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Introduction

Despite all the great successes of high energy physics, there is still a general sense of dissatisfaction
regarding many unsolved fundamental issues in particle phenomenology, that don’t find an answer
within the Standard Model (SM) of the elementary particles. This is formulated as a non-abelian gauge
theory, which is is quite success-full in explaining a large quantity of experimental data, from hadronic
physics up to the electroweak scale, but that leaves several questions unanswered. Examples of these
are: the origin of the neutrino masses, various anomalies in the flavour sector, the gauge hierarchy
problem, the origin of dark matter.
From the theoretical point of view, one notices the flourishing of many models that extend the
Standard Model in various directions, but the difficulties persist. From our viewpoint, one of the main
shortcoming of the SM is the lack of a connection of this model with gravity, for being essentially a
low energy theory, compared to more general formulations where the gauge structure is far wider
and more unifying. Examples of such theories are those based on Grand Unification, involving larger
symmetries, such as the Left-Right symmetric Model or models based on SO(10) or trinification
(SU(3)3), or even based on exceptional symmetries such as E6. In all these models, we need to match
the theoretical predictions with all the experimental data, and these include those coming from the
current cosmological observations, which indicate that in our universe, about a quarter of it energy
budget, should be attributed to dark matter. This thesis work is centred around the study of a specific
candidate for dark matter that emerges from extensions of the Standard Model as we get closer to the
Planck scale.

In this thesis we will be discussing two important aspects of the physics of the early Universe,
concerning, separately, axions and gravitational waves. The two topics,as just mentioned, are treated
separately although it is possible to investigate the impact of the propagation of gravitational waves on
an axion condensate. Axions have been introduced in order to solve the strong CP problem, by Peccei
and Quinn, long ago ([22, 23, 24])and searches for their detection are ongoing at experimental level.
Along the years, the theory has undergone several modifications and extentions. The axion-based
model that we will discuss, deals with a specific extension of the theory derived from the theory of
branes. The effective action derived for this model requires a so called ’Stueckelberg axion’, in the
form of a Nambu-Goldstone mode that couples to a gauge anomaly, in order to restore the gauge
symmetry. The underlying assumption is that a gauge anomaly, produced by a string theory sector, is
cancelled at field theory level by the exchange of a pseudo-scalar field. The result, at field theory level
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is that an Abelian anomaly in the spectrum of the effective field theory that is derived from string, is
erased by the exchange of such pseudo-scalar. We will not discuss string/brane origin of this model
but we will describe its structure and its differences with respect to the ordinary PQ theory in Chapter
6. For this reason the generation of such particle can be directly related to the possibility of having an
anomalous Abelian gauge theory in the early Universe. This possibility is at the core of our proposal.

In this context one of the most important and promising ingredients of today theoretical high
energy physics is the particle called axion. The interest in axions has arisen in a decisive way because it
allows to solve at once two big puzzles: the strong CP problem and the dark matter problem. Moreover
the formal introduction of axion turns out to be extremely simple and elegant and this has always
aroused great excitement within the high energy community. The oldest origin of the axion dates
back to the 70’s when they were looking for a solution to the so-called U(1)A problem. The strong
interaction theory in fact predicts the breaking of the group U(1)A by a chiral condensate operator, in
the same way in which the symmetry of SU(2) is broken giving rise to pseudo-bosons (the pions). The
problem was that for U(1)A no particle was associated. The problem was solved by G. ’t Hooft in 1976
when he realized that U(1)A is not a QCD symmetry, in fact the non Abelian nature of SU(3)c leads to
particular properties of QCD able to violate the symmetries at a quantum level. The resolution of this
problem brought another one. It was observed that the Lagrangian of QCD admits a topological term,
the so-called θ-term. Through experimental tests it was found that |θ| < 1.3× 10−10. The extremely
small value posed the following problem: while the introduction of the θ-term was completely justified
on formal grounds, one could not explain such a small value. A fully satisfactory explanation of the
problem has not yet been found. The most famous attempt to explain the dilemma dates back to
the 1977 Peccei-Quinn proposal. The θ-term could be erased from the Lagrangian of QCD simply by
introducing a new extra symmetry. But as soon as this solution was introduced Weinberg and Wilczek
pointed out in 1978 that if Peccei-Quinn symmetry was embedded, then another particle, named axion,
would arise. Since then there have been models that try to incorporate axion and unify it with the field
content of the Standard Model(SM). The limit of 10 KeV as mass of the new particle has discouraged
all the models that foresaw a visible axion in favor of the rise of models of invisible axions. Among
these we can distinguish KSVZ and DFSZ models. Both models involve the introduction of a Higgs
singlet equipped with a VEV that defines an energy scale directly related to the properties of the axion.
The identification of the axion with a likely dark matter candidate, comes from the very light mass of
the particle and its very weak interaction with ordinary matter. Since the theorization of this particle
there have been incredible efforts to detect its elusive properties. An important contribution to axion
hunting came from Sikivie who in 1983 proposed an axion helioscope to probe the presence of the
axions coming from the Sun and the axion haloscope to verify the origin of axions from DM galactic
halos. In recent years experiments have been designed to produce axions in the laboratory, such as
the light shining through walls approach (LSW) and the vacuum magnetic birefringence (VMB). The
measurements have been carried out over the years and have led to define constraints on the mass
of the axion which is found to have a lower limit ma < 0.8eV and as an upper limit ma > 10−10eV.
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Regarding the limit on the interactions, in particular on the coupling constant with the photon we find
that gaγ < 6.6× 10−11GeV−1. Another goal of theoretical research is to incorporate the axion particle
within the context of the Standard Model and to relate the properties of axion to the properties of other
fields contained in beyond Standard Models (BMS). PQ axions are connected with a global U(1)PQ

symmetry. This symmetry is attached to the fermions of the Standard Model and although it is an
anomalous one, it does not have any negative implications for the consistency of the theory. We recall
that anomalous global symmetries do not destabilize the inner consistency of a gauge theory.

This thesis work investigates two aspects of the physics of the early Universe. One of them, as
mentioned, deals with axions generated by Stueckelberg models. In particular, one of the contribution
to this topic is contained in Chapter 8 when we entertain the possibility that the Stueckelberg scale,
present in the model can be raised close to the GUT scale. The methodology, in this case, is quite
similar to that of the ordinary two-Higgs doublet model discussed in [134], but in a more complex
scenario based on SO(10) theory. An interesting result of this analysis is that, by selecting MStueck, the
Stueckelberg scale, close to the Planck scale, we predict a mass for the Stueckelberg axi-Higgs particle
that is ultralight (10−18eV).This mass value, as we explain, has been considered in the astrophysical
community as an interesting one. In order to solve some problems related to the matter distributions of
the sub-galactic scale. A second topic that we will be addressed concerns the detection of gravitational
waves in the phase transitions that accompany the spontaneous breaking of the gauge symmetry in
the early Universe.
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Chapter 1

Standard Model of Cosmology

In this chapter we will present a brief review of the standard model of Cosmology. The discussion
will be mostly based on the works [1, 2]for the standard model and [1] and [3] for the inflationary
model. We present a brief outline of the chapter. The starting point will be the Friedman-Lemaître-
Robinson-Walker (FLRW) metric, as a solution of Einstein’s equations of General Relativity . We
will first discuss the field equations containing the scaling factor a(t). We will present some basic
concepts of Cosmology as the particle horizon, the event horizon and the red-shift parameter. Then
we will derive the form of Einstein equations for a metric of FLRW and we will find the form of the
energy-momentum tensor. This in order to extract the 00 component of the Einstein equation, the
so-called Friedman equation and the ij component, also known as the acceleration equation. These
equations will be studied in order to obtain information about the scale factor that plays an important
role in the evolution of the Universe, for example we will derive the time dependence of this factor.
Then the critical density and the equations of state for a Universe both dominated by radiation and
matter will be found. The role of cosmological constant and its connection with dark energy will be
also discussed. Finally, at the end of the chapter we will present some unsolved problems, typical of
the standard model as the flatness problem or the horizon problem, and we will present a possible
solution constituted by the inflationary model.

Under the hypothesis of homogeneity and isotropy of the Universe, we can write the FLRW metric

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2dΩr

]
(1.0.1)

where
dΩr = dθ2 + sin2θdφ2 (1.0.2)
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curvature 
k = −1 negative

k = 0 flat

k = +1 positive

Particle horizon If at t=0 a photon is emitted, at time t has travelled a distance dH(T), which is
called particle horizon. In the case of a beam of light

ds2 = 0⇒ dt2 =
a2(t)dr2

1− kr2 (1.0.3)

∫ t

0

dt′2

a2(t′)
=
∫ r

0

dr′

(1− kr′2)1/2 ⇒ (1.0.4)

dH(t) = a(t)
∫ t

0

dt′

a(t′)
= a(t)

∫ r

0

dr′

(1− kr′2)1/2 . (1.0.5)

Equation 1.0.5 is called particle horizon. It defines a surface whose points are causally connected.

Consider several dependences of a(t). For matter dominance:

a(t) ∝ t2/3 (1.0.6)

then

dH(t) = a(t)
∫ t

0

dt′

a(t′)

= t2/3
∫ t

0

dt′

t′2/3

≈ t2/3 t−2/3+1

−2/3 + 1

= t2/3 t1/3

−2/3 + 1
= 3t.

(1.0.7)

For a radiation-dominated Universe we should consider the dependence

a(t) ∝
√

t (1.0.8)
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dH(t) = a(t)
∫ t

0

dt′

a(t′)

=
√

t
∫ t

0

dt′√
t′

= t1/2 t−1/2+1

−1/2 + 1
= 2t.

(1.0.9)

So, the particle horizon in a matter-dominated Universe is larger than in the radiation dominated one.

For an inflationary Universe the dependence to be considered is

a(t) ∝ eHt (1.0.10)

then

dH(t) = a(t)
∫ t

0

dt′

a(t′)

= eHt′
∫ t

0

dt′

eHt′

= eHt 1
H
[e−Ht + 1]

=
1
H
[eHt − 1].

(1.0.11)

The FLRW metric allows us to calculate the red-shifting of light from distant objects. Let us
consider two crests emitted respectively at r = r1 at times t = t1 and t = t1 + ∆t1. They are received at
times t0 and t = t0 + ∆t0. Then we have∫ t0

t1

dt′

a(t′)
=
∫ t0

t1

dt′

a(t′)
=
∫ r1

0

dr′√
1− kr′2

(1.0.12)

and ∫ t0+∆t0

t1+∆t1

dt′

a(t′)
=
∫ t0+∆t0

t1+∆t1

dt′

a(t′)
=
∫ r1

0

dr′√
1− kr′2

. (1.0.13)

Now subtract the two contributions∫ t0

t1

dt′

a(t′)
−
∫ t0+∆t0

t1+∆t1

dt′

a(t′)
= 0. (1.0.14)

So ∫ t0

t0+∆t0

dt′

a(t′)
+
∫ t1+∆t1

t1

dt′

a(t′)
= 0. (1.0.15)

3



giving ∫ t0+∆t0

t0

dt′

a(t′)
=
∫ t1+∆t1

t1

dt′

a(t′)
(1.0.16)

from which
∆t0

a(t0)
=

∆t1

a(t1)
(1.0.17)

but ∆t0 and ∆t1 are the two periods at emission and reception. Let us define the frequencies ν0 = 1
∆t0

and ν1 = 1
∆t1

and wave-lengths λ0 = ∆t0 and λ1 = ∆t1 (with c=1, in natural units). Define

z =
λ0 − λ1

λ1
. (1.0.18)

From 1.0.17 it follows that

λ0

a(t0)
=

λ1

a(t1)
(1.0.19)

λ1 = λ0
a(t1

a(t0)
. (1.0.20)

Replacing in z

z =

(
λ0 − λ0

a(t1)
a(t0)

)
λ0

a(t1)
a(t0)

(1.0.21)

from which, eliminating λ0 one gets

a(t0)− a(t1)

a(t1)
= z (1.0.22)

1 + z =
a(t0

a(t1
, (1.0.23)

notice that for an expanding Universe a(t0) > a(t1), so that

1 + z =
a(t0)

a(t1)
. (1.0.24)

This means that a photon emitted at time t1 undergoes a red-shift as the Universe expands.
Consequently the wavelength will be increased by a factor a(t0)

a(t1)
and therefore its momentum decreases

by the same factor. If | t0 − t1 | is small, we can expand

a(t1) = a(t0) + (t1 − t0) ˙a(t0) +
1
2
(t1 − t0)

2 ä(t0) + ...

= a(t0)(1 + H0(t1 − t0)−
1
2

q0H2
0(t1 − t0)

2 + ...)
(1.0.25)
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with
H0 ≡

ȧ(t0)

a(t0)
(1.0.26)

is the Hubble parameter and

q0 ≡ −
ä(t0)

a(t0)H2
0
= − ä(t0)a(t0)

ȧ2(t0)
(1.0.27)

is called deceleration parameter. It can be introduced in the red-shift expansion

1 + z = (1 + H0(t1 − t0)−
1
2

q0H2
0(t0 − t1)

2 + ...)−1 (1.0.28)

from which
z = H0(t0 − t1) + (1 +

1
2

q0)H2
0(t1 − t0)

2 + ... (1.0.29)

inverting the geometrical series one gets

(t0 − t1) =
1

H0

[
z−

(
1 +

1
2

q0

)
z2 + ...

]
. (1.0.30)

In general we make measurements of red-shift. From cosmological model we can infer the distance
from the red-shift.

1.1 Einstein equations in FLRW metric

Now consider a FLRM metric. This is an ansatz from which we can derive the equations of
motion for the arbitrary functions present in the ansatz. Let us calculate the coefficients of the affine
connection1.0.1

Γ0
ij = −

Ṙ
R

gij (1.1.1)

Γi
j0 =

Ṙ
R

δij = Γi
0j (1.1.2)

Γi
jk = (∂kgl j + ∂jglk − ∂l gjk). (1.1.3)

For the Ricci tensor we have

R00 = −3
R̈
R

(1.1.4)

Rij = −
(

R̈
R
+ 2

Ṙ2

R2 +
2k
R2

)
gij (1.1.5)
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which are the only non-null components. The curvature scalar is

R ≡ gµνRµν = −6
(

R̈
R
+

Ṙ2

R2 +
k

R2 .
)

(1.1.6)

The Einstein field equations assume the form

Rµν −
1
2
Rgµν = 8πGTµν + Λgµν (1.1.7)

where G is the Newtonian gravitational constant, Tµν is the energy-momentum tensor and Λ is the
cosmological constant. If we assume for the Universe the behaviour of a perfect fluid with pressure p
and energy density ρ, then

T00 = ρ (1.1.8)

Tij = −pδij. (1.1.9)

Combining all these ingredients together one gets the 00-component of Einstein equations for a perfect
fluid also known as Friedman equation(

ȧ
a

)2

+
k
a2 =

8πGρ

3
+

Λ
3

(1.1.10)

and the ij-component, also known as acceleration equation

2
ä
a
+

(
ȧ
a

)2

+
k
a2 = −8πGp + Λ (1.1.11)

Subtracting 1.1.11 from 1.1.10 gives (
ä
a

)
= −4πG

3
(ρ + 3p) +

Λ
3

. (1.1.12)

If we neglect Λ, then ä is negative, so if at the present time ȧ is positive, it means that ȧ was always
positive and consequently R was increasing for any time .

From 1.1.11, for a vanishing Λ and vanishing curvature (k=0) one gets

ρ = ρc ≡
3H2

8πG
= 3M2

pH2 (1.1.13)

with ρc which stands for critical density, H is the Hubble parameter and Mp is the Planck mass,
defined as follows

M2
p =

1
8πG

. (1.1.14)

The Hubble parameter changes with time so does ρc. It is necessary to define another parameter
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which take into account these changes

Ω ≡ ρ(t)
ρc(t)

. (1.1.15)

1.2 The energy density depends on the scale factor

Let us consider the conservation of the energy-momentum tensor

DνTµν = 0 (1.2.1)

with
DλVµ = ∂λVµ + Γµ

λρVρ (1.2.2)

is the covariant derivative of a vector Vµ. If one considers the µ = 0 component of 1.2.1, then

ρ̇ + 3(ρ + p)H = 0. (1.2.3)

The last equation describes the adiabatic evolution of a fluid coupled to the FLRM geometry.

In fact we consider an eigen-volume V with total energy E = ρV. The volume will have a trend
like ([4])

V(t) ≈ a3(t) (1.2.4)

where a(t) is the scale factor. So

V̇
V

= 3
a2 ȧ
a3 = 3

ȧ
a
= 3H (1.2.5)

replacing E = ρV (
Ė
V

)
+ 3H

(
E
V

+ p
)
= 0 (1.2.6)

Ė
V
− E

V
V̇
V

+
V̇
V

(
E
V

+ p
)
= 0 (1.2.7)

which is exactly the condition to have an adiabatic evolution

dE + pdV = 0 (1.2.8)

in fact, from 1.2.8 we infer that the entropy of the fluid remains constant if we consider a fluid evolving
in a geometry like that described by 1.0.1. Now consider the equation of state for the fluid, expressed
in the form

p = wρ (1.2.9)
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replacing in 1.2.3 and remembering the definition of the Hubble parameter 6.4.11

ρ̇ + 3(ρ + p)
ȧ(t)
a(t)

= 0, (1.2.10)

which can be rewritten using the Hubble parameter

ρ̇ + 3(ρ + p)H = 0. (1.2.11)

In general the energy density and pressure are related by the equation of state 1.2.9. Insert 1.2.9
into 1.2.10 to obtain

ρ̇ + 3(ρ + wp)H = 0 (1.2.12)

ρ̇ + 3ρ(1 + w)H = 0 (1.2.13)

(1.2.14)

from which separating the variables one gets

ρ ∼ a−3(1+w). (1.2.15)

Replacing this one as an ansatz in 1.2.10 gives

− 3(1 + w)a−3(1+w)−1a + 3a−3(1+w)(1 + w)
ȧ
a
= 0 (1.2.16)

giving
3ȧ
[
−(1 + w)a−3(1+w)−1 + a−3(1+w−1)(1 + w)

]
= 0 (1.2.17)

which is indeed a solution. We can distinguish various trends for ρ depending on the value of w. In
the case of radiation we have w = 1

3 , so

p =
1
3

ρ ρ ∼ a−4 (1.2.18)

(1.2.19)

while for matter w=0

p = 0 ρ ∼ a−3. (1.2.20)

(1.2.21)

In the case of radiation ρ decreases more rapidly, so we infer that matter will dominate at a later
stage.

It is also interesting to note the case of equation of state with w=-1 which corresponds, ( see section
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1.5) to the equation of state associated with the cosmological constant. For w=-1, we will have the
contribution given from vacuum energy and it plays the role of a cosmological constant. Replacing
into 1.2.10

ρ̇ = 0⇒ ρ = constant. (1.2.22)

1.3 Scale factor time trend

In the previous section we calculated the Friedman equation considering a null curvature k and
null cosmological constant. These two approximations become all the better the closer we get to early
times. In this case in the 1.1.10 the term 8πGρ

3 becomes dominant over the curvature term and over the
cosmological constant. Substituting the 1.2.15 into the 1.1.10 gives the trend for a(t):

a(t) ∼ t−
3
2 (1+w) (1.3.1)

which again gives, for radiation and matter, respectively

a ∼ t
1
2 H =

1
2

t−1 (1.3.2)

a ∼ t
2
3 H =

2
3

t−1. (1.3.3)

As for the case of Λ domination, we assume the state equation

p = −ρ

and the term of 1.1.10 which contains Λ dominates over all the other, we obtain(
ȧ
a

)2

=
Λ
3

(1.3.4)

from which separating the variables and integrating one gets

a(t) = e
√

Λ
3 t. (1.3.5)

1.4 Age of the Universe

It is possible to estimate the age of the Universe in a special case with Λ = 0. We also consider a
phase of the Universe dominated by matter. To do this, we rewrite the 1.1.10 in terms of ρ0, i.e., the
value of ρ at the current era
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(
ȧ2

a

)
+

k
a2 =

8πGρ

3
ρ0

a0

a
(1.4.1)

which can be rewritten in terms of the relative present value of energy density

Ω0 =
ρ0

3
8 πGH2

0
(1.4.2)

giving (
ȧ
a0

)
+ H2

0(Ω0 − 1) = Ω0H2
0

a0

a
. (1.4.3)

We may change the variable
x ≡ a

a0
(1.4.4)

so1.4.3 becomes
ẋ2 + H2

=(Ω0 − 1) = Ω0H2
0 x−1 (1.4.5)

which can be solved separating the variables and integrating

t =
1

H0

∫ 1

0

dx√
Ω0(x−1 − 1) + 1

(1.4.6)

since x ≡ a
a0

, taking a = a0 → x = 1 at t = t0.

Let us evaluate t0 for an exactly flat Universe. We shall consider

k
a2

0
= H2

0(Ω0 − 1) (1.4.7)

if we require a flat Universe, i.e. Ω0 = 1, it means that k = 0. Then

t0 =
∫ 1

0

1
H0

dx′√
(x′−1 − 1) + 1

=
1

H0

∫ 1

0
x′

1
2 dx′ =

2
3H0

.

(1.4.8)

According to the latest measurements

H−1
0 ≈ h−19.78× 109yr (1.4.9)

with h ≈ 0.72± 0.05, so that the age of the Universe is about

t0 ≈ 1010yr. (1.4.10)
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1.5 The cosmological constant Λ

Equation 1.1.10 is the Friedman equation, while 1.1.11 is the acceleration equation, with ρc rep-
resenting the critical density defined in 1.1.13 and Mp is the Planck mass. It is possible to rewrite
equation 1.1.11in a different way, using the definition

ρΛ =
Λ

8πG
(1.5.1)

so that one gets (
ä
a

)
= −8πG

3
(ρ + ρΛ). (1.5.2)

Let us take a look at the dimensions
[Λ] =

[
k
a2

]
=

1
[L2]

(1.5.3)

which is the inverse of a squared length. As for the Newtonian constant

GM2

r2 = f orce (1.5.4)

so that in natural units

[G] =
[M][L][T−2][L2]

[M2]
=

1
[M2]

. (1.5.5)

Recalling Einstein action

S = 16πG
∫

d4xR (1.5.6)

where R is the scalar curvature. Dimensional analysis gives

[S ] = 1 = [G][d4x][R] = [G]
1

[M]4
[M]2 → [G] = [M]2. (1.5.7)

If we consider this and recall the dimensions of Λ, one finds that

[ρΛ] =

[
Λ

8πG

]
= [M]2 × [M]2 = [M]4 (1.5.8)

which is what we expect for a potential; recall indeed that[∫
d4xV(φ)

]
= [1]→ [V] = [M]4. (1.5.9)

We could think to split Λ into pressure and density terms. In order to do so consider equation
1.1.12 (

ä
a

)
= −4πG

3
(ρ + 3p) +

Λ
3

. (1.5.10)
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This equation has a static solution given by

Λ
3

= −4
3

πG[ρΛ + 3pΛ] (1.5.11)

which, if we use the definition of ρΛ to rewrite the term Λ
3 , can be rearranged as follows

ρΛ
8
3

πG = −4
3

πGρΛ −
4
3

πG3pΛ (1.5.12)

giving
4πGρΛ = −4πGpΛ (1.5.13)

from which we find the state equation for the cosmological constant

pΛ = −ρΛ. (1.5.14)

Equation 1.5.14 is a particular case of the general state equation p = wρ and is useful if we want to
treat Λ as a fluid. It is possible to introduce a source term for the cosmological constant in the Einstein
equations. We need to define TΛµν,and we set

Λgµν = 8πGTΛµν⇒ TΛµν =
Λgµν

8πG
(1.5.15)

It is possible to define Ωk and ΩΛ as we did for Ω0. Reconsider Friedman equation at present time

H2
0 +

k
a2

0
=

8
3

πGρ +
Λ
3

. (1.5.16)

To determine ρc we required a flat (k=0) Universe without Λ, then

ρc =
3H2

8πG
(1.5.17)

and
Ω0 =

ρ0

ρc
. (1.5.18)

Similarly we can replace the curvature and cosmological term respectively with Ωk and ΩΛ in the
Friedman equation,

H2
0 + H2

0 Ωk =
8
3

πGρ0 + H2
0 ΩΛ (1.5.19)

having defined Ωk =
k

a2
0 H2

0

ΩΛ = Λ
3H2

0
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If we then replace ρ0 using the definition of Ω0 we can rewrite the Friedman equation as

H2
0 − H2

0 Ωk = H2
0 Ω0 + H2

0 ΩΛ (1.5.20)

from which follows the dimensionless form of the Friedman equation, which describes the cosmic
dynamics

Ωk + ΩΛ + Ω0 = 1. (1.5.21)

1.6 Inflation model

1.6.1 Flatness problem

The standard cosmological model presents some problems, since some initial conditions should be
placed by hand and since it does not give an explanation for some problems such as flatness or the
problem of the horizon. A. Guth proposed in [5] a short accelerated expansion phase started 10−36

seconds after the Big Bang and ended 10−32 seconds after the Big Bang. Let us consider the Friedman
equation, with vanishing cosmological constant 1.1.10

H2(t) =
(

ȧ(t)
a(t)

)2

=
8πG

3
ρ(t)− k

a2(t)
(1.6.1)

and introduce the variables Ω(t) defined 1.1.15. Equation 1.6.1 becomes

Ω(t)− 1 =
k

a2(t)H2(t)
∼ ˙a−2(t). (1.6.2)

The last measurements ([6]), tell us that

|Ω(t0)− 1| = 0.000± 0.005 (1.6.3)

this is equivalent to saying that the Universe is essentially flat. Taking the 1.2.15, we substitute
w = p/ρ, obtaining

ρ(a) ∼ a−3
(

1+ p
ρ

)
. (1.6.4)

Insert this one in 1.6.1 , with k=0, one gets
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H2 =

(
ȧ
a

)2

∼ ρ = a−3(1+w) ⇒ (1.6.5)

⇒ 1
a

da
dt
∼ a−3 1+w

2 (1.6.6)

⇒ da a
3w+1

2 ∼ dt, (1.6.7)

which for w 6= −1 gives
a(t) ∼ t

2
3 (w+1) ∼ tβ. (1.6.8)

In particular

β =
2

3(w + 1)
=

 2
3 matter w = 0
1
2 radiation w = 1

3 ,
(1.6.9)

while for w=-1
a(t) ∼ eH(t)t. (1.6.10)

Let us get back to 1.6.2 and let us compute the evolution of |Ω(t0)− 1|:

|Ω(t0)− 1| ∼ ȧ−2(t) ∼ t2(1−β)

β2 . (1.6.11)

If we consider only a matter or radiation-dominated Universe then β < 1, so 1.6.11 is a function
that grows with time.
The ratio of the density of the Universe calculated at Planck time and at the present era gives

|Ω(t0)− 1|
|Ω(tPl)− 1| ∼

1017

10−43 = 1060. (1.6.12)

Since we know that |Ω(t0)− 1| . 10−3,i.e. the current density differs from the critical one by one part
over a thousand, one finds that ∣∣Ω(tpl)− 1

∣∣ . 10−63 (1.6.13)

namely, the density of the Universe after the Big Bang differs from the critical one by one part over
10−63. This is equivalent to say that the Universe is almost flat. This requires this value to be fixed ad
hoc. A phase of the accelerated expansion of the primordial Universe that causes the critical density
value to fall would solve the problem. From equation 1.6.11, you can see that for β > 1, you get a
situation like that:

|Ω(t0)− 1| ⇒ 0 (1.6.14)

independently on the initial value of |Ω(t)− 1|.

14



So, the ideal situation requires β > 1.

ä = β(β− 1)tβ−2 ⇒ ä > 0 (1.6.15)

which corresponds to an accelerating expanding phase of the Universe.

1.6.2 Horizon problem

This problem has to do with causality and signal propagation speed. According to WMAP and
PLANCK ([7],[8]) data, the visible points in the sky are at the same temperature unless there are 10−3

anisotropies. Be dH(t, ti) the particle horizon of a photon emitted at ti and received at t time. By
definition dH(t, ti) is the maximum distance that allows a causal relationship between two points

dH(t, ti) = a(t)
∫ t

ti

dt′

a(t′)
=

a(t)
1− β

(t1−β − t1−β
i ) (1.6.16)

having combined 1.0.5 and 1.6.8

For a radiation or matter-dominated Universe β < 1; in the limit t− 1→ 0

dH(t, ti) −→
a(t)t1−β

1− β
=

β

1− β

1
H(t)

. (1.6.17)

Which is a finite value. So the signals can’t propagate beyond dH . Therefore some regions of the cosmic
background radiation that cannot be causally connected. It therefore becomes difficult to explain the
small Cosmic Microwave Background (CMB) anisotropies. If we assume an accelerated expansion
phase, i.e. β > 1, namely in terms of scale factor [4]

ä > 0 (1.6.18)

dH(t, ti) −→ ∞ (1.6.19)

1.6.3 De Sitter solution

Let’s try to find the simplest example of an inflationary model. We consider as a source a perfect
fluid to which we associate the state equation

p = −ρ. (1.6.20)

The equation of motion 1.2.10 becomes
ρ̇ = 0 (1.6.21)

namely
p = −ρ = −Λ. (1.6.22)
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The energy-momentum tensor assumes the form

Tν
µ = −pδν

µ = Λδν
µ. (1.6.23)

It is immediate to note that the tensor energy-momentum has the same form that it would assume if
one considers a contribution given by the cosmological constant, that is, vacuum energy. Therefore we
can interpret the cosmological constant in this way.

So let us consider a scalar field φ and its potential. If we consider a stationary point φ0 of the
potential V (

∂V
∂φ

) ∣∣∣∣
φ=φ0

= 0. (1.6.24)

This way the energy-momentum tensor assumes the form given in equation 1.6.23 and the Friedman
equation in 1.1.10 becomes

ȧ2 =
8
3

πGΛ2 − k (1.6.25)

which for k=0 is straightforwardly integrated

HΛ(

(
8
3

πGΛ
)1/2

≡
(

Λ
3M2

Pl

)1/2

(1.6.26)

a(t) = eHΛt. (1.6.27)

This solution is based on a geometry given by the following parameters

H =
ȧ
a
= HΛ (1.6.28)

Ḣ = 0 (1.6.29)
ä
a
= H2

Λ (1.6.30)

which doesn’t have ant particle horizon as one can immediately verify applying the definition, but has
an event horizon given by

de(t) = eHΛt
∫ ∞

t
e−HΛt′dt′ =

1
HΛ

(1.6.31)

The form of a(t) in 1.6.28 is sufficient to satisfy the condition of inflation. Indeed the exponential form
in the scale factor means that it can increase of may orders of magnitude.
It is now necessary to define a parameter that tells us how much inflation is needed, i.e. how long a
phase of de Sitter’s inflationary expansion must last. So let us define the so called e-folding number

N = ln
(

a f

ai

)
(1.6.32)

To quantify how much inflation is needed, let’s consider the e-folding number and the problem
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of flatness. Recall that radiation domination characterized by β = 1/2 began at the end of inflation,
namely t ∼ 1034 and ended at 1012s; while matter domination characterized by β = 2/3, began at the
end of the radiation domination and lasts nowadays namely, 1017 s.
We can now assume that the density of the Universe at the beginning of inflation is of order 1. Recalling
the relation

|Ω(t)− 1| ∼ t2(1−β) (1.6.33)

we can go backward in time and find
∣∣Ω(t f )− 1

∣∣ at the end of inflation, where t f os the time at the
end of the inflationary expansion.

∣∣Ω(t f )− 1
∣∣ ∼ 10−53. (1.6.34)

Now recalling that during the inflationary expansion H(t) is a constant, then

|Ω(t)− 1| ∼ a−2 (1.6.35)

so
a(t f )

a(ti)
∼ 10−26 (1.6.36)

which in terms of N can be recast as

N = ln
(

a f

ai

)
∼ 60. (1.6.37)

This means that the scale factor should has increased during inflation of 1026 orders of magnitude.

1.6.4 Slow roll models

De Sitter’s solution provides a proposal to achieve inflation. It has not yet been specified how
inflation ends. In fact, this phase of accelerated expansion of the Universe must somehow find an
exit, such as to induce a phase transition in the primitive Universe, in order to land in the Universe
described by the standard cosmological model. To do this it is necessary to introduce a field, so called
inflatonic and replace the energy density with a potential . A field that is governed by a potential
that makes it "roll" slowly towards a minimum, corresponding to the reheating phase of the Universe,
realizes an ideal situation of exit from inflation. From here the models called "slow roll" are born. The
simplest model that realizes this scenario is that of a scalar field coupled with gravity.
This scalar field , called inflaton ,is coupled to gravity, and the action that governs this field is

S =
M2

P
2

∫
d4x

(√
−gR +

1
2
∇µφ∇νφ + V(φ)

)
. (1.6.38)

φ has dimensions of a mass
[φ] = [M]. (1.6.39)
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Varying the action S with respect to the metric , one gets the field equation

Gµν =
1

M2
P

[
∇µφ∇νφ− gµν

(
1
2
(∇φ)2 + V(φ)

)]
. (1.6.40)

Notice that the r.h.s. member of the last equation is the energy-momentum tensor of the scalar field

Tµν = − 2√−g
δSM

δgµν
= ∇µφ∇νφ− gµν

(
1
2
(∇φ)2 + V(φ)

)
(1.6.41)

and SM is the action associated to the scalar field

Sφ = −
∫

d4x
√
−g
(

1
2
∇µφ∇νφ + V(φ)

)
. (1.6.42)

Varying S with respect to the scalar field φ gives the equation of motion for the field

∇µ∇νφ−Vφ = 0 (1.6.43)

where
Vφ =

∂V
∂φ

. (1.6.44)

Recall that in a curved space-time

∇µ∇νφ =
1√−g

∂µ(
√
−ggµν∂νφ). (1.6.45)

We now want to find solutions for these equations, restricting ourselves to the case of a geometry
described by FLRW metrics. We consider the synchronous gauge, in which the FLRW metric is

ds2 = dt2 − a2(t)
∣∣d2x

∣∣ . (1.6.46)

In this metric equation 1.6.43 assumes the form

φ̈ + 3Hφ̇2 + Vφ = 0. (1.6.47)

While the non-vanishing components of the energy-momentum tensor are

T0
0 = ρφ =

1
2

φ̇2 + V(φ) (1.6.48)

and
Tθ

θ = pφ =
1
2

φ̇2 −V(φ) (1.6.49)
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giving the state equation

wφ =
1
2 φ̇2 + V(φ)
1
2 φ̇2 −V(φ)

. (1.6.50)

In this context the Friedman equation 1.1.10 becomes

H2 =
1

3M2
P

[
1
2

φ̇2 −V(φ)

]
. (1.6.51)

These two combined together give

ä
a
=

1
3M2

P

(
φ̇2 −V(φ)

)
. (1.6.52)

According to the last equation ä > 0, which stands for an accelerated expansion of the Universe,if
V(φ) dominates over φ̇2.

If we have the condition
V(φ) >>

1
2

φ̇2 (1.6.53)

then pressure and energy density for the inflaton become respectively

ρ ≈ V(φ) (1.6.54)

and
p ≈ −V(φ). (1.6.55)

Under these conditions the behaviour of the inflaton field is the same as that assumed by the
cosmological constant. In this way we obtain de Sitter’s solution that implies a phase of inflation,
which must be sufficiently long. Therefore this model must make sure that the cynical energy of the
field does not change so that the potential prevails over it.

Let us consider equation 1.6.47. The second term can be considered to play the role of a damping
term, as if there was a frictional force acting against the motion. If we want to keep the conditions to
have a sufficiently long inflation we need to require that the acceleration φ̈ is negligible with respect to
the damping term, namely

|φ̈| << 3H |φ̇| . (1.6.56)

In this way the field $phi reaches the minimum very slowly, thus generating a sort of very slow rolling,
hence the name slow-roll for these models. Under these approximations we get

3Hφ̇ = −Vφ (1.6.57)

and
H2 =

1
3M2

P
V(φ). (1.6.58)
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The requirement that the scalar field does not reach the minimum potential too quickly can be
formalized as follows: let us square equation 1.6.57 and replace it in equation 1.6.58. One finds

φ̇2 =
V2

φ

9H2 =
M2

P
3

(
Vφ

V

)2

(1.6.59)

so that the condition 1.6.53 becomes (
Vφ

V

)2

<< 1. (1.6.60)

We then define the first slow roll parameter

ε =
M2

P
3

(
Vφ

V

)2

(1.6.61)

This parameter is necessary to define the first condition of slow roll inflation: the expanding
Universe is dominated by the energy of the inflatonic potential. The previous condition is recast this
way

ε� 1. (1.6.62)

It is now necessary to parametrize the damping condition of the inflation phase. Let us therefore
consider equation 1.6.57 and let us consider its the derivative with respect to time and we combine it
with 1.6.58, getting

φ̈ = −
(

ε + M2
P

Vφφ

V

)
Hφ̇ (1.6.63)

so that the condition 1.6.56 is satisfied if , defined

η = M2
P

Vφφ

V
(1.6.64)

we have
|η| � 1. (1.6.65)

The conditions on these parameters set constraints on the form of the potential. ε and η are called
slow-roll parameters.
It is also possible to express the number of e-foldings in terms of potential. In fact, the definition

N = ln
a(t f )

a(ti)
. (1.6.66)

can be manipulated to give

N =
∫ t f

ti

ȧ
a

dt =
∫ t f

ti

Hdt = − 1
M2

P

∫ t f

ti

V(φ)

Vφ(φ)
φ̇dt (1.6.67)
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which after a change of variable can be rewritten as

N = − 1
M2

P

∫ φ f

φi

V(φ)

Vφ(φ)
dφ. (1.6.68)

This form of the definition of the e-folding number will be useful to analyze explicit forms for the
potential V(φ).

1.6.5 Polynomial potential

A general class of suitable potential sis given by those ones given in the polynomial form

V(φ) ∼ φn, (1.6.69)

with n>0. The other parameters are straightforwardly calculated

Vφ

V
=

n
V

(1.6.70)

and
Vφφ

V
=

n(n− 1)
φ2 . (1.6.71)

The needed conditions ε, |η| < 1 for slow-roll inflation are

φ2

M2
P
� 1. (1.6.72)

This class of model provides a sufficient amount of inflation, in fact the condition on the e-folding
number N»1, is re-expressed as

N = ln
(

a f

ai

)
=

1
M2

P

∫ φ f

φi

V(φ)

Vφ(φ)
dφ =

1
2n

(
φi

2

M2
P
−

φ f
2

M2
P

)
. (1.6.73)

and automatically implies that
φ2 >> M2

P (1.6.74)

as stated before.
In addition, this class of models offers an exit from inflation, provided by the very dynamics of the

parameters that control the inflation phase itself. In fact ε and η depend on φ, in particular

ε ∼ η ∼ 1
φ2

so as φ decreases, the slow-roll conditions for ε and η are no longer met. This provides an exit from
the inflation phase.
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The simplest potential model one can imagine is the one given by the term mass

V(φ) =
1
2

m2φ2. (1.6.75)

We calculate the slow-roll parameters

ε = η = 2
(

MP

φ

)2

(1.6.76)

and the conditions ε, |η| < 1 to have a slow-roll inflation are translated

φ >
√

2MP ≡ φ f . (1.6.77)

The e-foldings number is given by

N =

(
φ

2MP

)2

− 1
2

. (1.6.78)

1.7 Reheating

Once the conditions for slow-roll inflation are met, the field goes out of the dampened regime
and starts to swing around the minimum potential. The field thus disperses its energy and if there
are couplings of inflaton with other fields its oscillations are damped by the creation of particles
that further disperse the energy. This is the so called reheating phase([9, 10, 11, 12]). Let Γφ be the
decay rate of the inflaton field and let Hosc be the value of the Hubble parameter at the end of the
inflationary period. The process of energy-loss due to particle production which causes the damping
can be described by the equation

φ̈ + 3Hφ̇ + Γφ + Vφ(φ) = 0. (1.7.1)

Multiplying the last equation by φ̇
2 and using equation 1.6.48 we can rewrite

ρ̇φ + (3H + Γφ)φ̇
2 = 0. (1.7.2)

We know that for a simple harmonic oscillator the average of the kinetic energy is the same as the
average of the potential energy, so we can write

1
2
〈φ̇2〉 = 〈V(φ)〉 = 1

2
〈ρφ〉. (1.7.3)

so equation 1.7.1 can be rewritten

〈ρ̇φ〉+ (3H + Γφ)〈ρφ〉 = 0. (1.7.4)
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From now on we will denote 〈ρφ〉 as ρφ. Now we can distinguish several cases

• t . Γ−1
φ , there is no sufficient time to create new particles so the previous equation can be

reduced to
ρ̇φ + 3Hρφ = 0 (1.7.5)

which is exactly the same equation valid for energy density conservation during matter domin-
ance

• t ∼ Γ−1
φ , now particle production is possible, starting the reheating phase of the Universe and

we have

ρφ =
π2

30

(
NB +

7
8

NF

)
T4

R (1.7.6)

where obviously TR is the reheating temperature NB and NF and are respectively the number of
boson and fermion species.

One can try to calculate TR. So let us define a mass scale M such that

ρφ ≡ M4 (1.7.7)

at the beginning of inflation. Since during inflation ρφ doesn’t change, because V(φ) stays rather flat,
we can write that

H2
osc =

8πM4

3M2
P

(1.7.8)

so the period of oscillation is

tosc ∼
1

Hosc
=

√
3

8π
MP

1
M2 . (1.7.9)

Recalling that ρφ varies with time in matter-dominated phase we are allowed to write

ρφ(Γ−1
φ )

ρφ(tosc)
=

Γ2
φ M2

P

8πtosc
(1.7.10)

and finally

TR =

(
45

aπ3(NB + 7
8 NF

) 1
4 √

Γφ MP. (1.7.11)

Another important example of inflation potential comes from the hypothesis that he inflaton is an
axion. In this case

V(φ) = V0

[
cos
(

φ

f

)]
+ 1. (1.7.12)
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Chapter 2

Brief review of thermal field theory

Before we begin we present the outline of this chapter. We will briefly present a review of quantum
statistical mechanics. We will first focus on the treatment of quantum statistics for bosons and fermions,
for this we will follow the treatment in [13]. Next we will expound briefly on thermal field theory and
how it is possible to consider a thermal bath for a system of non-interacting particles through the path
integral formalism, until we arrive at the definition of the free energy function for a scalar field and
derive from it all relevant thermodynamic observables. The same procedure, discussed in detail from
the mathematical point of view, will also be treated for the case of gauge bosons and fermions. Later
we will see how this formalism can be traced back to the more general formalism of Green’s functions,
and we will follow the discussion in [14]. Finally we will apply the tools of thermal quantum field
theory to the case of a specific effective potential of a φ4 theory. We will evaluate, in this application,
the thermal contributions given by the potential and the conditions that must occur for the system to
have a phase transition,as discussed in detail in [1]. The chapter concludes with a brief discussion of
some formal arguments that will be applied to the phenomenon of Bose-Einstein condensation of a
neutral scalar field, for which we will follow [13] . Let us consider a grand canonical ensemble for a
system in thermo-dynamical equilibrium and define the fundamental object

ρ̂ = exp
[
−β(H − iµiN̂i)

]
(2.0.1)

called density matrix operator. N̂i is the particle number operator, and µi is the chemical potential.
The index i runs over several possible particle species. The density matrix ρ̂ is used to compute the
average of physical observables. So let us suppose we have an operator Â, then

A = 〈Â〉 = TrÂρ̂

Trρ̂
(2.0.2)

where of course Tr means that we must perform the trace. The partition function is so defined

Z = Z(V, T, µ1, µ2, ...) = Trρ̂ (2.0.3)
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and it is used to calculate all the other thermo-dynamical variables. So we have for pressure, number
of particles, entropy and energy respectively

P =
∂(T ln Z)

∂V
(2.0.4)

Ni =
∂(T ln Z)

∂µi
(2.0.5)

S =
∂(T ln Z)

∂T
(2.0.6)

E = −PV + TS + µiNi. (2.0.7)

2.0.1 Single-particle boson system

Let us consider a system consisting of bosons occupying various states; each state has energy
ω each state can be occupied by an arbitrary number of particles. Let’s assume that there are no
interactions between these particles. We can think of this system as a collection of harmonic oscillators.
Let us denote the system with n particles with |n〉 and let |0〉 be the vacuum state. The orthogonality
relation 〈

n
∣∣n′〉 = δnn′ (2.0.8)

and the completeness
∞

∑
n=0
|n〉 〈n| = 1. (2.0.9)

ust be satisfied. Let us now introduce the creation and annihilation operators, whose action on the
eigenstates of the systems are respectively

a† |n〉 =
√

n + 1 |n + 1〉 (2.0.10)

and
a |n〉 =

√
n |n− 1〉 . (2.0.11)

If n=0 then we have
a |0〉 = 0. (2.0.12)

The number operator N̂ is defined

N̂ |n〉 = a†a |n〉 = n |n〉 (2.0.13)

so the commutation relation between a and a† is

[a, a†] = aa† − a†a = 1. (2.0.14)
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Any other state can be created by repeatedly applying the creation operator

|n〉 = 1√
n!
(a†)n |0〉 . (2.0.15)

Now we need to write the Hamiltonian for this system so that we can replace it in the definition of
the partition function and then all the other thermo-dynamical observables. From non-relativistic
quantum mechanics, we can write the Hamiltonian for this system of bosons.

H =
1
2

ω
(

aa† + a†a
)
= ω

(
a†a +

1
2

)
= ω

(
N̂ +

1
2

)
. (2.0.16)

The last term can be neglected since it represents the zero-point energy. Replacing 2.0.16 in 2.0.3 one
finds

Z = Tre−β(H−µN̂) = Tre−β(ω−µ)N̂

=
∞

∑
n=0
〈n| e−β(ω−µ)N̂ |n〉 =

∞

∑
n=0

e−β(ω−µ)n

=
1

1− e−β(ω−µ)

(2.0.17)

so, the mean number of particles can be written as

N =
1

eβ(ω−µ) − 1
. (2.0.18)

From 2.0.18 it is possible to find the classical limit for

N << 1

which means that
T << ω− µ

, and then
N = e−β(ω−µ). (2.0.19)

2.0.2 Single-particle fermion system

The previous discussion can also be extended to the fermionic case. Such systems are called Fermi
gas. Fermi-Dirac statistics prevent more than one fermion from occupying the same state, so the only
states allowed are 〈0| and |1〉, so denoting with α† and with α the creation and annihilation operators
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we have

α† |0〉 = |1〉 (2.0.20)

α† |1〉 = |0〉 (2.0.21)

α |1〉 = |0〉 (2.0.22)

α |0〉 = |0〉 (2.0.23)

and the number operator is defined
N̂ = α†α (2.0.24)

so that
N̂ |n〉 = n |n〉 . (2.0.25)

Creation and annihilation operator for fermions satisfy the anti-commutation relation

{α, α†} = αα† + α†α = 1 (2.0.26)

and the Hamiltonian assumes the form

H =
1
2

ω(α†α− αα†) = ω

(
N̂ − 1

2

)
. (2.0.27)

The same consideration made previously for bosons can also be made in the fermionic case.

Again we can now replace the Hamiltonian 2.0.27 in 2.0.3 and one finds

Z = Tre−β(H−µN̂) = Tre−β(ω−µ)N̂

=
1

∑
n=0
〈n| e−β(ω−µ)N̂ |n〉

=
1

∑
n=0

e−β(ω−µ)n = 1 + e−β(ω−µ)

(2.0.28)

so the mean number of particles in the fermion case is given by

N =
1

e−β(ω−µ)
+ 1. (2.0.29)

Again, it is possible to find the classical limit for

N << 1

which means that
T << ω− µ
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, and then
N = e−β(ω−µ). (2.0.30)

2.0.3 Gases in a box

Let us now consider a gas in a cubic box with side length L. Let us wait for the thermodynamic
equilibrium to be reached. At this point we can treat the gas as if its particles do not interact with each
other. We now impose the boundary conditions: the wave function of the particle vanishes on the
boundary of the box and, called λ the wave length, we have

λx =
2L
jx

(2.0.31)

λx =
2L
jy

(2.0.32)

λx =
2L
jz

(2.0.33)

where jx, jy, jz are integer numbers, and for the momenta

px =
2π

λx
(2.0.34)

py =
2π

λy
(2.0.35)

pz =
2π

λz
. (2.0.36)

For each mode we have an Hamiltonian, so indicating with j

i = (jx, jy, jz) (2.0.37)

the total Hamiltonian is
H = ∑

j
Hj (2.0.38)

and the number operator
N̂ = ∑

j
N̂j. (2.0.39)

and the partition function

Z = Tre−β(H−µN̂) = ∏
j

Treβ(Hj−µN̂j) = ∏
j

Zj. (2.0.40)
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If we want to calculate all the thermo-dynamical observables we nee the ln Z

ln Z =
∞

∑
jx=1

∞

∑
jy=1

∞

∑
jz=1

ln Zjx ,jy,jz . (2.0.41)

If we consider the limit L⇒ ∞, we can replace the discrete sum with an integral

ln Z =
L3

π3

∫ ∞

0
d |px|

∫ ∞

0
d
∣∣py
∣∣ ∫ ∞

0
d |pz| ln Z(p). (2.0.42)

If we extend the integration interval from −∞ to ∞ and we divide by two, one gets

ln = V
∫ d3 p

(2π)3 ln Z(p). (2.0.43)

Replacing the form of the partition function Z one gets

ln Z = V
∫ d3 p

(2π)3 ln
(

1± e−β(ω−µ)
)±1

(2.0.44)

with the plus sign for fermions and the minus sign for bosons. So the computation of thermo-
dynamical observables is straightforward

P =
T
V

ln Z (2.0.45)

N = V
∫ d3 p

(2π)3
1

eβ(ω−µ) ± 1
(2.0.46)

E = V
∫ d3 p

(2π)3
1

eβ(ω−µ) ± 1
. (2.0.47)

Explicit expressions for P in some limit-cases will be given in section 2.1.

2.1 Brief review of thermal field theory- Path integral approach

In order to consider possible sequences of symmetry breaking leading from the GUT group to
the current Standard Model structure, it is necessary to consider finite temperature effects. In fact
the minima developed in the context of a null temperature field theory could be deeper than those
developed by a null temperature theory. We consider the hypothesis that the Universe then goes
through a sequence of symmetry breaks as it cools down, through phase transitions. The succession of
these phase transitions greatly influences the structure of the primitive Universe.

Let us consider one of the most important tool of statistical mechanics, the partition function Z

Z = Tre−βĤ (2.1.1)
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where Ĥ is the Hamiltonian operator and β = (kBT)−1, with T temperature and kB is the Boltzmann
constant. From now on we shall consider natural units for kB, so

β =
1
T

. (2.1.2)

The operation of trace means that we compute the sum over all independent states. From Z we can
define other thermo-dynamical potentials like the free energy F

Z = e−βF. (2.1.3)

Recall the usual relations between several thermo-dynamical quantities

F = E− TS (2.1.4)

P = − ∂F
∂V

S = − ∂F
∂T

∣∣∣∣
V

(2.1.5)

(2.1.6)

where E, S, P and V are respectively internal energy, entropy, pressure and volume .

If we divide 2.1.5 by the volume we get

ρ = F + Ts (2.1.7)

where ρ, F and s are respectively, energy density, free energy density and entropy density with the
definition

E =
∫

d3xρ. (2.1.8)

The simplest case to consider is the Lagrangian for a scalar field, (which could for example play the
role of an inflaton field). This field could contribute to the partition function. So let us consider the
lagrangian density for such a field

L(φ, ∂µφ) =
1
2

(
∂φ

∂t

)2

− 1
2
(∇φ)2 − 1

2
m2φ2. (2.1.9)

As usual in the formalism of finite field theory, scalar fields are replaced by periodic fields φ(τ, x),
where

τ = it (2.1.10)

and we impose the boundary or periodic conditions

φ(τ = 0, x) = φ(τ = β, x). (2.1.11)
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The partition function assumes the form

Z = Ñ(β)
∫

periodic
Dφ

[∫ β

0
dτ
∫

d3xL(φ, ∂̄µφ)

]
(2.1.12)

recall that in this context
∂̄µφ ≡

(
i
∂φ

∂τ
,∇φ

)
(2.1.13)

and that Ñ(β) is a temperature-dependent normalization constant. The integral in 2.1.12 is Gaussian,
therefore it can be computed exactly, so completing the square,

Z = Ñ(β)
∫

periodic
Dφ exp

(
−1

2

∫ β

0
dτ′

∫
d3x′

∫ β

0
dτ
∫

d3xφ(x̄′)A(x̄′, x̄)φ(x̄)
)

(2.1.14)

where we put
A(x̄′, x̄) = (−∂̄′µ∂̄µ + m2)δ(x̄′ − x̄). (2.1.15)

From gaussian integral

Z = Ñ(β) exp
(
−1

2
Tr ln A

)
. (2.1.16)

The periodicity conditions 2.1.11 allows us to express the field φ(x̄) through Fourier transform

φ(x̄) =
1
β ∑

n

∫ d3 p
(2π)3 e−iωnτeip·xφ̃(ωn, p) (2.1.17)

where ωn are the Matsubara frequencies for bosons and are defined by

ωn =
2πn

β
(2.1.18)

with integer n. Now we simplify the notation using

p̄ ≡ (iωn, p) (2.1.19)

p̄ · x̄ ≡ ωnτ − p · x. (2.1.20)

p̄2 ≡ −(ω2
n + p2). (2.1.21)

We also expand the δ(x̄′ − x̄) distribution and the operator A(x̄′, x̄):

δ(x̄′ − x̄) =
1
β ∑

n

∫ d3 p
(2π)3 e−i p̄·(x̄′−x̄) (2.1.22)

A(x̄′, x̄) =
1
β ∑

n

∫ d3 p
(2π)3 e−i p̄·(x̄′−x̄)(− p̄2 + m2). (2.1.23)
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Thus we can calculate

Tr ln A =
∫ β

0
dτ
∫

d3x
1
β ∑

n

∫ d3 p
(2π)3 ln

(
− p̄2 + m2)

=
∫

d3x ∑
n

∫ d3 p
(2π)3 ln

(
ω2

n + p2 + m2). (2.1.24)

Now we still need to calculate the sum over the Matsubara frequencies, the result gives

Tr ln A =
∫

d3x
∫ d3 p

(2π)3 {β
√

p + m2 + 2 ln[1− exp
(
−β
√

p2 + m2

)
]

+
√

p2 + m2 + constant}
(2.1.25)

And finally we can use this result in 2.1.16

− βF = ln Z = −
∫

d3x
∫ d3 p

(2π)3

(
β

2

√
p2 + m2 + ln[1− exp

(
−β
√

p2 + m2

)
]

)
. (2.1.26)

If the mass parameter in 2.1.26 is small when compared to the temperature (namely β−1),which
correspond to an ultra relativistic Bose gas, the previous integral is very easy to compute, so one gets
all the thermo-dynamical functions, such as the free energy density

F = − π2

90β4 = −π2T4

90
(2.1.27)

when T >> m.

Consequently the free energy is

F =
∫

d3xF (2.1.28)

the pressure, for ultra-relativistic bosons

P =
π2T4

90
(2.1.29)

the entropy density is given by

S =
2π2T3

45
(2.1.30)

and the energy density is

ρ =
π2T4

30
(2.1.31)
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2.2 Partition function for gauge bosons

We continue the discussion by considering the partition function also for the case of gauge bosons,
for which we have the function Z

Z = [Ñ(β)]2dG

∫
periodic

DAµ
∫

periodic
Dη∗Dη × exp

∫ β

0
dτ
∫

d3xL(Aµ
a , ηa) (2.2.1)

where η represents the ghost and dG is the number of gauge fields. We consider an Abelian case, and
we consider a free-field limit, i.e. g→ 0

Z = [Ñ(β)]2dG

∫
periodic

DAµ
∫

dx̄
(
−1

4
F̄µν F̄µν −

1
2ξ

(∂̄µ Aµ)2
) ∫

periodic
Dη∗Dη × exp

∫
exp

∫
dx̄∂̄∗µ∂̄µη

(2.2.2)
with

F̄µν ≡ ∂̄µ Aν − ∂̄ν Aµ (2.2.3)

and ∫
dx̄ ≡

∫ β

0
dτ
∫

d3x. (2.2.4)

So, inserting the explicit form of F̄µν

Z = [Ñ(β)]2dG

∫
periodic

DAµ exp−1
2

∫
dx̄′

∫
dx̄Aµ(x̄)Bµν(x̄′, x̄)Aν(x̄)×

∫
periodic

Dη∗Dη × exp−
∫

dx̄′dx̄η∗(x̄′)C(x̄′, x̄)η(x̄)
(2.2.5)

where
Bµν(x̄′, x̄) = (gµν∂̄

ρ
x′ ∂̄ρx)δ(x̄′ − x̄) (2.2.6)

and
C(x̄′, x̄) = ∂̄

ρ
x′∂ρxδ(x̄′ − x̄). (2.2.7)

After the Gaussian integration the result is

Z = [Ñ(β)]2 exp
(
−1

2
Tr ln B

)
exp(Tr ln C) (2.2.8)

In order to find the ln B it is convenient to Fourier transform

Bµν(x̄′, x̄) =
1
β ∑

n

∫ d3 p
(2π)3 e−i p̄·(x̄′−x̄) × [ p̄2(gµν − p̄−2 p̄µ p̄ν) + p̄2ξ−1 p̄−2 p̄µ p̄ν] (2.2.9)

and now we take the trace of the ln

Tr ln B =
1
β

∫
dx̄ ∑

n

∫ d3 p
(2π)3 [3 ln p̄2 + ln

(
ξ−1 p−2

)
] =

∫
d3x ∑

n

∫ d3 p
(2π)3 4 ln

(
ω2

n + p2). (2.2.10)
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The same procedure can be applied to C

C(x̄′, x̄) =
1
β

∫
dx̄ ∑

n

∫ d3 p
(2π)3 e−i p̄·(x̄′−x̄) p̄2

(2.2.11)

taking the trace

Tr ln C =
∫

dx̄ ∑
n

∫ d3 p
(2π)3 ln

(
ω2

n + p2). (2.2.12)

Replacing all these results in the expression of 2.2.2 gives

Z = [Ñ(β)]2 exp

(
−1

2

∫
d3x ∑

n

∫ d3 p
(2π)3)

2 ln
(
ωn

2 + p2)) . (2.2.13)

In the end we find the free energy

F = −2π2 T4

90
. (2.2.14)

2.3 Partition function for fermions

We can extend the previous discussion to the case of fermions and calculate their partition function.
In the case of fermions we must remember that they possess the property of being antisymmetric on
the period of the wave function ψ, that is

ψ(τ = 0, x) = −ψ(τ = β, x). (2.3.1)

Let us start from the partition function expressed in the form

Z = N′(β)
∫

antiperiodic
Dψ̄Dψ exp

∫ β

0
dτ
∫

d3xL(ψ). (2.3.2)

A fermionic wave function can be expanded

ψ(x̄) =
1
β ∑

n

∫ d3 p
(2π3)

e−i p̄·x̄( p̄). (2.3.3)

In the fermion case the Matsubara frequencies ωn are given by

ωn =
2n + 1π

β
. (2.3.4)

The Lagrangian used to derive the partition function is

L(ψ) = ψ̄(x)(iγµ∂̄µ −m)ψ(x̄) (2.3.5)
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so
Z = N′(β) =

∫
antiperiodic

Dψ̄Dψ exp
(
−
∫

dx̄
∫

dx̄ψ̄(x̄′)D(x̄′, x̄)ψ(x̄)
)

(2.3.6)

where
D(x̄′, x̄) = (iγµ∂̄µ + m)δ(x̄′ − x̄). (2.3.7)

Using the Gaussian integration one finds

Z = N′(β) exp(Tr ln D). (2.3.8)

Again we Fourier transform

D(x̄′, x̄) =
1
β ∑

n

∫ d3 p
(2π)3 ei p̄·(x̄′−x̄(− p̄/ + m), (2.3.9)

so taking the trace of the ln

Tr ln D =
∫ β

0
dτ
∫

d3x
1
β ∑

n

∫ d3 p
(2π)3 2 ln

(
m2 − p̄2)

= 2
∫

d3x ∑
n

∫ d3 p
(2π)3 ln

(
ω2

n + p2 + m2)
= 2

∫
d3x ∑

n

∫ d3 p
(2π)3 {β

√
p2 + m2 + 2 ln[1 + exp

(
−β
√

p2 + m2

)
]+

+ (
√

p2 + m2)− independent constant}.

(2.3.10)

Replacing this in the expression the the partition function one finds

− βF = ln Z = 2
∫

d3
∫ d3 p

(2π)3 {β
√

p2 + m2 + 2 ln[1 + exp
(
−β
√

p2 + m2

)
]} (2.3.11)

which, for T � m, gives

F = −7π2 T4

180
. (2.3.12)

Finally we can summarize the result of the previous sections: for an ideal ultra-relativistic gas(T � m
the free energy density is

F = −π2T4 (NB + 7
8 NF)

90
(2.3.13)

with NB and NF respectively number of bosons and number of fermions, the pressure is

P = π2T4 (NB + 7
8 NF)

90
, (2.3.14)
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the entropy density is

S = 2π2T3 (NB + 7
8 NF)

45
(2.3.15)

and the energy density is

ρ = π2T4 (NB + 7
8 NF)

30
. (2.3.16)

2.4 Temperature-dependent Green functions and generating functionals

In this section we will try to extend the concept of Green’s function to the case of systems immersed
in a thermal bath. We then consider the following general Green’s function expressed via the field
operators φ̂, functions of τ

GN(x̄1, ..., x̄N) = 〈Tτ(φ̂(x̂1)...φ̂(x̄N))〉 (2.4.1)

where as usual
x̄ ≡ (−iτ, x) (2.4.2)

and Tτ stand for ordered product according to increasing values of τ.

The expectation value 〈...〉 is calculated

〈Tτ(φ̂(x̂1)...φ̂(x̄N))〉 =
Tr[e−βĤTτ(φ̂(x̂1)...φ̂(x̄N))]

Tr[e−βĤ ]
. (2.4.3)

Let us consider the specific case of G(N )(x̄1, x̄2) and let us consider an operator Â expressed in the
form

Â =
∫

d3xφ̂2(t = 0, x). (2.4.4)

Its expectation value is

〈Â〉 =
Tr[e−βĤ

∫
d3xφ̂2(t = 0, x)]

Tr[e−βĤ ]
. (2.4.5)

Let us now consider now

lim
τ′→τ+,x′→x

∫
d3xG2(x̄′, x̄) =

∫
d3xTr[eβĤφ̂(τ, x)φ̂(τ, x)]

Tr[e−βĤ ]

=

∫
d3xTr[e−βĤφ̂2(0, x)]

Tr[e−βĤ ]

(2.4.6)

so we have found that
Â = lim

τ′→τ+,x′→x

∫
d3xG2(x̄′, x̄). (2.4.7)
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In the field theory language the Green functions can be expressed as

GN(x̄1, ..., x̄N) =

∫
periodicDφ

∫
Dπφ(x̄1)...φ(x̄N) exp

∫ β
0 dτ

∫
d3x

(
iπ ∂φ

∂τ −H
)

∫
periodicDφ

∫
Dπ exp

∫ β
0 dτ

∫
d3x

(
iπ ∂φ

∂τ −H
) . (2.4.8)

We can also introduce the generation functional

W̄[J] =

∫
periodicDφ

(∫ β
0

∫
d3x(L(φ, ∂̄µφ) + Jφ

)
∫

periodicDφ exp
(∫ β

0 dτ
∫

d3xL(φ, ∂̄µφ)
) (2.4.9)

which can be used to generate all the temperature-dependent Green functions through functional
differentiation

GN(x̄1, ..., x̄N) =
δNW̄[J]

δJ(x̄N)...∂J(x̄1)
)

∣∣∣∣
J=0

(2.4.10)

As regards the generating functional for connected temperature dependent Green functions, it can be
defined as

W̄[J] = eX̄[J] (2.4.11)

and the Green functions are calculated according to

GN(x̄1, ..., x̄N) =
δNX̄[J]

δJ(x̄N)...δJ(x̄1)

∣∣∣∣
J=0

. (2.4.12)

2.4.1 Scalar field case

We can now consider the specific case of a field theory containing scalar fields

W̄0[J] =

∫
Dφ exp

(
− 1

2

∫
dx̄′
∫

dx̄φφ(x̄′)A(x̄′, x̄φ(x̄) +
∫

dx̄J(x̄)φ(x̄))
)∫

periodicDφ
(
− 1

2 dx̄′
∫

dx̄φ(x̄′)A(x̄′, x̄)φ(x̄)
) (2.4.13)

where
A(x̄′, x̄) = (−∂̄′µ∂̄µ + m2)δ(x̄′ − x̄). (2.4.14)

Using path integral integration we get

W̄0[J] = exp
(
−1

2

∫
dx̄′

∫
dx̄J(x̄′)∆̄F(x̄′ − x̄)J(x̄)

)
(2.4.15)

where ∆̄F(x̄′ − x̄) is defined as
∆̄F(x̄′ − x̄) = −A−1(x̄′, x̄) (2.4.16)

38



which can be found by Fourier transforming

∆̄F(x̄′ − x̄) =
1
β ∑

n

∫ d3 p
(2π)3 e−i p̄·(x̄′,x̄) ¯DeltaF( p̄). (2.4.17)

2.4.2 Effective potential at finite temperature

We now consider a classical field φc(x̄) that can be extracted from the generating functional of
connected Green’s functions in the following way

φc(x̄) =
δX̄[J]
δJ(x̄)

(2.4.18)

The thermal average, (i.e. the expectation value) of the field φ(x̄) in the presence of the source term J is
calculated as

δW̄[J]
δJ(x̄)

= 〈φ̂(x̄)〉J (2.4.19)

Using the definition of the generating functional for connected Green functions one finds the calssical
field φc(x̄) expressed as

φc(x̄) = 〈φ̂(x̄)〉J/W̄[J]. (2.4.20)

If the source is switched off

φc(x̄) = 〈φ(x̄)〉 f or J = 0 (2.4.21)

and

〈φ(x̄)〉 = Tr[eβĤφ̂(τ, x)]/Tr[e−βĤ ]

∼ Tr[eβĤφ̂(0, x)]/Tr[e−βĤ ]
(2.4.22)

and combining the last two equations one finds

φc(x̄) = 〈φ(0, x)〉. (2.4.23)

So it can be concluded that for zero source term the classical field φc(x̄) is the thermal average
value 〈φ(0, x)〉.
The effective action is given by

Γ̄[φc] = X̄[J]−
∫

dx̄J(x̄)φc(x̄) (2.4.24)

and we could perform an expansion getting

Γ̄[φc] ==
∫

dx̄
(
−V̄(φ)c +

Ā(φ)c

2
∂̄µφc∂̄µφc + ...

)
(2.4.25)
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where the first term in the expansion is interpreted as the effective finite temperature potential V̄(φc).
But if the classical field has no dependence on space or on τ then the source term is reduced to

dV̄
dφc

= J. (2.4.26)

which for switched off source gives
dV̄
dφc

= J = 0 (2.4.27)

which means that if we want the expectation value of the field operator we just need to minimize
the temperature-dependent effective potential.

2.5 First order phase transitions

We now try to give a more explicit form to the temperature-dependent effective potential, consider-
ing both the contributions given at tree-level and at one loop. First we write the temperature-dependent
effective potential as the sum of the tree-level and one-loop contributions

V̄(φc) = V̄0(φc) + V̄1(φc) (2.5.1)

and we could further separate the one-loop contribution into two terms, respectively at zero
temperature and at finite temperature

V̄=V̄0
1 + V̄T

1 . (2.5.2)

The complete Lagrangian with scalar fields, fermions and gauge bosons is

Lquad(φc, φ̃) = −1
2
[M̂2

S(φc)]ijφ̃iφ̃j +
1
2
[M̂2

V(φc)]ab Aµ
a Abµ

− [M̂2
F(φc)]rsψ̄rψ̄s +

1
2

∂̄µφ̃i∂̄
µφ̃i

− 1
4
(∂̄µ Aν

a − ∂̄ν Aµ
a )(∂̄µ Aνa − ∂̄ν Aaµ)

− 1
2ξ

(∂̄µ Aµ
a )

2 + ∂̄µη∗a ∂̄µηa.

(2.5.3)

where φc, φ̃i and ηa indicate respectively the set of average values of the scalar fields, the shifted
scalar fields and the Fadeev-Popov ghost fields.
Using a matrix notation we indicate the mass-squared matrices with M̂2

S,M̂2
V and M̂2

F whose eigen-
values are respectively (M2

S)i,(M2
V)a and (M2

F)r. We can now give the expression for the one-loop
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temperature-dependent term of the effective potential

V̄T
1 (φc) =

T4

2π2

∫ ∞

0
dyy2

{
∑

i
ln
[

1− exp
(
−
√

y2 + T−2(M2
S)i

)]
+ ∑

a

(
3 ln

[
1− exp

(
−
√

y2 + T−2(M2
V)a

)]
− ln

(
1− e−y))

− 4 ∑
r

ln
[

1 + exp
(
−
√

y2 + T−2(M2
F)r

)]}
.

(2.5.4)

This expression could be simplified. We could first consider the limit in which all the mass matrices
eigenvalues are much bigger than T2; in this case V̄T

1 goes to zero exponentially because all of its terms
goes to zero. The other approximation one could use is the high temperature limit in which T2 is much
larger than the eigenvalues ; so we first notice that

T4

2π2

∫ ∞

0
dyy2 ln

[
1− exp

(
−
√

y2 + RT−2

)]
=

= −π2T4

90
+

RT2

24
− R3/2T

12π
− R2

64π2 ln
(

R
abT2

)
+

R2

16π5/2

∞

∑
l=1

(−1)l ζ(2l + 1)
(l + 1)!

(
R

4π2T2

)l

(2.5.5)

with
ab = 16π2 ln

(
3
2
− 2γE

)
(2.5.6)

and
ln ab = 5.4076. (2.5.7)

Similarly

T4

2π2

∫ ∞

0
dyy2 ln

[
1 + exp

(
−
√

y2 + RT−2

)]
=

= −7π2T4

720
+

RT2

48
− R2

64π2 ln
(

R
a f T2

)
− R2

16π5/2

∞

∑
l=1

(−1)l ζ(2l + 1)
(l + 1)!

(1− 2−2l−1)Γ
(

l +
1
2

)(
R

4π2T2

)l

(2.5.8)

with

a f = π2 ln
(

3
2
− 2γE

)
=

ab

16
(2.5.9)
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and
ln ab = 2.6351. (2.5.10)

So finally the finite temperature potential can be written

V̄T
1 (φc) ' −

π2T4

90

(
NB +

7
8

NF

)
+

T2

24

[
∑

i
(M2

S)i + 3 ∑
i

a(M2
V)a + 2 ∑

i
(M2

F)r

]

− T
12π

[
∑

i
(M3

S)i + 3 ∑
a
(M2

V)a

]
+ ... =

= −π2T4

90

(
NB +

7
8

NF

)
+

T2

24
[trM̂2

S(φc) + 3trM̂2
V(φc) + 2trM̂2

F(φc)]

− T
12π

[{trM̂2
S(φc)}3/2 + 3{trM̂2

V(φc)}3/2] + ...

(2.5.11)

It is easy to notice that the T4 term in the previous expression is just the free energy.

2.6 Temperature-dependent Higgs model

We now exploit the formalism developed in the previous sections to discuss a temperature-
dependent Higgs model containing scalar and vector fields. Let us begin with the finite temperature
Lagrangian

L = D̄µφD̄µφ∗ −m2φ∗φ− (λ/4)(φ∗φ)2

− 1
4

F̄µν F̄µν − 1
2ξ

(∂̄µ Aµ)2 + ∂̄µη∗∂̄µη
(2.6.1)

with m2 < 0 ,and the covariant derivatives defined as

D̄µφ ≡ (∂̄µ + ieAµ)φ (2.6.2)

D̄µφ∗ ≡ (∂̄µ − ieAµ)φ
∗. (2.6.3)

The Lagrangian in 2.6.1 contains the ghost terms in η in order to cancel the contribution to free energy
given by the un-physical degrees of freedom, whose presence is caused by the gauge bosons. We
know shift the scalar field by

φc√
2
≡ 〈φ̂(x̄)〉 (2.6.4)
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and we expand according to

φ =
1√
2
(φc + φ1 + iφ2) (2.6.5)

where φ1 and φ2 are the shifted fields. We rewrite the Lagrangian retaining only the quadratic terms

Lquad =
1
2
(∂̄µφ1)

2 +
1
2
(∂̄µφ2)

2 − 1
2

(
m2 +

3λ

4
φ2

c

)
φ2

1

− 1
2

(
m2 +

λ

4
φ2

c

)
φ2

2 −
1
4

F̄µν F̄µν +
e2

2
φ2

c Aµ Aµ

− 1
2ξ

( ¯∂µ Aµ)2 − ∂̄µη∗∂̄µη

(2.6.6)

and for the quadratic terms in φ1 and φ2 we can use the notation

M̂2
S(φc) = diag

{
m2 +

3λ

4
φ2

c , m2 +
λ

4
φ4

c

}
(2.6.7)

M̂2
V(φc) = e2φ2

c . (2.6.8)

where e is the gauge coupling constant.

2.6.1 e4 � λ case

We consider the one-loop zero temperature potential term, which is

V̄0(φc) =
m2

2
φ2

c +
λ

16
φ4

c (2.6.9)

while the one-loop zero temperature term can be neglected as long as e4 � λ. In addition for high
-temperatures we have

T2 � λφ2
c , e2φ2

c ,−m2. (2.6.10)

so the one-loop temperature dependent correction can be written as

V̄T
1 (φc) = −

4πT4

90
+

(λ + 3e2)T2

24
φ2

c −
CT
3

φ3
c + ... (2.6.11)
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where C is defined through

4πC = {trM̂2
S(φc)}3/2 + 3{trM̂2

V(φc)}3/2

=

(
m2φ−2

c +
3λ

4

)3/2

+

(
m2φ−2

c +
λ

4

)3/2

+ 3e3

'
(

3λ

4

)3/2

+

(
λ

4

)3/2

+ 3e3

(2.6.12)

for λφc � m2. Adding this term to the one-loop zero temperature term the final potential is

V̄T(φc) = −
4π2T4

90
+

1
2

m2(T)φ2
c +

(λ + 3e2)T2

12
φ2

c −
CT
3

φ3
c +

λ

16
φ4

c (2.6.13)

but we can recast this form defining the temperature dependent mass

m2(T) = m2 +
(λ + 3e2)T2

12
. (2.6.14)

We can minimize the potential
∂V̄
∂φc

= 0 (2.6.15)

and find the solution
φc = 0 (2.6.16)

and this solution is valid as long as the temperature satisfies

T2 > T2
0 ≡ −12m2/(λ + 3e2). (2.6.17)

But for T < T1 where

T2
1 ≡

T2
0

1 + C2T2
0 /λm2

=
−12λm2

λ(λ + 3e2)− 12C2 > T2
0 (2.6.18)

a second minimum arises at

φc = v(T) ≡ v

[
CT√
λ|m|

+

(
1− T2

T2
1

)1/2
]

(2.6.19)

with
v ≡ 2|m|√

λ
. (2.6.20)
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We could also define the mass of the Higgs particle, related to the fluctuations around the minimum

m2
H(T) =≡

∂ < 2V̄
∂φ2

c

∣∣∣∣
φc=v(T)

= CTv(T)− 2m2(T) (2.6.21)

and in a similar way we could define the temperature-dependent vector boson mass

mV(T) ≡ e v(T). (2.6.22)

Now for T < T1 we have two minima, one at φc = 0 and the other at φc = v(T) ≡ v
[

CT√
λ|m| +

(
1− T2

T2
1

)1/2
]

.

But if the temperature decreases further the minimum at φc = 0 becomes degenerate. This situation is
illustrated in Fig.2.1

Figure 2.1 This is the potential for the model we are discussing for e4 � λ. The curves A, B,C represent
respectively the cases for T > T1,T > Tc,T < T0.

The critical temperature at which this can be found imposing

8
9

C2T2 = λm2(T) (2.6.23)
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and then one finds

T2
c =

−12λm2

λ(λ + 3e2)− 32C2/3
. (2.6.24)

If the temperature drops below the critical temperature, the non-zero minimum is global and the
system enters the phase characterized by the spontaneous symmetry breaking. In particular it can be
seen that the value of the field φc passes, at T = Tc, in a discontinuous way from the null value to the
value

φc = v(Tc) =
8CTc

3λ
(2.6.25)

and this is the signature of a first-order phase transition. Then if we imagine to lower the temperat-
ure , it would fall below T = T0 and then m2(T) is now negative and the minimum at φc = 0 is just a
local minimum. But if C is so small to be neglected, the three temperatures previously defined will
assume the same value, so the system goes through a second order phase transition at T = Tc.

2.6.2 e4 � λ case

Let us now consider the case where the gauge coupling constant is much larger than the φ4 coupling
constant. In this case the zero-temperature one loop correction is not negligible and furthermore the
high -temperature approximation is no longer allowed. So let us first write the effective potential,
including the zero-temperature correction

V̄(φc) =
m2

2
φ2

c +
λ

16
φ4

c + Bφ4
c

[
ln
(

φ2
c

M2

)]
+ V̄T

1 (φc) (2.6.26)

where M is the renormalization scale and B is defined as

B =
1

64π2

(
5
8

λ2 + 3e4
)

(2.6.27)

but if λ < e4 then we could simplify

B ' 3e4

64π2 . (2.6.28)

If we do not use any high temperature approximation, the one-loop temperature dependent
correction to the potential can be written

V̄T
1 (φc) =

T4

2π2

∫ ∞

0
dy y2

{
ln
[

1− exp
(
−
√

y2 + T−2(m2 + 3λφ2
c /4)

)]
+ ln

[
1− exp

(
−
√

y2 + T−2(m2 + λφ2
c /4)

)]
+ 3 ln

[
1− exp

(
−
√

y2 + T−2e2φ2
c

)]
− ln

(
1− e−y)}.

(2.6.29)
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We now want to find a criterion for whether it is still possible to use the high-temperature approxima-
tion. So, let us first consider the definition of C in 2.6.12, now for e4 � λ we have

C ' 3e3

4π
. (2.6.30)

We insert this in 2.6.24 and we find

T2
c ' −

4m2

e2 . (2.6.31)

Recalling the definition of the asymmetric minimum in 2.6.25 we now find

φ2
c = v2 =

−4m2

λ
(2.6.32)

We can calculate the vector boson mass

m2
v = e2v2 =

−4m2

e2
e4

λ
. (2.6.33)

So in the end we find that

T2
c � m2

V = e2v2 =
−4m2

e2
e4

λ
, (2.6.34)

which means that we can no longer use the high-temperature approximation when we consider
e4 � λ. We now compute the value of the potential at the symmetric and asymmetric minima.
the symmetric one is φc = 0, so that

V̄(φc = 0) = V̄T
1 (φc = 0) ' −4π2T4

90
. (2.6.35)

The asymmetric minimum is at φc = v. In this case the contribution to V̄T
1 (φc) coming from the

gauge mass field eφc can be neglected since they are exponentially suppressed. So one finds

V̄T
1 (φc = v) ' −2π2T4

90
+

T2

24
(−2m2)− T

12π
(−2m2)

3
2 . (2.6.36)

The potential assumes the following form

V̄(φc = v) = −m4

λ
− π2T4

45
− m2T2

12
− T

12π
(−2m2)

3
2 . (2.6.37)

We can neglect the terms in T2 and m3 because negligible compared to the terms in T4, so one finds that
the symmetric minimum gives a lower value for the potential than the one given by the asymmetric
minimum and this happens for

T >

(
45

π2λ

) 1
4

|m| ≡ Tc1. (2.6.38)

This situation is illustrated in Fig.2.2
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Figure 2.2 Development of asymmetric minima. Curves A corresponds to the zero temperature case, B to the
case at Tc and curves C and D correspond to higher temperatures.

The phase transition takes occurs at Tc1 and it is a first order phase transition since the expectation
value changes discontinuously from 0 to v. If the temperature of the system is T � Tc1, a phase
transition cannot occur since it is necessary to break the potential barrier that separates the symmetric
minimum from the asymmetric one.
But, if one considers the radiative correction, it can provide a symmetry breaking as explained by
Coleman and Weinberg. In this case the potential can be written as

V̄(φc) = B
(

α

2
v2φ2

c −
α + 2

4
φ4

c + φ4
c ln

φ2
c

v2

)
+ V̄T

1 (φc) (2.6.39)

α = 2B−1
(

22
3

B− λ

8

)
. (2.6.40)
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The mass of the Higgs boson could be extracted using

m2
H =

d2V̄
dφ2

c

∣∣∣∣
φc=v

= 2Bv2(4− α). (2.6.41)

In the case of the Coleman-Weinberg model α = 0.

2.7 Bose-Einstein condensation

2.7.1 Neutral scalar field

Before considering the phenomenon of Bose-Einstein condensation, it is necessary to develop some
formal tools needed later. We consider for this purpose the most general Lagrangian for a neutral
scalar field φ

L =
1
2

∂µφ∂µφ− 1
2

m2φ2 −U(φ) (2.7.1)

where U(φ) is the potential
U(φ) = gφ3 + λφ4. (2.7.2)

We define the conjugate momentum

π =
L

∂(∂0φ)
=

∂φ

∂t
. (2.7.3)

We also need the Hamiltonian defined as the Legendre transform of the Lagrangian

H = π
∂φ

∂t
−L =

1
2

π2 1
2
(∇φ)2 +

1
2

m2φ2 + U(φ). (2.7.4)

The partition function of the system is defined using the usual methods

Z = lim
N→∞

(
N

∏
i=1

∫ +∞

−∞

dπi

2π

∫
periodic

dφi

)

exp
( N

∑
j=1

∫
d3x

{
iπj(φj+1 − φj)

− ∆τ

[
1
2

π2
j +

1
2
(∇φj)

2 +
1
2

m2φ2
j + U(φ)

]})
.

(2.7.5)

The integrations on the momentum can be carried on using Gaussian integration, and we divide

49



the space into M3 cubes with V = L3, so

Z = lim
M,N→∞

(2π)M3 N/2
∫ (

∏
i
= 1Ndφi

)

× exp

{
∆τ

N

∑
j=1

∫
d3x
[
−1

2

(
φj+1 − φj

∆τ

)2

− 1
2
(∇φj)

2 − 1
2

m2φ2
j −U(φj)

]}
(2.7.6)

now, taking the continuum limit we find

Z = N′
∫

periodic
Dφ

(∫ β

0
dτ
∫

d3xL
)

(2.7.7)

where N′ is just a normalization constant. The last equation is the the partition function for a
system of neutral scalar field expressed as a functional integral. If we consider a system of non-
interacting bosons, it is as if we switch the potential off, so U(φ) = 0, so the action is

S =
∫ β

0
dτ
∫

d3xL = −1
2

∫ β

0
dτ
∫

d3x
[(

∂φ

∂τ

)2

+ (∇φ)2 + m2φ2
]

. (2.7.8)

After integration by parts the final form is

S = −1
2

∫ β

0
dτ
∫

d3x
(
− ∂2

∂τ2 −∇
2 + m2

)
φ. (2.7.9)

We can expand the field φ by Fourier expansion

φ(x, τ) =

√
β

V

∞

∑
n=−∞

∑
p

ei(p·x+ωnτ)φn(p) (2.7.10)

with ωn = 2πnT, because of the periodic condition φ(x, β) = φ(x, 0). If we now replace the previous
expansion in the expression of the action and imposing that the scalar field is real we find

S = −1
2

β2 ∑
n

∑
p
(ω2

n + ω2)φn(p)φ∗n(p) (2.7.11)

where ω =
√

p2 + m2.. We also notice that the dependence of the integrand is governed by the
magnitude of the field, so it is useful to define An(p) = |φn(p)|.
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Replacing all this in the partition function and integrating out the phase we find

Z = N′∏
n

∏
p

{∫ ∞

−∞
dAn(p) exp

[
−1

2
β2(ω2

n + ω2)A2
n(p)

]}
= N′∏

n
∏

p
(2π)1/2[β2(ω2

n + ω2)]−1/2.
(2.7.12)

The partition function could also be reformulated as

Z = N′
∫
Dφ exp

[
−1

2
(φ, Dφ)

]
= N′′(det D)−1/2 (2.7.13)

where as usual N′′ is a normalization constant. D is the following operator:

D = β2(− ∂2

∂τ2 −∇
2 + m2)

. The expression in 2.7.13 is derived using the relation∫ ∞

∞
dx1...dxne−xi Dijxj = πn/2(det D)−1/2. (2.7.14)

We can extract the logarithm from 2.7.12, ignoring the overall constant

ln Z = −1
2 ∑

n
∑
p

ln[(β2(ω2
n + ω2)]. (2.7.15)

Problems arise when we want to deal with sums of logarithms. We can use the identity

ln[(2πn)2 + β2ω2] =
∫ β2ω2

1

dθ2

θ2 + (2πn)2 + ln[1 + (2πn)2] (2.7.16)

and
∞

∑
n=−∞

1
n2 + ( θ

2π )
2
=

2π2

θ

(
1 +

2
eθ − 1

)
. (2.7.17)

Using the last two equations in 2.7.12 and discarding the temperature-independent term we find

ln Z = −∑
p

∫ βω

1
dθ

(
1
2
+

1
eθ − 1

)
. (2.7.18)

Performing the integration we find

ln Z = V
∫ d3 p

(2π)2

[
−1

2
βω− ln

(
1− e−βω

)]
(2.7.19)

which is exactly the same result given by equation 2.0.44 with µ = 0. But the last results also include
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the zero-point energy.

2.7.2 Condensation

Let us consider a system of charged bosons, described by a complex scalar field Φ. Consider the
Lagrangian of the system

L = ∂µΦ∗∂µΦ−m2Φ∗Φ− λ(Φ ∗Φ)2. (2.7.20)

This Lagrangian is invariant under a general local U(1) transformation

Φ→ Φ′ = Φeiα (2.7.21)

with α a constant. From Noether’s theorem we know that each symmetry corresponds to a
conserved current, so let us compute this current. We apply the transformation but we now consider α

as a local factor, i.e. dependent on a space coordinate

L → L′ = ∂µ(Φ∗eiα(x))∂µ(Φe−iα(x))−m2Φ∗Φ− λ(Φ∗Φ)2

= L+ Φ∗Φ∂µα∂µα + i∂µα(Φ∗∂µΦ−Φ∂µΦ∗).
(2.7.22)

The equation of motion for α(x) is

∂µ ∂L′
∂(∂µα)

=
∂L′
∂α

. (2.7.23)

But
∂L′
∂α

= 0 (2.7.24)

so the current
∂L′

∂(∂µα)
= Φ∗Φ∂µα + iΦ∗∂µΦ− iΦ∂µΦ∗ (2.7.25)

is a conserved current. If we restore α(x) as a constant the current density is now written

jµ = i(Φ∗∂µΦ−Φ∂µΦ∗) (2.7.26)

so,
∂µ jµ = 0. (2.7.27)

The full current and the conserved charge associated are written respectively

Jµ =
∫

d3xjµ(x) (2.7.28)

Q =
∫

d3xj0(x). (2.7.29)
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We make the complex nature of the fieldΦ explicit, by decomposing

Φ =
(φ1 + iφ2)√

2
. (2.7.30)

We compute the conjugate momenta

π1 = ∂φ1
∂t (2.7.31)

π2 = ∂φ2
∂t . (2.7.32)

We can now write the Hamiltonian of the system

H =
1
2
[
π2

1 + π2
2 + (∇φ1)

2 + (∇φ2)
2 + m2φ2

1 + m2φ2
2
]
+

1
4

λ(φ2
1 + φ2

2)
2 (2.7.33)

and the conserved charge is

Q =
∫

d3x(φ2π1 − φ1π2). (2.7.34)

Let us define the partition function of the system

Z =
∫
Dπ1Dπ2

∫
periodic

Dφ1Dφ2 × exp
[∫ β

0
dτ
∫

d3x

×
(

iπ1
∂φ2

∂τ
+ iπ2

∂φ1

∂τ
−H(π1, π2, φ1, φ2) + µ(φ2π1 − φ1π2)

)] (2.7.35)

where µ is the chemical potential.
We can now integrate out the fields associated with the conjugate momenta and find

Z = (N′)2
∫

periodic
Dφ1Dφ2

× exp
{∫ β

0
dτ
∫

d3x
[
−1

2

(
∂φ1

∂τ
− iµφ2

)2

−1
2

(
∂φ2

∂τ
− iµφ1

)2

− 1
2
(∇φ1)

2 − 1
2
(∇φ2)

2 − 1
2

m2φ1 −
1
2

m2φ2 −
1
4

λ(φ2
1 + φ2

2)
2
]} (2.7.36)

where N’ a normalization factor. The last integral, due to the presence of λ 6= 0 cannot be evaluated
by the classical method of Gaussian integration. But let us consider λ = 0 and Fourier-expand the
components of Φ

φ1 =
√

2ζcosθ +

√
β

V ∑
n

∑
p

ep·x+ωnτφ1;n(p) (2.7.37)

φ2 =
√

2ζsinθ +

√
β

V ∑
n

∑
p

ep·x+ωnτφ2;n(p), (2.7.38)
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where ζ and θ are functions necessary regulate the infra-red behaviour of the Φ field, i.e. φ1;0(p = 0)
and φ2;0(p = 0).( In addition ζ will be considered the so called order parameter of the system and its
behaviour will give us information about the order of the phase transition we are discussing.)

In this way, the behaviour of the field is consistently determined and this allows for the possibility
of condensation of particles, a fraction of which are in the state at p = 0.
So let us consider the case for λ = 0, if we replace the Fourier-expansion of the fields into the 2.7.36
and integrate by parts, we obtain

Z = (N′)2

(
∏

n
∏

p

∫
dφ1;n(p)dφ2;n(p)

)
eS (2.7.39)

where S is the action

βV(µ2 −m2)ζ2 − 1
2 ∑

n
∑
p
(φ1;−n(−p), φ2;−n(−p)) D

(
φ1;n(p)
φ2;n(p)

)
(2.7.40)

where

D = β2

(
ω2

n + ω2 − µ2 −2µωn

2µωn ω2
n + ω2 − µ2

)
. (2.7.41)

After integration,
ln Z = βV(µ2 −m2)ζ2 + ln(det D)

1
2 (2.7.42)

and the second term could be recast in the form

ln det D = ln

{
∏

n
∏

p
β4[(ω2

n + ω2 − µ2)2 + 4µ2ω2
n]

}

= ln

{
∏

n
∏

p
β2[(ω2

n + (ω− µ)2]

}
+ ln

{
∏

n
∏

p
β2[(ω2

n + (ω + µ)2]

}
.

(2.7.43)

Replacing the ln det D in 2.7.42

ln Z = βV(µ2 −m2)ζ2 − 1
2 ∑

n
∑
p

ln{β2[ω2
n + (ω− µ)2]}

− 1
2 ∑

n
∑
p

ln{β2[ω2
n + (ω + µ)2]}.

(2.7.44)

Recalling the result in the previous equation we find, after the substitutions ω → ω−µ and ω → ω+µ
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respectively in the previous equation

ln Z = βV(µ2 −m2)ζ2 −V
∫ d3 p

(2π)2

×
[

βω + ln
(

1− e−β(ω−µ)
)
+ ln

(
1− e−β(ω+µ)

)]
.

(2.7.45)

We first note that the integral is convergent if |µ| 6 m. Furthermore the parameter θ does not appear in
the final expression of the logarithm of the partition function, in accordance with the gauge invariance
of U(1) of the Lagrangian. Instead, the parameter θ does appear and can be treated as a variational
parameter. With respect to this parameter ln Z is an extremum, therefore

∂ ln Z
∂ζ

= 2βV(µ2 −m2)ζ = 0 (2.7.46)

and this determines ζ = 0, unless |µ| = m. In this case we cannot find ζ through variational conditions.
Instead we note that the charge density is

ρ =
Q
V

=
T
V

(
∂ ln Z

∂µ

) ∣∣∣∣
µ=m

= 2mζ2 + ρ∗(β, µ = m) (2.7.47)

where

ρ∗ =
∫ d3 p

(2π)3

(
1

eβ(ω−m) − 1
− 1

eβ(ω+m) − 1

)
. (2.7.48)

We must now make a few observations: If we lower the temperature to a fixed density ρ, then µ

decreases until it reaches the value µ = m. If we lower the temperature further then ρ∗ will reach a
value less than ρ

ζ2 =
ρ− ρ∗(β, µ = m)

2m
. (2.7.49)

The critical temperature Tc is given by imposing

ρ = ρ∗(βc, µ = m) (2.7.50)

obtaining , for the non-relativistic particles

Tc =
2π

m

(
ρ

ζ(3/2)

)2/3

per ρ� m3. (2.7.51)

While for the relativistic particles we have

Tc =

(
3ρ

m

)1/2

per ρ� m3. (2.7.52)

The existence of such a temperature tells us that the system undergoes a phase transition. If we

55



consider the limit m → 0 then |µ| → 0 so Tc → ∞ which means that all the particles are in the
condensate at all temperatures.
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Chapter 3

Bubble nucleation

In the chapter previous we considered the possibility of having within a field theory, a phase
transition considering the characteristics of the temperature dependent potential. In this chapter we
will better study the characteristics of particular field configurations that admit phase transition. A
first-order phase transition requires the transition of a solution of a field theory from a metastable
minimum to a stable minimum. In a classical theory in fact it is possible to have two equilibrium states
associated with different energy densities. We will show that quantum theory instead predicts that the
state with higher energy density is unstable and this determines the transition through a potential
barrier, that is the achievement of the true minimum of the theory, that is the so-called true vacuum.
We will calculate in detail the rate of formation of the true vacuum, that is a phenomenon known as
bubble nucleation, starting from a Lagrangian of a theory with a scalar field. In order to do this we
will follow the treatment exposed in [13], [1], [15] and especially in [16] and [17] where the authors
consider the first quantum correction to the theory. In [16] and [17] is developed the theory at zero
temperature, later extended to non-zero temperatures by [18] and [19].

In the second part of the chapter we will consider the modification of the theory of bubble
nucleation considering a dependence on temperature and we will discuss in detail the mathematical
aspects that characterize the treatment, in particular we will show how to perform the calculation of
the nucleation rate through the approach of the path integral[15].

The results of the discussion of this chapter will then be used in the following, talking about
phase transition from false to true vacuum in the cosmological field with consequent formation of
gravitational waves.

3.0.1 Vacuum decay

Consider the following Lagrangian

L =
1
2
(∂µφ)2 −V(φ). (3.0.1)
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We consider a potential characterization by the presence of two unequal minima that we will call
φ = φtv and φ = φ f v where the former is the lowest (true vacuum) and the latter is the higher (false
vacuum). Likewise, the potential values at these minima will be indicated respectively with Vtv and
Vf v. In the section we will see that from a quantum point of view the false vacuum state can decay
through a tunnel effect. This can also be read from a cosmological point of view. The Universe may
have gone through a phase transition of the first order that brought it from the false to the true state of
vacuum. The goal is now to describe under what conditions the process may have occurred. A typical
potential with a false vacuum is shown in Fig.3.1

Figure 3.1 Potential with false and true vacuum

Consider the following potential energy

U[φ(x)] =
∫

d3x
[

1
2
(∇φ)2 + V(φ)

]
. (3.0.2)

We have seen how the tunnel effect can determine the decay of the false vacuum state through
quantum corrections. At this point a bubble of true vacuum is formed, through the nucleation process,
whose parameters have been dictated in the previous section. The true vacuum bubble can form at
any point of the space, the decay rate is proportional to the volume and therefore we will consider the
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quantity defined as the bubble nucleation rate

Γ/V . (3.0.3)

The tunnelling process is dominated by the path that minimizes the integral penetration of barrier
B. This path can be found solving the equation of motion coming from the action

S =
∫

dτd3x
[

1
2

(
∂φ

∂τ

)
+

1
2
(∇φ)2 + V(φ)

]
(3.0.4)

with equation of motion
d2φ

dτ2 +∇2φ =
dV
dφ

(3.0.5)

and finding the bounce solution indicated by φb. The bubble nucleation rate can be summarized as
follows

Γ
V = Ae−B (3.0.6)

where the coefficient A has been found in the last section and the exponent B is given by

B = S(qb)− S(φ f v) (3.0.7)

where S(qb) is the action for the bounce solution and

S(φ f v) =
∫

dτd3xVf v. (3.0.8)

We must require that for τinit = +∞ and τf in = −∞ we have

φ(x,±∞) = φ f v. (3.0.9)

This requirement means that the bounce solution finds its beginning and end in the false vacuum. We
also require that

φ(|x|, τ) = φ f v. (3.0.10)

which means that the bounce solution is localized in the region of the true vacuum and around
it one finds the false vacuum. Both the motion equations and these constraint conditions exhibit a
symmetry of O(4)so it makes sense to look for solutions with this symmetry in mind. To do this, it is
convenient to change the variable s defined as

ρ =
√

τ2 + r2. (3.0.11)

The equation of motion becomes

φ′′ +
3
ρ

φ′ =
dV
dφ

(3.0.12)
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with primes denoting differentiation with respect to s. The boundary conditions assume the form

φ(∞) = φ f v (3.0.13)

and if we want to prevent the solution from being singular we must require

φ′(0) = 0. (3.0.14)

Now let us examine some conditions on the form of the potential that realize some calculable approx-
imations. Let us begin with a symmetrical potential

V1(φ) = V1(−φ) (3.0.15)

whose minima are set at ±a. A possible form for this kind of potential is

V1 =
λ

8

(
φ2 − µ2

λ

)2

(3.0.16)

with a2 = µ2

λ . We could now consider the breaking of the previous symmetry in the case where

ε ≡ Vf v −Vtv (3.0.17)

is very small if compared to the value of the barrier of V(φ). This situation is known as thin-wall
approximation.
We could write this new potential as

V = V1 +
2ε

a
(φ− a). (3.0.18)

We can use an analogy from classical mechanics to understand what happens [16]. The idea is to
consider equation 3.0.12 as the equation of motion of a particle subject to a potential −V(φ) as shown
in Fig. 3.2.

Let us consider a sphere that is in the vicinity of φ f v = φ− . After a big time, let us say for ρ = R
the sphere will start to move and descend along the valley of potential and will reach φ+ infinitely
in time. Using this mechanical analogy we can consider the bounce solution as a sphere of radius R
sliding along the potential with a thin wall separating the two minima. For s near R therefore we can
neglect in the motion equation the term associated with the viscous force and we can also neglect the
part of the potential V that depends on r; the motion equation is therefore reduced to

d2φ

d2r
= V ′(φ). (3.0.19)
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Figure 3.2 Potential of the equation of motion 3.0.12

This last equation is well known and represents the soliton equation, whose solution is

r =
∫ φ1

0

dφ

[2V+(φ)]1/2 (3.0.20)

and in terms of φ

φ1 = a tanh
(

1
2

µx
)

. (3.0.21)

So we can summarize the shape of φ as follows

φ =


−a ρ << R

φ1(r− R) ρ ' R

+a ρ >> RR

(3.0.22)

The contribution given by the snapshot is found only in the second line, that is for ρ ' R, because we
are on the dividing edge between the false and the true void and we know that the instant solution is
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the one that connects in a non trivial way the true and the false vacuum. The total Euclidean action is

SE = 2π2R3σ− 1
2

π2R4ε (3.0.23)

where σ is defined as the soliton’s energy

σ =
∫

dx{1
2
(φ′)2 + [V(φ)−Vf v]} =

∫ φtv

φ f v

√
2[V(φ)−Vf v]. (3.0.24)

The first contribution in the Euclidean action SE comes from the wall while the second refers to the
bubble interior. As stated before R is the radius of the bubble and it can be found varying the action
and requiring that it is a stationary point:

dSE

dR
= 6π2R2σ− 2π2R3ε (3.0.25)

which gives

Rb =
3σ

ε
. (3.0.26)

Notice that in 3.0.25 the first term could be considered as a surface tension term. Replacing in the
action SE

B = SE =
27π2σ4

2ε3 . (3.0.27)

If we calculate the second derivative of the action we find

d2S
dR2

∣∣∣∣
Rb

= −18π2σ2

ε
< 0 (3.0.28)

and this tells us that Rb actually maximizes the action.

We have seen how the bounce solution determines the characteristics of the nucleation rate. It also
contains information about the evolution of the bubble after nucleation. We indicate with (x, t) the
bounce solution in Euclidean space and with (x, t) the solution in Minkowskian space; respectively
we will have

d2φE

dτ2 +∇2φE −
dV
dφ

= 0 (3.0.29)

and

− d2φM

dτ2 +∇2φM −
dV
dφ

= 0 (3.0.30)

with the constraints
dφE(x, τ)

dτ

∣∣∣∣
τ=0

= 0 (3.0.31)
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dφM(x, t)
dτ

∣∣∣∣
t=0

= 0. (3.0.32)

The evolution equation is nothing but the analytical continuation from Euclidean to Minkowskian,
and therefore also the bounce solution can be considered as an analytical continuation from Euclidean
to Minkowskian. This tells us that the growth of the bubble after nucleation is the same whatever the
Lorentzian observer is. The O(4) invariance for the bounce solution becomes O(3,1)invariance for the
Minkowskian. As the bubble expands it describes the paraboloid

∣∣r2∣∣− R2 = t2 (3.0.33)

The expansion of the bubble also involves a transport of energy density. We can try to estimate it. We
just have to calculate the Lorentz-boosting of the surface tension term of the wall at rest. From this we
get

Ewall = 4πR2 σ√
1− v2

=
4π

3
R3ε. (3.0.34)

This result also has an interesting interpretation. It can be considered as the latent heat released
following the conversion of the false vacuum into a true vacuum. This energy has contributed to
increase the kinetic energy of the wall, and this will have fundamental implications when we talk
about gravitational waves generated by phase transitions of this type and especially with regard to the
definition of the calculable physical parameters that characterize the phase transition and measurable
thanks to the detection of the gravitational wave spectrum.

We can ask ourselves the problem of considering our system immersed in a thermal bath and then
consider the effects of the temperature T = 1

β . We have to imagine the system divided into two levels,
one of false overpopulated vacuum and one of true underpopulated vacuum. The goal is to detect
what the effects of temperature are in terms of decay rates. Therefore we can adopt a path integral
approach. Let us therefore consider the partition function

Z = e−βF = ∑
j

e−βEj =
∫
Dφe−SE(φ) (3.0.35)

As we are considering being placed on the false vacuum the Ej weights and the free energy F will
acquire an imaginary part, which will make its contribution in the decay rate

Γ = −2ImF = −2Z−1 = −2Z−1 ∑
j

e−βEj Im EJ . (3.0.36)

The introduction of temperature into the system has the effect of returning a decay rate as the
thermally weighted average([19, 18]).

In the previous section we calculated the exponential factor of the false vacuum decay rate. Now
we set ourselves the goal of casting the pre-factor. The treatment is initially referred to a system with
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only one degree of freedom, then it will be possible to extend it to the case of a field theory. We use the
path integral approach to find the probability amplitude to find a particle at position x f at time T/2
which started from position xi at time -T/2. This amplitude is given by

〈
x f
∣∣ e−

HT
h̄ |xi〉 =

∫
Dq(τ)e−

SE(q)
h̄ . (3.0.37)

Now we can insert the closure relation of a complete set of eigenstates

H |n〉 = En |n〉 (3.0.38)

so we have 〈
x f
∣∣ e−

HT
h̄ |xi〉 = ∑

n
e−

EnT
h̄
〈

x f
∣∣n〉 〈n|xi〉 . (3.0.39)

We are interestied in finding the lowest level of energy which is the only one that survives in the limit
of large T, so 〈

x f
∣∣ e−

HT
h̄ |xi〉 = ∑

n
e−

EnT
h̄
〈

x f
∣∣n〉 〈n|xi〉 −−−→

T→∞
e−

EnT
h̄
〈

x f
∣∣0〉 〈0|xi〉 (3.0.40)

where |0〉 is the lowest state of the system. We can now approximate the path integrals using
Gaussian integrals about the stationary point. If we consider a configuration

q(τ) = ¯q(τ) + ∑
n

cnψn(τ) (3.0.41)

with τ eigenfunction, with eigenvalue λn, of the operator

∂2S
∂q(τ)∂q(τ′)

∣∣∣∣
q= ¯q(τ)

= − d2

d2τ
+ V ′′(q̄(τ)) ≡ S′′(q̄) (3.0.42)

and then we perform a change of variable

Dq = ∏
n

dcn√
2π

. (3.0.43)

Let us assume for now that all the eigenvalues λn are positive; in the following we will fix this statement.
Using this expansion we can now perform the Gaussian integration and find the contributions to the
path integral

I =
∫

∏
n

dcn√
2π

e−
S(q̄)+ 1

2 ∑k λkc2
k+...

h̄

= e−S(q̄)[detS′′(q̄)]−1/2(1 +O(h̄)).
(3.0.44)

We can apply this result to two configurations:the instantons and the bounce solutions. In the first
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case we can consider a double well. Let us suppose we are to calculate the quantity

〈a| e−
HT
h̄ |a〉 (3.0.45)

which corresponds to the constant trivial solution q0(τ) = a. Providing that V(q)=0 in correspondence
of the minimum we have

I0 = (detS′′(q0))
1/2. (3.0.46)

The case for
〈−a| e−

HT
h̄ |a〉

correspond to the instanton solution and the contribution to the path integral is

I = e−S1(detS′′(q1))
1/2. (3.0.47)

where S1 is the Euclidean action for the instanton configuration.

At this point you can see that we are faced with a problem: the operator3.0.42, has zero eigenvalues,
in fact just consider

− d2

d2τ
+ V ′(q(τ)) = 0 (3.0.48)

and let us act with the operator
∂τ

we find that

ψ0(τ) = (SE(q1(q))−1/2 dq1

dτ
(3.0.49)

is a zero mode which correspond the broken τ-translation symmetry. If we integrate over the
coefficient c0 corresponding to the zero mode, we would end up with a divergent quantity.// This
problem can be solved replacing the integration over the zero mode coefficients with the integration
over a collective coordinate z that encodes the information about the center of the instanton. // This
change of variable implies that

dq =
dq1

dz
dz = ψ0dc0 (3.0.50)

which, comparing with 3.0.49, gives

dc0 = (SE(q1))
−1/2dq1. (3.0.51)

This means that we can trade the integration over the zero eiegen-modes with an integration over the
collective coordinate z. Thus the total contribution to the path integral which takes into account also
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the zero modes is
I1 = e−

SE(q1)
h̄ (det′S′′E(q0))

−1/2KT (3.0.52)

where det′ indicates that only the non-zero modes are included, and K is defined as

K =

(
N
2π

)1/2 [det′S′′(qb)

detS′′(q0)

]−1/2

(3.0.53)

There is still another configuration that must be considered. We can consider as approximate
stationary points a set of n alternating instantons and anti-instantons separated by an interval τ. We
can consider a configuration on n instantons and anti-instantons qn. The corresponding action is

S(qn) = nS1 (3.0.54)

that is n times the action of a configuration with one instanton.
Each of these instanton and anti-instanton has zero modes, so we perform the same change of variable.
We introduce the variable zj for each instanton so that we gain the Jacobian factor

( N
2π

)n/2
and after

integration over each of the zj variables we have

∫ T/2

−T/2
dz1

∫ T/2

z1

dz21...
∫ T/2

zn−1

dzn =
Tn

n!
. (3.0.55)

The final result is

In = e−nS1 [detS′′(q0)]
−1/2Kn Tn

n!
. (3.0.56)

Adding the contributions given by the stationary point and the approximated ones we can write the
amplitude for the transitions

〈a| e−HT |a〉 = ∑
evenn

In

= [detS′′(q0)]
−1/2 ∑

evenn

[e−S1 KT]n

n!

= [detS′′(q0)]
−1/2cosh[e−S1 KT].

(3.0.57)

and

〈−a| e−HT |a〉 = ∑
even n

In

= [detS′′(q0)]
−1/2 ∑

odd n

[e−S1 KT]n

n!

= [detS′′(q0)]
−1/2sinh[e−S1 KT].

(3.0.58)
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We can also give the expression for the splitting of the two lowest levels

e(E−−E+)T = exp
[
2KTe−S1

]
(3.0.59)

and in particular
∆ = E− − E+ = 2Ke−S1 . (3.0.60)

The other configuration is the bounce solution. Let us consider a double-hole potential where there
are two minima, one local and the other absolute. If we start from an initial state |Ψ(0)〉 = |L〉 and
then we find the evolution |Ψ(t)〉, the result is an oscillating behaviour, because of the shape of the
potential.
Let us now imagine to make the absolute minimum broader than the other and to go in the limit one
of which the width of this minimum to infinity. In the case of a very wide minimum starting from
a |L〉 state, we would have a different behaviour for |Ψ(0)〉 = |L〉: we would have an exponentially
decreasing behaviour. We are then allowed to think of |L〉 as a metastable state, so it is characterized
by a complex energy which has the following relation with the decay width

ImE = −Γ
2

. (3.0.61)

The matrix element for the bounce solution, with metastable minimum set at q=a, is

〈a| e−HT |a〉 = ∑
n

e−EnT| 〈a|a〉 |2 =
∫
Dq(τ)e−SE(q). (3.0.62)

For the trivial solution q0(τ) = a we have the usual contribution

I0 = (detS′′E(q0))
−1/2 (3.0.63)

while for the bounce solution we have the usual result

I1 = e−
SE(q1)

ηbar (det′S′′E(q0))
−1/2KT (3.0.64)

with

K =

(
SE(qb)

2π

)1/2 [det′S′′E(qb)

detS′′E(q0)

]−1/2

. (3.0.65)

We must remember the presence of a zero eigenvalue associated with the operator S′′E. Because of the
presence of this zero mode, the auto-function has a node. S′′E has the form of a Schoedinger operator, so
we know the general property that if a Schroedinger operator has a node then there must necessarily
be another auto-function associated with a negative auto-value corresponding to a lower energy level.
So the square root in the 3.0.64 will produce imaginary values. This is related to the existence of a
decay rate for the false vacuum. Problems arise when we integrate over the negative eigenvalues. In
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order to fix this problem we can consider the following integral

J =
∫ −∞

+∞
dc

1√
2π

e−S(c) (3.0.66)

where c is the parameter that controls the field configurations x(τ). With the given contour the integral
is divergent. We can make it well defined by deforming the path of integration; in this way the integral
acquires an imaginary part that with saddle approximation gives:

ImJ = Im
∫ b+i∞

b

dc√
2π

e−
[SE(b)− 1

2 S′′E(b)(c−b)2+...]
h̄ =

1
2

e−
SE(b)

h̄ . (3.0.67)

Now we can give the correct form for the factor K

k =
i
2

(
SE(qb)

2π

)1/2 ∣∣∣∣det′S′′E(qb)

detS′′E(q0)

∣∣∣∣− 1
2

. (3.0.68)

and replacing in the decay rate

Γ = −2ImE0 =

(
SE(qb)

2π

)1/2 ∣∣∣∣det′S′′E(qb)

detS′′E(q0)

∣∣∣∣− 1
2

e−S(qb). (3.0.69)
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Chapter 4

Relic axions and neutrinos

In the first chapter we have assumed that during the earliest stages of the Universe’s life, the
various species that constituted it were in thermal equilibrium with each other because their rate of
interaction was greater than the H rate of expansion of the Universe. However, there were phases
in which this equilibrium was disturbed. The departure from equilibrium is what determines the
abundance of the relics of some species of constituents. For this chapter we will follow mainly
the discussion in[1] and we will consider the calculation of relic abundances for various species in
particular for the neutrino and for the axion. We will focus in the discussion of the CP-strong problem
closely related to axion which is its solution. We will present a brief review of the context in which
the axion field is placed in particular we will refer to how the calculation of the anomaly has to do
with this hypothetical particle. We will also present at the end of the chapter some cosmological
implications of the existence of axions and we will derive some constraints on their mass and on the
value of the coupling constant. Let us consider any species X; its number density at thermodynamic
equilibrium will be given by

nX,eq =
g

(2π)3

∫
d3 p

1
eE(p)/T ± 1

(4.0.1)

con g number of degrees of freedom, E(p) =
√

p2 + m2 and as usual the sign + is for fermions and the
sign - is for bosons. We can consider the relativistic limit, i.e. T >> mX, and we will have for fermions
and bosons respectively

nX,eq =
3ζ(3)
4π2 gT3 (4.0.2)

and
nX,eq =

ζ(3)
π2 gT3. (4.0.3)

where ζ(3) is the Riemann zeta function. We can also calculate the energy density and pressure
associated with the thermal bath of particles of species X

ρX, eq =
g

(2π)3

∫
d3 pE(p)

1
eE(p)/T ± 1

(4.0.4)
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and

pX, eq =
g

(2π)3

∫
d3 p

|p|2

3E(p)
1

eE(p)/T ± 1
. (4.0.5)

In the relativistic limit, the above relations are greatly simplified, in fact

ρ = 3p =
π2

30
g∗,TT4 (4.0.6)

with

g∗,T = ∑
bosons

gi

(
Ti

T

)4

+
7
8 ∑

f ermions
gi

(
Ti

T

)4

(4.0.7)

where the index i refers to the i-th species present at a specific temperature Ti. The entropy at
equilibrium per co-moving volume is

s ≡ S
V

ρ + p
T

. (4.0.8)

As before we are interested in the relativistic limit. In this the entropy density has the following trend

s =
2π2

45
g∗S,TT3 (4.0.9)

but in this case

g∗S,T = ∑
bosons

gi

(
Ti

T

)3

+
7
8 ∑

f ermions
gi

(
Ti

T

)3

(4.0.10)

As mentioned previously in the chapter (cosmology) the co-moving entropy is conserved, so it is
convenient to define the abundance of a certain species X, rescaling the number density with the
co-moving entropy

YX ≡
nX

s
. (4.0.11)

Combining the expression 4.0.9 with the definition of the number densities for fermions and bosons
we obtain respectively

YX,eq,T =
45ζ(3)

2π4

3g
4

g∗S,T
= 0.278

3g
4

g∗S,T
(4.0.12)

and
YX,eq,T =

45ζ(3)
2π4

g
g∗S,T

= 0.278
g

g∗S,T
. (4.0.13)

The relics abundances also contribute to the total energy density of the Universe ρ0. These are
calculated relative to the critical energy density defined as

ρc =
3H2

0
8πGN

= 10.54h2keVcm−3 (4.0.14)
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with H0 = 100hkms−1Mpc−1 and h encodes the uncertainty associated with the Hubble parameter
measurement

h = 0.71+0.04
−0.03. (4.0.15)

Therefore we define the total energy density in a dimensionless version

Ω0 ≡
ρ0

ρc
. (4.0.16)

The same can be done for all species X, having defined by ρX,0 the energy density associated with
species X at the current time. The dimensionless density of species X will therefore be defined as.

ΩX ≡
ρX,0

ρc
. (4.0.17)

Their sum will give

∑
X

ΩX,0 = Ω0. (4.0.18)

According to WMAP ([7])
Ω0 = 1.02± 0.002. (4.0.19)

We now derive a lower bound on the mass of a given species X. We consider the energy density
associated with species X, expressed in terms of the mass mX

ρX,0 = nX,0mX = YX,0s0mX (4.0.20)

in this way, since
ΩX,0 < Ω0 (4.0.21)

we obtain
mX <

ρcΩ0

s0YX,0
. (4.0.22)

4.1 Relic neutrino abundances

We now attempt to calculate relic abundances for primordial neutrinos. During the early life of the
Universe neutrinos were held in thermodynamic equilibrium by processes of the type

ν e→ ν e (4.1.1)

and
νν̄→ eē. (4.1.2)
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The total interaction rate for neutrinos is expressed as ([20])

Γν =
2
h̄

G2
FT5

(h̄c)6
. (4.1.3)

The expansion rate of the Universe is given by

H =

√
8πGNρ

3
=

√
4π3GN g∗,T

45
T (4.1.4)

and if Γν > H then there is thermodynamic equilibrium.

If however T ' 1MeV then Γint ' H and below this temperature the neutrinos decouple as the
expansion becomes dominant and this gives rise to a primordial relic of decoupled neutrinos. This
discussion is analogous to the case of the decoupling of photons from matter that gave rise to the
CMB. We then define Tdec ' 1MeV as the decoupling temperature of neutrinos, and we also define
the current abundance of decoupled neutrinos as follows

Yν,Tdec =
nν

s
= 0.278

gν

g∗S,Tdec

(4.1.5)

where gnu = 3
2 . We now try to calculate a lower bound on the neutrino mass by exploiting the 4.0.22

constraint. We first calculate s0

s0 =
2π2

45
g∗S,Tdec T

3
0 (4.1.6)

and as contributions we consider photons having g=2 and three neutrino families having g=2 Consider
a chiral neutrino left, we will have

g∗S,Tdec = 2 +
7
8
× 3× 2

(
Tν

T0

)3

. (4.1.7)

Of course since we are considering decoupled neutrinos it will be T0 6= Tν. We therefore need an
estimate of the ratio Tν

T0
. We consider that the electron-positron annihilation processes do not affect

neutrinos in the sense that these processes transfer entropy only to photons and not to neutrinos
because the latter are decoupled. Therefore for T << me only photons will be in thermodynamic
equilibrium so g∗ = 2. The comoving entropy must be conserved and this implies that the temperature
of photons increase by a factor

( 11
4

)1/3
, so to compensate it must be

Tν

T0
=

(
4
11

)1/3

(4.1.8)

and
g∗S,T0 =

43
11

(4.1.9)
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so that setting T0 = 2.725 K
s0 = 2889cm−1. (4.1.10)

Now using WMAP data ([7])

Ω0h2 = 0.51± 0.04 (4.1.11a)

Ωνν̄H2
0 =

8ζ(3)
3π

gνg∗S,T0

g∗S,Tdec

GNT3
0 mν (4.1.11b)

where
Ωνν̄ ≡

ρν,0

ρc
(4.1.12)

we reach, using the constraint 4.0.22
mν < 48eV (4.1.13)

or
mν < 12.7eV (4.1.14)

depending on whether one uses the stronger constraint on the uncertainty h (see4.0.15).

4.2 Axions

A non-trivial homotopy class can be associated with both electro-weak and strong forces. Therefore
there is a non-trivial homotopy group associated with SU(3)

π3(SU(3)) = Z. (4.2.1)

The homotopy group is associated with solutions of non-perturbative type, known as instantons[21].
The instanton interpolating the different vacua in the SU(3) gauge theory or QCD satisfies the action
in the Euclidean space-time

SE =
8π2|q|

g2
3

(4.2.2)

where |q| is the so called Pontryagin index, defined as

g2
3

16π

∫
d4xtr(GµνGµν). (4.2.3)

g3 is the SU(3) gauge coupling constant and Gµν is the field strength associated with SU(3). In this
context, there are thus multiple topologically distinct vacuum states, and the Pontryagin index q
classifies these states. An instanton can be viewed as a solution to the classical equations of motion
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that interpolates these states, so one can represent a state called a θ − vacuum state as follows

|θ〉 = ∑
q

e−iqθ |q〉 . (4.2.4)

It turns out to be possible, therefore, to include an additional term in the Lagrangian of QCD that
takes into account these field configurations:

Le f f = LQCD +
θg2

3
32π2 Ga

µνG̃aµν. (4.2.5)

which is CP-violating.
A term similar to the θ-term appears if redefinitions of quark fields are made under axial U(1)

U(1)A : q→ eiαγ5 q. (4.2.6)

The axial current associated with the transformation

j5µ = ∑
q

q̄γµγ5q = ∑
q
(q̄RγµqR − q̄LγµqL) (4.2.7)

is said to be anomalous since it is not conserved and its 4-divergence can be written in a form analogous
to the θ-term

∂µ j5µ =
N f g2

3

16π2 Ga
µνG̃aµν (4.2.8)

with N f as number of flavours.

Thus if one were to redefine the quark fields by an axial U(1) transformation setting the α = − θ
2N f

-
parameter. The θ-term would be successfully eliminated if the quarks were massless. Actually just
because of the presence of the mass terms in the Lagrangian

− q̄Li MijqRj − q̄Ri M†
ijqLj (4.2.9)

redefinition by axial transformation also on these mass terms

U(1)A : M→ e2iα MM† → e−2iα M†. (4.2.10a)

In the end the effect of the transformation of the mass terms is to give

θ̄ = θ + 2N f arg(detM) (4.2.11)

instead of removing the θ-term. θ̄ is the effective theta-term of the theory, also called QCD vacuum
angle. The presence of this term which cannot be a priori excluded from the Lagrangian produces
physical effects. If this term is not null then it should contribute to the electric dipole of the neutron dn,
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and the upper bound has been measured, so as to fix

θ̄ . 10−10. (4.2.12)

One of the biggest unsolved problems in modern physics is why Nature chose this small value: it is
the so-called ’strong CP problem’. Each value of ¯theta would lead to a different version of QCD, so we
cannot exclude any a priori.
It has been observed that even an electro-weak theory can admit terms similar to the θ-term such as

Lθ =
θg2

2
32π2 Wa

µνW̃aµν +
θ1g2

1
32π2 BµνB̃µν. (4.2.13)

The term associated with θ1 can be rewritten as a surface term and because of the trivial topology
it describes can be neglected. Differently for the topological term associated with θ2. It describes a
topological structure that cannot be neglected. The associated surface term cannot be neglected even if
it is written as a total divergence.
We also know that the symmetries associated with U(1) are conserved except for one, i.e. 1

3 B− Ll

where B is the baryonic number and Ll the leptonic one. The latter symmetry is anomalous so we
can think of applying a U(1)B transformation on the quarks so as to eliminate the term associated
with θ2. This procedure inspired a possible solution to the CP strong problem. Peccei and Quinn
([22, 23, 24]) proposed to introduce an extra symmetry of type U(1), henceforth denoted U(1)PQ, which
can compensate for the term arg det M and thus adds to the algebraic structure of the Standard Model
(SM). However, this procedure cannot be applied with the minimal field content of the Standard
Model, since redefining, for example, the Higgs doublet, one would have, say, a eiδ phase for the down
component and a e−iδ phase for the up component, which compensate each other by not changing arg
det M. Thus the introduction of this new symmetry U(1)PQ requires the introduction of new scalar
fields. This new field has been called axion: a(x). On it acts the transformation under U(1)PQ:

a(x)
vPQ

→ a(x)
vPQ

+ α (4.2.14)

where LPQ is the VEV involved in the spontaneous breaking of U(1)PQ and α is the transformation
parameter. The transformation under U(1)PQ also acts on chiral fermions

f (x)→ e−ix f α f (x) (4.2.15)

where x f is the charge associated to the PQ group. The current generated by this transformation is

j(PQ)µ ≡ ∂L
∂(∂µα)

= vPQ∂µa + ∑
f

x f f̄ γµ f . (4.2.16)

Classically this current is conserved, but being chiral, just as in the case of the current given by the
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transformation U(1)A, it is anomalous, in fact

∂µ j(PQ)
µ = ξ3

g2
3

32π2 Ga
µνG̃aµν + ξ2

g2
2

32π2 Wa
µνW̃aµν + ξi

g2
1

32π2 BµνB̃µν (4.2.17)

where ξ (i = 1, 2, 3) is a constants that depends on U(1)PQ charges of the fermionic fields. The axion
a(x) plays a role in the coupling of fermionic fields with scalar fields, i.e., in Yukawa couplings. A local
transformation of a fermionic field involves the following:

f (x)→ exp
[−ia(x)x f

vPQ

]
(4.2.18)

in this way axion is removed from the Yukawa terms. Given the nature of the group U(1)PQ new
interactions are naturally introduced. First of all by operating a local transformation interactions,
containing derivatives, are generated with the axion

f̄ γµi∂µ f → f̄ γµi∂µ f +
x f

vPQ
(∂µa) f̄ γµ f (4.2.19)

and, since U(1)PQ is anomalous, the following interactions are generated.

Lanom =
a(x)
vPQ

[
ξ3

g2
3

32π2 Ga
µνG̃aµνξ2

g2
2

32π2 Wa
µνW̃aµν + ξ1

g2
1

32π2 Ba
µνB̃aµν

]
. (4.2.20)

Summing up all these observations, the effective Lagrangian that is obtained is

Le f f = Lsm +

[
θ̄ +

ξ3

vPQ
a(x)

]
g2

3
32π2 Ga

µνG̃aµν+

+

[
θ2 +

ξ2

vPQ
a(x)

]
g2

2
32π2 Wa

µνW̃aµν +

[
θ1 +

ξ1

vPQ
a(x)

]
g2

1
32π2 Ba

µνB̃aµν+

1
2
(∂µa)2 +

1
vPQ

(∂µa)2[jPQµ − vPQ(∂µa)]

(4.2.21)

The anomaly acts as a potential for the axion, and thus its VEV is no longer arbitrary. In this way it
is possible to make the axion a(x) acquire a particular VEV, such that it cancels the θ-term, as shown
by Peccei and Quinn

θ̄ +
ξ3

vPQ

〈
θ̄
∣∣a(x)

∣∣θ̄〉 = 0. (4.2.22)

Therefore, the real axion turns out to be the physical one

â(x) ≡ a(x)−
〈
θ̄
∣∣a(x)

∣∣θ̄〉 . (4.2.23)
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The Lagrangian can therefore be rewritten in terms of the physical axion

Le f f = Lsm +
ξ3g2

3
32π2vPQ

â(x)Ga
µνG̃aµν +

ξ2g2
2

32π2vPQ
â(x)Wa

µνW̃aµν+

+
ξ1g2

1
32π2vPQ

â(x)Ba
µνB̃aµν +

1
2
(∂µ â)2+

+
1

vPQ
(∂µ â)2[jPQµ − vPQ(∂µ â)].

(4.2.24)

We are now interested in investigating the physical consequences of introducing an axion field
constructed as in 4.2.23. We begin by making some considerations about the mass of the axion. As
shown in ([25, 26, 27, 28, 29]), the mass of the axion results to be

ma ' 0.62eV
(

10GeV
fa

)
(4.2.25)

where
fa =

vPQ

ξ3
(4.2.26)

is the parameter that controls the intensity of the coupling between the axion and the gluon in 4.2.24,
i.e. its decay constant. In fact considering the effective potential Ve f f generated by this coupling we
have

m2
a = 〈

∂2Ve f f

∂a2 〉 = −
1
fa

g2
3

32π2
∂

∂a
〈Ga

µνG̃aµν〉

∼
Λ4

QCD

f 2
a

(4.2.27)

A scale of the order of magnitude of the electroweak rupture scale associated with fa, i.e.

fa ∼ v ∼ 250GeV (4.2.28)

would give a very tiny mass
ma ∼ 24keV. (4.2.29)

This tells us that axions while not mass-less are extremely light. Furthermore, the Lagrangian 4.2.24
predicts a decay for axion of the type

a→ γγ (4.2.30)

because it contains a term like

Laγγ = −gγ
αem

π

a(x)
fa

E ∗ B. (4.2.31)
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where gγ is completely defined by the Peccei-Quinn charges

gγ =
ξ1 + ξ2

2ξ3
. (4.2.32)

The Lagrangian 4.2.24 also contains the coupling of axion with fermionic fields

L f = −
1

vPQ
(∂µa) ∑

χ=R,L
x fχ

f̄ γµaχ f (4.2.33)

with aχ defined as

aχ =
1
2
(1± γ5) (4.2.34)

where the sign is determined depending on whether χ = R, L and g f is defined in terms of right and
left PQ charges

g f = x fR − x fL . (4.2.35)

We know that this axion as just described cannot be observed [29]. The fundamental problem
is that in this model both the mass of the axion and its decay constant are constrained to the same
quantity, namely the electroweak breaking scale. Generally it is assumed that fa ∼ vEW . However in
some models we assume that fa >> vEW and this results in an extremely light axion since

ma ∼ fa

is weakly interacting. Several proposals have been made to untie these two quantities and make the PQ
symmetry breaking scale independent of the electroweak one. A new singlet under SU(2)×U(1),σ is
introduced and axion emerges as the phase of this electroweak singlet:

σ =
fa√
2

ei a
fa (4.2.36)

This singlet gives rise to two different types of axion depending on whether there is a direct coupling
with ordinary leptons and quarks.two cases can be distinguished The first one is the axion known
as KSZV axion.. We assume the existence of a new quark X endowed with PQ charge electroweak
doublet endowed with electric charge qX coupled to the complex scalar field σ also endowed with
charge under PQ. X couples to σ according to the Lagrangian

LKSVZ = −hX̄LσXR − h∗X̄σ†XL . (4.2.37)

Coupling with other ordinary quarks emerges indirectly from the anomalous Lagrangian

Lanomaly =
a
fa

[ αs

8π
Gµν

a G̃aµν + 3q2
X

αs

4π
Fµν F̃µν

]
. (4.2.38)
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The second case is the so-called DFSZ axion. In this case quarks and leptons couple directly with the
axion (but still via σ), because quarks and leptons in this case are charged under U(1)PQ. Now it is
necessary to consider two Higgs fields Φ1 and Φ2

Laxion = kΦT
1 CΦ2(σ

†)2 + h.c. (4.2.39)

4.3 Constraints on axions from astrophysics

We can derive some upper bounds on the mass of the ma axion from some astrophysical con-
siderations. In fact the emission of particles by stars contributes to their cooling. In particular, the
larger fa the smaller the mass and the less the axion emission will affect the history of the star. By
exploiting models of a star’ s evolution related to the production processes of various particle species
and combining these models with experimental observations, it is possible to derive constraints on the
coupling constants. Consider for example the following process

γe→ ae (4.3.1)

Which is proportional to the constant g2
aee. It is defined as

gaee = ge
me

vPQ
=

xeR − xeL mame

ξ3(0.62× 1016eV2)
(4.3.2)

From the observations we find that

|gaee| . 0.5× 10−12. (4.3.3)

from which we derive that ∣∣∣∣ xeR − xeL

ξ3

∣∣∣∣ma . 0.62× 10−12eV (4.3.4)

and hence
ma . 10−2eV (4.3.5)

in the case of a DFSZ axion. Another process that can be considered is the Primakoff process

γ↔ a. (4.3.6)

In this case, the cross section of the process is proportional to g2
aγγ

gaγγ = gγ
αem

π fa
=

magγαem
π(0.62× 1016eV2)

(4.3.7)
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from which, thanks to observations we get [30]

|gaγγ| . 0.6× 10−10GeV−1 (4.3.8)

so that
|gγ| . 0.16 eV (4.3.9)

from which we can find the minimum value for the mass of the axion (both DFSZ and KSVZ)

ma . 0.4 eV. (4.3.10)

4.4 Role of the axion in Cosmology

If axion exists it has been produced in the early stages of life of the Universe and therefore its
presence should have significant implications on observations. One of the possible methods of
production of axions is that of creation and destruction by photo-production or gluon-production

γq↔ aq

gq↔ aq
(4.4.1)

These processes are characterized by an absorption rate ΓT
abs, given by

ΓT
abs = nT〈σ|v|〉abs (4.4.2)

where nT is the number density, σ is the scattering cross section, |v| is the relative velocity between
the axion and the target T and the symbol 〈...〉 denotes a thermal average. If the expansion rate of
the Universe is slow compared to ΓT

abs then these processes reach thermal equilibrium with the axion
density given by 4.0.3.

However, if the axions interact with each other too weakly, ΓT
abs is too slow for thermal equilibrium

to be reached and so their number density will settle at a lower value than that given at equilibrium.
We consider how the abundance of axions, given by the equation 4.0.13, varies via the Boltzmann
equation. We choose ga,e f f = 1

dYa

dt
= −Γabs(Ya −Ya,eq) (4.4.3)

integrating out we have

Ya(t)−Ya,eq = (Ya(0)−Ya,eq) exp
(
−
∫ t

0
Γabsdt′

)
(4.4.4)

which is the difference between the abundance at time t and its value at thermal equilibrium. It is
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useful to rewrite it with the change of variable

x ≡ mN

T
. (4.4.5)

During the radiation dominance the scale factor is

a(t) ∝ t1/2 (4.4.6)

so that we notice, for the Hubble parameter

H =
1
2t

∝ T2 ∝ x−2 (4.4.7)

in the end the abundance of axions can be recast in the form

(4.4.8)

We now analyze the product 〈σ|v|〉abs. If we consider N nucleons as the target T for axions and
consider a phase below the quark-hadrons transition, in the non-relativistic limit we would have

nN = gN

(
m2

N
2πx

)3/2

e−x (4.4.9)

La cross-section è
〈σ|v|〉abs = g2

aNNx−2m−2
π (4.4.10)

and we choose
gaNN ≈

mN

fPQ
. (4.4.11)

The explicit form for H in the radiation-domination phase is

H =

(
8πρ

3m2
P

)1/2

=
2π

3

(πg∗
5

)1/2 m2
N

x2mP
(4.4.12)

Combining all this information we have

Γabs(x)
H(x)

=
3gN

2π3

(
5

8g∗

)1/2
(

m3/2
N m1/2

P
fPQmπ

)2

x3/2e−x

≈
(

10
g∗

)1/2 ( ma

1.2× 10−3eV

)2

x3/2e−x.

(4.4.13)
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We can also estimate the final value of relic abundance, above the quark-hadron phase transition

Ya(∞) = Ya,eq

{
1−

(
1− Ya(0)

Ya,eq

)

× exp

−3gN

2π3

 5
8g∗

1/2
(

m3/2
N m1/2

P
fPQmπ

)2
 I(xqh)

}

=
0.278
g∗,dec

{
1− (1− 3.6g∗,decYa(0))

= exp

[
−
(

10
g∗

)1/2 ( ma

1.2× 10−3eV

)2

I(xqh

]}
(4.4.14)

where we put

I(xqh) ≡
∫ ∞

xqh

x′−5/2e−x′dx′

= −2
3
[x−3/2

qh e−xqh(2xqh − 1) + 2
√

π(er f
√

xqh)− 1)]
(4.4.15)

where g∗,dec denotes the value of g∗ during the decoupling process. xqh is approximately 5 at the
quark-hadron transition, therefore I ∼ 10−4.

Everything we have discussed is within a framework in which the classical axion field is assumed to
be a constant, i.e., that value necessary to eliminate the strong θ̄-term. However, when the temperature
T ∼ fa � ΛQCD, it is no longer possible to set a minimum value for the potential generated by the
instantaneous effects, which gives mass only for T ∼ ΛQCD. Above this temperature it is not possible
to think of the axion field being associated with a particle value θ̄ = 0. The axion field will therefore
slip towards its minimum and therefore it does not make sense to talk about a constant value for the
axion field. This mechanism, known as vacuum misalignment is at the basis of assigning to the axion
field a non-zero value and a non-zero energy density. To calculate it we take the action for axion

S =
∫

d4x
√

g(
1
2

ȧ2 − 1
2

m2
aa2 + Γa ȧ)

=
∫

d4xR3(t)(
1
2

ȧ2 − 1
2

m2
aa2 + Γa ȧ)

(4.4.16)

where we have changed notation for the scale factor R(t).We have also dropped the terms higher than
the quadratic ones. From this we calculate the equation of motion

d
dt
[R3(ȧ + Γa] + R3m2

a(T) = 0 (4.4.17)

We can now manipulate the previous equation by considering that Γa is small, so it can be neglected.
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At T � ΛQCD the axion is massless so it assumes the constant value

a(t) = ai = const. (4.4.18)

then as the temperature decreases m2
a(T) increases, and the equation of motion now becomes

ä + 3Hȧ + m2
a(T) = 0 (4.4.19)

where we have set H ≡ Ṙ/R, as usual for the Hubble parameter. When the temperature reaches
the value Ti

ma(Ti) = 3H(Ti) (4.4.20)

so a(t) begin to oscillate with frequency ma(T). The energy density of the axion field is

ρa =
1
2
+

1
2

m2
aa2 (4.4.21)

and recalling equation 4.4.19
ρ̇a = ṁamaa2 − 3Hȧ. (4.4.22)

If we average over one oscillation we get

〈ρ̇a〉 =
(

ṁa

ma
− 3H

)
〈ρa〉 (4.4.23)

and its solution is
〈ρa〉R3(t) ∝ ma(T). (4.4.24)

This means that the number density of the axion na = 〈ρa/ma(T) scales with R−3(t). Also the entropy
density s scales like that if we assume that there is no entropy production during the misalignment
process; we conclude that na

s is conserved, i.e.

na

s

∣∣∣∣
Ti

=
45ma(Ti)a2

i

4π2g∗T3
i

=
45a2

i

2
√

5πg∗TimP
. (4.4.25)

The misaligned axion energy density is given by

Ωmis
a =

ρm
a0

is
ρc

=
na

s

∣∣∣∣
Ti

ma
s0

ρc
. (4.4.26)
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Chapter 5

General Relativity in a nutshell

5.0.1 Some conventions

In this chapter we will present a very brief review of some fundamental results of the theory of
General Relativity. First we will take up some concepts of Riemannian differential geometry. We will
give the definition of the Christoffel symbol and relate it to the definition of the Riemann tensor. Next
we will show the Einstein field equations derived from the Hilbert-Einstein action variation. Next
we will present the linear approximation of Einstein’s equations in order to introduce the solutions
represented by gravitational waves. The characteristics of gravitational waves will be illustrated.
Finally the physical effects of gravitational wave interactions with test masses will be introduced. In
this chapter we will use the following conventions. We indicate the space-time coordinates of a point
with the Greek indexes

xµ ∈ {x0, x1, x2, x3} = {ct, x, y, z} (5.0.1)

while we use the Latin indexes to denote the three-dimensional coordinates.

xi ∈ {x1, x2, x3} = {x, y, z}. (5.0.2)

Instead we indicate the scalar product as follows

A ∏ B =
3

∑
i=1

AiBi (5.0.3)

and the vector product as
(A× B)i = εijk AjBk (5.0.4)

where εijk is the Levi-Civita symbol.
The partial derivatives is defined as

∂µ =
∂

∂µ
=

(
1
c

∂t, ∂i

)
. (5.0.5)
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The metric for a flat(Minkowskian) space time is

ηµν = (−,+,+,+) (5.0.6)

while the metric for a curved space-time is denoted by

gµν (5.0.7)

whose determinant is g.

The invariant length element is defined

ds2 = gµνdxµdxν = −c2dτ2. (5.0.8)

In order to define the product between two four-vectors we use Einstein convention, according to
which repeated upper or lower indexes are summed over

AµBµ =
3

∑
µ=0

AµBµ. (5.0.9)

In the following we will need some elements borrowed from Riemannian differential geometry, such
as the Christoffel symbols, defined as

Γρ
µν =

1
2

gρσ(∂µgσν + ∂νgσµ + ∂σgµν) (5.0.10)

through which it is possible to define the Riemann tensor

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

αρΓανσ− Γµ
ασΓα

νρ. (5.0.11)

The Ricci tensor is obtained by contracting the Riemann tensor

Rµν = Rα
µαν (5.0.12)

and the Ricci scalar is
R = gµνRµν. (5.0.13)

Another important ingredient of General Relativity is the energy-momentum tensor Tµν which is
defined through the variation of the matter action, namely SM with respect to the metric transformation
gµν → gµν + δgµν,

∂SM =
1
2c

∫
d4x
√
−gTµνδgµν. (5.0.14)
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The final result of General Relativity is the famous Einstein field equation

Rµν −
1
2

gµνR =
8πG

c4 Tµν (5.0.15)

in this version without the cosmological constant.

5.0.2 General Relativity in Brief

In the context of General Relativity, space-time is seen as a four-dimensional Riemannian surface.
The equation that governs General Relativity is Einstein’s field equation

Rµν −
1
2

gµνR =
8πG

c4 Tµν (5.0.16)

whose right member represents the amount of mass-energy density, i.e. the energy-momentum tensor,
while on the left we find the four-dimensional surface curvature expressed by the Ricci tensor. and the
scalar curvature defined as

R = Rµ
µ. (5.0.17)

The energy-momentum tensor contains information about the source of the gravitational field, i.
e. the curvature of space-time. Therefore, the presence of non-vanishing mass energy-momentum
density determines a non-nothing curvature of the Riemannian manifold. This curvature is responsible
for the motion of matter subject to the gravitational field and governed by the equation of geodetics.
One of the characteristics of General Relativity is to be formulated in covariant form, i.e. invariant
under the symmetry group of all possible transformations of smooth coordination. In fact, defined the
element of length

ds2 = gµνdxµdxν (5.0.18)

you can make a coordinate transformation xµ → x′µ(x)
such that the length element is invariant, i. e.

ds2 = gµν(x)dxµdxµ = g′µνdx′µdx′ν. (5.0.19)

The metric tensor transforms as

gµν → g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (5.0.20)

This transformation represents the gauge symmetry of General relativity.
The motion of a test particle immersed in a gravitational field is governed by the so called geodetic
equation, that is the path that minimizes the distance between two points

d2xρ

dτ2 + Γρ
µν

dxµ

dτ

dxν

dτ
= 0 (5.0.21)
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Now we need to define the derivative of a vµ vector along the geodesics

Dvµ

Dτ
= vµ

;β
dxβ

dτ
=

dvµ

dτ
+ Γµ

αβvα dxβ

dτ
. (5.0.22)

The prevoious one is called covariant derivative. We now want to show how Riemann’s tensor
describes the tidal forces, i.e. the reciprocal acceleration between two free-falling particles.
The free-falling particle will follow the equation of geodesics 5.0.21, while an accelerated particle will
deviate from it, so its universe line can express itself as

xµ(τ) + ξµ(τ) (5.0.23)

which will satisfy the equation

d2(xµ + ξµ)

dτ2 + Γµ
νρ

d(xµ + ξν)

dτ

d(xρ + ξρ)

dτ
= 0. (5.0.24)

If we consider a deviation from the geodesics |ξµ(τ)| small when compared to gµν , we can think of
subtracting member by member the 5.0.21 and the 5.0.24 and expand into the linear terms in ξ, getting

d2ξµ

dτ2 + 2Γµ
νρ(x)

dxν

dτ

dξρ

dτ
+ ξσ∂σΓµ

νρ(x)
dxν

dτ

dxρ

dτ
= 0. (5.0.25)

Using the definition of covariant derivative and simplifying one finally gets the equation of the
geodesics deviation

D2ξµ

dτ2 = −Rµ
νσρξρuνuσ (5.0.26)

where we have defined the four-velocity as

uµ =
dxµ

dτ

.

5.1 Linearization of Einstein equations

Let us consider the weak field approximation. In order to do so we can consider the perturbed
Minkowskian metric. The covariant metric tensor will then assume the form

gµν(t, x) = ηµν + hµν(t, x) +O(h2) (5.1.1)

while for the contravariant metric tensor we have

gµν(t, x) = ηµν − hµν(t, x) +O(h2) (5.1.2)
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. In fact one can verify that gµνgµλ = δν
λ. The weak field approximation holds since we require that∣∣hµν

∣∣� 1. (5.1.3)

The O(h2) means that we can neglect the quadratic terms in the expansion of the perturbed metric. If
we want to get a linearized version of Einstein’s field equations we have to develop Ricci’s Rµν tensor
in series of hµν powers and omit all the terms higher than the first order. The indexes will now be
lowered (raised) using the unperturbed metric tensors ηµν (ηµν).
Before moving on to Ricci’s tensor, we need to linearize all the ingredients it contains. Let’s start with
the linearized version of the affine connection, at the first order in hµν

Γλ
µν ≈

1
2

ησλ(∂µhνσ + ∂νhµσ − ∂σhµν) (5.1.4)

so the linearized Ricci tensor is given by

Rµν =
1
2
(∂σ∂µhσ

ν + ∂σ∂νhσ
ν − ∂µ∂νh− hµν). (5.1.5)

where h = hλ
λ = ηµλhµλ is the trace of the perturbation of the metric.

So the linearized Einstein equation in the vacuum is

Rµν =
1
2
( 2hµν + ∂µ∂νh− ∂λ∂νhµλ − ∂µ∂λhνλ) = 0. (5.1.6)

Our goal now is to modify the previous expression in order to obtain a more compact version of
Einstein’s equation in the vacuum. This process leads to an analogy that the expression of Maxwell’s
equations in covariant form. 2Aβ = 0. Just as in electromagnetism, where we chose the Lorentz
gauge ∂α Aα = 0 we can take advantage of the gauge freedom also for the gravitational field and fix a
specific gauge choice called harmonic gauge

∂µhµ
ν =

1
2

∂νhµ
µ. (5.1.7)

If we exploit this gauge choice in the linearized expression of the Ricci tensor

∂µ∂νh− ∂λ∂νhµλ − ∂µ∂λhνλ = ∂µ(2∂λhλ
ν )− ∂ν∂λhλ

µ − ∂λ∂µhλ
ν

= ∂µ∂λhλ
ν − ∂ν∂λhλ

µ

= ∂µ

(
1
2

∂νhλ
λ

)
− ∂ν

(
1
2

∂µhλ
λ

)
= 0.

(5.1.8)

So finally the form of the linearized Einstein equation in the vacuum is

2hµν = 0. (5.1.9)
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We would like to show that it is always possible to choose a reference system in which the harmonic
gauge is valid. Let xµ be a coordinate system in which the harmonic gauge is not valid. We can then
perform a transformation of coordinates

xµ → x′µ = xµ + εµ(x) (5.1.10)

with |εµ(x)| � 1. After this transformation the metric tensor will be

g′µν = gλρ ∂x′µ

∂xλ

∂x′ν

∂xρ
(5.1.11)

g′µν = (ηλρ − hλρ)(δ
µ
λ + ∂λεµ)(δν

ρ + ∂ρεν)

= (ηµρ − hµρ + ηλρ∂λεµ − hλρ∂λεµ︸ ︷︷ ︸
O(hε)

)(δν
ρ + ∂ρεν)

≈ ηµν − hµν + ηλν∂λεµ + ηµρ∂ρεν − hµρ∂ρεν︸ ︷︷ ︸
O(hε)

+ ∂ρεµ∂ρεν︸ ︷︷ ︸
O(ε2)

≈ ηµν − hµν + ∂νεµ + ∂µεν.

(5.1.12)

The last line gives the form of the new metric tensor after the coordinate transformation. We have
neglected the O(ε2),O(hε) and O(h2) terms. So in the end

h′µν = hµν − ∂νεµ − ∂µεν. (5.1.13)

gives the form of the perturbation of the metric in the new coordinate frame. We can now compute
both terms of 5.1.7 in the new coordinate frame

∂µh′µν =
1
2

∂νh′µµ ⇐⇒

∂µhµ
ν − ∂µ∂νεµ − ∂µ∂µεν = −1

2
∂ν∂µεµ − 1

2
∂ν∂µεµ +

1
2

∂νhµ
µ ⇐⇒

∂µhµ
ν − ∂µ∂µεν =

1
2

∂νhµ
µ.

(5.1.14)

that is
2εν = ∂µhµ

ν −
1
2

∂νhµ
µ (5.1.15)

but this vanishes because of the initial gauge choice. This means that one can always choose a reference
frame in which the harmonic gauge is valid, as long as εν is a solution of 2εν = ∂µhµ

ν − 1
2 ∂νhµ

µ = 0.

Now we can reconsider the equation5.1.9 which is the linearized Einstein equation in the vacuum

2hµν = 0. (5.1.16)
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We now know that it is always possible to enforce the harmonic gauge condition 5.1.7 and also in
this case remains analogy with electromagnetism, so the solution of the 5.1.9 can be given as linear
superposition of plane waves

hµν(t, x) = Re(eµνeikλxλ). (5.1.17)

The solution given by 5.1.17 represents the gravitational wave itself. In fact, by replacing in 5.1.9 one
gets

0 = 2hµν = ikλikλeµνeikλxλ =⇒ kλkλ = 0→ λν = 1 (5.1.18)

and from this we deduce that the gravitational wave of propagates at the speed of light in a vacuum.

In addition, using the harmonic gauge condition we find that

ikλeλ
ν eikλxλ =

i
2

kνeλ
λeikλxλ ⇐⇒ kλeλ

ν =
1
2

kνeλ
λ, (5.1.19)

this implies that as in the case of electromagnetic waves also gravitational waves are transverse waves,
i.e. the component along the propagation direction is null.

The eµν tensor is the polarization tensor and has 10 independent components. However, by
applying the harmonic gauge the independent components are reduced to 4. Moreover, with a proper
choice of the coordinates system it is possible to reduce the independent components to 2. They
correspond to the two possible polarization states of the gravitational wave. Let’s show how this
can happen. First we choose the z-axis as the propagation direction of the wave. The wave vector is
therefore

kµ = (k, 0, 0, k). (5.1.20)

For ν = 1 we have

kµeµ
1 =

1
2

k1eµ
µ ≡ 0. (5.1.21)

Recalling that kν ≡ ηµνkµ = (−k, 0, 0, k) we can write explicitly the l.h.s of the previous equation

0 = k0e0
1 + k3e3

1 = −ke0
1 + ke3

1 =⇒ e0
1 = e3

1 =⇒ e01 = −e31. (5.1.22)

The same is done for ν = 2

kµeµ
2 =

1
2

k2eµ
µ = 0 =⇒ e02 = −e32. (5.1.23)

and for ν = 0
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kµeµ
0 =

1
2

k0eµ
µ = −1

2
k0eµ

µ =⇒

k0e00 + k3e30 = −1
2

k0(e1
1 + e2

2 + e3
3 + e0

0)

(5.1.24)

From which
e00 + e30 = −1

2
(e11 + e22 + e33 − e00). (5.1.25)

Similarly for ν = 3

e03 + e33 =
1
2
(e11 + e22 + e33 − e00). (5.1.26)

and summing respectively the l.h.s and the r.h.s of the previous two equations one finds

e30 = e03 = −1
2
(e33 + e00) (5.1.27)

and replacing this in the equation for ν = 3 one gets

e22 = −e11. (5.1.28)

Summarizing, up to this point, using only the harmonic gauge condition, we have found the following
relationship between the components of the wave polarization vector

e01 = −e31, (5.1.29a)

e02 = −e32, (5.1.29b)

e03 = −1
2
(e33 + e00), (5.1.29c)

e22 = −e11. (5.1.29d)

Now, as mentioned earlier, we can make a coordinate transformation xµ → x′µ = xµ + εµ(x) and if
we want the harmonic gauge choice to be valid we require that εµ satisfied the equation

2εµ = 0 (5.1.30)

and its solutions are given in the form

εµ = Re{iε̃µeikλxλ}. (5.1.31)

Recalling equation 5.1.13 we can write the perturbation in the new frame of reference

h′µν = Re{e′µνeikλxλ} = hµν − ∂νεµ − ∂µεν. (5.1.32)
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since ∂νεµ = −kνε̃µeikλxλ we have
e′µν = eµν + kνε̃µ + kµε̃ν. (5.1.33)

So that, in terms of the components of the polarization tensor we have

e′11 = e11 + k1ε̃1 + k1ε̃1 = e11, (5.1.34a)

e′12 = e12 + k2ε̃1 + k1ε̃2 = e12, (5.1.34b)

e′13 = e13 + k3ε̃1 + k1ε̃3 = e13 + kε̃1 (5.1.34c)

e′23 = e23 + k3ε̃2 + k2ε̃3 = e23 + kε̃2 (5.1.34d)

e′33 = e33 + 2k3ε̃3 (5.1.34e)

e′00 = e00 − 2k0ε̃0. (5.1.34f)

We can now choose ε̃1 = −e13/k, ε̃2 = −e23/k, ε̃3 = −e33/(2k), ε̃0 = e00/(2k) in order to let 4
components of the tensor vanish, i.e. e′13 = e′23 = e′33 = e′00 = 0. Furthermore imposing the conditions
5.1.29 we have e′01 = −e′31 = 0, e′02 = −e′32 = 0 and e′03 = −(e′33 + e′00)/2 = 0. So as previously
mentioned, the gravitational wave that moves along the z direction has a polarization tensor whose
non-null components are only e22 = −e11 and e12 = e21. In other words, the gravitational wave has
only two polarization states.
We can observe that this particular choice of coordinates defines the so-called transverse trace-less
gauge, in fact

eµ
µ = re0

0 + e1
1 + e2

2 + e3
3 = e1

1 + e2
2 = 0. (5.1.35)

So a gravitational wave is given by
0 0 0 0
0 e11 e12 0
0 e12 −e11 0
0 0 0 0

 · eikλxλ . (5.1.36)

Considering a quantum field theory, we can interpret a field described by a two index tensor as
a spin 2 particle; therefore we can interpret the hµν field as that field that describes the mediating
particle of the gravitational field, the graviton and propagates at the speed of light since kµkµ = 0.

5.2 Detection of GW

Let us now see what are the physical effects given by the interaction of a gravitational wave with
test masses. We’ll get some conditions that may suggest how to set up an experimental apparatus able
to detect the waves themselves.
Let’s consider two massive particles A and B immersed in a gravitational field. They will be character-

93



ized by universe lines
xµ

A = xµ(τ) (5.2.1)

for particle A and
xµ

B = xµ(τ) + δxµ(τ) (5.2.2)

for particle B. δxµ is the distance between the two universe lines. We use the geodesics equations
applied on this difference, which we will call geodesics deviation

D2δxλ

Dτ2 = Rλ
νµρδxµ dxν

dτ

dxρ

dτ
. (5.2.3)

Let us now consider an inertial reference system x′alpha centered on A . In this case we can rewrite
the coordinates of the two particles

x′A
i
= 0 (5.2.4)

for A, while for B

x′B
µ
= δx′µ. (5.2.5)

Furthermore we have

tA = τ, (5.2.6a)

dx
′µ

dτ

∣∣∣∣
A
= (1, 0) (5.2.6b)

g′µν|A = η′µν (5.2.6c)

g′µν,α|A = 0 =⇒ Γ′αµν|A = 0. (5.2.6d)

The above equations tell us that we can only consider the components imported for ρ = 0 and
ν = 0, so we can rewrite the equation of the geodesic deviation

d2δxj

dt2 = Rj
0k0δxk. (5.2.7)

We also consider valid the Transverse-Traceless gauge (TT), so we can state that the components
hµ0 = h0µ vanish. So, in the weak field approximation we can say that the following relation holds

R(1)
j0k0 = R(1)

0j0k =
1
2
(∂k∂jh00 − ∂k∂0hj0 − ∂0∂jh0k + ∂0∂0hjk) =

1
2

hTT
jk,00 (5.2.8)

We are now replacing this result in 5.2.6b and one gets

d2δxj

dt2 =
1
2

hj
k

δt2 δxk. (5.2.9)
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Before the arrival of the gravitational wave the two particles are at a constant position from each
other δxj(0). Since we are considering the field approximation of this constant distance this constant
distance will be perturbed by an infinitesimal amount

δxj(t) = δxj
0 + δxj

1(t). (5.2.10)

We now replace the previous equation into equation 5.2.9 and we neglect all the terms of order higher
the one

d2δxj
1

dt2 =
1
2

hj
k

δt2 δxk
0. (5.2.11)

this is the last form of the deviation geodesic equation. Its solution is given by

δxj
1(t) = δxj(t)− δxj

0 ≈
1
2

hj
k(xµ(t))δxk

0. (5.2.12)

which can be recast as

δxj(t) ≈ δxk(0)
(

δ
j
k +

1
2

hj
k(xµ(t))

)
. (5.2.13)

We will use this equation to understand what are the effects of the passage of a gravitational wave on
the system constituted by the two particles. Let’s remember that in the TT gauge the only non-zero
components of the gravitational perturbation which propagates in the z direction, are

hTT
11 = −hTT

22 (5.2.14a)

hTT
12 = hTT

21 (5.2.14b)

Now we can distinguish two cases. Let us first consider the case where the two masses are aligned
in the z-direction. In this case their initial distance is δxj(0) = (0.0, L0). which when the wave passes,
on the other hand, changes and turns out to be

δxj(t) = δxk(0)
(

δ
j
k +

1
2

hj
k

)
= δx3(0)

(
δ

j
3 +

1
2

hj
3

)
= δx3(0)δj

3, (5.2.15)

according to equation 5.2.13. From this we can deduce that the displacement along any j direction
remains constant: δxj(t) = δxj(0). Let’s suppose now to have the system of the two particles
aligned along a direction perpendicular to the z-axis. Before the wave passes, their separation is
δxj(0) = (0, L0, 0). Once the wave arrives it turns to be

δxj(t) = δxk(0)
(

δ
j
k +

1
2

hj
k(xµ(t))

)
= δx2(0)

(
δ

j
2 +

1
2

hj
2(xµ(t))

)
, (5.2.16)

and therefore it is deduced that after the passage of the wave change the separations along y and
along z. Therefore, the gravitational wave is not only transverse but produces physical effects that are
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detectable in the direction transverse to those of propagation.

5.3 Generation of GW

We now want to study under what conditions it is possible to have the generation of gravitational
waves. We will exploit an analogy with electromagnetism, we will use the same procedure used to
understand which are the relevant terms in the development in multi-poles of the energy emitted by a
system of charges in motion, to obtain a gravitational analogue. In the electromagnetic case we had

Iem =
2

3c3 (d̈em)2︸ ︷︷ ︸
charge dipole

+
2

3c3 (m̈em)
2︸ ︷︷ ︸

magnetic dipole

+
1

180c5

...
Qij,em

...
Q

ij,em︸ ︷︷ ︸
charge quadrupole

+ · · · (5.3.1)

where dem = ∑k qkrk is the electric dipole, mem = ∑k qkrk × vk/(2c) is the magnetic dipole and
Qem

ij = ∑k qk(3xixj − δijr2
k) is the charge quadrupole. Now, to switch to the analogous gravitational

case just replace the charges with the masses. The terms involved in the multi-pole expansion are

dg = ∑
k

mkrk = MRcm, (5.3.2a)

mg = ∑
k

rk × (mkvk) = L, (5.3.2b)

Qij,g = ∑
k

mk(3xixj − δijr2
k), (5.3.2c)

where we have replaced qk with mk. We have done the following definitions

M = ∑
k

mk

is the total mass of the system,
Rcm = ∑

k
mkrk/M

is the position of the center of mass of the system, and

L

is the total angular momentum.

If the system is isolated then

d̈g = MR̈cm = Ṗ = 0, (5.3.3a)

ṁg = L̇ = τ = 0, (5.3.3b)

where T is the total momentum and τ is the total torque. Under these considerations the terms
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analogous to the electric and magnetic moment are null and therefore in the development in multiples
the dominant term will be the term of mass quadrupole i.e.

Iog =
1

45c5

...
Qij

...
Q

ij
. (5.3.4)

where the factor 1
45 is due to the fact that we have to take into account the degeneracy due to the

spin 2 of the gravitational field. Let’s consider the linearized Einstein equation with in the weak field
approximation

2
(

hµν −
1
2

ηµνh
)
= −16πG

c4 τµν. (5.3.5)

and we define the tensor
ψµν = hµν −

1
2

ηµνh. (5.3.6)

. In the TT gauge choice h = 0 so ψµν = hµν.
In terms of the new tensor it can be rewritten as

∂µψµν = 0 (5.3.7)

and the Einstein equation is now translated in

2ψµν = −16πG
c4 τµν. (5.3.8)

Now we want to understand how to describe a wave generated at great distances from the point of
detection. In particular we place ourselves at large distances R with respect to the wavelength λ of the
generated wave. Formally the Einstein equation 5.3.8 is identical to the Maxwell equation

2Aβ = −4π

c
Jβ (5.3.9)

Using the same solving methods the general solution of the 5.3.8 is given by

ψµν(t, x) =
4G
c4

∫ (τµν)|t−R/c

R
dV ′, (5.3.10)

and assuming that the velocities are much smaller than c we can approximate

ψµν(t, x) =
4G
c4r

∫
(τµν)|t−r/cdV ′. (5.3.11)

We use the property now
∂µτµν = 0 (5.3.12)

which replaces the general conservation property of the momentum-energy tensor. In addition we
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notice that τµµ is symmetric with respect to the exchange of the indices, so

∂kτik + ∂0τi0 = 0, (5.3.13a)

∂kτ0k + ∂0τ00 = 0. (5.3.13b)

(we are omitting the fact that these equations are all evaluated at t-r/c). We multiply equation
5.3.13a by xj and we integrate over all space

∂0
∫

τi0xjdV = −
∫

∂kτikxjdV = −
∫

∂k(τikxj)dV +
∫

τikδk
j dV =

= −
∫

∂k(τikxj)dV +
∫

τijdV.
(5.3.14)

The first integral can be regarded as a surface term, so it can be neglected since it gives no contributions:

∫
τijdV = ∂0

∫
τi0xjdV =

1
2

∂0
∫
(τi0xj + τj0xi)dV. (5.3.15)

As for the second integral we multiply by xixj and we get

∂0
∫

τ00xixjdV = −
∫

∂kτ0kxixjdV

= −
∫

∂k(τ0kxixj)dV +
∫

τ0kδk
i xjdV +

∫
τ0kxiδ

k
j dV

=
∫
(τ0jxi + τ0ixj)dV.

(5.3.16)

Let’s now combine the results obtained into a single equation and find

∫
τijdV =

1
2

∂0
∫
(τ0jxi + τ0ixj)dV =

1
2
(∂0)2

∫
τ00xixjdV

=
1

2c2
∂2

∂t2

∫
τ00xixjdV.

(5.3.17)

This last equation says that volume integrals can be converted to integrals on the component
τ00 = T00 + t00 approximate with T00 . So we can rewrite τ00 = ρc2 where ρ is the mass density at rest.
Replacing these results in 5.3.11

ψij =
2G
c4r

∂2

∂t2

∫
ρxixjdV. (5.3.18)

We denote with a system size. Let’s put ourselves in the condition in which R >> λ >> a, with λ as
the wave length, so that we can describe the waves generated as plain waves if we put ourselves over
long distances.
Adopting the TT gauge

ψij = hij =
2G
c4r

∂2

∂t2

∫
ρxixjdV =

2G
3c4r

(
Q̈ij + δij

∂2

∂t2

∫
ρr2dV

)
, (5.3.19)
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with
Qij =

∫
ρ(3xixj − r2δij)dV (5.3.20)

as mass quadrupole. We are considering a wave propagating in direction say x1. Since in the TT gauge
the only non vanishing components are h22 = −h33 and h23 = h32 we have the flux of energy carried
in the x1 direction

ct01 =
c3

16πG

(
(ḣ23)

2 +
1
4
(ḣ22 − ḣ33)

2
)

. (5.3.21)

Equation 5.3.19can be re-expressed explicitly as

h23 =
2G
3c4r

Q̈23, (5.3.22a)

h22 − h33 =
2G
3c4r

(Q̈22 − Q̈33), (5.3.22b)

and replacing in 5.3.21 we have

ct01 =
G

36πc5r

(
(
...
Q23)

2 +
1
4
(
...
Q22 −

...
Q33)

2
)

. (5.3.23)

The total irradiated energy is given by

I = I =
G

45c5 〈Q̈ijQ̈ij〉 (5.3.24)

99





Chapter 6

Dark Matter with Stueckelberg Axions

Introduction

We review a class of models which generalize the traditional Peccei-Quinn (PQ) axion solution by
a Stueckelberg pseudoscalar. Such axion models represent a significant variant with respect to earlier
scenarios where axion fields were associated with global anomalies, because of the Stueckelberg field,
which is essential for the cancellation of gauge anomalies in the presence of extra U(1) symmetries.
The extra neutral currents associated to these models have been investigated in the past in orientifold
models with intersecting branes, under the assumption that the Stueckelberg scale was in the multi-
TeV region. Such constructions, at the field theory level, are quite general and can be interpreted as the
four-dimensional field theory realization of the Green-Schwarz mechanism of anomaly cancellation
of string theory. We present an overview of models of this type in the TeV/multi TeV range in
their original formulation and their recent embeddings into an ordinary GUT theory, presenting an
E6 ×U(1)X model as an example. In this case the model contains two axions, the first corresponding
to a Peccei-Quinn axion, whose misalignment takes place at the QCD phase transition, with a mass
in the meV region and which solves the strong CP problem. The second axion is ultralight, in the
10−20 − 10−22 eV region, due to a misalignment and a decoupling taking place at the GUT scale. The
two scales introduced by the PQ solution, the PQ breaking scale and the misalignment scale at the
QCD hadron transition, become the Planck and the GUT scales respectively, with a global anomaly
replaced by a gauge anomaly. The periodic potential and the corresponding oscillations are related to
a particle whose De Broglie wavelength can reach 10 kpc. Such a sub-galactic scale has been deemed
necessary in order to resolve several dark matter issues at the astrophysical level.

It is by now well established that astrophysical and cosmological data coming either from measure-
ments of the velocities of stars orbiting galaxies, in their rotation curves, or from the cosmic microwave
background, indicate that about ∼ 80% of matter in the universe is in a unknown form, and the
expectations for providing an answer to such a pressing question run high. These observational
results are justified within the standard ΛCDM dark matter/dark energy model [31] which has been
very successful in explaining the data. It predicts a dark energy component about 68± 1% of the
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total mass/density contributions of our universe in the form of a cosmological constant. The latter
accounts for the dark energy dominance in the cosmological expansion at late times and provides
the cosmological acceleration measured by Type Ia supernovae [32, 33], with ordinary baryonic dark
matter contributing just a few percent of the total mass/energy content (∼ 5%) and a smaller neutrino
component. Cold dark matter with small density fluctuations, growing gravitationally and a spectral
index of the perturbations nS ∼ 1 is compatible with an early inflationary stage and accounts for
structure formation in most of the early universe eras. By now, data on the CMB, weak lensing and
structure formation, covering redshifts from large z ∼ 103 down to z <∼ O(1) where the full nonlinear
regime of matter dominance is at work, have been confronted with N-body gravitational simulations
for quite some time, with comparisons which are in general agreement with ΛCDM. Such simulations,
characterized by perturbations with the above value of the spectral index show the emergence of
hierarchical, self-similar structures in the form of halos and sub-halos of singular density (ρ(r) ∼ 1/r
in terms of the radius r) [34] in the nonlinear regime. However, while the agreement between ΛCDM
and the observations is significant at most scales, at a small sub-galactic scale, corresponding to
astrophysical distances relevant for the description of the stellar distributions (∼ 10 kpc), cold dark
matter models predict an abundance of low-mass halos in excess of observations [35]. Difficulties
in characterizing this sub-galactic region have usually been attributed to inaccurate modeling of its
baryonic content, connected with star formation, supernova explosions and black hole activity which
take place in that region, causing a redistribution of matter.

There are various possibilities to solve this discrepancy, such as invoking the presence of warm
dark matter (WDM), whose free streaming, especially for low mass WDM particles, could erase halos
and sub-halos of low mass. At the same time they could remove the predicted dark matter cusps
in ρ(r), present in the simulations for r ' 0 [34] but not detected observationally. As observed in
[35] and recently re-addressed in [36], these issues define a problem whose resolution may require a
cold dark matter component which is ultralight, in the 10−20 − 10−22 eV range. Proposals for such
component of dark matter find motivations mostly within string theory, where massless moduli in the
form of scalar and pseudoscalar fields abound at low energy. They are introduced at the Planck scale
and their flat potentials can be lifted by a small amount, giving rise to ultralight particles. However,
the characterization of a well-defined gauge structure which may account for the generation of such
ultralight particle(s) and which may eventually connect the speculative scenarios to the electroweak
scale can be pursued in various ways. It has been recently proposed [37] that particles of this kind may
emerge from grand unification in the presence of anomalous abelian symmetries, revisiting previous
constructions.

The goal of this review is to summarize the gauge structure of these models which require an
anomalous fermion spectrum with gauge invariance restored by a Wess-Zumino interaction, by the
inclusion of a Stueckelberg axion. Such models can be thought as the field theory realization of
the mechanism of anomaly cancellation derived from string theory. The models reviewed here are
characterized by some distinctive key features that we are going to discuss, establishing their relation
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to the Peccei-Quinn model, of which they are an extension at a field theory level.

6.1 Anomalous U(1)’s

The Peccei-Quinn (PQ) mechanism, proposed in the 1970’s to solve the strong CP problem [23,
38, 39] had been originally realized by assigning an additional abelian chiral charge to the fermion
spectrum of the Standard Model (SM). Alternatively, a similar symmetry can be present in a natural
way in specific gauge theories based on groups of higher rank with respect to the SM gauge group.
This is the case, for instance of the U(1)PQ symmetry found in the E6 GUT discussed in [40] (as well as
in other realizations), naturally present in this theory and which can lead to a solution of the strong
CP problem.

As we are going to discuss, the mass of the axion, either in the presence of global or local anomalies
is connected to the instanton sector of a non-abelian theory and it is crucial for the mechanism of
misalignment to be effective that the axion couples to the gauge sector of the same theory. In fact, the
possibility that more than one axion is part of the spectrum of a certain gauge theory is not excluded,
with the mass of each axion controlled by independent mechanism(s) of vacuum misalignment induced
at several scales, if distinct gauge couplings for each of such particles with different gauge sectors
are present [41, 42]. We will illustrate this point in the extended E6 theory that we will overview in
the next sections, where the inclusion of an extra anomalous U(1) gauge symmetry realizes such a
scenario. Different mechanisms of vacuum misalignment may be held responsible for the generation
of axions of different masses, whose sizes may vary considerably.

6.1.1 Anomaly cancellation at field theory level with an axion

In the case of a Stueckelberg axion, as already mentioned, the PQ symmetry is generalized from
global to a local gauge symmetry and the Wess Zumino interactions are needed for the restoration
of gauge invariance of the effective action. Such generalizations, originally discussed in the context
of low scale orientifold models [43], where anomalous abelian symmetries emerge from stacks of
intersecting branes, have been proposed in the past as possible scenarios to be investigated at the LHC
[44, 45, 46, 47, 48, 49], together with their supersymmetric extensions [50, 51, 42]. While anomalous
abelian symmetries are interesting in their own right, especially in the search for extra neutral currents
at the LHC [52, 53, 47] [54], one of the most significant aspects of such anomalous extensions is in fact
the presence of an axion which is needed in order to restore the gauge invariance of the effective action.
It was called the "axi-Higgs" in [43] [44] - for being generated by the mechanism of Higgs-Stueckelberg
mixing in the CP-odd scalar sector, induced by a PQ-breaking periodic potential, later studied for its
implications for dark matter in [41]. The appearance of such a potential is what allows one component
of the Stueckelberg field to become physical. A periodic potential can be quickly recognized as being
of instanton origin and related to the θ-vacuum of Yang-Mills theory and can be associated with phase
transitions in non-abelian theories. Recent developments have taken into consideration the possibility
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that the origin of such a potential of this form can be set at a very large scale, such as the scale of grand
unification (GUT). Its size is related to the value of the gauge coupling at the GUT scale, characterized
by a typical instanton suppression, where the mechanism of vacuum misalignment takes place.

6.1.2 An ultralight axion

In the case of a misalignment generated at the GUT scale, the mass of the corresponding axion is
strongly suppressed and can reach the far infrared, in the range of 10−20 − 10−22 eV, which is in the
optimal range for a possible resolution of several astrophysical issues, such as those mentioned in
the introduction [36]. Proposals for a fuzzy component of dark matter require a weakly interacting
particle in that mass range. As in the PQ (invisible axion) case, also in this case two scales are needed
in order to realize a similar scenario. In the PQ case the two scales correspond to fa, the large PQ
breaking scale and the hadronic scale which links the axion mass, fa, the pion mπ and the light quarks
masses mu, md, in an expression that we will summarize below. In the case of Stueckelberg axions
these fields can be introduced as duals of a 2-form (Bµν), defined at the Planck scale (MP) and coupled
to the field strength (F) of an anomalous gauge boson via a B ∧ F interaction [37].
The mechanism of Higgs-axion mixing and the generation of the periodic potential can take place
at a typical GUT scale. It is precisely the size of the potential at the GUT scale, which is controlled
by the θ-vacuum of the corresponding GUT symmetry, which is responsible for the generation of an
ultralight axion in the spectrum. As already mentioned, in the model discussed in [37] a second axion
is present, specific to the E6 part of the E6 ×U(1)X symmetry, which is sensitive to the SU(3) colour
sector of the Standard Model after spontaneous symmetry breaking. This second field takes the role of
an ordinary PQ axion and solves the strong CP problem. We will start by recalling the main features
of the PQ solution, in particular the emergence of a mass/coupling relation in such a scenario which
narrows the window for axion detection down and gets enlarged in the presence of a gauge anomaly
in Stueckelberg models [49]. We will then turn, in the second part of this review, to a discussion of the
Stueckelberg extension. We will describe the features of such models in their non-supersymmetric
formulation. Their supersymmetric version requires a separate discussion, for predicting both an
axion and a neutralino as possible dark matter relics [51, 42].

6.2 The invisible PQ axion

The theoretical prediction for the mass range in which to locate a PQ axion is currently below the
eV region. The PQ solution to the strong CP problem has been formulated according to two main
scenarios involving a light pseudoscalar (a(x)) which nowadays take the name from the initials of the
proponents, the KSVZ axion (or hadronic axion) and the DFSZ [55, 56] axion, the latter introduced in a
model which requires, in addition, a scalar sector with two Higgs doublets Hu and Hd, besides the PQ
complex scalar Φ.
The small axion mass is attributed to a vacuum misalignment mechanism generated by the structure
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of the QCD vacuum at the QCD phase transition, which causes a tilt in the otherwise flat PQ potential.
The latter undergoes a symmetry breaking at a scale vPQ, in general assumed to lay above the scales of
inflation HI and of reheating (TR), and hence quite remote from the electroweak/confinement scales.
Other possible locations of vPQ with respect to HI and TR are also possible.

In both solutions the Peccei-Quinn scalar field Φ, displays an original symmetry which can be
broken by gravitational effects, with a physical Goldstone mode a(x) which remains such from the
large vPQ scale down to ΛQCD, when axion oscillations occur. In the DFSZ solution, the axion emerges
as a linear combination of the phases of the CP-odd sector and of Φ which are orthogonal to the
hypercharge (Y) and are fixed by the normalization of the kinetic term of the axion field a. The solution
to the strong CP problem is then achieved by rendering the parameter of the θ-vacuum dynamical,
with the angle θ replaced by the axion field (θ → a/ fa), with fa being the axion decay constant.

The computation of the axion mass ma is then derived from the vacuum energy of the θ-vacuum
E(θ) once this is re-expressed in terms of the QCD chiral Lagrangian, which in the two quark flavour
(u,d) case describes the spontaneous breaking of the SU(2)L × SU(2)R flavour symmetry to a diagonal
SU(2) subgroup, with the 3 Goldstone modes (π±, π0) being the dynamical field of the low energy
dynamics. In this effective chiral description in which the θ parameter is present, the vacuum energy
acquires a dependence both on neutral pseudoscalar π0 and on θ of the form

E(π0, θ) = −m2
π f 2

π

√
cos2 θ

2
+

(
md −mu

md + mu

)2

sin2 θ

2
cos

(
π0 − φ(θ)

)
(6.2.1)

with
φ(θ) ≡ md −mu

md + mu
sin

θ

2
. (6.2.2)

At the minimum, when π0 = fπφ(θ), the vacuum energy assumes the simpler form

E(θ) = −m2
π f 2

π

√
1− 4mumd

(mu + md)2 sin2 θ

2
(6.2.3)

which expanded for small θ gives the well-know relation

E(θ) = −m2
π f 2

π +
1
2

m2
π f 2

π

mumd

(mu + md)2 θ2 + . . . (6.2.4)

and the corresponding axion mass

m2
a =

m2
π f 2

π

f 2
a

mumd

(mu + md)2 (6.2.5)

as θ → a/ fa. Before getting into a more detailed analysis of the various possible extensions of the
traditional PQ scenarios, we briefly review the KSVZ (hadronic) and DFSZ (invisible) axion solutions.
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6.2.1 KSVZ and DFSZ axions

In both the DFSZ and KSVZ scenarios a global anomalous U(1)PQ symmetry gets broken at some
large scale vPQ, with the generation of a Nambu-Goldstone mode from the CP-odd scalar sector. In the
KSVZ case the theory includes a heavy quark Q which acquires a large mass by a Yukawa coupling
with the scalar Φ. In this case the Lagrangian of Q takes the form

L = ∂Φ2 + iQ̄D/ Q + λΦQ̄LQR + h.c.−V(Φ) (6.2.6)

with a global U(1)PQ chiral symmetry of the form

Φ → eiαΦ

(6.2.7)

Q → e−
i
2 αγ5 Q (6.2.8)

with an SU(3)c covariant derivative (D) containing the QCD color charge of the heavy fermion Q.
The scalar PQ potential can be taken of the usual Mexican-hat form and it is U(1)PQ symmetric.
Parameterising the PQ field with respect to its broken vacuum

Φ =
φ + vpq√

2
e

i a(x)
vPQ + . . . (6.2.9)

the Yukawa coupling of the heavy quark Q to the CP-odd phase of Φ, a(x), takes the form

λ
vpq√

2
e

i a(x)
vPQ Q̄LQR. (6.2.10)

At this stage one assumes that there is a decoupling of the heavy quark from the low energy spectrum
by assuming that vPQ is very large. The standard procedure in order to extract the low energy
interaction of the axion field is to first redefine the field Q on order to remove the exponential with the
axion in the Yukawa coupling

e
iγ5

a(x)
2vPQ QL/R ≡ Q′L/R. (6.2.11)

This amounts to a chiral transformation which leaves the fermionic measure non-invariant

DQ̄DQ→ e
i
∫

d4x 6a(x)
32π2vPQ

G(x)G̃(x)
DQ̄DQ (6.2.12)

and generates a direct coupling of the axion to the anomaly GG̃. Here the factor of 6 is related to the
number of L/R components being rotated, which is 6 if Q is assigned to the triplet of SU(3)c.

The kinetic term of Q is not invariant under this field redefinition and generates a derivative
coupling of a(x) to the axial vector current of Q. For n f triplets, for instance, the effective action of the
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axion, up to dimension-5 takes the form

Le f f =
1
2

∂µa(x)∂µa(x) +
6n f

32π2vPQ
a(x)GG̃ +

1
vPQ

∂µaQ̄γµγ5Q + . . . (6.2.13)

where we have neglected extra higher dimensional contributions, suppressed by vPQ.
In the case of the DFSZ axion, the solution to the strong CP problem is found by introducing a scalar
Φ together with two Higgs doublets Hu and Hd. In this case one writes down a general potential,
function of these three fields, which is SU(2)×U(1) invariant and possesses a global symmetry

Hu → eiαXu Hu, Hd → eiαXd Hd, Φ→ eiαXΦ Φ (6.2.14)

with Xu + Xd = −2XΦ. It is given by a combination of terms of the form

V = V(Hu
2 , Hd

2 , Φ2 , HuH†
d

2 , Hu · Hd
2 , Hu · Hd, Φ2) (6.2.15)

where Hu · Hd denotes the SU(2) invariant scalar product. The identification of the axion field is made
by looking for a linear combination of the phases which is not absorbed by a gauge transformation.
This can be done, for instance, by going to the unitary gauge and removing all the NG modes of the
broken gauge symmetry. The corresponding phase, which is the candidate axion, is the result of a
process of mixing of the PQ field with the Higgs sector at a scale where the symmetry of the potential
is spontaneously broken by the two Higgs fields.

6.3 TeV scale: Stueckelberg axions in anomalous U(1) extensions of the
Standard Model

Intersecting D-brane models are one of those constructions where generalized axions appear
[57, 58, 59, 60]. In the case in which several stacks of such branes are introduced, each stack being the
domain in which fields with the gauge symmetry U(N) live, several intersecting stacks generate at
their common intersections, fields with the quantum numbers of all the unitary gauge groups of the
construction, such as

U(N1)×U(N2)× ...×U(Nk) = SU(N1)×U(1)× SU(N2)×U(1)× ...× SU(Nk)×U(1). (6.3.1)

The phases of the extra U(1)’s are rearranged in terms of an anomaly-free generator, corresponding to
an (anomaly free) hypercharge U(1) (or U(1)Y), times extra U(1)’s which are anomalous, carrying
both their own anomalies and the mixed anomalies with all the gauge factors of the Standard Model.
This general construction can be made phenomenologically interesting.

Using this approach, the Standard Model can be obtained by taking for example 3 stacks of branes:
a first stack of 3 branes, yielding a U(3) gauge symmetry, a second stack of 2 branes, yielding a
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symmetry U(2) and an extra single U(1) brane, giving a gauge structure of the form SU(3)× SU(2)×
U(1)×U(1)×U(1). Linear combinations of the generators of the three U(1)’s allow us to rewrite
the entire abelian symmetry in the form U(1)Y ×U(1)′ ×U(1)′′, with the remaining U(1)′ ×U(1)′′

factors carrying anomalies which need to be cancelled by extra operators. The simplest realization
of the Standard Models (SM) is obtained by 2 stacks and a single brane at their intersections, giving
a symmetry U(3)×U(2)×U(1). In this case, in the hypercharge basis, the gauge structure of the
model can be rewritten in the form SU(3)c × SU(2)w ×U(1)Y ×U(1)′ ×U(1)′′.

We consider the case of a single U(1)′ ≡ U(1)B anomalous gauge symmetry, where the Stueckel-
berg field b(x) couples to the gauge field Bµ by the gauge invariant term

LSt =
1
2
(
∂µb−MBµ

)2 (6.3.2)

which is the well-known Stueckelberg form. M is the Stueckelberg mass. The Stueckelberg symmetry
of the Lagrangian (6.3.2) is revealed by acting with gauge transformations of the gauge fields Bµ under
which the axion b varies by a local shift

δBBµ = ∂µθB δb = MθB (6.3.3)

parameterized by the local gauge parameters θB. Originally, the Stueckelberg symmetry was presented
as a way to give a mass to an abelian gauge field while still preserving the gauge invariance of the
theory. However, it is clear nowadays that its realization is the same one as obtained, for instance,
in an abelian-Higgs model when one decouples the radial excitations of the Higgs fields from its
phase [49]. The bilinear ∂Bb mixing present in Eq. (6.3.2) is an indication that the b field describes a
Nambu-Goldstone mode which could, in principle, be removed by a unitary gauge condition. We will
come back to this point later in this review. There is a natural way to motivate Eq. (6.3.2).

If we assume that the U(1)B gauge symmetry is generated within string theory and realized around
the Planck scale, the massive anomalous gauge boson acquires a mass through the presence of an
A ∧ F coupling in the bosonic sector of a string-inspired effective action [61]. The starting Lagrangian
of the effective theory involves, in this case, an antisymmetric rank-2 tensor Aµν coupled to the field
strength Fµν of Bµ

L = − 1
12

HµνρHµνρ −
1

4g2 FµνFµν +
M
4

εµνρσ Aµν Fρσ, (6.3.4)

where
Hµνρ = ∂µ Aνρ + ∂ρ Aµν + ∂ν Aρµ, Fµν = ∂µBν − ∂νBµ (6.3.5)

is the kinetic term for the 2-form and g is an arbitrary constant. Besides the two kinetic terms for Aµν

and Bµ, the third contribution in Eq. (6.3.4) is the A ∧ F interaction.
The Lagrangian is dualized by using a “first order” formalism, where H is treated independently

from the antisymmetric field Aµν. This is obtained by introducing a constraint with a Lagrangian
multiplier field b(x) in order to enforce the condition H = dA from the equations of motion of b, in
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the form

L0 = − 1
12

HµνρHµνρ −
1

4g2 Fµν Fµν −
M
6

εµνρσ Hµνρ Bσ +
1
6

b(x) εµνρσ∂µHνρσ. (6.3.6)

The appearance of a scale M in this Lagrangian is crucial for the cosmological implications of such a
theory [47], since it defines the energy region where the mechanism of anomaly cancellation comes
into play [43]. The last term in (6.3.6) is necessary in order to reobtain (6.3.4) from (6.3.6). If, instead,
we integrate by parts the last term of the Lagrangian given in (6.3.6) and solve trivially for H we find

Hµνρ = −εµνρσ (MBσ − ∂σb) , (6.3.7)

and inserting this result back into (6.3.6) we obtain the expression

LA = − 1
4g2 Fµν Fµν −

1
2
(MBσ − ∂σb)2 (6.3.8)

which is the Stueckelberg form for the mass term of B. This rearrangement of the degrees of freedom
is an example of the connection between Lagrangians of antisymmetric tensor fields and their dual
formulations which, in this specific case, is an abelian massive Yang-Mills theory in a Stueckelberg
form.
The axion field, generated by the dualization mechanism, appears as a Nambu-Goldstone mode,
which can be removed by a unitary gauge choice. However, as discussed in [43], the appearance, at a
certain scale, of an extra potential which will mix this mode with the scalar sector, will allow to extract
a physical component out of b, denoted by χ.

The origin of such a mixing potential is here assumed to be of non-perturbative origin and triggered
at a scale below the Stueckelberg scale M. It is at this second scale where a physical axion appears in
the spectrum of the theory. The local shift invariance of b(x) is broken by the vev of the Higgs sector
appearing in the part of the potential that couples the Stueckelberg field to the remaining scalars,
causing a component of the Stueckelberg to become physical. The scale at which this second potential
is generated and gets broken is the second scale controlling the mass of the axion, χ. Such a potential
is by construction periodic in χ, as we are going to illustrate below and it is quite similar to the one
discussed in Eq. (8.1.4). Its size is controlled by constants (λi) which are strongly suppressed by the
exponential factor (∼ e−Sinst , with Sinst the instanton action), determined by the value of the action in
the instanton background.

In models with several U(1)’s this construction is slightly more involved, but the result of the
mixing of the CP odd phases leaves as a remnant, also in this case, only one physical axion [43], whose
mass is controlled by the size of the Higgs-axion mixing.
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f Q uR dR L eR

qB qB
Q qB

uR
qB

dR
qB

L qB
eR

f SU(3)C SU(2)L U(1)Y U(1)B

Q 3 2 1/6 qB
Q

uR 3 1 2/3 qB
Q + qB

u

dR 3 1 −1/3 qB
Q − qB

d

L 1 2 −1/2 qB
L

eR 1 1 −1 qB
L − qB

d

Hu 1 2 1/2 qB
u

Hd 1 2 1/2 qB
d

Table 6.1 Charges of the fermion and of the scalar fields

6.3.1 Stueckelberg models at the TeV scale with two-Higgs doublets

The type of models investigated in the past have been formulated around the TeV scale and
discussed in detail in their various sectors [44, 45, 46, 47, 48, 49, 62] [63]. We offer a brief description
of such realizations, which extend the symmetry of the SM minimally and as such are simpler
than in other realizations involving larger gauge symmetries. They have the structure of effective
actions where dimension-5 interactions are introduced in order to restore the gauge invariance of the
Lagrangian in the presence of an anomalous gauge boson (and corresponding fermion spectrum).
Therefore, they are quite different from ordinary anomaly-free versions of the same theories. They
include one extra anomalous U(1)B symmetry, the Stueckelberg field and a set of scalars with a
sufficiently wide CP odd sector in order to induce a mixing potential between the scalar fields and
the Stueckelberg. Obviously, such models are of interest at the LHC for predicting anomalous gauge
interactions in the form of extra neutral currents [47, 52] with respect to those of the electroweak sector.

The effective action has the structure given by

S = S0 + SYuk + San + SWZ (6.3.9)

where S0 is the classical action. The same structure will characterize also other, more complex,
realizations. It contains the usual gauge degrees of freedom of the Standard Model plus the extra
anomalous gauge boson B which is already massive before electroweak symmetry breaking, via a
Stueckelberg mass term, as it is clear from (6.3.8). We show the structure of the 1-particle irreducible
effective action in Fig. 6.1. We consider a 2-Higgs doublet model for definiteness, which will set the
ground for more complex extensions that we will address in the next sections. We consider an SU(3)c×
SU(2)w ×U(1)Y ×U(1)B gauge symmetry model, characterized by an action S0, corresponding to the
first contribution shown in Fig. 6.1, plus one loop corrections which are anomalous and break gauge
invariance whenever there is an insertion of the anomalous gauge boson Bµ in the trilinear fermion
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Y
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Y
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+ b
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SU(3)

SU(3)

+ b

SU(2)

SU(2)

Figure 6.1 The 1PI effective action for a typical low scale model obtained by adding one extra anomalous U(1)B
to the Standard Model action. Shown are the one-loop trilinear anomalous interactions and the corresponding
counterterms, involving the b field.

vertices. In the last line of the same figure are shown the (b/M)F ∧ F Wess-Zumino counterterms
needed for restoring gauge invariance, which are suppressed by the Stueckelberg scale M. Table 6.1
shows the charge assignments of the fermion spectrum of the model, where we have indicated by q
the charges for a single generation, having taken into account the conditions of gauge invariance of the
Yukawa couplings. Notice that the two Higgs fields carry different charges under U(1)B, which allow
to extend the ordinary scalar potential of the two-Higgs doublet model by a certain extra contribution.
This will be periodic in the axi-Higgs χ, after the two Higgses, here denoted as Hu and Hd, acquire
a vev. Specifically, qB

L , qB
Q denote the charges of the left-handed lepton doublet (L) and of the quark

doublet (Q) respectively, while qB
ur

, qB
dr

, qB
eR

are the charges of the right-handed SU(2) singlets (quarks
and leptons). We denote by ∆qB = qB

u − qB
d the difference between the two charges of the up and

down Higgses (qB
u , qB

d ) respectively and from now on we will assume that it is non-zero. The trilinear
anomalous gauge interactions induced by the anomalous U(1) and the relative counterterms, which
are all parts of the 1-loop effective action, are illustrated in Fig. 6.1.
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6.3.2 Fermion/gauge field couplings

The models that we are discussing are characterized by one extra neutral current, mediated by a
Z′ gauge boson. The interaction of the fermions with the gauge fields is defined by the Lagrangian

Lquarks
int =

(
ūL i d̄L i

)
γµ

[
−gsTaGa

µ − g2τaWa
µ −

1
12

gYYµ −
1
2

gBqB
QBµ

](
uL i

dL i

)
+

+ ūR iγ
µ

[
−gsTaGa

µ − g2τaWa
µ −

1
3

gYYµ −
1
2

gBqB
uR

Bµ

]
uR i

+ d̄R i γµ

[
−gsTaGa

µ − g2τaWa
µ +

1
6

gYYµ −
1
2

gBqB
dR

Bµ

]
dR i. (6.3.10)

while the Higgs sector is characterized by the two Higgs doublets

Hu =

(
H+

u

H0
u

)
Hd =

(
H+

d

H0
d

)
(6.3.11)

where H+
u , H+

d and H0
u, H0

d are complex fields with (with some abuse of notation we rescale the fields
by a factor of 1/

√
2)

H+
u =

ReH+
u + iImH+

u√
2

, H−d =
ReH−d + iImH−d√

2
, H−u = H+∗

u , H+
d = H−∗d . (6.3.12)

Expanding around the vacuum we get for the neutral components

H0
u = vu +

ReH0
u + iImH0

u√
2

, H0
d = vd +

ReH0
d + iImH0

d√
2

. (6.3.13)

which will play a key role in determining the mixing of the Stueckelberg field in the periodic potential.
The electroweak mixing angle is defined by cos θW = g2/g, sin θW = gY/g, with g2 = g2

Y + g2
2. We

also define cos β = vd/v, sin β = vu/v with v2 = v2
d + v2

u. The matrix rotates the neutral gauge bosons
from the interaction to the mass eigenstates after electroweak symmetry breaking and has elements
which are O(1), being expressed in terms of ratios of coupling constants, which correspond to mixing
angles. It is given by Aγ

Z
Z′

 = OA

W3

AY

B

 (6.3.14)
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which can be approximated to leading order as

OA '


gY
g

g2
g 0

g2
g + O(ε2

1) −
gY
g + O(ε2

1)
g
2 ε1

− g2
2 ε1

gY
2 ε1 1 + O(ε2

1)

 (6.3.15)

where

ε1 =
xB

M2 ,

xB =
(

qB
u v2

u + qB
d v2

d

)
. (6.3.16)

Once the WZ counterterms will be rotated into the gauge eigenstates and the b field into the physical
χ field, there will be a direct coupling of the anomaly to the physical gauge bosons. This will involve
both the neutral and the charged sectors. More details can be found in [46].

6.3.3 Counterterms

Fixing the values of the counterterms in simple single U(1) models like the one we are reviewing,
allows to gain some insight into the possible solutions of the gauge invariance conditions on the
Lagrangian. The numerical values of the counterterms appearing in the second line of Fig. 6.1 are
fixed by such conditions, giving

CBYY = −1
6

qB
Q +

4
3

qB
uR

+
1
3

qB
dR
− 1

2
qB

L + qB
eR

,

CYBB = −(qB
Q)

2 + 2(qB
ur
)2 − (qB

dR
)2 + (qB

L)
2 − (qB

eR
)2,

CBBB = −6(qB
Q)

3 + 3(qB
uR
)3 + 3(qB

dR
)3 − 2(qB

L)
3 + (qB

eR
)3,

CBgg =
1
2
(−2qB

Q + qB
dR

+ qB
uR
),

CBWW =
1
2
(−qB

L − 3qB
Q). (6.3.17)

They are, respectively, the counterterms for the cancellation of the mixed anomaly U(1)BU(1)2
Y

and U(1)YU(1)2
B; the counterterm for the BBB anomaly vertex or U(1)3

B anomaly, and those of the
U(1)BSU(3)2 and U(1)BSU(2)2 anomalies. They are defined in the Appendix. From the Yukawa
couplings we get the following constraints on the U(1)B charges

qB
Q − qB

d − qB
dR

= 0 qB
Q + qB

u − qB
uR

= 0 qB
L − qB

d − qB
eR

= 0. (6.3.18)
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Using the equations above, we can eliminate some of the charges in the expression of the counterterms,
obtaining

CBYY =
1
6
(3qB

L + 9qB
Q + 8∆qB),

CYBB = 2
[
qB

d (q
B
L + 3qB

Q) + 2∆qB(qB
d + qB

Q) + (∆qB)2
]

,

CBBB = (qB
L − qB

d )
3 + 3(qB

d + qB
Q + ∆qB)3 + 3(qB

Q − qB
d )

3 − 2(qB
L)

3 − 6(qB
Q)

3,

CBgg =
∆qB

2
,

CBWW =
1
2
(−qB

L − 3qB
Q). (6.3.19)

The equations above parametrize, in principle, an infinite class of models whose charge assignments
under U(1)B are arbitrary, with the charges in the last column of Tab. (6.1) taken as their free paramet-
ers. The coupling of the axion to the corresponding gauge bosons can be fixed by a complete solution
to the anomaly constraints, which may provide us with an insight into the possible mechanisms of
misalignment that could take place at both the electroweak and at the QCD phase transitions.

6.3.4 Choice of the charges

Due to the presence, in general, of a nonvanishing mixed anomaly of the U(1)B gauge factor with
both SU(2) and SU(3), the Stueckelberg axion of the model has interactions with both the strong
and the weak sectors, which both support instanton solutions, and therefore could acquire a mass
non-perturbatively both at the electroweak and at the QCD phase transitions. In this case we take
into account the possibility of having sequential misalignments, with the largest contribution to the
mass coming from the latter. Obviously, for a choice of charges characterized by ∆q = 0, in which both
doublets of the Higgs sector Hu and Hd carry the same charge under U(1)B, the axion mass will not
acquire any instanton correction at the QCD phase transition. In this case the potential responsible
for Higgs-axion mixing would vanish. In this scenario a solution to the anomaly equations with a
vanishing electroweak interaction of the Stueckelberg can be obtained by choosing qB

L = −3qB
Q.

If instead the charges are chosen in a way to have both non-vanishing weak (CBWW) and strong
(CBgg) counterterms, it is reasonable to expect that the misalignment of the axion potential will be
sequential, with a tiny mass generated at the electroweak phase transition, followed by a second
misalignment induced at the strong phase transition. The instanton configurations of the weak and
strong sectors will be contributing differently to the mass of the physical axion. However, due to the
presence of a coupling of this field with the strong sector, its mass will be significantly dominated by
the QCD phase transition, as in the Peccei-Quinn case.
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6.3.5 The scalar sector

The scalar sector of the anomalous abelian models is characterized, as already mentioned, by the
ordinary electroweak potential of the SM involving, in the simplest formulation, two Higgs doublets
VPQ(Hu, Hd) plus one extra contribution, denoted as VP/Q/(Hu, Hd, b) - or V ′ (PQ breaking) in [43] -
which mixes the Higgs sector with the Stueckelberg axion b, needed for the restoration of the gauge
invariance of the effective Lagrangian

V = VPQ(Hu, Hd) + VP/Q/(Hu, Hd, b). (6.3.20)

The appearance of the physical axion in the spectrum of the model takes place after the phase-
dependent terms - here assumed to be of non-perturbative origin and generated at a phase transition -
find their way in the dynamics of the model and induce a curvature on the scalar potential. The mixing
induced in the CP-odd sector determines the presence of a linear combination of the Stueckelberg field
b and of the Goldstones of the CP-odd sector which acquires a tiny mass. From (6.3.20) we have a first
term

VPQ = µ2
uH†

u Hu + µ2
dH†

d Hd + λuu(H†
u Hu)

2 + λdd(H†
d Hd)

2 − 2λud(H†
u Hu)(H†

d Hd) + 2λ′ud|HT
u τ2Hd|2

(6.3.21)

typical of a two-Higgs doublet model, to which we add a second PQ breaking term

VP/Q/ = λ0(H†
u Hde−igB(qu−qd)

b
2M ) + λ1(H†

u Hde−igB(qu−qd)
b

2M )2 + λ2(H†
u Hu)(H†

u Hde−igB(qu−qd)
b

2M ) +

λ3(H†
d Hd)(H†

u Hde−igB(qu−qd)
b

2M ) + h.c. (6.3.22)

These terms are allowed by the symmetry of the model and are parameterized by one dimensionful
(λ0) and three dimensionless couplings (λ1, λ2, λ3). Their values are weighted by an exponential factor
containing as a suppression the instanton action. In the equations below we will rescale λ0 by the

electroweak scale v =
√

v2
u + v2

d (λ0 ≡ λ̄0v) so as to obtain a homogeneous expression for the mass
of χ as a function of the relevant scales of the model which are, besides the electroweak vev v the
Stueckelberg mass M and the anomalous gauge coupling of the U(1)B, gB.

The gauging of an anomalous symmetry has some important effects on the properties of this
pseudoscalar, first among all the appearance of independent mass and couplings to the gauge fields.
This scenario allows then a wider region of parameter space in which one could look for such particles
[44, 46, 49], rendering them "axion-like particles" rather than usual axions. We will still refer to them as
axions for simplicity. So far only two complete models have been put forward for a consistent analysis
of these types of particles, the first one non-supersymmetric [43] and a second one supersymmetric
[51].
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6.3.6 The potential for a generic Stueckelberg mass

The physical axion χ emerges as a linear combination of the phases of the various complex scalars
appearing in combination with the b field. To illustrate the appearance of a physical direction in the
phase of the extra potential, we focus our attention on just the CP-odd sector of the total potential,
which is the only one that is relevant for our discussion. The expansion of this potential around the
electroweak vacuum is given by the parameterization

Hu =

(
H+

u

vu + H0
u

)
Hd =

(
H+

d

vd + H0
d

)
. (6.3.23)

where vu and vd are the two vevs of the Higgs fields. This potential is characterized by two null
eigenvalues corresponding to two neutral Nambu-Goldstone modes (G1

0 , G2
0) and an eigenvalue

corresponding to a massive state with an axion component (χ). In the (ImH0
d , ImH0

u, b) CP-odd basis
we obtain the following normalized eigenstates

G1
0 =

1√
v2

u + v2
d

(vd, vu, 0)

G2
0 =

1√
g2

B(qd − qu)2v2
dv2

u + 2M2
(
v2

d + v2
u
)
− gB(qd − qu)vdv2

u√
v2

u + v2
d

,
gB(qd − qu)v2

dvu√
v2

d + v2
u

,
√

2M
√

v2
u + v2

d


χ =

1√
g2

B(qd − qu)2v2
uv2

d + 2M2(v2
d + v2

u)

(√
2Mvu,−

√
2Mvd, gB(qd − qu)vdvu

)
(6.3.24)

and we indicate with Oχ the orthogonal matrix which allows to rotate them to the physical basisG1
0

G2
0

χ

 = Oχ

ImH0
d

ImH0
u

b

 , (6.3.25)

which is given by

Oχ =


vd
v

vu
v 0

− gB(qd−qu)vdv2
u

v
√

g2
B(qd−qu)2v2

dv2
u+2M2v2

gB(qd−qu)v2
dvu

v
√

g2
B(qd−qu)2v2

dv2
u+2M2v2

√
2Mv√

g2
B(qd−qu)2v2

dv2
u+2M2v2

√
2Mvu√

g2
B(qd−qu)2v2

uv2
d+2M2v2

−
√

2Mvd√
g2

B(qd−qu)2v2
uv2

d+2M2v2

gB(qd−qu)vdvu√
g2

B(qd−qu)2v2
uv2

d+2M2v2

 (6.3.26)

where v =
√

v2
u + v2

d.
χ inherits WZ interaction since b can be related to the physical axion χ and to the Nambu-Goldstone
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modes via this matrix as

b = Oχ
13G1

0 + Oχ
23G2

0 + Oχ
33χ, (6.3.27)

or, conversely,

χ = Oχ
31ImHd + Oχ

32ImHu + Oχ
33b. (6.3.28)

Notice that the rotation of b into the physical axion χ involves a factor Oχ
33 which is of order v/M.

This implies that χ inherits from b an interaction with the gauge fields which is suppressed by a scale
M2/v. This scale is the product of two contributions: a 1/M suppression coming from the original
Wess-Zumino counterterm of the Lagrangian (b/MFF̃) and a factor v/M obtained by the projection of
b into χ due to Oχ.
The direct coupling of the axion to the physical gauge bosons via the Wess-Zumino counterterms
is obtained by the usual rotation to the mass eigenstates which can be obtained from the rotation
matrix OA defined in (6.3.15). The final expression of the coupling of the axi-Higgs to the photon
gχγγχFγ F̃γ, is defined by a combination of matrix elements of the rotation matrices OA and Oχ.
Defining g2 = g2

2 + g2
Y, the expression of this coefficient can be derived in the form

gχ
γγ =

gBg2
Yg2

2
32π2Mg2 Oχ

3 3 ∑
f

(
−qB

f L + qB
f R

(
qY

f R

)2
− qB

f L

(
qY

f L

)2
)

. (6.3.29)

Notice that this expression is cubic in the gauge coupling constants, since factors such as g2/g and
gY/g are mixing angles while the factor 1/π2 originates from the anomaly. Therefore one obtains a
general behaviour for gχ

γγ of O(g3v/M2), with charges which are, in general, of order unity.

6.3.7 Periodicity of the extra potential

Equivalently, it is possible to reobtain the results above by an analysis of the phases of the extra
potential, which shows how this becomes periodic in χ, the axi-Higgs. This approach shows also
quite directly the gauge invariance of χ as a physical pseudoscalar. In fact, if we opt for a polar
parametrization of the neutral components in the broken phase

H0
u =

1√
2

(√
2vu + ρ0

u(x)
)

ei F0
u (x)√
2vu H0

d =
1√
2

(√
2vd + ρ0

d(x)
)

e
i

F0
d (x)
√

2vd , (6.3.30)

where we have introduced the two phases Fu and Fd of the two neutral Higgs fields, information on
the periodicity is obtained by combining all the phases of V ′

θ(x) ≡ gB(qd − qu)

2M
b(x)− 1√

2vu
F0

u(x) +
1√
2vd

F0
d (x). (6.3.31)
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Using the matrix Oχ to rotate on the physical basis of the CP-odd scalar sector, the phase describing the
periodicity of the potential turns out to be proportional to the physical axion χ, modulo a dimensionfull
constant (σχ)

θ(x) ≡ χ(x)
σχ

, (6.3.32)

where we have defined
σχ ≡

2vuvd M√
g2

B(qd − qu)2v2
dv2

u + 2M2(v2
d + v2

u)
. (6.3.33)

Notice that σχ, in our case, takes the role of fa of the PQ case, where the angle of misalignment is
identified by the ratio a/ fa, with a the PQ axion.
As already mentioned, the re-analysis of the V ′ potential is particularly useful for proving the gauge
invariance of χ under a U(1)B infinitesimal gauge transformation with gauge parameter αB(x). In this
case one gets

δHu = − i
2

qugBαBHu

δHd = − i
2

qdgBαBHd

δFu
0 = − vu√

2
qugBαB

δFd
0 = − vd√

2
qdgBαB

δb = −M− SαB (6.3.34)

giving for (6.3.32) δθ = 0. The gauge invariance under U(1)Y can also be easily proven using the
invariance of the Stueckelberg field b under the same gauge group, sand the fact that the hypercharges
of the two Higgses are equal. Finally, the invariance under SU(2) is obvious since the linear combina-
tion of the phases that define θ(x) are not touched by the transformation.
From the Peccei-Quinn breaking potential we can extract the following periodic potential

V ′ =4vuvd
(
λ2v2

d + λ3v2
u + λ0

)
cos

(
χ

σχ

)
+ 2λ1v2

uv2
d cos

(
2

χ

σχ

)
, (6.3.35)

with a mass for the physical axion χ given by

m2
χ =

2vuvd

σ2
χ

(
λ̄0v2 + λ2v2

d + λ3v2
u + 4λ1vuvd

)
≈ λv2. (6.3.36)

The size of the potential is driven by the combined product of non-perturbative effects, due to the
exponentially small parameters (λ̄0, λ1, λ2, λ3), with the electroweak vevs of the two Higgses. Notice
also the irrelevance of the Stueckelberg scale M in determining the value of σχ ∼ O(v) and of mχ near
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the transition region, due to the large suppression factor λ in Eq. (6.5.16). One point that needs to be
stressed is the fact that at the electroweak epoch the angle of misalignment generated by the extra
potential is parameterized by χ/σχ, while the interaction of the physical axion with the gauge fields is
suppressed by M2/v. This feature is obviously unusual, since in the PQ case both scales reduce to a
single scale, the axion decay constant fa.

6.3.8 The Yukawa couplings and the axi-Higgs

The Yukawa couplings determine an interaction of the axi-Higgs to the fermions. This interaction
is generated by the rotation in the CP-odd sector of the scalars potential, which mixes the CP-odd
components, with the inclusion of the Stueckelberg b, via the matrix Oχ. The Yukawa couplings of the
model are given by

Lunit.
Yuk = −Γd Q̄HddR − Γd d̄RH†

d Q− Γu Q̄L(iσ2H∗u)uR − Γu ūR(iσ2H∗u)
†QL

−Γe L̄HdeR − Γe ēRH†
d L

= −Γd d̄H0
d PRd− Γd d̄H0∗

d PLd− Γu ūH0∗
u PRu− Γu ūH0

uPLu

−Γe ēH0
d PRe− Γe ēH0∗

d PLe, (6.3.37)

where the Yukawa coupling constants Γd, Γu and Γe run over the three generations, i.e. u = {u, c, t},
d = {d, s, b} and e = {e, µ, τ}. Rotating the CP-odd and CP-even neutral sectors into the mass
eigenstates and expanding around the vacuum one obtains

H0
u =vu +

ReH0
u + i ImH0

u√
2

=vu +
(h0 sin α− H0 cos α) + i

(
Oχ

11G1
0 + Oχ

21G2
0 + Oχ

31χ
)

√
2

(6.3.38)

H0
d =vd +

ReH0
d + i ImH0

d√
2

=vd +
(h0 cos α + H0 sin α) + i

(
Oχ

12G1
0 + Oχ

22G1
0 + Oχ

32χ
)

√
2

(6.3.39)

where the vevs of the two neutral Higgs bosons vu = v sin β and vd = v cos β satisfy

tan β =
vu

vd
, v =

√
v2

u + v2
d. (6.3.40)
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The fermion masses are given by

mu = vuΓu, mν = vuΓν,

md = vdΓd, me = vdΓe, (6.3.41)

where the generation index has been suppressed. The fermion masses, defined in terms of the two
expectation values vu, vd of the model, show an enhancement of the down-type Yukawa couplings for
large values of tan β while at the same time the up-type Yukawa couplings get a suppression. The
couplings of the h0 boson to fermions are given by

LYuk(h0) = −Γd d̄LdR

(
cos α√

2
h0
)
− Γu ūLuR

(
sin α√

2
h0
)
− Γe ēLeR

(
cos α√

2
h0
)
+ c.c. (6.3.42)

The couplings of the H0 boson to the fermions are

LYuk(H0) = −Γd d̄LdR

(
sin α√

2
H0
)
− Γu ūLuR

(
−cos α√

2
H0
)
− Γe ēLeR

(
sin α√

2
H0
)
+ c.c. (6.3.43)

The interaction of χ with the fermions is proportional to the rotation matrix Oχ and to the mass of
the fermion. The decay of the axi-Higgs is driven by two contributions, the direct point-like WZ
interaction (χ/MFF̃) and the fermion loop. The amplitude can be separated in the form corresponding
to the two contributions from diagrams a) and b) of Fig. 6.2

Mµν(χ→ γγ) =Mµν
WZ +Mµν

f . (6.3.44)

The direct coupling related to the anomaly is given by the vertex shown in Fig. 6.2 a)

Mµν
WZ(χ→ γγ) = 4gχ

γγε[µ, ν, k1, k2] (6.3.45)

coming from the WZ counterterm χFγ F̃γ which gives a decay rate of the form

ΓWZ(χ→ γγ) =
m3

χ

4π
(gχ

γγ)
2. (6.3.46)

We remark that gχ
γγ is of O(g3v/M2), as derived from Eq. (6.3.29), with charges that have been chosen

of O(1).
It is

Comparative studies of the decay rate into photons for the axi-Higgs with the ordinary PQ axion
have been performed for a Stueckelberg scale confined in the TeV range and a mass of χ in the same
range expected for the PQ axion. The analysis shows that the total decay rate of χ into photons is of the
order Γχ ∼ 10−50 GeV, which is larger than the decay rate of the PQ axion in the same channel (10−60),
but small enough to be long- lived, with a lifetime larger than the age of the universe. We show in Fig.
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+

( a ) ( b )

Figure 6.2 Contributions to the χ → γγ decay. describing the anomaly contribution (a) and the interaction
mediated by the Yukava coupling in the fermion loop (b).
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Figure 6.3 Total decay rate of the axi-Higgs for several mass values. Here, for the PQ axion, we have chosen
fa = 1010 GeV.

6.3 the result of this study, where we compare predictions for the decay rate of the axi-Higgs into two
photons to that of the ordinary PQ axion.
The charge assignment of the anomalous model have been denoted as f (−1, 1, 4), where we have used
the convention

f (qB
QL

, qB
L , ∆qB) ≡ (qB

QL
, qB

uR
; qB

dR
, qB

L , qB
eR

, qB
u , qB

d ). (6.3.47)

These depend only upon the three free parameters qB
QL

, qB
L , ∆qB. The parametric solution of the anomaly

equations of the model f (qB
QL

, qB
L , ∆qB), for the particular choice qB

QL
= −1, qB

L = −1, reproduces the
entire charge assignment of a special class of intersecting brane models (see [58] and [61] and the
discussion in [49])

f (−1,−1, 4) = (−1, 0, 0,−1, 0,+2,−2). (6.3.48)

We refer to [41] for further details on these studies.
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6.4 Relic density for a low (∼ 1 TeV) Stueckelberg scale

The computation of the relic density for the Stueckelberg axi-Higgs can be performed as in
[42], adopting a low scale scenario, where the extra V ′ (6.3.35) potential which causes the vacuum
misalignment is generated around the electroweak scale.

One starts from the Lagrangian

S =
∫

d4x
√

g
(

1
2

χ̇2 − 1
2

m2
χΓχχ̇

)
, (6.4.1)

where Γχ is the decay rate of the axion, where the potential has been expanded around its minimum up
to quadratic terms. The same action can be derived from the quadratic approximation to the general
expression

S =
∫

d4xR3(t)
(

1
2

σ2
χ (∂αθ)2 − µ4 (1− cos θ)−V0

)
(6.4.2)

which, as just mentioned, is constructed from the expression of V ′ given in Eq. (6.3.35). Here µ ∼ v,
is the electroweak scale. We also set to zero other contributions to the vacuum potential (V0 = 0).
In a Friedmann-Robertson-Walker spacetime metric, with a scaling factor R(t), this action gives the
equation of motion

d
dt

[(
R3(t)(χ̇ + Γχ

)]
+ R3m2

χ(T) = 0. (6.4.3)

We will neglect the decay rate of the axion in this case and set Γχ ≈ 0. At this point, we are free to set
the scale at which the V ′ potential, which is of non-perturbative origin, is generated. Therefore it will
be zero above the electroweak scale (or temperature Tew), which will give mχ = 0 for T � Tew. The
general equation of motion derived from Eq. (6.4.3), introducing a temperature dependent mass, can
be written as

χ̈ + 3Hχ̇ + m2
χ(T)χ = 0, (6.4.4)

which allows as a solution a constant value of the misalignment angle θ = θi. The axion energy density
is given by

ρ =
1
2

χ̇2 +
1
2

m2
χχ2, (6.4.5)

which after a harmonic averaging, due to the periodic motion, gives

〈ρ〉 = m2
χ〈χ2〉. (6.4.6)
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By differentiating Eq. (6.4.5) and using the equation of motion in (6.4.4), followed by the averaging
Eq. (6.4.6) one obtains the relation

〈ρ̇〉 = 〈ρ〉
(
−3H +

ṁ
m

)
, (6.4.7)

with a mass which is time-dependent through its temperature T(t), while H(t) = Ṙ(t)/R(t) is the
Hubble parameter. One easily finds that the solution of this equation is of the form

〈ρ〉 = mχ(T)
R3(t)

(6.4.8)

which shows the decay of the energy density with an increasing space volume, valid even for a
T-dependent mass. The condition for the oscillations of χ to take place is that the the universe has to
be old at least as the the period of oscillation. Then the axion field starts oscillating and appears as
dark matter, otherwise θ is misaligned but frozen. This is the physical content of the condition

mχ(Ti) = 3H(Ti), (6.4.9)

which allows to identify the initial temperature of the coherent oscillation of the axion field χ, Ti, by
equating mχ(T) to the Hubble rate, taken as a function of temperature.
In the radiation era, the thermodynamics of all the components of the primordial state is entirely
determined by the temperature T, being the system at equilibrium. This is because the contents of the
early universe were in approximate thermal equilibrium, being the interaction rates of the constituents
were large compared to the interaction rates H.
Pressure and entropy are then just given as a function of the temperature

ρ = 3p =
π2

30
g∗,TT4

s =
2π2

45
g∗,S,TT3. (6.4.10)

Combined with the Friedmann equation they allow to relate the Hubble parameter and the energy
density

H =

√
8
3

πGNρ, (6.4.11)

with GN = 1/M2
P being the Newton constant and MP the Planck mass. The number density of axions

nχ decreases as 1/R3 with the expansion, as does the entropy density s ≡ S/R3, where S indicates the
comoving entropy density, which remains constant in time, leaving the ratio Ya ≡ nχ/s conserved. An
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important variable is the abundance of χ at the temperatire of oscillations Ti, which is defined as

Yχ(Ti) =
nχ

s

∣∣∣∣
Ti

. (6.4.12)

. At the beginning of the oscillations the total energy density is just the potential one

ρχ = nχ(Ti)mχ(Ti) = 1/2m2
χ(Ti)χ

2
i , (6.4.13)

giving for the initial abundance at T = Ti

Yχ(Ti) =
1
2

mχ(Ti)χ
2
i

s
=

45mχ(Ti)χ
2
i

4π2g∗,S,TT3
i

(6.4.14)

where we have used the expression of the entropy given by Eq. (6.4.10). At this point, by inserting
the expression of ρ given in Eq. (6.4.10) into the expression of the Hubble rate as a function of density
given by Eq. (6.4.11), the condition for oscillation Eq. (6.4.9) allows to express the axion mass at T = Ti

in terms of the effective massless degrees of freedom evaluated at the same temperature

mχ(Ti) =

√
4
5

π3g∗,Ti

T2
i

MP
. (6.4.15)

This gives for Eq. (6.4.14) the expression

Yχ(Ti) =
45σ2

χθ2
i

2
√

5πg∗,Ti Ti MP
, (6.4.16)

where we have expressed χ in terms of the angle of misalignment θi at the temperature when oscil-
lations start. Notice that we are assuming that θi = 〈θ〉 is the zero mode of the initial misalignment
angle after an averaging.
g∗,T = 110.75 is the number of massless degrees of freedom of the model at the electroweak scale.
Using the conservation of the abundance Ya0 = Ya(Ti), the expression of the contribution to the relic
density is given by

Ωmis
χ =

nχ

s

∣∣∣∣
Ti

mχ
s0

ρc
. (6.4.17)

To evaluate (6.4.17) we need the values of the critical energy density (ρc) and the entropy density today,
which are estimated as

ρc = 5.2 · 10−6GeV/cm3 s0 = 2970 cm−3, (6.4.18)

with θ ' 1. Given these values, the relic density as a function of tan β = vu/vd, the ratio of the two
Higgs vevs, is given in Fig. 6.4. In this plot we have varied the oscillation mass and plotted the relic
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densities as a function of this variable. The variation of vu has been constrained to give the values of
the masses of the electroweak gauge bosons, via an appropriate choice of tan β.
For instance, if we assume a temperature of oscillation of Ti = 100 GeV, an upper bound for the
axi-Higgs mass, which allows the oscillations to take place, is mχ(Ti) ≈ 10−5eV, with g∗,T ≈ 100.
In order to specify σχ we have assumed a value of 1 TeV for the Stueckelberg mass MS, with a
gauge coupling of the anomalous Bµ, gB ≈ 1, and we have taken (qu, qd) of order unity, obtaining
σχ ' 102 GeV. As we lower the oscillation temperature (and hence the mass), the corresponding
curves for Ωχ are down-shifted.
The plot shows that the values of these relic densities at current time are basically vanishing and these
small results are to be attributed to the value of σχ, which is bound to vary around the electroweak
scale. We remind that in the PQ case σχ is replaced by the large scale fa at the QCD phase transition,
which determines an enhancement of Ωχ respect to the current case.
As already mentioned, nonperturbative instanton effects at the electroweak scale are expected to vastly
suppress the mass of the axi-Higgs, as derived in (6.5.16), in the form

m2
χ ∼ Λ4

ew/v2, with Λ4
ew ∼ Exp(−2π/αw(v))v4 (6.4.19)

αW(v) being the weak charge at the scale v - which is indeed a rather small value since Exp(−2π/αw(v)) ∼
e−198. We will come back to this point in the next section, when discussing the possibility of raising
MS from the TeV range up to the GUT or Planck scales.
For this reason χ remains essentially a physical but frozen degree of freedom which may undergo
a significant (second) misalignment only at the QCD phase transition. The possibility of sequential
misalignments has been taken into account both in non supersymmetric [41] and in supersymmetric
models [42]. It is the presence of a coupling of the axion to the gluons, via the color/ U(1)B mixed
anomaly, that χ behaves, in this case, similar to a PQ axion. The misalignment is controlled by the peri-
odic potential generated at the QCD phase transition, being the first misalignment at the electroweak
scale irrelevant. In the absence of such mixed anomaly, χ could be classified as a quintessence axion,
contributing to the dark energy content of the universe.

We show in Fig. 6.5 results of a numerical study of Ωmish2 as a function of MS, expressed in units of
109 GeV. We show as a darkened area the bound coming from WMAP data [64], given as the average
value plus an error band, while the monotonic curve denotes the values of Ωmish2 as a function of MS.
It is clear that the relic density of χ can contribute significantly to the dark matter content only if the
Stueckelberg scale is rather large (∼ 107 GeV) and negligible otherwise.

In the next section we are going to address another scenario, where we will assume that the
Stueckelberg scale is around the Planck scale and the breaking of the symmetry which allows to
generate a periodic potential for the b fiels is taken at the GUT scale. This particular choice for
the location of the two scales, which is well motivated in a string/brane theory context, opens
up the possibility of having an ultra-light axion in the spectrum. The De Broglie wavelength of
this hypothetical particle would be around 10 kpc, which is what is required to solve the issues
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Figure 6.4 Relic density of the axi-Higgs as a function of tan β for several values of the mass of the axi-Higgs.

Figure 6.5 Relic density of the axi-Higgs as a function of M. The grey bar represents the measured value of
ΩDMh2 = 0.1123± 0.0035

in the modelling of the matter distribution at the sub-galactic scale, that we have discussed in the
introduction.

6.5 Stueckelberg models at the Planck/GUT scale and fuzzy dark matter

By raising the Stueckelberg mass near the Planck scale, the Stueckelberg construction acquires a
fundamental meaning since it can be directly related to the cancellation of a gauge anomaly generated
at the same scale [37]. As mentioned above, anomalous U(1) symmetries are quite generally present
in theories of intersecting branes. However, the very same structure emerges also in the low energy
limit of heterotic string constructions. At the same time, as shown in [43], even in the presence of
multiple anomalous abelian symmetries, only a single axion is necessary to cancel all anomalies,
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giving a special status to the Stueckelberg field. These considerations define a new context in which to
harbour such models. In this context, it is natural to try to identify a consistent formulation within an
ordinary gauge theory, by assuming that the axion emerges at the Planck scale MP, but it acquires a
mass at a scale below, which in our case is assumed to be the GUT scale. In this section therefore we
are going to consider an extension of the setup discussed in previous sections, under the assumption
that their dynamics is now controlled by two scales.

We will consider an E6 based model, derived from E8, which appeared in the heterotic string
construction of [65] with an E(8)× E(8) symmetry. After a compactification of six spatial dimensions
on a Calabi-Yau manifold [66] the symmetry is reduced to an E(6) GUT gauge theory. Other string
theory compactifications predict different GUT gauge structures, such as SU(5) and SO(10). The E6,
however, allows to realize a scenario where two components of dark matter are present, as we are
going to elaborate. Fermions are assigned to the 27 representation of E(6), which is anomaly-free.
Notice that in E(6) a PQ symmetry is naturally present, as shown in [40], which allows to have an
ordinary PQ axion, while at the same time it is a realistic GUT symmetry which can break to the SM.
This is the gauge structure to which one may append an anomalous U(1)X symmetry.
We consider a gauge symmetry of the form E6×U(1)X, where the gauge boson Bµ is in the Stueckelberg
phase. Bα is the gauge field of U(1)X and Bαβ ≡ ∂αBβ − ∂βBα the corresponding field strength, while
gB its gauge coupling. As already mentioned, the U(1)X carries an anomalous coupling to the fermion
spectrum.

The one-particle irreducible (1PI) effective Lagrangian of the theory at 1-loop level takes the form

L = LE6 + LSt + Lanom + LWZ, (6.5.1)

in terms of the gauge contribution of E6 (LE6), the Stueckelberg term LSt, the anomalous 3-point
functions Lanom, generated by the anomalous fermion couplings to the U(1)X gauge boson, and the
Wess-Zumino counterterm (WZ) LWZ. The Stueckelberg interaction to the E6 gauge Lagrangian

LE6 = −
1
4

F(E6) µνF(E6)
µν , (6.5.2)

which enables us to write the Stueckelberg part of the lagrangian as

LStueck = −
1
4

BαβBαβ − 1
2
(MBα − ∂αb(x))2. (6.5.3)

In this final form, M is the mass of the Stueckelberg gauge boson associated with U(1)X which we can
be taken of the order of the Planck scale, guaranteeing the decoupling of the axion around MGUT, due
to the gravitational suppression of the WZ counterterms. The WZ contribution is the combination of
two terms

LWZ = c1
b
M

F(E6) µνF(E6) ρσεµνρσ + c2
b
M

BµνBρσεµνρσ (6.5.4)

needed for the cancellation of the U(1)XE6E6 and U(1)3
X anomalies, for appropriate values of the
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numerical constants c1 and c2, fixed by the charge assignments of the model. The three chiral familes
will be assigned under E(6)×U(1)X respectively to

27X1 27X2 27X3 , (6.5.5)

in which the charges Xi (i = 1, 2, 3) are free at the moment, while the cancellation of the U(1)3
X and

E6 ×U(1)2
X anomalies implies that

3

∑
i=1

X3
i = 0,

3

∑
i=1

Xi = 0. (6.5.6)

These need to be violated in order to compensate with a Wess-Zumino term for the restoration of the
gauge symmetry of the action.
Concerning the scalar sector, this contains two 351Xi (i = 1, 2) irreducible representations, where the
U(1)X charges Xi need to be determined. The 351 is the antisymmetric part of the Kronecker product
27⊗ 27 where 27 is the defining representation of E(6). The 351X can be conveniently described by the
2-form Aµν = −Aνµ with µ, ν = 1 to 27. The most general renormalizable potential in LE6 is expressed
in terms of A(1)

µν and A(2)
µν of U(1)X of charges x1 and x2 respectively. If we denote the 27Xi of Eq.(6.5.5)

by Ψµ with µ = 1 to 27 then the full Lagrangian including the potential V, has an invariance under the
global symmetry

A(1)
µν → eiθ A(1)

µν A(2)
µν → eiθ A(2)

µν Ψµ → e−(
1
2 iθ)Ψµ. (6.5.7)

This is identifiable as a Peccei-Quinn symmetry which is broken at the GUT scale when E(6) is broken
to SU(5) [40]. This axionic symmetry can be held responsible for solving the strong CP problem. We
couple A(1)

µν to the fermion families (27)Xi i = 1, 2, 3. We choose in Eq. (6.5.5), e.g. X1 = X2 = X3 = +1,
with the X-charge of A(1) fixed to X = −2. The second scalar representation A(2) is decoupled from
the fermions, with an X−charge for A(2) which is arbitrary and taken for simplicity to be X = +2.
The potential is expressed in terms of three E6 ×U(1)X invariant components,

V = V1 + V2 + Vp, (6.5.8)

where
V1 = F(A(1), A(1)) V2 = F(A(2), A(2)), (6.5.9)

with V1 and V2 denoting the contributions of (351)−2 and (351)+2, expressed in terms of the function
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[40]

F(A(i), A(j)) = M2
GUT A(i)

µν
¯A(j)µν

+ h1 (A(i)
µν

¯A(j)µν
)2 + h2 A(i)

µν Āνσ A(i)
στ Āτµ

+ h3 dµνλdξηλ A(i)
µσ A(i)

ντ
¯A(j)ξσ ¯A(j)ητ

+ h4 dµναdστβdξηαdλρβ A(i)
µσ A(i)

ντ
¯A(j)ξλ ¯A(j)ηρ

+ h5 dµναdσβγdξηβdλαγ A(i)
µσ A(i)

ντ
¯A(j)ξλ ¯A(j)ητ

+ h6 dµναdστβdαβγdγζξdξηζdλρχ A(i)
µσ

¯A(j)ξλ
A(i)

ντ
¯A(j)ηρ

, (6.5.10)

in which dαβγ with α, β, γ = 1 to 27 is the E(6) invariant tensor.
As for the two Higgs doublet model discussed in the previous sections, also in this case we are allowed
to introduce a periodic potential on the basis of the underlying gauge symmetry, of the form

Vp = M2
GUT A(1)

µν
¯A(2)µν

e−i4 b
MS + e−i8 b

MS

[
(h1 (A(1)

µν
¯A(2)µν

)2 + h2 A(1)
µν

¯A(2)νσ
A(1)

στ
¯A(2)τµ

+ h3 dµνλdξηλ A(1)
µσ A(1)

ντ
¯A(2)ξσ ¯A(2)ητ

+ h4 dµναdστβdξηαdλρβ A(1)
µσ A(1)

ντ
¯A(2)ξλ ¯A(2)ηρ

+ h5 dµναdσβγdξηβdλαγ A(1)
µσ A(1)

ντ
¯A(2)ξλ ¯A(2)ητ

+ h6 dµναdστβdαβγdγζξdξηζdλρχ A(1)
µσ

¯A(2)ξλ
A(1)

ντ
¯A(2)ηρ

]
+ h.c. (6.5.11)

and which becomes periodic at the GUT scale after symmetry breaking, similarly to the case considered
in [41, 42]. This potential is expected to be of nonperturbative origin and generated at the scale of the
GUT phase transition. Also in this case the size of the contributions in Vp, generated by instanton
effects at the GUT scale, are expected to be exponentially suppressed. However, the size of the
suppression is related to the value of the gauge coupling at the corresponding scale.

6.5.1 The periodic potential

The breaking of the E6 ×U(1)X symmetry at MGUT can follow different routes such as E(6) ⊃
SU(3)C × SU(3)L × SU(3)H where

(351) = (1, 3∗, 3) + (1, 3∗, 6∗) + (1, 6, 3) + (3, 3, 1) + (3, 6∗, 1) + (3, 3, 8) +

(3∗, 1, 3∗) + (3∗, 1, 6) + (3∗, 8, 3∗) + (6∗, 3, 1) + (6, 1, 3∗) + (8, 3∗, 3) (6.5.12)

of which the colour singlets are only the 45 states for each of the two (351)Xi

(1, 3∗, 3)Xi (1, 3∗, 6∗)Xi (1, 6, 3)XI i = 1, 2. (6.5.13)
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One easily realizes that there are exactly nine colour-singlet SU(2)L-doublets in the (351
′
)−2 and 9

in the (351
′
)+2, that we may denote as H(1)

j , H(2)
j , with j = 1, 2 . . . 9, which appear in the periodic

potential in the form

Vp ∼
12

∑
j=1

λ0M2
GUT(H(1)†

j H(2)
j e−4igB

b
MS ) +

12

∑
j,k=1

[
λ1(H(1)†

j H(2)
j e−i4gB

b
MS )2 + λ2(H(1)†

i Hi)(H(1)†
i H(2)

j e−i4gB
b

MS )

+λ3(H(2)†
k H(2)

k )(H(1)†
j H(2)

k e−i4gB
b

MS )

]
+ h.c., (6.5.14)

where we are neglecting all the other terms generated from the decomposition (6.5.12) which will not
contribute to the breaking. The assumption that such a potential is instanton generated at the GUT
scale, with parameters λi’s induces a specifc value of the instanton suppression which is drastically
different from the case of a Stueckelberg scale located at TeV/multi TeV range.

For simplicity we will consider only a typical term in the expression above, involving two neutral
components, generically denoted as H(1) 0 and H(2) 0, all the remaining contributions being similar.
In this simplified case the axi-Higgs χ is generated by the mixing of the CP odd components of two
neutral Higgses. The analysis follows rather closely the approach discussed before, in the simplest
two-Higgs doublet model, which defines the template for such constructions.
Therefore, generalizing this procedure, the structure of Vp after the breaking of the E6 × U(1)X

symmetry can be summarised in the form

Vp ∼v1v2
(
λ2v2

2 + λ3v2
1 + λ0M2

GUT
)

cos
(

χ

σχ

)
+ λ1v2

1v2
2 cos

(
2

χ

σχ

)
, (6.5.15)

with a mass for the physical axion χ given by

m2
χ ∼

2v1v2

σ2
χ

(
λ̄0v2

1 + λ2v2
2 + λ3v2

1 + 4λ1v1v2
)
≈ λv2 (6.5.16)

with v1 ∼ v2 ∼ v ∼ MGUT. Assuming that MS, the Stueckelberg mass, is of the order of MPlanck and
that the breaking of the E6 ×U(1)X symmetry takes place at the GUT scale MGUT ∼ 1015 GeV, (e.g.
v1 ∼ v2 ∼ MGUT) then

σχ ∼ MGUT +O(M2
GUT/M2

Planck), m2
χ ∼ λ0M2

GUT, (6.5.17)

where all the λi’s in Vp are of the same order. The potential Vp being generated by the instanton sector,
the size of the numerical coefficients appearing in its expression are constrained to specific values.
One obtains λ0 ∼ e−2π/α(MGUT), with the value of the coupling 4πg2

B = αGUT fixed at the GUT scale. If
we assume that 1/33 ≤ αGUT ≤ 1/32, then e−201 ∼ 10−91 ≤ λ0 ≤ e−205 ∼ 10−88, and the mass of the
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axion χ takes the approximate value

10−22 eV < mχ < 10−20 eV, (6.5.18)

which contains the allowed mass range for an ultralight axion, as discussed in recent analysis of the
astrophysical constraints on this type of dark matter [36].

6.5.2 Detecting ultralight axions

One of the interesting issues on which future research has to concentrate concerns the possibility of
suggesting new ways for detecting such specific class of particles. Several proposals for the detection
of generic ultralight bosons [67, 68, 69] in the astrophysical context have been recently presented.
For instance, it has been observed that light boson fields around spinning black holes can trigger
superradiant instabilities, which can be strong enough to imprint gravitational wave detection. This
could be used to set constraints on their masses and couplings. Other proposals [70] have suggested
to use the precise astronomical ephemeris as a way to detect such a light dark matter, as celestial solar
system bodies feel the dark matter wind which acts as a resistant force opposing their motions. The
bodies feel the dark matter wind because our solar system moves with respect to the rest frame of
the dark matter halo, so that the scattering off the dark matter acts as a resistant force opposing their
motions.
It is at the moment an open issue, from our perspective, how to distinguish between the various
proposals that have been put forward in the recent literature. The models that we have presented
are, however, very specific, since they are accompanied by a well defined gauge structure and are, as
such, susceptible of in depth analysis. We should also mention that another specific property of such
models is their interplay with the flavour sector, especially the neutrino sector, together with their
impact on leptogenesis and SO(10) grand unification. This would allow to establish a possible link
between the neutrino mass spectrum and the axion mass and would be an intermediate step to cover
prior to a discussion of the general astrophysical suggestions for their detections mentioned above.
An in-depth analysis of some of these issues is underway.

6.6 Conclusions

The invisible axion owes its origin to a global U(1)PQ (Peccei-Quinn, PQ) symmetry which is
spontaneously broken in the early universe and explicitly broken to a discrete ZN symmetry by
instanton effects at the QCD phase transition [71]. The breaking occurs at a temperature TPQ below
which the symmetry is nonlinearly realized. Two distinctive features of an axion solution - as derived
from the original Peccei-Quinn (PQ) proposal [23] and its extensions [72, 73, 56, 55]- such as a) the
appearance of a single scale fa ( fa ∼ 1010− 1012 GeV) which controls both their mass and their coupling
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to the gauge fields, via an a(x)FF̃ operator, where a(x) is the axion field and b) their non-thermal
decoupling at the hadron phase transition, attributed to a mechanism of vacuum misalignment. The
latter causes axions to be a component of cold rather than hot dark matter, even for small values of
their mass, currently expected to be in the µeV-meV range.

The gauging of an abelian anomalous symmetry brings in a generalization of the PQ scenario. As
extensively discussed in [44, 45, 46, 47, 48, 49] it enlarges the parameter space for the corresponding
axion. This construction allows to bypass the mass/coupling relation for ordinary PQ axions, which
has been often softened in various analyses of "axion-like particles" [74].

Original analyses of Stueckelberg models, motivated within the theory of intersecting branes,
where anomalous U(1)’s are present, have resulted in the identification of a special pseudoscalar
field, the Stueckelberg field b. Its mixing with the CP-odd scalar sector allows to extract one gauge
invariant component, called the axi-Higgs χ, whose mass and couplings to the gauge fields are model
dependent. If string theory via its numerous possible geometric (and otherwise) compactifications [36]
provides a natural arena where axion type of fields are ubiquitously present, then the possibility that
an ultralight axion of this type is a component of dark matter is quite feasible. As we have discussed,
its ultralight nature is a natural consequence of the implementation of the construction reflecting
the low energy structure of the heterotic string theory by involving two scales, the Planck and the
GUT scale. Given the mass of such axion, it is obvious that its search has to be inferred indirectly by
astrophysical observations.

In short, we have seen that Stueckelberg models with an axion provide a new perspective on an
old problem and allow to open up new directions in the search for the constituents of dark matter of
our universe.
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Chapter 7

Conformal Unification in a Quiver Theory
and Gravitational Waves

Introduction

The detection of a stochastic background of gravitational waves can reveal details about first-
order phase transitions (FOPTs) at a time of 10−13s of the early universe. We specifically discuss
quiver-type GUTs which avoid both proton decay and a desert hypothesis. A quiver based on SU(3)12

which breaks at a E = 4000 GeV to trinification SU(3)3 has a much larger (g∗ = 1, 272) number of
effective massless degrees of freedom than the Standard Model. Assuming a FOPT for this model, we
investigate the strain sensitivity of typical of this model for a wide range of FOPT parameters.
Since the discovery of gravitational waves from the merger of two black holes, each with mass
MBH ∼ 30 M�, announced as event GW150914 in 2016[75] by the LIGO-Virgo Collaboration, it
has become clear that this provides a new and invaluable window into the early universe. Many
subsequent similar observations have occurred and of special interest is one where two neutron stars
merger [76] where the event was shortly thereafter observed electromagnetically, thereby giving birth
to multi-messenger astronomy.

The conventional way of seeking new physics at the highest possible energies is by particle colliders,
with the highest energy of any active collider is at the LHC (Large Hadron Collider) with center of
mass (com) energy 14 TeV. Possible colliders with center of mass energies up to 100 TeV are under
discussion. In the early universe, such energy / temperature existed at cosmic times with t < 10−16 s.
To study higher energies or shorter cosmic times a method may be provided by gravitational wave
detectors(GWDs) which can, in principle, be sensitive to signals generated from all cosmic times back
to the Planck time t ∼ 10−44 s, which could lay bare 14 more orders of magnitude in energies up to the
Planck, MPlanck ∼ 1019 GeV [77].
In the present article, we more conservatively study energies up to a few TeV which may overlap with
accessible collider energies, yet where the detection of GWs could give additional information about
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the type of phase transitions which occurred in the early universe. The discovery in [75] has already
precipitated a number of papers (see, for instance, [78, 79, 80, 81, 82, 83, 84, 85, 86]) which discuss this
possibility. This process takes off from the analysis of binary mergers, which can shed light on the
quark-hadron phase transition [87], to far larger scales.
Although such experiments could eventually investigate phase transitions up to the GUT scale e.g.
1016 GeV, the earliest such linkage is likely to come at a much lower energy.
The advent of the AdS/CFT correspondence [88] between a maximally supersymmetric N = 4 gauge
theory with gauge group SU(N), in a limit where N → ∞, and a Type IIB superstring theory compac-
tified on a manifold AdS5 × S5, has introduced a hitherto unexpected connection between the two
interactions. This has provided a number of insights into solution of problems in a broad range of
theoretical physics.
To make a connection to particle phenomenology, it was then proposed that a generalisation of [88],
which broke supersymmetry completely from N = 4 to N = 0 with finite N, should be considered.
This was attained by using a generalised manifold AdS5 × S5/Zp, an orbifold, leading to a gauge
group SU(N)p and matter fields most conveniently characterised as bifundamental and adjoint rep-
resentations in a quiver diagram; hence the name quiver theory [89, 90, 91, 92].
One especially interesting example was discussed over a decade later [93, 94]. It uses the values p = 12
and N = 3 and gives rise to a theory which unifies at an unusually low energy scale E ' 4 TeV. Proton
decay is absent due to the quiver construction. The goal of this work is to introduce the analysis of
such models in a preliminary way, trying to uncover their possible impact on future GW research.
Given the significant interest in the detection of stochastic GWs, relics of the early universe, it is forsee-
able that such alternative scenarios to ordinary GUTs may draw the attention of new experimental
proposals in the near future by LIGO [95], ET [96][97], MAGIS [98], AEDGE [99] and LISA [100] [101].

7.1 The Quiver Model

We use a different strategy for unification of electroweak theory with QCD than in GUTs based
on SU(5) or SO(10). The choice of quiver is motivated by bottom-up considerations. The desert
with logarithmic running of couplings is abandoned. Instead, the standard SU(3)C × SU(2)L ×U(1)Y

gauge group is embedded in a semi-simple gauge group such as SU(3)p as suggested by gauge
theories arising from compactification of the IIB superstring on an orbifold AdS5× S5/Γ where Γ is the
abelian finite group Zp. In such non-supersymmetric quiver gauge theories the unification of couplings
occurs abruptly at µ = M through the diagonal embeddings of 321 in SU(3)p. The key prediction
of such unification shifts from proton decay to additional particle content, in the present model at
∼ 4 TeV. We use the RG β-functions from [102]. Taking the values at the Z-pole αY(MZ) = 0.0101,
α2(MZ) = 0.0338 and α3(MZ) = 0.118, they are taken to run between MZ and M according to the SM
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equations

αY(M) = (0.01014)−1 − (41/12π) ln(M/MZ)

= 98.619− 1.0876y (7.1.1)

α−1(M) = 0.0338)−1 + (19/12π) ln(M/MZ)

= 29.586 + 0.504y (7.1.2)

α−1(M) = (0.118)−1 + (7/2π) ln(M/MZ)

= 8.474 + 1.114y (7.1.3)

where y = log(M/MZ).

The scale at which
sin2 θ(M) = αY(M)/(α2(M) + αY(M)) (7.1.4)

satisfies sin2 θ(M) = 1/4 is at a value M ' 4 TeV.
We now focus on the ratio

R(M) ≡ α3(M)/α2(M). (7.1.5)

We find that

R(MZ) ' 3.5, R(M3) = 3, R(M5/2) = 5/2, R(M2) = 2 (7.1.6)

occur at the scales

M3 ' 400 GeV, M5/2 ' 4 TeV and M2 = 140 TeV. (7.1.7)

The proximity of M5/2 and M, accurate to a few percent, suggests strong-electroweak unification at
∼ 4 TeV. There remains the question of embedding such unification in an SU(3)p of the quiver type
discussed in the Introduction.
Since the required embeddings of SU(2)L ×U(1)Y into an SU(3) necessitates 3αY = αH, the ratios of
couplings at ' 4 TeV is

α3C : α3W : α3H :: 5 : 2 : 2 (7.1.8)

and thus it is natural to examine p = 12 with diagonal embeddings of Colour (C), Weak (W) and
Hypercharge (H) in SU(3)2, SU(3)5, SU(3)5, respectively.

To accomplish this we specify the embedding of Γ = Z12 in the global SU(4) R-parity of theN = 4
supersymmetry of the underlying theory.
Defining α = exp(2πi/12), this specification can be made by

4 ≡ (αA1 , αA2 , αA3 , αA4) with ∑ Aµ = 0 (mod 12) (7.1.9)
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and all Aµ 6= 0 so that all four supersymmetries are broken from N = 4 to N = 0.
Having specified Aµ we calculate the content of complex scalars by investigating in SU(4) the

6 ≡ (αa1 , αa2 , αa3 , α−a3 , α−a2 , α−a1) (7.1.10)

with
a1 = A1 + A2, a2 = A2 + A3, a3 = A3 + A1 (mod 12) (7.1.11)

where all quantities are defined (mod 12). Finally we identify the nodes as C, W or H on the dodeca-
hedral quiver such that the complex scalars

3

∑
i=1

12

∑
α=1

(Nα, N̄α+ai) (7.1.12)

are adequate to allow the required symmetry breaking to the SU(3)3 diagonal subgroup, and the
chiral fermions given by

4

∑
µ=1

12

∑
α=1

(
Nα, N̄α+Aµ

)
(7.1.13)

will be able to include the thee generations of fermions. These constraints are nontrivial but a solution
was provided in [93].
The unique solution is to adopt Aµ ≡ (1, 2, 3, 6) and for the quiver nodes take the ordering:

− C−W − H − C−W4 − H4− (7.1.14)

with the two ends of Eq.(7.1.14) identified to form a dodecahedral quiver.
With this choice the scalars are provided by AI = (3, 4, 5) and are sufficient to break all the diagonal
subgroups to

SU(3)C × SU(3)W × SU(3)H (7.1.15)

and the choice of quiver nodes in Eq. (7.1.14) generates precisely three quark lepton families which
transform under Eq.(7.3.15) as

3 [(3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3)] (7.1.16)

The ordering of the quiver nodes in Eq.(7.1.14) merits further explication.
The point is that breaking to a diagonal subgroup SU(3) from SU(3)r is possible if and only if all
the r nodes are connected by bifundamental scalars and no node is isolated. By trial and error, the
reader can become convinced that Eq.(7.1.14) is the unique choice which satisfies this highly restrictive
constraint.
Once the number of C, W and H nodes has been chosen in order that the three couplings accurately
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unify, there is generally no quiver diagram which will allow the required symmetry breaking.
We have found only very few successful examples, one of which is studied assiduously in this article.
The choice of gauge group and matter fields is far less arbitrary than it may seem at first sight. The
choice is unique, or nearly unique.
Anomaly freedom of the superstring guarantees that the only possible combination of chiral fermions is
as in Eq. (7.1.16). This fact makes it easier to confirm the occurrence of three familes in the complicated
quiver diagram because one needs to check only one of the three representations, for example the
colour triplets which all originate from C nodes.
Further breaking to the SM group gives the correct light chiral states. The couplings run up to E = M
and then become frozen for at least a finite energy range provided conformal invariance sets in as
expected by analogy with the supersymmetric case in [88].
At M ∼ 4TeV, there are many new particles predicted by this scenario: gauge bosons, fermions and
scalars. These are necessary to satisfy the conformal constraints discussed in [89].
This quiver model is interesting because it ameliorates the hierarchy problem in SU(5) and SO(10)
GUTs between the weak / Higgs mass scale and the GUT scale. It predicts correctly the value of
sin2 θ(MZ), of α3(MZ) and the appearance of exactly three families.
One final advantage is that the unification of the three SM couplings at M ∼ 4 TeV is very precise,
more accurate even than in SusyGUTs. This was shown, together with the robustness of the model, in
[93].
We believe grand unification at 4 TeV has no disadvantage relative to unification at a trillion times
higher scale, and has the advantage of avoiding the dubious desert hypothesis.
To clarify the quiver theory construction, we explain in more detail the case of the Z12 orbifold by
exhibiting the relevant quiver diagrams. In this case the quiver diagram is a dodecahedron, like a
clockface, with nodes labeled as indicated in Eq. (7.1.14).
Certain shortcuts make use of the symmetries of the quiver diagram and obviate including every
possible link which will make the diagram very dense with links and more difficult to understand.
Let us begin with the chiral fermions which are denoted by oriented arrows between two nodes.
The quarks can be counted by examining the C →W links and subtracting the W → C links, noting
that anomaly freedom dictates that the chiral fermions will necessarily appear only in the specific
combination of Eq. (7.1.16) and so no other C links need to be checked. The relevant quiver diagram is
shown in Fig. 1.

We see that there are five families and two antifamilies, resulting in precisely three light chiral families
as required. The family-antifamily pairs are not chiral, but vector-like, and can therefore acquire Dirac
masses.
Next we exhibit in Fig. 2 and Fig. 3 two further Z12 quiver diagrams which illustrate the scalar sector.
Complex scalars are denoted by unoriented dashed lines. We must ensure and check that there are
sufficient scalars whose VEVs can spontaneously break the SU(3)2

C down to SU(3)C, the SU(3)5
W
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Figure 7.1 Quiver diagram showing quark states.

down to SU(3)W and finally SU(3)5
H down to SU(3)H.

Figure 7.2 Scalar states which break SU(3)5
W

Figure 7.3 scalar states that break SU(3)5
H

To break any SU(3)n down to the diagonal subgroup, a necessary and sufficient condition is that the
bifundamental scalars link all n of the original gauge groups together. The SU(3) gauge groups cannot
be disconnected into subgroups nor can the bifundamental scalars separate into disconnected parts. In
Fig. 2 the breakings of SU(3)2

C down to SU(3)C and of SU(3)5
W down to SU(3)W are shown to satisfy

all these tight constraints so that the required spontaneous symmetry breaking is possible.
In Fig. 3 it is shown that the symmetry breaking SU(3)5

H down to SU(3)H also satisfies the same
unforgiving connectivity requirements.
We note that this symmetry breaking is very nontrivial and is what underlies the correct identification
of the nodes in Eq.(7.1.14), which is unique in allowing the required outcomes for both chiral fermions
and complex scalars.
In fact, for 4 TeV grand unification without a desert, the SU(3)12 construction appears to be unique
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when one insists that one arrives at three chiral families under trinification, and hence under the
Standard Model, as well as ensuring that correct symmetry breaking is permitted.
The GUT gauge group SU(3)12 has dimension 96 which is bigger than the dimensions 24 and 45 of
SU(5) and SO(10) respectively. This can be regarded as the price to pay to avoid the desert. The
wealth of additional state at 4TeV also changes the nature of the phase transition SU(3)12 → SU(3)3

which can generate the gravitational waves studied in the next section.

7.2 Gravitational Waves

In the presence of a cosmological FOPT a new phase begins to nucleate as the universe cools down,
with the region inside the bubbles containing the new phase. The latent free energy released detonates
the transition on the bubble wall. A scalar field acquires a vev in a state of true vacuum in the interior
of the bubble, and of false vacuum in the exterior, causing the expansion and the collision of the bubble
walls. This takes place at a specific nucleation temperature Tn, which can be determined only by a
combination of numerical simulations and an accurate study of the scalar potential, with the inclusion
of thermal effects. The transition stops when the bubbles occupy all the volume.
Clearly, one expects a driving potential derived from the scalar sector which, in the simplest examples,
is characterised by at least two separate scales. These scales identify the two local minima, separated
by a maximum of considerable height, in order to guarantee a state of false vacuum of the system at
the beginning of the nucleation phase [16, 17][103]. The presence of a false vacuum with a sufficient
amount of supercooling is a natural requirement for having a strongly FOPT. In turn, these qualitative
conditions point towards the possibility of having a significant emission of GWs.
As we have already mentioned, in the present quiver model, there is only one cosmological phase
transition at a scale above the electroweak scale, at an energy/temperature of 4 TeV. As we are going
to show, the quiver model allows a certain conformal scalar potential which breaks to trinification
SU(3)3, and that can be identified in its symmetry structure starting from its symmetry content.
Therefore, this breaking is expected to induce vacuum transitions, from a local metastable minimum
which is sufficiently trapped, to the true vacuum. We are going to describe it below. An additional
element which afftects the transition are thermal effects. As usual, they can be taken into account
by the inclusion of a Coleman-Weinberg term [104] VCW

E f f at one-loop level and a finite temperature
contribution [105] VT

E f f to arrive at an effective potential

VE f f = VTree
E f f + VCW

E f f + VT
E f f . (7.2.1)

This defines the most general class of effective potentials discussed [106, 107, 108].
In our case, if we denote by Φ (without labels) a generic scalar field taken from any of the groups of
scalar fields in Eq.(7.3.13), Eq.(7.3.16) and Eq.(7.3.18), the Coleman-Weinberg [104] term in the potential
VE f f is then
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VCW
E f f =

λ

4!
Φ4 +

λ2Φ4

256φ2

(
ln

Φ2

M2 −
25
5

)
(7.2.2)

The Dolan-Jackiw-Weinberg finite temperature correction in terms of our generic scalar field Φ can be
written [105, 109] as

VT
E f f =

π2T4

90
+

M2T2

24
− 1

12π
M3T − 1

64π2 M4 ln M2T2 +
c

64π2 M4 + O(M6/T2). (7.2.3)

from which the effective potential is given by Eq. (7.2.1). We will comment on the the structure of the
potential at zero temperature below.

7.3 Specific features of the quiver theory

Even in the absence of additional information about the way in which this transition takes place,
due to the complexity of the scalar sector of the model, and within the assumption of a strongly
FOPT, the goal of our analysis is to investigate the dependence of the GW emission on two peculiar
parameters of the model, which are its large number of massless degrees of freedom and the relatively
low transition temperature T ∼ 4 TeV.

We shall need g∗, the equivalent number of massless degrees degrees of freedom for the quiver theory,
defined by

g∗ = nB +
7
8

nF (7.3.1)

where nB, nF is the number for bosons, fermions respectively. It is easier to count g∗ before spontaneous
symmetry breaking, although of course the result is the same.
In the standard model with three families we have

nB(spin = 1) = 12× 2 = 24

nB(spin = 0) = 4

nF(spin = 1/2) = 3× 15× 2 = 90 (7.3.2)

so that in this case
g∗ = 28 +

7
8
(90) = 106.75 (7.3.3)

which will also be g∗ for the quiver theory at energies E < 4 TeV.
In our present SU(3)12 quiver theory we recall from the previous section that the scalars are in the
bifundamental representations
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3

∑
i=1

12

∑
α=1

(3α, 3̄α+ai) (7.3.4)

with a1 = 3, 4, 5, and the chiral fermions are in bifundamentals

4

∑
µ=1

12

∑
α=1

(
3α, 3̄α+Aµ

)
(7.3.5)

with Aµ = 1, 2, 3, 6.

The equivalent massless degrees of freedom are

nB(spin = 1) = 96× 2 = 192

nB(spin = 0) = 12× 9× 3 = 324

nF(spin = 1/2) = 12× 18× 4 = 864

(7.3.6)

so that for the full quiver theory

g∗ = 516 +
7
8
(864) = 1, 272 (7.3.7)

which is the number of effective massless degrees of freedom for E ≥ 4 GeV. In our present SU(3)12

quiver theory we recall from the previous section that the scalars are in the bifundamental representa-
tions

3

∑
i=1

12

∑
α=1

(3α, 3̄α±ai) (7.3.8)

with a1 = 3, 4, 5, and the chiral fermions are in bifundamentals

4

∑
µ=1

12

∑
α=1

(
3α, 3̄α+Aµ

)
(7.3.9)

with Aµ = 1, 2, 3, 6.
The equivalent massless degrees of freedom are

nB(spin = 1) = 96× 2 = 192

nB(spin = 0) = 12× 9× 3 = 324

nF(spin = 1/2) = 12× 18× 4 = 864 (7.3.10)
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so that for the full quiver theory

g∗ = 516 +
7
8
(864) = 1, 272 (7.3.11)

which is the number of effective massless degrees of freedom for E ≥ 4 GeV.
We pause for few remarks.
The nature of the phase transition depends on the effective potential of the theory. Eq.(7.3.8) exhibits
the scalars present in the quiver and the twelve nodes of the quiver are identified in Eq.(7.1.14). The
dodecahedral quiver has nodes which we label clockwise by 1 to 12 by Color(C), Weak (W) and
Hypercharge (H) as follows:

(1)C → (2)W → (3) H → (4)C → (5− 8)W → (9− 12) H (7.3.12)

We are initially concerned with the breaking SU(3)12 → SU(3)3 at scale E = 4 TeV. This can be studied
separately for C, W and H in Eq.(7.3.12).
Let us define lower-case Greek indices αi, βi, γi, δi . . . = 1, 2, 3 for the SU(3) group of the ith node and
discriminate between subscripts which represent defining representations and superscripts which
denote anti-defining representations.
From Eq. (7.3.12) the SM color gauge group arises from the diagonal subgroup of the SU(3)’s at
nodes 1 and 4 respectively, and this symmetry breaking is achieved by VEVs of the complex scalar
bifundamentals:

Φβ4
α1 and Φβ1

α4 (7.3.13)

In the effective potential at tree level there are quadratic and quartic terms involving the 1 to 4
bifundamentals as follows

V (C,Tree)
E f f = C(14)

2

(
Φβ4

α1 Φβ4
α1

)
+ C(14)

4

(
Φβ4

α1 Φβ4
α1

)2
+ C(14)′

4

(
Φβ4

α1 Φγ1
β4

Φδ4
γ1

Φα1
δ4

)
(7.3.14)

To break to the trinification group

SU(3)C × SU(3)W × SU(3)H (7.3.15)

a similar combination of bifundamental scalars conspire to arrive at diagonal subgroups for both the
five SU(3)W nodes and the five SU(3)H nodes respectively. Another intermediate symmetry-breaking
stage is where SU(3)W in Eq.(7.3.15) breaks to the SU(2)L of the SM, also SU(3)W × SU(3)H breaks
to the U(1)Y of the SM but for our analysis of gravitational radiation we shall focus only on a FOPT
where the quiver group SU(3)12 breaks at E = 4 TeV to the trinification group in Eq.(7.3.15).
For W we use scalars connecting nodes 2-5-6-7-8 and the relevant scalar bifundamentals in Eq.(7.3.8)
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are
Φβ5

α2 , Φβ6
α2 , Φβ7

α2 and Φβ8
α5 (7.3.16)

The corresponding quadratic and quartic terms in the tree-level effective potential composed of the
scalars in Eq.(7.3.16) are

V (W,Tree)
E f f = C(25678)

2

(
Φβ5

α2 Φα2
β5
+ Φβ6

α2 Φα2
β6
+ Φβ7

α2 Φα2
β7
+ Φβ8

α5 Φα5
β8

)
+C(25678)

4

(
Φβ5

α2 Φα2
β5
+ Φβ6

α2 Φα2
β6
+ Φβ7

α2 Φα2
β7
+ Φβ8

α5 Φα5
β8

)2

+C(25678)′

4

(
Φβ5

α2 Φγ2
β5

Φδ5
γ2

Φα2
δ5
+ Φβ6

α2 Φγ2
β6

Φδ6
γ2

Φα2
δ6

+Φβ7
α2 Φγ2

β7
Φδ7

γ2
Φα2

δ7
+ Φβ8

α5 Φγ5
β8

Φδ8
γ5

Φα5
δ8

)
(7.3.17)

For H we use scalars connecting nodes 3-9-10-11-12 and the relevant scalar bifundamentals in Eq.(7.3.8)
are.

Φβ10
α3 , Φβ11

α3 , Φβ12
α3 and Φβ12

α9 (7.3.18)

The corresponding quadratic and quartic terms in the tree-level effective potential composed of the
scalars in Eq.(7.3.18) are

V (H,Tree)
E f f = C(39101112)

2

(
Φβ10

α3 Φα3
β10

+ Φβ11
α3 Φα3

β11
+ Φβ12

α3 Φα3
β12

+ Φβ12
α9 Φα9

β12

)
+C(39101112)

4

(
Φβ10

α3 Φα3
β10

+ Φβ11
α3 Φα3

β11
+ Φβ12

α3 Φα3
β12

+ Φβ12
α9 Φα9

β12

)2

+C(39101112)′

4

(
Φβ10

α3 Φγ3
β10

Φδ10
γ3

Φα3
δ10

+ Φβ11
α3 Φγ3

β11
Φδ11

γ3
Φα3

δ11

+Φβ12
α3 Φγ3

β12
Φδ12

γ3
Φα3

δ12
+ Φβ12

α9 Φγ9
β12

Φδ12
γ9

Φα9
δ12

)
(7.3.19)

Because the quiver theory above 4 TeV is conformal we must impose C2 = 0 in all the quadratic terms.
Next, before adding the three VTree

E f f expressions, let us examine the symmetries of the dodecahedral
quiver which imply that

C(25678)
4 = C(39101112)

4 ≡ D4

C(25678)′

4 = C(39101112)′

4 ≡ D
′
4 (7.3.20)

whereupon, suppressing superscripts, the most general tree-level effective potential is
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VTree
E f f = C4

(
Φβ4

α1 Φβ4
α1

)2
+ C ′4

(
Φβ4

α1 Φγ1
β4

Φδ4
γ1

Φα1
δ4

)
+D4

(
Φβ5

α2 Φα2
β5
+ Φβ6

α2 Φα2
β6
+ Φβ7

α2 Φα2
β7
+ Φβ8

α5 Φα5
β8

)2

+D′4
(

Φβ5
α2 Φγ2

β5
Φδ5

γ2
Φα2

δ5
+ Φβ6

α2 Φγ2
β6

Φδ6
γ2

Φα2
δ6
+ Φβ7

α2 Φγ2
β7

Φδ7
γ2

Φα2
δ7
+ Φβ8

α5 Φγ5
β8

Φδ8
γ5

Φα5
δ8

)
.

(7.3.21)

7.4 Production of GW and the parameters choice

As mentioned in the previous sections, the two main features of our quiver model are the large number
of massless degrees of freedom present at the phase transition and the relatively low temperature at
which the unification of the gauge couplings is reached. Given the complexity of the scalar sector of
the model, it is beyond the scope of the current analysis to provide further details about the way the
conformal symmetry is broken, with the generation of appropriate scales in the potential which would
allow vacuum and thermal transitions of significant strength. As already mentioend, we will simply
assume that this is possible, leaving a discussion of this issue to future work.
We recall that the energy density of the gravitational wave is measured (today) by the variables

h2
0ΩGW( f ) ≡

(
h2

0
ρc

d ρGW

d log f

)
0

(7.4.1)

expressed in frequency ( f ) octaves, in which we are going to separate the various contributions.
Thus we may write, for the final contribution to the energy density, as a fraction of the critical density:

ΩGW( f ) = ΩColl
GW ( f ) + ΩSW

GW( f ) + ΩTurb
GW ( f ) (7.4.2)

where the terms on the right hand side denote contributions sourced by bubble collisions, sound
waves, and plasma turbulence, respectively.

For the contribution ΩColl
GM( f ) from the bubble collisions, we may write, when β/H∗ � 1,

ΩColl
GW ( f ) = ΩColl

GW ( fpeak)SColl( f ) (7.4.3)

where the spectral function is given by [110]

SColl( f ) =
(a + b) fPeak f a

b f a+b
Peak + a f a+b

(7.4.4)

where (a, b) ' (3, 1.0). The peak amplitude is provided by [111]

h2ΩColl
GW ( fPeak) ' 1.7× 10−5κ2∆

(
β

H∗

)−2 ( α

1 + α

)2 ( g∗
100

)− 1
3

(7.4.5)
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where the efficiency factor κ was first derived by Steinhardt [112] as

κ =
1

1 + Aα

(
Aα +

4
27

√
3α

2

)
(7.4.6)

with A = 0.715.

The peak frequency in Eq.(7.4.5) is given by

fPeak ' 17
(

f∗
β

)(
β

H∗

)(
T∗

108GeV

)( g∗
100

) 1
6

Hz (7.4.7)

f∗
β

=
0.62

1.8− 0.1vb + v2
b

(7.4.8)

while in the same equation the dependence of ∆ on the velocity vb of the bubble wall is given by
[112, 113, 114, 115]

vb(α) =

1√
3
+
√

α2 + 2α
3

1 + α
, (7.4.9)

with

∆ =
0.11v3

b
0.42 + v2

b
. (7.4.10)

For the second term in Eq.(7.4.2) we may similarly write

ΩSW
GW( f ) = ΩSW

GW( fpeak)SSW( f ) (7.4.11)

with [116, 117, 113]

h2ΩSW
GW( fPeak) ' 2.7× 10−6κ2

vvb

(
β

H∗

)−1 ( α

1 + α

)( g∗
100

)− 1
3
(H∗τSW) (7.4.12)

κv '
α

0.73 + 0.083
√

α + α
. (7.4.13)

According to [110] the peak sound wave frequency is provided by

fPeak ' 19
1
vb

(
β

H∗

)(
T∗

108GeV

)( g∗
100

) 1
6

Hz (7.4.14)
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while, according to [106], the sound-wave spectral function in Eq.(7.4.11) is

SSW( f ) =
(

f
fPeak

)3

 7

4 + 3
(

f
fPeak

)2


7
2

. (7.4.15)

The sound waves remain active for a time τSW

τSW =
R∗
U f

(7.4.16)

in which R∗ is the root mean bubble separation R∗ ' (8π)
1
3 vb/β and U f is the root mean square of

the fluid velocity [117]

U2
f '

3
4

(
α

1 + α

)
κv. (7.4.17)

We note that the last factor in Eq. (7.4.12) represents an important comparison of the sonic period to
the Hubble time of cosmic expansion[118, 119, 120, 82, 84, 121].

For the third and final term in Eq.(7.4.2) representing plasma turbulence, we write similarly again:

ΩTurb
GW ( f ) = ΩTurb

GW ( fpeak)STurb( f ) (7.4.18)

in which the factors are given by the estimates [122]

h2ΩTurb
GW ( fPeak) ' 3.4× 10−4vb

(
β

H∗

)−1 (κTurbα

1 + α

) 3
2 ( g∗

100

)− 1
3

(7.4.19)

fPeak ' 37
1
vb

(
β

H∗

)(
T∗

108GeV

)( g∗
100

) 1
6

.Hz. (7.4.20)

The spectral function STurb
GW ( f ) in Eq.(7.4.18) is provided by [106, 123, 77]

STurb( f ) =

(
f

fPeak

)3

(
1 + f

fPeak

)11/3 (
1 + 8π f

h∗

) (7.4.21)

h∗ = 17
(

T∗
108GeV

)( g∗
100

) 1
6

Hz. (7.4.22)

wherein we set κTurb ' 0.05κv.
In order to derive numerical predictions for the peak frequency of the quiver model and compare the
results with other models, we pause for some considerations. One of the most important parameters
appearing in all the equations presented above is β/H∗, which is derived from the tunneling action
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around the time when the transition occurs (t∗) at the temperature T∗, using the adiabatic time-
temperature relation

dt
dT

= − 1
TH(T)

, (7.4.23)

in the form [124, 111][125]

S(t) = S(t∗)− β(t− t∗) + O((t− t∗)2) with
β

H∗
= T∗

dS
dT T=T∗ . (7.4.24)

β = Γ̇/Γ∗ measures the time variation of the nucleation rate and τ ≡ 1/β characterizes the time scale
of the phase transition at the transition time t∗. The parameter β/H∗ is defined by the ratio between τ

and the Hubble time 1/H∗. It is one of the most important parameters controlling the energy released
into GWs at the phase transition. A more in depth analysis shows that one should set a distinction
between the thermal and the vacuum tunneling contributions to Γ(t), which involves either the three
dimensional S3 or four dimensional S4 Euclidean bouncing solutions, which will not be of our concern
in this work, as well as a finer characterization of the nucleation temperature (see for instance [84]).
If we denote the nucleation rate with Γ(t), the temperature of the transition is defined to be the
temperature at which the probablility of nucleating one bubble per Hubble volume per Hubble time is
one

Γ(t) ∼ T4e−S(t) Γ
H4 ∼ 1 (7.4.25)

which gives for the tunneling action the expression

S(T∗) ∼ −4 log
T∗
mP

, (7.4.26)

where MP is the Planck mass. As an order of magnitude estimate one can set β ∼ H∗S∗ [122, 126]
which gives a value β/H∗ ∼ O(102) at the electroweak scale, and is a good approximation also in our
case, due to the logarithmic dependence of S(T∗) on T∗.
Therefore we set

β

H∗
∼ 100− 300, T∗ ∼ 4000 GeV, g∗ = 1732 (7.4.27)

and vary α, the strength of the PT.

7.5 Results

We show in Tables 1, 2 and 3 the values of the relevant parameters the results for the collisional,
sound waves and turbolence contributions to h2

0Ω, for β/H∗ = 100, 200 and 300 and parametric values
of α, the strength of the transition, varying from 0.6 to 0.8. In the collisional sector, shown in Table 1,
peak frequency emissions are in the range of 10−2 Hz, with contributions which, for a fixed β/H∗, are
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Table 7.1 Numerical values of the peak frequency and GW emissions for the collisional contributions.

β/H∗ α fpeak(Hz) h2
0Ωcoll

100 0.60 2.7×10−2 0.97× 10−12

100 0.65 2.7×10−2 1.2× 10−12

100 0.70 2.7×10−2 1.4× 10−12

100 0.75 2.7×10−2 1.7× 10−12

100 0.80 2.6×10−2 1.9× 10−12

200 0.60 5.4×10−2 2.41× 10−13

200 0.65 5.3×10−2 2.9× 10−13

200 0.70 5.3×10−2 3.5× 10−13

200 0.75 5.3×10−2 4.1× 10−13

200 0.80 5.3×10−2 4.8× 10−13

300 0.60 8.0×10−2 1.1× 10−13

300 0.65 8.0×10−2 1.3× 10−13

300 0.70 8.0×10−2 1.6× 10−13

300 0.75 8.0×10−2 1.8× 10−13

300 0.80 8.9×10−2 2.1× 10−13

essentially stable, as we vary α. The percentile variation of h2
0Ωcoll is around 20%, for a fixed β/H∗, as

α increases by about 10% stepwise (∆α = 0.5). For the same, fixed value of α, as we increase β/H∗

from 100 to 300, the reduction of the gravitational wave emission is about 90 %.

Table 2 summarizes the results for the GW emission due to sound waves in the plasma. In this case,
the peaks of the emissions are centered at larger frequencies (∼ 10−1Hz) compared to the collisional
contributions, and show, similarly to Table 1, very small variations (< 1%) as we vary α, for a given
value of β/H∗.
At a fixed value of the ratio β/H∗, the GW emission increases in a slightly milder way (by ∼ 10− 15%)
for β/H∗ = 100 as we raise α, while it is about 20%, as in the previous Table, for β/H∗ = 200, 300. As
in Table 1, the emission into sound waves, for a given α, gets suppressed by 90% in its size as we vary
β/H∗ from 100 to 300.

We show in Table 3 results for the GW emissions due to turbulence. The pattern, also in this
case, is similar to those of the previous two cases. The peak frequencies are larger (∼ 10−1), by
factors of 10 and 100 respect to the sound waves and to the collisional contributions, respectively.
The increase in the GW emission, as we vary α, is about 10%, for a given β/H∗, while the reduction
in the energy of the GW gets reduced about 60− 70% as we increase β/H∗ from 100 to 300. In all
cases, the turbolence contributions are larger than those coming from the collisional and the sound
waves at their respective peak frequences, with a factor approximately to 20 for the ratio between
Ωsw ∼ 20×Ωcoll and Ωturb ∼ 1000− 2000×Ωcoll .

We can compare our results against the discovery potential of the space detector LISA in few plots
using PTPlot [108], assuming in all cases a value of β/H∗ = 100.
It is clear that the maximum sensitivity for this proposed experiment is for GW amplitudes with a
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Table 7.2 Numerical values for the PT parameters for the sound waves contributions.

β/H∗ α fpeak(Hz) h2
0Ωsw

100 0.60 1.3× 10−1 1.9× 10−11

100 0.65 1.3× 10−1 2.2× 10−11

100 0.70 1.4× 10−1 2.5× 10−11

100 0.75 1.3× 10−1 2.8× 10−11

100 0.80 1.3× 10−1 3.1× 10−11

200 0.60 2.7× 10−1 4.7× 10−12

200 0.65 2.7× 10−1 5.5× 10−12

200 0.70 2.7× 10−1 6.2× 10−12

200 0.75 2.7× 10−1 7.0× 10−12

200 0.80 2.6× 10−1 7.8× 10−12

300 0.60 4.0× 10−1 2.1× 10−12

300 0.65 4.0× 10−1 2.4× 10−12

300 0.70 4.0× 10−1 2.8× 10−12

300 0.75 4.0× 10−1 3.1× 10−12

300 0.80 4.0× 10−1 3.5× 10−12

peak around a few mHz and an energy density of the GW h2Ω ∼ 10−11.
We show 4 plots in Figs. 7.4 and 7.5 which illustrate the difference between the quiver model and
typical models characterised by a lower number of degrees of freedom (∼ 150), and a transition
temperature comparable with that of the electroweak scale (∼ 200 GeV). In Fig. 7.4 we show results
for h2

0Ω for a typical choice of parameters α = 0.6 and 0.2. In the first case the GW energy density
follows into the sensitivity region of LISA, while in the second case the curve lapses the region of
sensitivity, being tangent to it. A similar study can be performed in the quiver model, as shown in Fig.
7.5, where the plots show that the increase in temperature by few TeV’s increases the frequency of
such stochastic background. While the overall energy released as GWs is comparable with the one
generated by a transition temperature typical of transitions around electroweak scale, the peak in
frequency is shifted upward, and located around ∼ 5× 10−2 Hz, beyond the sensitivity of LISA.
Obviously, one can investigate the parametric dependence of h2

0Ω in a general way, by simply varying
the parameters which affect the emission of GWs. For instance, we can vary T∗ from 200 GeV to 1000
GeV, as well as the number of massless degrees of freedom in ρrad, assuming that in both cases a FOPT
is ensured by a sufficiently large value of α.
The first variation of parameters is shown in Fig. 7.6, where on the left we plot the GW emission for
the lower case T∗ = 200 GeV and on the right for the higher temperature case T∗ = 1000, keeping a
value of g∗ = 200, which departs rather modestly from the simplest extensions of the Standard Model
compared to the quiver case. The dependence of such models on the number of degrees of freedom
g∗ is rather mild, as one can realize from Fig. 7.7, where we plot h2

0Ω in models with T∗ = 300 GeV
and g∗ = 300 (left) and 1000 (right). In general an increase in g∗ moves the value of fpeak slightly
towards higher frequency, although it is clear that the dominant effect is related to the drastic change
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Table 7.3 Numerical values for the PT parameters for the turbulence contributions.

β/H∗ α fpeak(Hz) h2
0Ωturb

100 0.60 1.9× 10−1 8.7× 10−10

100 0.65 1.9× 10−1 1.0× 10−10

100 0.70 1.9× 10−1 1.1× 10−9

100 0.75 1.9× 10−1 1.3× 10−9

100 0.80 1.9× 10−1 1.4× 10−9

200 0.60 3.8× 10−1 4.3× 10−10

200 0.65 3.8× 10−1 5.0× 10−10

200 0.70 3.8× 10−1 5.7× 10−10

200 0.75 3.8× 10−1 6.4× 10−10

200 0.80 3.8× 10−1 7.1× 10−10

300 0.60 5.8× 10−1 2.9× 10−10

300 0.65 5.8× 10−1 3.3× 10−10

300 0.70 5.7× 10−1 3.8× 10−10

300 0.75 5.7× 10−1 4.2× 10−10

300 0.80 5.7× 10−1 4.7× 10−10

of temperature in the transition, which plays a decisive role in the study of such models. We note that
the final factor in Eq.(7.4.12) is not included in our plots which were produced using PTPlot software.

7.6 Discussion

About forty years ago, around 1980, it appeared likely that minimal SU(5) grand unification theory
[127] [128] would agree with experiment and proton decay would soon be observed, with a lifetime
∼ 1030 years and with the decay modes and branching ratios in agreement with the predictions of
minimal SU(5) GUT theory. If so, it would have been a huge leap forward by factor of at least a trillion
(1012) in energy scale above the electroweak scale ∼ 100 GeV.
Unfortunately for this simplest GUT, the proton lifetime for the predicted dominant decay mode
p→ e+π0 was found experimentally to be 100 times too long, now known to be 10,000 times too long,
to agree with minimal SU(5). The reason that minimal SU(5) theory failed was surely because of the
desert hypothesis that there exists no new physics in the huge hierarchy between the weak scale and
the putative GUT scale.
In the present paper, therefore, we have avoided this desert hypothesis by employing a quiver GUT
which makes no assumption about new physics at scales above 4 TeV, except that the theory is expected
to become conformally invariant up to much higher scales. Proton decay is absent at tree level because
of the quiver inspired assignments of the quarks and leptons. If we assume that the breaking of
conformal symmetry is characterised by a FOPT at a relatively small scale, in this scenario one should
consider the production of gravitational waves in a frequency interval (10−3− 10−1 Hz) which is in the
range of proposed recent experiments. We should also mention that direct simulations [129] may give
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Figure 7.4 Typical GW emission in extensions of the Standard Model (g∗ = 130) in a FOPT with (left)
α = 0.6, vb = 0.9, β/H∗ = 100; (right) α = 0.2, vb = 0.8. We have set T∗ = 200 GeV.

Figure 7.5 GW emission in the quiver model with g∗ = 1732 in a FOPT with (left) α = 0.6, vb = 0.9,
β/H∗ = 100; (right) α = 0.2, vb = 0.8. We have set T∗ = 4000 GeV.

the opportunity to improve systematically on previous approximations, especially for what concerns
the contribution of fturb to the GEW emissions.
We have suggested that a phase transition in the early universe, expected by the SU(3)12 quiver
GUT theory described in this article, could source GWs in the mHz region, but slightly too large in
frequency to be detectable by the forthcoming LISA gravitational wave detector, both for a three and a
seven year run of this experiment. However, the wide array of experiments proposed in the future
may be able to detect or exclude models with larger transition temperatures respect to those taken
into account in the past.
Such models are characterised by a rather large number of massless degrees of freedom compared
to the Standard Model or other simpler models, such as the 2-Higgs doublet model, which modify
minimally the Standard Model and allow a FOPT to take place rather close to the electroweak scale. In
the quiver model that we have discussed, the larger transition temperature T∗ and the larger number of
degrees of freedom, present a new challenge for their detection both at theoretical and at experimental
level.
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Figure 7.6 GW emission in extensions of the Standard Model with (left) T∗ = 200 GeV, g∗ = 200, α = 0.6, vb =
0.9, β/H∗ = 100; (right) T∗ = 1000 GeV, g∗ = 200 α = 0.6, vb = 0.9.

Figure 7.7 GW emission in extensions of the Standard Model with (left) T∗ = 300 GeV, g∗ = 300, α = 0.6, vb =
0.9, β/H∗ = 100; (right) T∗ = 300 GeV, g∗ = 1000 α = 0.2, vb = 0.8.
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Chapter 8

An Axion-Like Particle from an SO(10)
Seesaw with U(1)X

We investigate the decoupling of heavy right handed neutrinos in the context of an SO(10) GUT
model, where a remnant anomalous symmetry is U(1)X. In this model the see-saw mechanism which
generates the neutrino masses is intertwined with the Stueckelberg mechanism, which leaves the
CP-odd phase of a very heavy Higgs in the low energy spectrum as an axion-like particle. Such
pseudoscalar is predicted to be ultralight, in the 10−20 eV mass range. In this scenario, the remnant
anomalous X symmetry of the particles of the Standard Model is interpreted as due to the incomplete
decoupling of the right handed neutrino sector. We illustrate this scenario including its realisation in
the context of SO(10).

8.1 Introduction

Recently there has been considerable interest in the occurrence of axion-like particles [130, 131, 132]
including the appearance in model building of anomalous U(1) symmetries with a Stueckelberg field
[37, 133, 42, 134, 44, 45, 45, 47, 48, 49, 50, 135, 52, 53, 133, 49]. In this paper we examine the simplest
GUT example where this phenomenon is closely related to the see-saw mechanism [136] for generating
the neutrino masses and may provide a link between axions and right-handed neutrinos.
At the same time our scenario establishes a possible link between leptogenesis and dark matter
[137, 138] in a generalized setting, due to the prediction of an axion in the low energy spectrum.
Stueckelberg axions (b(x)) appear in the field theory realization of the Green-Schwarz mechanism of
anomaly cancellation of string theory, in the dualization of a 3-form, and correspond to pseudoscalar
gauge degrees of freedom (see also the discussion in [133]). As ordinary Nambu-Goldstone modes
they undergo a local shift

b(x)→ b(x) + Mθ(x) (8.1.1)

under an Abelian gauge transformation and are coupled to the anomaly via a dimension-5 operators
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of the form b(x)/MF ∧ F where F is, generically, the field strength of the gauge fields which share a
mixed anomaly with the U(1) symmetry, and M is the Stueckelberg scale.
In these scenarios, pseudoscalar gauge degrees of freedom may develop physical components only
after the breaking of the shift symmetry by some extra potential. This is expected to occur in the case
of phase transitions in a non-abelian gauge theory, when instanton interactions naturally arise and
induce a mixing between the Stueckelberg field and the Higgs sector of the theory, with the generation
of a periodic potential, after spontaneous symmetry breaking.
This scenario in which the CP odd phases of the scalar sector mix and generate such a potential, has
provided the basic template for the emergence of a physical CP odd state, in a way which is very close
to what was conjectured to occur in the case of the electroweak or DFSZ version of the Peccei-Quinn
[23] axion (see the review [39]), where the anomalous symmetry is a global rather than a local one.
Indeed, we recall that in the DFSZ case one writes down a general potential, function of three scalar
fields, which is SU(2)×U(1) invariant. The simplest realization of this scenario is in the two-Higgs
doublet model, where the Higgs fields Hu and Hd are assigned the global symmetry

Hu → eiαXu Hu, Hd → eiαXd Hd (8.1.2)

under U(1)PQ and are accompanied by an additional scalar Φ, which is singlet under the Standard
Model (SM) symmetry

Φ→ eiαXΦ Φ (8.1.3)

with Xu + Xd = −2XΦ. The potential is given by a combination of terms of the form

V = V(Hu
2 , Hd

2 , Φ2 , HuH†
d

2 , Hu · Hd
2 , Hu · Hd, Φ2) (8.1.4)

(with Hu · Hd ≡ Hα
u Hβ

d εαβ) which is invariant under the Standard Model gauge symmetry and is in
addition invariant under the global U(1)PQ.
As pointed out in [49] a similar effective theory can be obtained in the case of a gauge symmetry, in a
scenario that leaves most of the intermediate steps in the generation of Stueckelberg-like Lagrangian
unchanged. In this realization of the Stueckelberg Lagrangian, the Stueckelberg pseudoscalar emerges
from the phase of the complex scalar field which is responsible for the breaking of the gauged U(1)
symmetry. The breaking takes place at the GUT (Grand Unified Theory) scale, which takes the role of
the Stueckelberg mass for the low energy effective theory.
In our case such abelian symmetry is contained within SO(10) and it is identified with U(1)X. This
provides the basic observation which motivates our work, which connects the decoupling of a gauge
boson corresponding to an U(1)X symmetry within SO(10) and of a right-handed neutrino to the
appearance of an axion in the spectrum of the low energy theory. Being the construction sequential in
each of the three generations, this scenario predicts three axions in the spectrum. Building on a similar
analysis by two of us in [37] based on a E6 ×U(1)X, such axions are expected to be ultralight, in the
10−20 eV mass range.
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8.1.1 Incomplete decoupling of a chiral fermion and global anomalous U(1)X

We believe it is useful to scrutinise this within a transparent model where two examples of physics
beyond the standard model, the non-zero neutrino masses and the Stueckelberg axion are closely
related. Since we know from experiment [139] that the first extension exists in Nature, it increases our
expectation that the second should be realised. We shall review the group theory of SO(10) including
the available irreducible representations for the matter particles and the symmetry breaking.
SO(10) naturally provides three right-handed neutrinos which can participate in the see-saw. Because
of the decoupling of these additional neutrino states at high masses, the resultant effective theory
possesses an anomalous U(1)X symmetry. Since we shall discuss neutrino masses it is worth recalling
the various possibilities for introducing them into the minimal SM. We shall mention four of these, one
being the see-saw mechanism, and reveal why the other three are less attractive. One of them, intro-
duced in [140], once appeared to be compelling when based only on the SuperKamiokande experiment
[139] but it predicted maximal solar neutrino mixing which unfortunately was subsequently excluded
by the SNO experiment [141]. This left as the most popular possibility the see-saw mechanism which
we shall employ in the present model. When neutrino masses were established experimentally in 1998
there was confusion about to whom priority for the see-saw idea belonged and it was temporarily
assigned to a number of theory papers published in 1979. Further scholarship revealed, however, that
priority belonged to a 1977 paper by Minkowski [136].

8.2 SO(10) Grand Unification

The SO(10) model for unifying quarks and leptons was invented over forty years ago in [142, 143].
After non-zero masses for neutrinos were discovered, it became the most popular GUT superseding
the otherwise more economical SU(5) GUT [127]. A recent discussion of an SO(10) GUT can be found in
[144]. In the minimal Standard Model (SM), as in the minimal SU(5) GUT, the neutrinos were assumed
to be massless. In the SO(10) GUT, each family in a 16 contains, in addition to the fifteen helicity
states of the minimal SM, a right- handed neutrino N. This gives rise to several additional features,
beyond the most obvious one that the neutrinos can acquire mass through the see-saw mechanism.
An SU(5) GUT subsumes the SM gauge group SU(3)C × SU(2)L ×U(1)Y but an SO(10) GUT with
one additional rank includes also a U(1)(X). It is this gauged (X) symmetry and its breaking which
will play a central role in our present discussion.
The group theory underlying the SO(10) GUT is well-known and reviewed in many papers; one
reliable such reference is [145].
For the purposes of establishing notation we shall briefly discuss this with special emphasis on the
role of (X) symmetry which will be treated further in subsequent subsections.
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8.2.1 Breaking patterns

The gauge group SO(10) has the dimension 45 of its adjoint. An adjoint of scalars can break the
symmetry while preserving rank-5 to

SO(10)→ [SU(3)C × SU(2)L ×U(1)Y]SM ×U(1)X (8.2.1)

with 3X = 12Y− 15(B− L). We shall need more scalars to give mass to the fermions. Each family is
in a 16 irreducible representation. For example the first family is

16 ≡ (ur, ug, ub, dr, dg, db; ur, ug, ub, dr, dg, db; νe, e−, N, e+)L (8.2.2)

where we have designated the colours as r, g, b (= red, green, blue). The Yukawa couplings which can
provide fermion masses require scalar fields which are included in

16× 16 = 10s + 120a + 126s (8.2.3)

where the subscripts s, a specify symmetric, antisymmetric. The 10 is the vector representation of
SO(10), although the spinor representation 16 is really the defining representation, because one can
make 10 from 16, as in Eq.(8.2.3), but not vice versa. We first consider the decomposition of SU(5) into
SU(3)c × SU(2)L ×U(1)Y, adopting the notation (SU(3)C, SU(2)L)Y with the result that

5̄ = (3̄, 1)+2/3 + (1, 2)−1

10 = (3, 2)+1/3 + (3̄, 1)−4/3 + (1, 1)+2

1̄5 = (6, 1)−4/3 + (3, 2)+1/3 + (1, 3)+2

24 = (8, 1)0 + (3, 2)−5/3 + (3̄, 2)+5/3 + (1, 3)0 + (1, 1)0

45 = (8, 2)+1 + (6̄, 1)−2/3 + (3̄, 2)−7/3 + (3̄, 1)−4/3 +

(3, 3)−2/3 + (3, 1)−2/3 + (1, 2)+1

5̄0 = (8, 2)+1 + (6, 1)+8/3 + (6̄.3)−2/3 + (3̄, 2)−7/3 +

(3, 1)−2/3 + (1, 1)−4 (8.2.4)

The states in the first two lines of Eq.(8.2.4) are the familiar ones of one SM family, without a right-
handed neutrino, which is why (10 + 5̄) is used in an SU(5) GUT. The scalars in the SU(5) Yukawa
couplings must be among

5̄× 5̄ = 10a + 15s

10× 5̄ = 5 + 45

10× 10 = 5̄s + 4̄5a + 5̄0s (8.2.5)
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and we note that the usual Higgs boson, which in this notation is the complex doublet (1, 2)±1, appears
uniquely in the 5 and 45 of SU(5), as can be seen from Eq.(8.2.4). Armed with these preliminaries about
SU(5), it is rendered almost trivial to extend the analysis to SO(10), but the (X) symmetry means we
must tread carefully. We return to Eq.(8.2.3) and adopt a new notation in the SO(10) decompositions
of (SU(5))X. From [145] we are able to decompose the scalar SO(10) irreducible representations into
their SU(5) components:

10 = 52 + 5̄−2

120 = 52 + 5̄−2 + 10−6 + 1̄06 + 452 + 4̄5−2

126 = 1−10 + 5̄−2 + 10−6 + 1̄56 + 452 + 4̄5−2

45 = 240 + 104 + 1̄0−4 + 10 (8.2.6)

All of 10, 120 and 126 necessarily contain a candidate for the SM complex Higgs doublet. From Eq.
(8.2.4), we can, if needed, translate the SU(5) representations in Eq.(8.2.6) into SM representations. This
provides all the group theory we shall need in the present article. In the following we shall focus on
the breaking of U(1)(X) which is intimately related to the mass of the right-handed neutrinos N in
Eq.(8.2.2) and hence to the see-saw mechanism.

8.2.2 The two complex singlet scalars in the effective potential

If we introduce a scalar field Φ, singlet under SU(5) with lepton number L=+2, we can write the
Majorana mass M of the right-handed neutrino Ni

R (i,j =1,2,3) of the three generations as

λijNi
RN j

RΦ. (8.2.7)

The masses λij〈Φ〉 may be taken to be ∼ 1010 GeV, far above the weak scale, whereupon we may
integrate out the right-handed neutrino N to derive an effective field theory with interesting properties.
In particular, the gauged U(1)(X) of the SO(10) GUT has become anomalous, because in the (X)3

triangle diagram N has been removed from the internal states.
We note that the 126 of scalars in Eq.(8.2.6) contains an SU(5) singlet, charged under (B − L), in
addition to the SU(5) singlet in the 45 of Eq. 8.2.6, Φ. The presence of two such states in our model
will be relevant in our subsequent analysis.
Let us step back to a purely bottom-up approach. Consider the original minimal standard model
(MSM) with massless neutrinos. In perturbation theory, it conserves baryon number (B) and lepton
number (L) so there is a global U(1)(B−L which, without a right-handed neutrino, is anomalous.
Such a statement is obviously not connected to grand unification. Of course, this model is ruled out
because neutrinos have non-zero masses so some modification is necessary to the MSM and there
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is a number of possibilities[146]. The most popular is the addition of right-handed neutrinos which
permit the see-saw mechanism for generating neutrino masses. This is achieved most naturally in
SO(10) unification.

Now we carefully discuss a top-down analysis of SO(10) spontaneous symmetry breaking. At the
GUT scale (1015−16 GeV) the adjoint 45 is used to break the symmetry in a necessarily rank-preserving
manner according to

SO(10)→ SU(5)×U(1)X → SU(3)× SU(2)×U(1)Y ×U(1)X (8.2.8)

so that the U(1)X, with 3X = 12Y− 15(B− L), is still unbroken and its gauge boson is massless. At an
intermediate scale MI ∼ 1010−11 GeV the complex 126 is used spontaneously to break U(1)X and to
give Majorana masses to the three right-handed neutrinos. This arises from a VEV of the SU(5)-singlet
complex component in Eq.(8.4.9) which has the Mexican-hat type of potential required for the Higgs
mechanism.

8.3 See-Saw Mechanism

In the MSM neutrinos are massless. The minimal standard model involves three chiral neutrino
states, but it does not admit renormalizable interactions that can generate neutrino masses. Never-
theless, experimental evidence suggests that both solar and atmospheric neutrinos display flavor
oscillations, and hence that neutrinos do have mass. Two very different neutrino squared-mass
differences are required to fit the data:

6.9× 10−5eV2 ≤ ∆s ≤ 7.9× 10−5eV2 and ∆a ∼ (2.4− 2.7)× 10−3eV2, (8.3.1)

where the neutrino masses mi are ordered such that:

∆s = |m2
2 −m2

1| and ∆a = |m2
3 −m2

2| ' |m2
3 −m2

1| (8.3.2)

and the subscripts s and a pertain to solar (s) and atmospheric (a) oscillations respectively. The large
uncertainty in ∆s reflects the several potential explanations of the observed solar neutrino flux: in
terms of vacuum oscillations or large-angle or small-angle MSW solutions, but in every case the two
independent squared-mass differences must be widely spaced with

r = ∆s/∆a ∼ 3× 10−2. (8.3.3)

In a three-family scenario, four neutrino mixing parameters suffice to describe neutrino oscillations,
akin to the four Kobayashi-Maskawa parameters in the quark sector. Solar neutrinos may exhibit an
energy-independent time-averaged suppression due to ∆a, as well as energy-dependent oscillations
depending on ∆s/E. Atmospheric neutrinos may exhibit oscillations due to ∆a, but they are almost
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entirely unaffected by ∆s. It is convenient to define neutrino mixing angles as follows: νe

νµ

ντ

 =

 c2c3 c2s3 s2e−iδ

+c1s3 + s1s2c3eiδ −c1c3 − s1s2s3eiδ −s1c2

+s1s3 − c1s2c3eiδ −s1c3 − c1s2s3eiδ +c1c2


 ν1

ν2

ν3

 (8.3.4)

with si and ci standing for sines and cosines of θi. For neutrino masses satisfying (8.3.1), the vacuum
survival probability of solar neutrinos is:

P(νe → νe)|s ' 1− sin2 2θ2

2
− cos4 θ2 sin2 2θ3 sin2 (∆sRs/4E) (8.3.5)

whereas the transition probabilities of atmospheric neutrinos are:

P(νµ → ντ)|a ' sin2 2θ1 cos4 θ2 sin2 (∆aRa/4E)

P(νe → νµ)|a ' sin2 2θ2 sin2 θ1 sin2 (∆aRa/4E)

P(νe → ντ)|a ' sin2 2θ2 cos2 θ1 sin2 (∆aRa/4E) (8.3.6)

None of these probabilities depend on δ, the measure of CP violation. Let us turn to the origin of
neutrino masses. Among the many renormalizable and gauge-invariant extensions of the standard
model that can do the trick are [146] (i) The introduction of a complex triplet of mesons (T++, T+, T0)

coupled bilinearly to pairs of lepton doublets. They must also couple bilinearly to the Higgs doublet(s)
so as to avoid spontaneous (X) violation and the appearance of a massless and experimentally
excluded majoron. This mechanism can generate an arbitrary complex symmetric Majorana mass
matrix for neutrinos. (ii) The introduction of singlet counterparts to the neutrinos with very large
Majorana masses. The interplay between these mass terms and those generated by the Higgs boson,
the so-called see-saw mechanism, yields an arbitrary but naturally small Majorana neutrino mass
matrix. (iii) The introduction of a charged singlet meson f+ coupled antisymmetrically to pairs of
lepton doublets, and a doubly-charged singlet meson g++ coupled bilinearly both to pairs of lepton
singlets and to pairs of f-mesons. An arbitrary Majorana neutrino mass matrix is generated in two
loops. (iv) The introduction of a charged singlet meson f+ coupled antisymmetrically to pairs of
lepton doublets and (also antisymmetrically) to a pair of Higgs doublets. This simple mechanism was
first proposed in [140] and results at one loop in a Majorana mass matrix in the flavor basis (e, µ, τ) of
a special form:  0 meµ meτ

meµ 0 mµτ

meτ mµτ 0

 (8.3.7)

This Zee model is attractive as an simple extension of the SM. It predicts maximal solar neutrino
mixing, θ12 = π

4 , a value which was strongly disfavoured by SNO data[141, 147]. Of all the models
preserving only the three chiral left-handed neutrinos of the SM - models (i), (iii) and (iv) above -
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model (iv) is surely the most appealing and it fails. Therefore one is led to additional neutrino states,
typically two or more massive right-handed neutrinos which we denote NI (i = 1, 2, . . . , p).
In the model we shall discuss p is necessarily p = 3 because each of the three quark-lepton families is
in a 16 of SO(10) and each contains one N state. There has been considerable interest in more minimal
models with p = 2 as introduced in the so-called FGY model of [148]. This choice has the property
of reducing the number of free parameters such that the CP-violating phase in Ni mixing matrix is
simply related to the CP-violating phase, δ, in Eq.(8.3.4). This means that the measurement of δ in
long-baseline neutrino oscillation experiment would shine light on the origin of matter-antimatter
asymmetry arising from leptogenesis[149] where it arises from Ni decay. In general, this connection
does not exist so that an optimistic logic could argue that the FGY model, sometimes called the
minimal see-saw, is possibly correct.
For the present case of p = 3 we introduce a mass basis

(νe.νµ.ντ, N1, N2, N3) (8.3.8)

so that there is a 6× 6 mass matrix in four 3× 3 blocks with the top-left block vanishing and the
bottom-right being the large Majorana masses for the Ni. The two off-diagonal blocks are Dirac masses
coupling the νIL to the NiR.

The effective mass matrix of the light Majorana neutrinos is given by

M = MD(MR)
−1MT

D (8.3.9)

where MD and MR are the 3× 3 mass matrices for the Dirac and right-handed Majorana neutrinos,
respectively. MT

D designates the transpose.
The see-saw strategy is immediately evident from Eq.(8.3.9). Denoting the mean values of the 3× 3
blocks by m and M

(
0 m
m M

)
(8.3.10)

the eigenvalues for m � M are close to m2/M and M. This shows how large the Ni masses are
expected to be. Taking the first family, with a typical quark mass 10 MeV and electron neutrino mass
10−5eV, we find M ∼ 1010 GeV. Coincidentally, and suggestively, such a mass fits well with the mass
required for successful leptogenesis[149].
This discussion exhibits the great advantage of the see-saw mechanism compared to the alternative
models discussed above: the smallness of the neutrino masses relative to those of the quarks and
leptons occurs naturally. That being said, the other side of the coin is that experimental observation of
the very massive Ni is challenging.
The crucial observation for our present purposes is to consider the U(1)X triangle anomalies. If we
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keep all the states in Eq.(8.2.2) for one family

16 ≡ (ur, ug, ub, dr, dg, db; ur, ug, ub, dr, dg, db; νe, e−, N, e+)L, (8.3.11)

then we can examine this question.
The pure gauge anomaly U(1)3

X has cancelling contributions from the states in Eq.(8.3.11) as follows

6
(

1
27

)
+ 6

(
− 1

27

)
+ 2(+1) + 2(−1) = 0 (8.3.12)

For the gravitational triangle anomaly which has only one U(1)X vertex the respective cancelling
contributions are

6
(

1
3

)
+ 6

(
−1

3

)
+ 2(+1) + 2(−1) = 0. (8.3.13)

When we decouple the N state in Eq.(8.3.11) by taking it to very high mass, the right hand sides of
Eq.(8.3.12)and Eq.(8.3.13) both change from zero to −1, the anomalies do not cancel, and therefore
there exists in the effective theory an anomalous U(1) symmetry of the sort considered in different
contexts in e.g. [150, 151, 152, 153].

8.4 Anomalous U(1)X

Let us introduce the matter fields in our model. The fermions are in three 16’s, Ψi (i = 1, 2, 3). Each
16 contains a right-handed neutrino Ni

R with (X) = +1.
SO(10) contains the usual SU(5) subgroup [127] which plays a rôle in containing the minimal standard
model (MSM) as if without neutrino mass. To provide mass to NR without breaking SU(5) we
introduce a complex scalar Φ in the 126 of SO(10) which under SU(5) contains

126 ⊂ 1 + 5 + 1̄0 + 15 + 4̄5 + 50 (8.4.1)

and the Ni
R acquire mass as in Eq. 8.2.7 when the SU(5)-singlet component of Φ in Eq.(8.4.9) gains an

intermediate mass scale VEV
< Φ >= MI (8.4.2)

where for the see-saw mechanism the intermediate mass scale MI is typically ∼ 1010 GeV.
To break the symmetry SU(5) to that of the standard model we introduce more scalars in the repres-
entations of SO(10) which are the adjoint A in a 45, the vector V in a 10 and finally a spinor B(16).
The adjoint 45 decomposes under SU(5) as

45 ⊃ 1 + 10 + 1̄0 + 24 (8.4.3)

so that the 24 can provide the rank-preserving SU(5)→ SU(3)× SU(2)×U(1).
We recall that in SO(10), 45 decomposes as in Eq. 8.2.6 within which the 24 can provide the rank-
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preserving SU(5)→ SU(3)× SU(2)×U(1)Y symmetry breaking. The fermion masses arise from the
Yukawa couplings

LYukawa = Ψ (YVV + YΦΦ)Ψ (8.4.4)

which may be understood to contain the coupling of Eq.(8.2.7).
We adopt the convention that Latin indices a, b, c, . . . run from 1 to 10 and Greek indices α, β, γ, . . .
run from 1 to 16. The vector field V is Va and the adjoint A is Aab = −Aba so that all the V and A
couplings up to quartic in the Higgs potential can be written, bearing in mind that

10× 10 ⊃ 1 + 45 + 50

10× 45 ⊃ 10 + 120 + 320

45× 45 ⊃ 1 + 45 + 54 + 210 + 770 + 945. (8.4.5)

in the form

V(V, A) = VaVa + (VaVa)
2 + Aab Aab + (Aab Aab)

2 + (VaVa)(Abc Abc) + . . . (8.4.6)

among other terms.
To deal with the 126 it is essential to introduce the Γ matrices

Γa
αβ (8.4.7)

which are ten 16× 16 matrices which roughly generalise the four 4× 4 Dirac matrices γµ pertinent
to O(4), and likewise satisfy a Clifford algebra. The Φ field of the 126 is a symmetric scalar field
satisfying the trace condition

Γa
ijΦji = Tr(ΓaΦ) = 0 (8.4.8)

Now, in addition to Eq.(8.4.5), we shall need

126× 10 ⊃ 210 + 1050.

126× 45 ⊃ 120 + 126 + 1728 + 3696.

126× 126 ⊃ 54S + 945A + 1050S + 2772S + 4125S + 6930A. (8.4.9)

to write the Higgs potential terms involving Φ such as

V(Φ) = ΦijΦij + (ΦijΦij)
2 + ΦijΦjkΦklΦli

+Γa
ijΦjkΦklΦlmΦmnΓa

ni + . . . (8.4.10)
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among other terms including mixed Φ− A terms possible under SO(10) symmetry, as can be seen
from Eqs.(8.4.5) and (8.4.9). We take note of the cubic scalar coupling 16.16.126 which may be written

BαBβΦ∗αβ (8.4.11)

and which we shall use in the next section.

8.5 Stueckelberg Axion

In order to illustrate how the mixing of the CP-odd phases takes place in the breaking of SO(10)→
SU(5)×U(1) we consider specific terms in the potential, describing the conditions which need to be
satisfied in order to generate a periodic potential function of a single gauge invariant field. The latter
takes the role of a physical axion and will be denoted by χ.
The periodic potential is generated at the scale at which SU(5)×U(1) is broken necessarily at > 1015

GeV to avoid too-fast proton decay. At this GUT scale, instanton effects are present. In order to
understand why this happens, we consider an SO(10) invariant term in the original theory such as

16× 16× 126 (8.5.1)

which is built out of the spinorial (16) of SO(10) and the complex conjugate of the 126. The SO(10)
singlet is obtained from

16× 16 = 10s + 120a + 126s (8.5.2)

by combining the 126s taken from the symmetric part of the product (16× 16)s = 126s + 10s with the
126. We can specialize (8.2.3) by indicating the X content of the decomposition using

16 = 1−5 + 5̄+3 + 10−1 (8.5.3)

from which gives for their antisymmetric product

120a = (16× 16)a

= 5̄−2 + 10−6 + (5 + 45)+2 + 1̄0+6 + 45−2 (8.5.4)

while the symmetric component can be specialized in the form

(16× 16)s = 126s + 10s

(8.5.5)

= (1−10 + 5̄−2 + 10−6 + 15+6 + 45+2 + 50−2) + (5+2 + 5̄−2) (8.5.6)
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where the two contributions in brackets refer respectively to the 126s and to the 10s of SO(10).
A periodic potential can be extracted from the decomposition above starting from the 126s × 126,
SO(10) singlet, by combining the 1−10 in Eq. (8.5.6) with the 1+10 in the 126, the latter obtained by
conjugation of (8.4.9) - with the inclusion of its complete SU(5)×U(1)X content -

126 = 1+10 + 5+2 + 10+6 + 15−6 + 45−2 + 50+2. (8.5.7)

A term in this form in the potential allows to induce a mixing of the CP-odd phases of the two SU(5)
singlet representations in such a way that one linear combination of these will correspond to a physical
axion while the second one will be part of the Nambu-Goldstone mode generated by the breaking of
U(1)X.
We will be denoting with σ and φ the two fields corresponding to the 1−10 and 110 respectively,
denoting their vevs with vσ and vφ respectively. We will assume that vφ will be large in such a way to
provide a mass term for the right-handed neutrino, as specified in (8.2.7) using the Majorana operator
NRNRφ.

In order to characterise the structure of the Stueckelberg Lagrangian at classical level we focus our
attention on the extra (periodic) potential related to σ and φ

Vp = λM2
I σφ + h.c. (8.5.8)

Since there must be an SU(5) singlet it is important to realise that the other parts of Eq.(8.5.7) do not
contribute. The coupling λ is instanton generated at the scale MGUT, a fact which provides a drastic
suppression in Vp. We parameterize both fields around their vevs as

σ =
vσ + σ1 + iσ2√

2

=
vσ + ρσ√

2
eiFσ(x)/(gBvσ)

φ =
vφ + ρφ√

2
eib(x)/vφ

(8.5.9)

and vφ is at the GUT scale MGUT ∼ 1015 GeV. The parameterization of Vp in a broken phase is made
possible by the remaining - non periodic - general scalar potential which will assume a typical mexican-
hat shape as for an ordinary U(1) symmetry. Both σ and φ are charged under U(1)(X) and therefore
their vevs break the gauged (X) which as we have discussed survives as an anomalous U(1) in the
effective theory at low energies. We denote with gB the gauge coupling of the U(1)X gauge boson
(Bµ), while ±qB will denote the corresponding X charges of the scalars. Their normalization, equal
to ±10 in the normalization of [145], is indeed arbitrary. The role of the Stueckelberg field is taken
by b(x) in the polar parameterization of φ, which is normalized to 1 in mass dimension, while Fσ is
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massless.

The two covariant derivatives of the scalars take the form

Dµσ =
(
∂µ + iqBgB Bµ

)
σ

Dµφ =
(
∂µ + iqBgB Bµ

)
φ (8.5.10)

with the typical Stueckelberg kinetic term generated from the decoupling of the radial fluctuations of
the φ field

|Dµφ| 2 =
1
2

∂µρφ∂µρφ +
1
2
(∂µb−MBµ)

2 (8.5.11)

with M = qBgBvφ ∼ MI takes the role of the Stueckelberg scale. In general it is natural to assume that
both vφ and vσ are of the same order, and the mass of Bµ, the X gauge boson, will be given as a mean
of both vevs

MB =
√
(qBgBvσ)2 + M2 (8.5.12)

The quadratic action, neglecting the contribution of the radial excitations of σ and φ, can be easily
written down for such σ− φ combination

Lq =
1
2
(
∂µσ2

)2
+

1
2
(
∂µb
)2

+
1
2

M2
BBµBµ

+Bµ∂µ (M1b + vσgBqBσ2) , (8.5.13)

from which, after diagonalization of the mass terms we obtain

Lq =
1
2
(
∂µχB

)2
+

1
2
(
∂µGB

)2
+

1
2
(
∂µh1

)2
+

1
2

M2
BBµBµ − 1

2
m2

1h2
1

+MBBµ∂µGB. (8.5.14)

where we are neglecting all the other terms generated from the decomposition which will not contribute
to the breaking. We can identify the linear combinations

χB =
1

MB
(−M σ2 + qBgBvσ b) ,

GB =
1

MB
(qBgBvσ σ2 + M b) , (8.5.15)

corresponding to the physical axion χB, and to a massless Nambu-Goldstone mode GB. The rotation
matrix that allows the change of variables (σ2, b)→ (χ, GB) is given by

U =

(
− cos θB sin θB

sin θB cos θB

)
(8.5.16)

165



with
θB = arcsin(qBgBvσ/MB). (8.5.17)

The potential, as shown in similar analysis [133], is periodic in χ/ fχ where fχ ∼ MI takes the role of
the axion decay constant. As already stressed before, the origin of this potential is nonperturbative
and linked to the presence of instantons at the SO(10) GUT phase transition. For such reason, the size
of the constants λ in such potential are exponentially suppressed with λi ∼ e−2π/αGUT , with the value
of the coupling αGUT fixed at the scale MGUT when the SO(10) instantons are exact. The value of αGUT

here is in the range 1/33 ≤ αI ≤ 1/32, giving 10−91 ≤ λij ≤ 10−88, determining an axion mass given
by m2

χ ∼ λM2
I in the range

10−22eV < mχ < 10−20eV (8.5.18)

corresponding to an ultralight axion, which has been invoked for the resolution of several astrophysical
constraints[36].

8.6 Conclusions

We have investigated the possibility that the decoupling of a right-handed neutrino in the context
of an SO(10) GUT can be accompanied by an axion-like particle. Such a particle shares many of
the properties already considered for a similar model discussed by two of us in the context of an
E6 ×U(1)X unification, interpreted as low-energy GUT theory derived from string theory [37].

While, in the previous construction, the Stueckelberg Lagrangian was generated by the dualisation of
a 3-form and required an anomalous U(1) gauge symmetry, in this construction we have simply con-
sidered the possibility that the U(1)X symmetry of the Standard Model has an interesting implication.

Starting from an SO(10) symmetry, broken to an SU(5)×U(1)X GUT symmetry, the decoupling of a
right-handed neutrino leaves at low energy an action which is Stueckelberg like, with a global anomaly
which couples to a CP-odd phase, χ(x). We have invoked the generation of a periodic potential in
the SU(5)×U(1)X effective theory in order to extract such gauge invariant degree of freedom in the
pseudoscalar sector which couples to a global anomaly. Such Stueckelberg-like pseudoscalars are
expected to be ultralight, around 10−20 eV and to decouple at the scale corresponding to the mass of
the right-handed neutrino. An earlier paper which relates the lightness of the axion to neutrino mass
is [154].

We have illustrated, by analysing the representation content of the scalar sector of the SO(10) and
SU(5)×U(1)X theories how this could be achieved.
We believe that we have merely identified the general tracts of this mechanism to which we hope to
return in the near future in a more extensive analysis.
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Conclusions

In this thesis we have presented in a unified way the determinant role played by axion in the context
of the evolution of the universe in its primordial phases. After an introduction to the formalisms
necessary to carry on the discussion and having given a context in which to place the discussion we
have presented an extension of the original PQ symmetry which enlarges the parameter space for
axion and overcomes the mass/coupling constant relation. We have shown that Stueckelberg’s models
provide a new insight into the ancient axion problem and open up exciting new avenues on the search
for dark matter. The previous observations were subsequently reinforced and given a more solid
mathematical structure. The starting point was to consider the SO(10) group subsequently broken
into SU(5)×U(1)X .In particular, the possibility that the decoupling of the right-handed neutrino, in
the context of an algebraic structure of SO(10), leads to the appearance of an axion-like particle was
discussed. It is seen that this particle possesses some features shared with other models interpreted as
low-energy GUT theory, derived from string theory. We have seen how symmetry breaks from SO(10)
leading to neutrino decoupling and leaving a Stueckelberg action equipped with global anomaly.
Moreover, the association of this action with a periodic potential helps us to extract the gauge invariant
degree of freedom in the pseudo-scalar sector. We finally show how this Stueckelberg-like sector turns
out to be ultra-light at the scale corresponding to the mass of the right-handed neutrino. Finally in
this thesis has been presented another work, always contextualized in the research regarding the
development of the primordial phases of the universe. Since the first detection of gravitational waves
there has been a huge interest in the study of this new type of cosmological messenger; gravitational
waves can be considered as tools to probe the existence of new physics. In fact the gravitational wave
generated by cosmological phase transitions of the first order possesses a spectrum dependent on the
model that describes the phase transition. It is therefore possible to predict what are the implications
of the GUT models on the phase transition of the early Universe and therefore on the spectrum and
detection of gravitational waves. Therefore starting from the measurements it is possible to confirm
possible unification models. It is in progress the design phase, by ESA, of LISA, a space mission that
will engage the first space-based laser interferometer, whose launch is scheduled for 2034. The activity
carried out in one of our papers was therefore focused on the study of a Quiver-type GUT model. The
parameters characterizing the model have been calculated and it has been shown that the gravitational
wave emitted by the phase transition described by this model is compatible with the sensitivity of the
LISA experiment.
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