+1$
3 6.	La differenza tra i due polinomi $x^2 + 2x + 1$ e $-1 - x$ ha per radici
A	\Box -1 e -2
Е	3. □ 0 e 1
C	2. □ 1 e −1
Г	0. □ 0 e −1
E	Z. □ 1 e 2
3 7.	La differenza tra i due polinomi $x^2 - 2x + 1$ e $x - 1$ ha per radici
A	□ 1 e −1
Е	3. □ 1 e 2
C	0 - 1 = 0
Ε	0. □ 0 e 2
E	2. 🗆 0 e 1
3 8.	Il prodotto di tre numeri interi consecutivi è sempre
A	. \square divisibile per 6
Е	3. \square un numero dispari
C	C. □ divisibile per 8
Ε	o. □ un numero primo
F	2. \square divibile per 5
3 9.	Se sommo $3\cdot 10^3$ volte il numero $-2\cdot 10^5$ a sé stesso ottengo
A	$1 \cdot 10^5$
Ε	8. $\Box -1 \cdot 10^8$
C	$C. \Box 5 \cdot 10^{15}$
Ε	$\Box \Box 6 \cdot 10^2$
E	$\Box = -6 \cdot 10^8$
4 0.	Sia $abcd$ la scrittura in base 10 di un numero naturale n e supponiamo che tutte le cifre a, b, c, d siano diverse da zero. Sia m un numero naturale ottenuto permutando le cifre del numero n . Allora
A	\Box 10 divide $n-m$
Е	3. \square 9 divide $n-m$
C	n+mè un numero pari
Ε	$0. \Box n < m$
E	\square $n > m$

4 1.	Se x e y sono due numeri reali positivi e distinti per cui		
		$\frac{1}{\frac{1}{x} + \frac{1}{y}} = 5$	
	allo	ra	
A.		y = x + 5	
В.		entrambi i numeri sono maggiori di 10	
С.		x = y + 5	
D.		almeno uno dei due numeri è minore di 10	
E.		almeno uno dei due numeri è minore di 5	
4 2.	Un	esagono e un pentagono regolari sono circoscritti ad una stessa circonferenza. Allora	
A.		L'esagono ha area maggiore	
В.		I due poligoni hanno la stessa area	
С.		L'esagono ha perimetro maggiore	
D.		I due poligoni hanno lo stesso perimetro	
Ε.		Il pentagono ha perimentro maggiore	
4 3.	Se u	ma funzione decrescente f in $[-1,1]$ vale 0 in 0 allora	
		$f(-1) \ge 0 \text{ e } f(1) \le 0$	
		f(-1) = 0 e f(1) < 0	
		f(-1) = 0 e f(1) = 0	
		$f(-1) \le 0 e f(1) \ge 0$	
Ε.		f(x) = 0 per ogni x in $[-1, 1]$	
4 4.	Se s	ommo $3 \cdot 10^3$ volte il numero $-2 \cdot 10^5$ a sé stesso ottengo	
A.		$5 \cdot 10^{15}$	
В.		$6 \cdot 10^2$	
С.		$-6 \cdot 10^{8}$	
D.		$-1\cdot 10^8$	
Ε.		$1\cdot 10^5$	
4 5.	Lar	nisura dell'area di un poligono regolare con n lati inscritto in una circonferenza di raggio unitario è	
A.		n^2	
В.		$n\cos(2\pi/n)$	
С.		$n(\sin^2(2\pi/n) + \cos^2(2\pi/n))$	
D.			
Ε.		$n\sin(2\pi/n)/2$	
4 6.	Sia	$f(x)$ un polinomio, per quali valori interi positivi di n le radici di $f(x)$ sono anche radici di $f(x)^n$?	
A.		solo per n minore del grado di $f(x)$	
В.		dipende dal polinomio $f(x)$	
С.		solo per $n=1$	
D.		per ogni n intero positivo	

 ${\bf 47}.~~$ Se un cubo ha area totale 6, allora la somma della lunghezza dei suoi spigoli è

E. \square per nessun n

A. □ 8

В.	\square 24
С.	\Box 12
D.	
E.	
4 8.	In un urna ci sono 15 palline colorate di rosso e blu. La probabilità di estrarre una pallina rossa è il 20% Quante sono le palline blu?
A.	
В.	\Box 12
С.	
D.	
E.	\square 10
4 9.	L'inseme delle soluzioni della disequazione $-x^3(x^2+1) \leq 0$ è
A.	
В.	\square $[0, +\infty)$
С.	\square [0,1)
D.	
E.	$\square (-\infty, +\infty)$
5 0.	Se un cubo ha area totale 12, allora la somma della lunghezza dei suoi spigoli è
A.	\Box 18 $\sqrt{3}$
В.	$\Box 3\sqrt{3}$
С.	
D.	\Box 12 $\sqrt{2}$
E.	\Box 6 $\sqrt{2}$
5 1.	Quante radici reali distinte ha il polinomio $(x^3-1)^3$?
Α.	\square 3
В.	
	□ infinite
D.	
E.	
5 2.	Se una funzione crescente f in $[0,1]$ vale 0 in $1/2$ allora
A.	$ \Box f(0) \ge 0 \text{ e } f(1) \le 0 $
В.	$\Box f(0) = 0 e f(1) = 0$
С.	$\Box f(0) = 0 e f(1) > 1/2$
D.	$\Box f(x) = 0 \text{ per ogni } x \text{ in } [0, 1]$
E.	$\Box f(0) \le 0 \text{ e } f(1) \ge 0$
5 3.	Due rette nello spazio si incontrano in un punto; allora
A.	\square ogni piano per il punto di intersezione contiene le due rette
В.	\square non esiste alcun piano che contenga entrambe le rette
С.	□ le rette sono uguali
D.	□ le rette sono parallele
E.	$\hfill \square$ esiste un piano che contiene entrambe le rette
5 4.	Sia $y = f(x)$ una funzione da \mathbb{R} in \mathbb{R} con $f(x)$ un polinomio di primo grado. Se $f(0) = 0$ e $f(1) = -1$ quanto vale $f(-1)$?

A.		0
В.		-1
С.		-2
D.		2
Ε.		1
5 5.	In q	uanti modi posso sistemare tre palline di colore diverso in due cassetti?
A.		3
В.		2
С.		8
D.		9
Ε.		uno solo
5 6.	In u	n insieme con 10 elementi ci sono più sottoinsiemi con un elemento o con 9 elementi?
A.		Non esistono sottoinsiemi con un elemento
В.		Più insiemi con 9 elementi
С.		Stesso numero
D.		Dipende dall'insieme
Ε.		Più insiemi con un elemento
5 7.	Qua	nto vale $(-\sqrt{2}/2+1)(1+\sqrt{2}/2)$?
A.		1
В.		2
С.		$\sqrt{2}/2$
D.		1/2
Ε.		$\sqrt{2}$
5 8.		n urna ci sono 30 palline colorate di rosso e blu. La probabilità di estrarre una pallina rossa è il 20%. nte sono le palline blu?
Α.	П	0
В.		$\frac{1}{24}$
С.		20
D.		10
E.		6
5 9.		uanti modi si possono colorare le facce di un cubo di rosso e blu in modo che facce opposte abbiano ri diversi?
Α.		nessun modo
В.		6
С.		1
D.		12
Ε.		8
6 0.	Sian	o $f(x)$ e $g(x)$ due polinomi distinti di grado 3. Per al massimo quanti valori di x si ha $f(x) = g(x)$?
Α.		nessun valore
В.		3
С.		9
D.		6
E.		infiniti

6 1.	Qua	nte coppie (x, y) di interi positivi x, y soddisfano $2x + 3y \le 10$
A.		infinite
В.		una sola
С.		nessuna
D.		14
Ε.		5
6 2.	Per	quali valori del numero reale a le due rette $x+y=1$ e $-x-y=a$ sono parallele?
A.		per ogni a
В.		solo per $a=1$
C.		solo per $a = -1$
D.		per nessuno a
E.		per i soli due valori $a=1$ e $a=-1$
6 3.	Se I	$P(n)$ è una proprietà vera per i numeri interi pari allora la proprietà $Q(n) = (P(n) \circ P(n+1))$ è?
Α.		vera solo per gli n pari
В.		sempre falsa
С.		falsa per ogni intero n
D.		vera per gli n pari
E.		vera per ogni intero n
6 4.	Qua	nto vale $(-\sqrt{2}/2+1)(1+\sqrt{2}/2)$?
A.		
		$\sqrt{2}/2$
D.		1/2
E.		2
6 5.		n urna ci sono 20 palline colorate di giallo e verde. La probabilità di estrarre una pallina gialla è il . Quante sono le palline verdi?
A.		1
В.		15
С.		5
D.		10
Ε.		0
6 6.	Se p	(x) è un polinomio di 3 grado, per quanti valori di x in $[0,1]$ si ha $p(x)=x$?
A.		esattamente 3
В.		al massimo 2
С.		esattamente 2
D.		0
Ε.		al massimo 3
6 7.	Due	rette nello spazio si incontrano in un punto; allora
A.		ogni piano per il punto di intersezione contiene le due rette
В.		le rette sono uguali
С.		esiste un piano che contiene entrambe le rette
D.		non esiste alcun piano che contenga entrambe le rette

E.	Ш	le rette sono parallele
6 8.	Se 2	$2^a=5$ allora $2^{a+2}-2^{a+1}-5$ è uguale a
A.		1
В.		5
С.		0
D.		dipende da a
E.		2
6 9.	L'in	seme delle soluzioni della disequazione $-x^5(x^4+1) \leq 0$ è
A.		$(-\infty,0]$
В.		$(-\infty, +\infty)$
С.		[0,1]
D.		[0,1)
E.		$[0,+\infty)$
7 0.	Se f	f(x) è una funzione crescente definita in $[1,4]$ e vale $f(1)=1,f(2)=3/2,f(3)=11/6$ e $f(4)=25/12,f(3)=11/6$ e tra le seguenti può essere vera
A.		f(3/2) = 1/2
В.		f(2) = 9/8
С.		f(5/2) = 5/3
D.		f(3/2) = 5/2
E.		f(7/2) = 5/3
7 1.	Qua	anti sono i monomi di quarto grado nelle indeterminate x, y, z che sono divisibili per xyz ?
A.		3
В.		1
С.		nessuno
D.		infiniti
Ε.		4
7 2.	Una	a circonferenza è circoscritta ad un esagono regolare di perimetro 12. L'area del cerchio è
A.		4π
В.		2π
С.		3π
D.		12
E.		12π
7 3.	Se p	p(x) è un polinomio di 4 grado che si annulla in 0, per quanti valori di x in $[0,1]$ si ha $p(x)=x$?
A.		nessun valore
В.		al massimo 1
С.		esattamente 1
D.		esattamente 4
E.		al massimo 4
7 4.	È pi	iù facile ottenere 6 lanciando un dado o tre numeri pari lanciando tre dadi?
A.		tre numeri pari con tre dadi
В.		non è possibile decidere
С.		6 con un dado

D.		dipende dal dado
E.		la probabilità è la stessa
7 5.	Se s	ommo $2 \cdot 10^7$ volte il numero $-3 \cdot 10^{-2}$ a sé stesso ottengo
Α.		$-1 \cdot 10^{-4}$
В.		$5\cdot 10^4$
С.		$-5\cdot 10^4$
D.		$6\cdot 10^5$
Ε.		$-6\cdot 10^5$
7 6.	Se 2	$a^a=5$ allora $2^{a+2}-2^{a+1}-5$ è uguale a
A.		5
В.		1
С.		dipende da a
D.		2
E.		0
7 7.	Qua	into vale $\sin(\pi x) + \cos(\pi x^2)$ per $x = 1/2$?
A.		$1-\sqrt{2}/2$
В.		$(1-\sqrt{2})/2$
С.		$(1+\sqrt{2})/2$
D.		$1+\sqrt{2}/2$
Ε.		$-1+\sqrt{2}/2$
7 8.		libro costa P euro. A questo costo viene prima applicato uno sconto del 20% e poi il prezzo ottenuto e maggiorato del 20%. Il libro costa
Α.		non si può dire nulla
В.		meno di P euro
С.		più di P euro
D.		dipende da P
Ε.		esattamente P euro
7 9.	Sian	no $f(x)$ e $g(x)$ due polinomi distinti di grado 3. Per al massimo quanti valori di x si ha $f(x) = -g(x)$?
A.		6
В.		3
С.		infiniti
D.		9
Ε.		nessun valore
8 0.	Qua	ente radici distinte intere ha il polinomio $x^2(x^2-1)^2(x^2-2)^2(x^2-3)^2(x^2-4)^2$?
A.		infinite
В.		dipende da x
С.		18
D.		9
Ε.		5
8 1.	Qua	inte radici reali distinte ha il polinomio $(x^3-1)^3$?
A.		1
В.		9

С.		infinite
D.		3
E.		6
8 2.	Se u	n cubo ha area totale 24, allora la somma della lunghezza dei suoi spigoli è
A.		12
В.		8
С.		36
D.		6
E.		24
8 3.	Se p	(n) è una proposizione falsa quando l'intero n è pari allora
Α.		p(n)è vera per gli interi n dispari
В.		p(0)è vera
С.		La negazione di $p(0)$ è vera
D.		p(1)è vera
E.		Una tra $p(2)$ e $p(3)$ è vera
8 4.	La d	lifferenza tra i due polinomi $x^2 - 2x + 1$ e $x - 1$ ha per radici
A.		0 e -2
В.		$1 e^{-1}$
С.		0 e 1
D.		1 e 2
E.		0 e 2
8 5.	Se a	$a = 8 \cdot 10^{-10} \text{ e } b = 2 \cdot 10^{-18}, \text{ quanto vale } \sqrt{a/b}?$
A.		$4\cdot 10^{-4}$
А. В.		$4 \cdot 10^{-4} \\ 0.4 \cdot 10^{-3}$
В.		$0.4 \cdot 10^{-3}$
В. С.		$0.4 \cdot 10^{-3}$ $2 \cdot 10^4$
В. С. D.		$0.4 \cdot 10^{-3}$ $2 \cdot 10^4$ $16 \cdot 10^{28}$
B.C.D.E.		$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e
B. C. D. E.	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r in contra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi x e y è
B.C.D.E.86.	□ □ □ □ Se la degl	$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi x e y è 3
B.C.D.E.86.A.B.	□ □ □ □ Se la degl	$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r in contra l'asse x in $(1,0)$ e l'asse y in (0,2) allora l'area del triangolo formato dalla retta e i assi x e y è 3 2
B.C.D.E.86.A.B.C.		$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r in contra l'asse x in $(1,0)$ e l'asse y in (0,2) allora l'area del triangolo formato dalla retta e i assi x e y è 3 2 4
B. C. B. A. B. C. D.	Se la degl	$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r in contra l'asse x in $(1,0)$ e l'asse y in (0,2) allora l'area del triangolo formato dalla retta e i assi x e y è 3 2 4 5
B. C. D. E. S6. C. D. E.	Se la degl	$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r in contra l'asse x in $(1,0)$ e l'asse y in (0,2) allora l'area del triangolo formato dalla retta e i assi x e y è 3 2 4 5 1
B. C. D. E. S6. C. D. E. 87.		$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi x e y è 3 2 4 5 1 P è una proprietà vera per ogni numero dispari e Q è una proprietà vera per ogni numero intero, allora
B. C. D. E. B. C. D. E. 87. A.		$0.4\cdot 10^{-3}$ $2\cdot 10^4$ $16\cdot 10^{28}$ $16\cdot 10^{-28}$ a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi x e y è 3 2 4 5 1 P è una proprietà vera per ogni numero dispari e Q è una proprietà vera per ogni numero intero, allora P è falsa per ogni numero intero
B. C. D. 86. B. C. D. E. 87. A. B.		$\begin{array}{c} 0.4\cdot 10^{-3}\\ 2\cdot 10^4\\ 16\cdot 10^{28}\\ 16\cdot 10^{-28}\\ \text{a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi $x \in y$ è \\ 3\\ 2\\ 4\\ 5\\ 1\\ P$ è una proprietà vera per ogni numero dispari e \$Q\$ è una proprietà vera per ogni numero intero, allora \$P\$ è falsa per ogni numero intero $P \text{ e } Q$ " è vera per ogni numero intero $P \text{ non è vera per i numeri pari } Q \text{ implica } P$
B. C. D. E. 86. C. A. B. C. A. B. C. C. C.		$0.4 \cdot 10^{-3}$ $2 \cdot 10^4$ $16 \cdot 10^{28}$ $16 \cdot 10^{-28}$ a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi x e y è 3 2 4 5 1 P è una proprietà vera per ogni numero dispari e Q è una proprietà vera per ogni numero intero, allora P è falsa per ogni numero intero P e Q " è vera per ogni numero intero P non è vera per i numeri pari
B. C. D. E. 87. A. B. C. D. C. D.		$\begin{array}{c} 0.4\cdot 10^{-3}\\ 2\cdot 10^4\\ 16\cdot 10^{28}\\ 16\cdot 10^{-28}\\ \text{a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi $x \in y$ è \\ 3\\ 2\\ 4\\ 5\\ 1\\ P$ è una proprietà vera per ogni numero dispari e \$Q\$ è una proprietà vera per ogni numero intero, allora \$P\$ è falsa per ogni numero intero $P \text{ e } Q$ " è vera per ogni numero intero $P \text{ non è vera per i numeri pari } Q \text{ implica } P$

В.		2π
С.		12π
D.		4π
E.		3π
8 9.	Due	rette nello spazio si incontrano in un punto; allora
A.		le rette sono parallele
В.		non esiste alcun piano che contenga entrambe le rette
С.		esiste un piano che contiene entrambe le rette
D.		le rette sono uguali
E.		ogni piano per il punto di intersezione contiene le due rette
9 0.	Se I	$^{\mathrm{p}}$ è una proprietà vera per ogni numero pari e Q è una proprietà vera per ogni numero dispari, allora
A.		"P o Q " è vera per ogni numero intero
В.		Q implica P
С.		" $P \in Q$ " è vera per ogni numero intero
D.		P non è vera per i numeri dispari
E.		P implica Q
9 1.	Due	rette nello spazio si incontrano in un punto; allora
A.		ogni piano per il punto di intersezione contiene le due rette
В.		non esiste alcun piano che contenga entrambe le rette
С.		le rette sono parallele
D.		le rette sono uguali
E.		esiste un piano che contiene entrambe le rette
9 2.	Se il	prodotto dei tre numeri interi consecutivi $n,n+1$ e $n+2$ è divisibile per 4 ma non per 8 allora
A.		nè pari
В.		non si può dire nulla su n
C.		nè dispari
D.		nè negativo
E.		n = 4
9 3.	Se u	n rettangolo ha perimetro 2, allora per la misura A della sua area abbiamo
A.		$A \le 1/8$
В.		$A \ge 1/8$
C.		$A \ge 1/4$
D.		A = 1
E.		$A \le 1/4$
9 4.	Qua	nte radici distinte ha il polinomio $(x-1)(x^2-1)(x-2)(x^2-4)$?
A.		dipende da x
В.		4
С.		1
D.		infinite
E.		6
9 5.		a retta r incontra l'asse x in $(1,0)$ e l'asse y in $(0,2)$ allora l'area del triangolo formato dalla retta e i assi x e y è

A.		5
В.		3
С.		1
D.		2
E.		4
9 6.	Sia	p(n) la probabilità di ottenere il numero n lanciando due dadi a sei facce; allora
A.		p(2) = p(12)
В.		p(n) = 1/12 per ogni n
С.		p(2) < p(12)
		p(n) = 1/6 per ogni n
E.		p(2) > p(12)
9 7.	Se 2	$^a=5$ allora $2^{a+2}-2^{a+1}-5$ è uguale a
A.		0
В.		2
С.		1
D.		dipende da a
E.		5
9 8.	Sia :	x un numero positivo, $a = \log_{10}(x)$, $b = 10^{a+1}$ e $c = \log_{10}(b)$, allora
A.		c = 10b
В.		c = b + 1
С.		x = c
D.		c = a + 1
E.		c = 10a
9 9.	Qua	nto vale la somma degli angoli interni di un n -agono regolare?
A.		$(n-2)\pi$
В.		$n\pi$
С.		dipende dal lato del poligono
D.		n
E.		2π
1 00.	Se il	punto di coordinate (x_0, y_0) appartiene alla retta di equazione $x + y - 7 = 0$ allora il punto (y_0, x_0)
A.		appartiene alla retta di equazione $-x - y + 7 = 0$
В.		appartiene alla retta $x - y = 0$
С.		appartiene alla retta $y = 7$
D.		appartiene alla retta $x = 7$
E.		appartiene alla retta di equazione $x + y + 7 = 0$
1 01.	Se x	$x>y\geq 0$ allora
A.		$\sqrt{x} > \sqrt{y}$
В.		\sqrt{xy} non esiste
С.		$\sqrt{x} < \sqrt{y}$
D.		$\sqrt{y} > \sqrt{x}$
E.		$\sqrt{y/x}$ non esiste
1 02.	Sia	$a = 11^3 \cdot 10^{-4} \text{ e } b = 11 \cdot 10^{-1}$. Allora

٨	Г		b = 11a
A			
В			a < b
C). L		a > b
D). [a = 11b
E). [a = b
1 03.			a retta r incontra l'asse x in $(2,0)$ e l'asse y in $(0,1)$ allora l'area del triangolo formato dalla retta e assi x e y è
A	[3
В	3. [2
C	. [4
D). [1
E). [5
1 04.			n il numero di punti ottenuti intersecando una sfera con centro nell'origine con un certo numero di e passanti per l'origine. Allora sicuramente n è diverso da
A	. [5
В	3. [4
C	. [2016
D). [2
E). [100
1 05.	S	Se il	polinomio $ax^2 + bx + c$ non ha radici reali, allora il polinomio $cx^2 - bx + a$
A	. [non ha alcuna radice
В	3. [ha due radici reali coincidenti
C	. [non ha radici reali
D). [ha una sola radice reale
E). [ha due radici reali distinte
1 06.	U) Ha	circonferenza è circoscritta ad un esagono regolare di perimetro 6. L'area del cerchio è
A	. [π
В	3.		$-\pi$
C	. [2π
D). [0
E). [3π
1 07.			seme delle soluzioni della disequazione $-x^3(x^2+1) \leq 0$ è
A	. [$(-\infty, 0]$
В	3. [[0,1)
C	. [$(-\infty, +\infty)$
\mathbf{D}). [$[0,+\infty)$
E). [[0,1]
1 08.	S	Se x	e y sono due numeri reali dello stesso segno e $e^{x^2}=2,e^{y^2}=3$ allora
A			$e^{(x+y)^2} \ge 6$
В	3. [$e^{x^2} + e^{y^2} = 6$
C	. [$e^{x^2} \cdot e^{y^2} = 5$
D			$e^{(x+y)^2} < 6$

1 09.	Se s	$\sin^4 x - \cos^4 x = 0$ allora è sicuramente vero che
A.		$x = \pm \pi/4 \text{ o } x = \pm 3\pi/4$
В.		$x = \pm \pi/4$
С.		$x = \pi/4$
D.		$x = -\pi/4$
E.		non vi è alcuna soluzione
1 10.	Se s	$\sin^4 x - \cos^4 x = 0$ allora è sicuramente vero che
A.		$x = \pm \pi/4 \text{ o } x = \pm 3\pi/4$
В.		$x = \pi/4$
С.		non vi è alcuna soluzione
D.		$x = -\pi/4$
E.		$x = \pm \pi/4$
1 11.	Se l	a media aritmetica di tre numeri interi x,y,z è 2017 allora
A.		$x, y \in z$ sono tutti positivi
В.		x + y + zè divisibile per 3
С.		x = y = z = 2017
D.		i tre numeri non hanno tutti lo stesso segno
E.		\boldsymbol{x} è sicuramente maggiore di $\boldsymbol{y}+\boldsymbol{z}$
1 12.	Qua	anto vale $\sin(\pi x) + \cos(\pi x^2)$ per $x = 1/2$?
A.		$(1+\sqrt{2})/2$
В.		$(1-\sqrt{2})/2$
		$-1+\sqrt{2}/2$
		$1-\sqrt{2}/2$
E.		$1+\sqrt{2}/2$
1 13.		libro costa P euro. A questo costo viene prima applicato uno sconto del 20% e poi il prezzo ottenuto ne maggiorato del 20%. Il libro costa
A.		meno di P euro
В.		esattamente P euro
С.		più di P euro
D.		non si può dire nulla
E.		dipende da P
1 14.	Se <i>I</i> è?	$P(n)$ è una proprietà vera per i numeri interi multipli di 3 allora la proprietà $Q(n)=(P(n){\rm o}P(n+1))$
Α.		sempre falsa
В.		vera solo per gli n pari
С.		vera per ogni intero n
D.		vera per ogni intero n che non dia resto 1 diviso per 3
E.		falsa per ogni intero \boldsymbol{n} che non sia multiplo di 3
1 15.	Per	quanti valori di x nell'intervallo $[-\pi, \pi]$ si ha $\sin x = \cos x$?
A.		4
В.		1
С.		infiniti
D.		nessuno

E.	Ш	2
1 16.		dato esperimento restituisce i due valori $+1$ o -1 . Quali tra i seguenti può essere la somma dei risultati 0 di tali esperimenti?
A.		-1
В.		100
С.		8
D.		-12
E.		5
1 17.		ti cinque punti p_1, \ldots, p_5 del piano, qual è il numero massimo di segmenti distinti che si possono enere con vertici nei punti p_1, \ldots, p_5 ?
A.		0
В.		1
С.		10
D.		20
E.		5
1 18.	Se i	l prodotto dei tre numeri interi consecutivi $n, n+1$ e $n+2$ è divisibile per 4 ma non per 8 allora
A.		n è pari
В.		nè negativo
С.		nè dispari
D.		non si può dire nulla su n
E.		n = 4
1 19.		libro costa P euro. A questo costo viene prima applicato uno sconto del 50% e poi il prezzo ottenuto ne maggiorato del 50%. Il libro costa
A.		meno di P euro
В.		più di P euro
С.		dipende da P
D.		esattamente P euro
E.		non si può dire nulla
1 20.	Sia	m il coefficiente di x^3 in $(x+2)^8$ e sia n il coefficiente di x^3 in $(x+3)^6$. Allora
A.		m > n
В.		mè dispari
С.		n non è divisibile per 3
D.		m < n
E.		m = n
1 21.	Qua	anto vale la somma degli angoli interni di tutte le facce di una piramide con base un n -agono regolare?
A.		$n\pi$
В.		$(n-1)\pi$
С.		$n\pi/2$
D.		$2n\pi$
E.		$2(n-1)\pi$
1 22.	In u	un urna ci sono 15 palline colorate di rosso e blu. La probabilità di estrarre una pallina rossa è il 20%. ante sono le palline blu?
A.		10

В.		3
C.		12
D.		0
E.		5
1 23.	Un	esagono e un pentagono regolari sono circoscritti ad una stessa circonferenza. Allora
A.		L'esagono ha area maggiore
В.		I due poligoni hanno la stessa area
С.		L'esagono ha perimetro maggiore
D.		Il pentagono ha perimetro maggiore
E.		I due poligoni hanno lo stesso perimetro
1 24.		quanti modi si possono colorare le facce di un cubo di rosso, blu e giallo in modo che facce adiacenti iano colori diversi? Si considerino uguali due colorazione che differiscono per una rotazione del cubo.
A.		4
В.		1
С.		nessun modo
D.		6
E.		3
1 25.	Se a	$a = 2 \cdot 10^{-10} \text{ e } b = 2 \cdot 10^{-18}, \text{ quanto vale } \sqrt{a/b}?$
A.		$16 \cdot 10^{-28}$
В.		$1\cdot 10^4$
С.		$16 \cdot 10^{28}$
D.		$2 \cdot 10^{-4}$
Ε.		$0.4 \cdot 10^{-3}$
1 26.		un parallelogramma due lati consecutivi sono lunghi a e b e l'angolo tra essi è α . Allora l'area del allelogramma è
A.		2ab
В.		$ab\cos \alpha$
С.		$ab\sin lpha$
D.		$(a+b)\cos\alpha$
E.		ab an lpha
1 27.	La	disequazione $(3-x)(x^3+3)^2 \ge 0$ ha per soluzione
		$x \ge 3$
		$x \ge -\sqrt[3]{3}$
		$x \le -3 e x \ge 3$
		$x \leq 3$
Е.		$x \neq -\sqrt[3]{3}$
1 28.	La	disequazione $(3-x)(x^3+3)^2 \ge 0$ ha per soluzione
A.		$x \neq -\sqrt[3]{3}$
		$x \le 3$
		$x \ge -\sqrt[3]{3}$
		$x \ge 3$
E.		$x \le -3 e x \ge 3$
1 29.	Qua	anto vale $(1+\sqrt{3}/3)(-\sqrt{3}/3+1)$?

A.		3/2
В.		1
С.		2/3
D.		$\sqrt{3}$
E.		$\sqrt{3}/3$
1 30.	Se I	$^{\rm p}$ è una proprietà vera per ogni numero pari e Q è una proprietà vera per ogni numero dispari, allora
A.		P non è vera per i numeri dispari
В.		"P o Q " è vera per ogni numero intero
C.		Q implica P
D.		" $P \in Q$ " è vera per ogni numero intero
E.		P implica Q
1 31.	Se I	$P(n)$ è una proprietà vera per i numeri interi dispari allora la proprietà $Q(n) = (P(n) \circ P(n+1))$ è?
A.		vera per ogni intero n
В.		sempre falsa
С.		falsa per ogni intero n
D.		vera per gli n pari
Ε.		vera solo per gli n dispari
1 32.	Se il	l perimetro di un quadrato è uguale alla lunghezza di una circonferenza, allora
A.		il cerchio ha area minore del quadrato
В.		il quadrato ha area maggiore del cerchio
С.		il quadrato ha area minore del cerchio
D.		il cerchio e il quadrato hanno la stessa area
Ε.		nulla si può dire
1 33.	Se 3	$a^a=2$ allora $3^{a+2}-3^{a+1}-2$ è uguale a
A.		6
В.		10
С.		4
D.		
Ε.		dipende da a
1 34.	Qua	nti sono i punti (x,y) a coordinate entrambe intere non negative per cui $4x + 3y \le 6$?
A.		nessuno
В.		4
С.		3
D.		1
Ε.	Ш	6
1 35.	Per	quanti valori di x nell'intervallo $[-\pi, \pi]$ si ha $\sin x = \cos x$?
A.		1
В.		2
С.		nessuno
D.		
$\mathbf{E}.$		infiniti

 ${\bf 136.} \quad \hbox{In un insieme con 11 elementi ci sono più sotto
insiemi con 2 elemento o con 9 elementi?}$

A.		Dipende dall'insieme
В.		Non esistono sottoinsiemi con 2 elementI
С.		Più insiemi con 9 elementi
D.		Stesso numero
E.		Più insiemi con 2 elementI
1 37.	Un	cubo ha volume 8, allora la somma delle lunghezze dei suoi spigoli è
A.		2
В.		12
С.		24
D.		non si puà decidere
E.		16
138.	8. Per quali valori dell'intero k (positivi e negativi) il punto di coordinate $(2k/3, 2k/3)$ è interno al di centro $(0,0)$ e raggio 1?	
A.		per $k \in \{-1, 0, 1\}$
В.		per nessun k
С.		per ogni k multiplo di 3
D.		per ogni k intero
E.		per $k \in \{-2, -1, 0, 1, 2\}$
1 39.		m parallelogramma due lati consecutivi sono lunghi a e b e l'angolo tra essi è α . Allora l'area del dlelogramma è
A.		ab an lpha
В.		$ab\sin lpha$
С.		2ab
D.		$(a+b)\cos\alpha$
E.		$ab\cos lpha$
1 40.	Se il	prodotto dei tre numeri interi consecutivi $n,n+1$ e $n+2$ è divisibile per 4 ma non per 8 allora
A.		nè negativo
В.		n = 4
С.		nè dispari
D.		non si può dire nulla su n
E.		nè pari
1 41.	Qua	nto vale $(-\sqrt{3} + \sqrt{5})^2(\sqrt{5} + \sqrt{3})^2$
A.		2
В.		$(\sqrt{3}+\sqrt{5})^2$
С.		$2\sqrt{15}$
D.		0
E.		4
142.	Sia	x un numero positivo e siano $a = \sqrt{1+x}$ e $b = \sqrt{x}$, allora
A.		dipende da x
В.		a > b
С.		b non è sempre reale
D.		a < b
E.		a = b

1 43.	Qual è il numero minimo di colori necessari per colorare i vertici di un cubo in modo clegati da un lato abbiamo sempre colori diversi?		
A.		1	
В.		6	
С.		8	
D.		2	
E.		4	
1 44.	Qua	inte radici reali distinte ha il polinomio $(x^3 - 1)^3$?	
A.		9	
В.		3	
С.		infinite	
D.		6	
E.		1	
1 45.	Qua	anto vale $(-\sqrt{2}/2+1)(1+\sqrt{2}/2)$?	
A.		2	
В.		1/2	
С.		$\sqrt{2}$	
D.		1	
E.		$\sqrt{2}/2$	

due vertici