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Gravity and the neutral currents: Effective interactions from the trace anomaly
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We present a complete study of the one graviton-two neutral gauge bosons vertex at 1-loop level in the
electroweak theory. This vertex provides the leading contribution to the interaction between the standard
model and gravity, mediated by the trace anomaly, at first order in the inverse Planck mass and at second
order in the electroweak expansion. At the same time, these corrections are significant for precision
studies of models with low scale gravity at the LHC. We show, in analogy with previous results in the
QED and QCD cases, that the anomalous interaction between gravity and the gauge current of the
standard model, due to the trace anomaly, is mediated, in each gauge-invariant sector, by effective
massless scalar degrees of freedom. We derive the Ward and Slavnov-Taylor identities characterizing the
vertex. Our analysis includes the contributions from the improvements of the scalar sector, induced by a

conformally coupled Higgs sector in curved space.
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L. INTRODUCTION

This work is the fourth in a sequence of investigations
[1-3], motivated by the original analysis of [4], aimed at
studying the precise structure of the anomalous effective
action which describes the anomalous breaking of scale
invariance in the standard model (SM). Here we expand
and fill in the details of a previous study [5].

This breaking is induced by the trace anomaly [6,7] and
can be extracted from the exact computation of a set of
diagrams involving, to leading order in the gravitational
constant and in the gauge couplings, the graviton-gauge-
gauge vertex. The work is a natural extension and an
application of remarkable classical studies [8—11] of the
energy-momentum tensor and of the corresponding trace
anomaly in gauge theories.

In the case of a gravitational background characterized
by a small deviation with respect to the flat space-time
metric, this vertex is described by the correlation function
containing one insertion of the energy-momentum tensor
[EMT] (denoted as T) on the correlation function of two
gauge currents (denoted as V, V’). If we allow only con-
formally coupled scalars and operators only up to
dimension-four in the Lagrangian [8,9], the EMT is
uniquely defined by gravity and takes the form of a sym-
metric and (on-shell) conserved expression. In the massless
limit, which in our case is equivalent to dealing with an
unbroken theory (i.e. before electroweak symmetry break-
ing) the EMT is classically (on-shell) traceless.

As remarked in [4] and in our previous studies in the
context of QED [1] and QCD [2], the study of this correlator
is interesting in several ways and allows to address some
important issues concerning anomaly-mediated interac-
tions between the SM and gravity. At the same time, this
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program is part of an attempt to characterize rigorously in
quantum field theory the effective action which describes
the interaction between matter and gravity beyond tree
level, showing some interesting features, such as the ap-
pearance of effective massless scalar degrees of freedom as
mediators of the breaking of scale invariance [4], in close
analogy with what found in the case of chiral gauge theories
[12—15]. Beside these theoretical motivations, these correc-
tions find direct application in collider studies of low scale
gravity, a point that we will address in a related work.

In a theory such as the SM, the breaking of scale
invariance is related both to the trace anomaly and to the
spontaneous breaking of the gauge symmetry by the Higgs
mechanism [5], and both contributions may become sig-
nificant in some specific scenarios. For example, the endur-
ing discussion over the cosmological implications of the
quantum breaking of scale invariance has spanned decades
[16,17], since the work of Starobinsky [18], with his at-
tempt to solve the problem of the cosmological ““graceful
exit” that predated inflationary studies. At the same time,
the treatment of the trace anomaly using more refined
approaches such as the worldline formulation, has allowed
for new ways to investigate the corresponding effective
action [19].

The computation of the effective action which underlies
this interaction is, in principle, rather challenging not only
for the large number of diagrams involved, but also be-
cause of the need of a consistent way to define these
interactions. The ambiguity present in the definition of
the fermion contributions, for instance, requires particular
care, due to the presence of axial-vector and vector cur-
rents in an external gravitational background. These have
been analyzed building on the results of [3], which pro-
vides the ground for the extensions contained in the present
study. The current analysis is far more involved than any
previous study of ours, due to the appearance of a larger set
of diagrams in the perturbative expansion. Their definition
requires a suitable set of Ward and Slavnov-Taylor
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identities (STI’s) which need to be identified from scratch
and that we are going to discuss in fair detail. These are
essential in order to establish the correctness of the com-
putation and of the chosen regularization scheme, which is
dimensional regularization with on-shell renormalization.

When we move from an exact gauge theory to a theory
with spontaneous breaking of the gauge symmetry such as
the SM, the contributions coming from the trace anomaly
and from mass corrections are harder to disentangle, since
the massless limit is not an option. However, even under
these conditions, there are two possible ways of organizing
the contributions to the 1-loop effective action which may
turn out handy. The first expansion, obviously, is the usual
1/m expansion, where m is a large electroweak mass, valid
below the electroweak scale. The second has been first
discussed in a previous work [12] and is characterized by
the isolation of the anomalous massless pole contribution
from the remaining subleading O(m?/s) corrections. These
can be extracted from a complete computation.

The goal of this work is to discuss the role of the
interactions mediated by the conformal anomaly using as
a realistic example the Lagrangian of the SM, by focusing
our investigation on the neutral currents sector. A similar
analysis will be presented for the charged current sector in
a forthcoming separate work. These contributions play a
role, in general, also in scenarios of TeV gravity and as
such are part of the radiative corrections to graviton-
mediated processes at typical LHC energies.

A. Organization of this work

Our work is organized as follows. In Sec. II we will
provide the basic definition of the energy-momentum ten-
sor in a curved space-time, followed by a direct computa-
tion of all of its components according to the Lagrangian of
the SM (Sec. III). We then move to briefly summarize some
important issues which concern the structure of the effec-
tive action, highlighting its perturbative properties, first
among them the appearance of massless (scalar) effective
degrees of freedom (anomaly poles) in the QED and QCD
cases. In Secs. V and VI we derive the fundamental Ward
and Slavnov-Taylor identities which define the structure of
the TVV’ vertex, expanded in terms of its TAA, TAZ and
TZZ contributions, where T couples to the graviton and A
and Z are the photon and the neutral massive gauge boson,
respectively. Complete results for all the amplitudes are
given in Sec. VII, expressed in terms of a small set of form
factors. As we are going to show, the contribution to the
anomaly comes from a single form factor in each ampli-
tude, multiplying a unique tensor structure. These form
factors are characterized by the appearance of a massless
pole with a residue that can be related to the beta function
of the theory and which is the signature of the anomaly
[13]. We have extensively elaborated in previous works on
the significance of such contributions in the ultraviolet
region (UV) [5].
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In the presence of spontaneous symmetry breaking the
perturbative expansion of these form factors can be still
arranged in the form of a 1/s contribution, with s being the
invariant mass of the graviton line, plus mass corrections of
the form v?/s, with v being the electroweak vacuum ex-
pectation value (vev). The computation shows that the trace
part of the amplitude is then clearly dominated at large
energy (i.e. for s > v?) by the pole contribution, as we
will discuss in Sec. IX. Our conclusions and perspectives
are given in Sec. X. Several technical points omitted from
the main sections have been included in the appendices to
facilitate the reading of those more involved derivations.

II. THE EMT OF THE STANDARD MODEL:
DEFINITIONS AND CONVENTIONS

The expression of a symmetric and conserved EMT for
the SM, as for any field theory Lagrangian, may be ob-
tained, more conveniently, by coupling the corresponding
Lagrangian to the gravitational field, described by the
metric g,,, of the curved background

S = SG + SSM + S[
1
= 3 fd‘*x,/—gR + fd4x,/—g£SM
1
+2 [d‘*x\/—_gRj{Tj-[, (1)

where k? = 16Gy, with Gy being the four-dimensional
Newton’s constant and J is the Higgs doublet. We recall
that Einstein’s equations take the form

0 S

5g"(x) "¢

and the EMT in our conventions is defined as
2 8[Ssm + S/]

Vgl §8g"(x)

or, in terms of the SM Lagrangian, as

—gL gL
! e, 2D L ITED

agry ax” 0(0,g"")’

1)
= - W[SSM + 5] 2)

T,,(x) = 3)

which is classically covariantly conserved (g#?T ., = 0).
In flat space-time, the covariant derivative is replaced by
the ordinary derivative, giving the ordinary conservation
equation (9, 7" = 0).

We use the convention 7,, = (1, —1, —1, —1) for the
metric in flat space-time, parameterizing its deviations
from the flat case as

8ur(X) = My, + khy,(x), %)

with the symmetric rank-2 tensor /,,,(x) accounting for its
fluctuations.

In this limit, the coupling of the Lagrangian to gravity is
given by the term
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L g (2) = = ST (), (). ©)
The corrections to the effective action describing the cou-
pling of the SM to gravity that we will consider in our work
are those involving one external graviton and two gauge
currents. These correspond to the leading contributions to
the anomalous breaking of scale invariance of the effective
action in a combined expansion in powers of « and of the
electroweak coupling (g») [i.e. of O(xg3)].

Coming to the fermion contributions to the EMT, we
recall that the fermions are coupled to gravity using the
spin connection () induced by the curved metric g,,,. This
allows to define a spinor derivative D which transforms
covariantly under local Lorentz transformations. If we de-
note with a, b the Lorentz indices of a local free-falling
frame, and denote with o2 the generators of the Lorentz
group in the spinorial representation, the spin connection
takes the form

Q,() =

where we have introduced the vielbein V; (x). The covariant
derivative of a spinor in a given representation (R) of the
gauge symmetry group, expressed in curved (D,,) coordi-
nates is then given by

304EV () Vi (%), (N

d
D =&X7M+Q/‘L+A'a’ (8)

"

where A, = A4T® are the gauge fields and T¢®) the
group generators, giving a Lagrangian of the form

£= 7S lir D, - D,y gl -mi) O
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III. CONTRIBUTIONS TO T v

In this section we proceed with a complete evaluation of
the EMT for the SM Lagrangian coupled to gravity. We
will do so for the entire quantum Lagrangian of the SM,
which includes also the contributions from the ghosts and
the gauge-fixing terms. Details on our conventions for this
section have been collected in Appendix A. The full EMT
is given by a minimal tensor Tmm (without improvement)
and a term of improvement, T y, generated by the confor-
mal coupling of the scalars

T,, = Tmm + T, (10)

where the minimal tensor is decomposed into
TN = Ty + Them + T, + Tyukeva 4 780 4 g
(1)

A. The gauge and fermion contributions

The contribution from the gauge kinetic terms derived
from the field strengths of the SM is

TSy = vy [F“ F7 +7,, 7P + FA, FAP7 +2W W ™r7]

—F;‘LPF””—FA Fy a0 _z wpZs’
—W+ -Ww) WM , (12)
where F ji,,, Fﬁy, v and W,;,, are, respectively, the field

strengths of the gluon, photon, Z and W= fields defined in
Appendix A. The fermion contribution is rather lengthy
and we give it here for a single fermion generation

i - -> - - - - - >
T{ff/m. = _77,uv£ferm. +Z{¢Vg7,uauwvg + ¢e7MaV¢e + ¢uyMaV¢u + ¢dyMav¢d

e - 1— l—y
—i|l—="0v, I+ ,y
I:\/Esinﬁw<¢ duT l// Ve¥n 2

$|

1_
( 27/ —Zsin20W>t,b€Z,,+

sm20W

e - 1-—
J’_
Sin20y, ‘1’“7“( 2

=,

—— V., W,

_ 1— 'y
—— Y. W, +
\/isinﬁw(df Yu—y Y ¢d7#

D e 2 |

11—
+— V4
) sm20 l'b"fy“ 2 o2y
1—v

w
2 lﬂu V)

75
— 2sin%0y ~ )tjde

- 2 - - - - - < - -
+ eAV(_ l/’e’}/,u, we +§'~/’u7,u, l//u _§'7bd7y, l/’d) + gng(¢u7M[u¢u + l;bd’)//l.ta l!/d)] - l/’veﬂy,uavlr/jve - ¢67Mav we

RN FA R [ A A R R M AV
“Yu vWu™— v Y= v 5 YWy e K Yy, Wy
7;1, d7M d \/ES]I’I@W c'yu, 2 yu, 2 .
e - 1—’)/5 e - 1—7 _ 1_‘}/5
+ Z,— —2sin?6 ) z +7< —— W,
sin29W¢"”y“ lpl/f v Sinzgwlpe’)/,u< D) SN~y lp \/iSlIlﬁW qu;L D) lpd v
- 1_’}/5 _ e — 1—’)/ 1_,y5
Wy ) s (22, s (5 2sin 3 i,
- 2 - 1- - -
+ eAI/<_ lpe’yu ¢e +§¢u7,u, lpu _glpd'y,u, wd) + gsG?/(lljtty/L[alth + lﬂd’}/uta ¢d)i| + (ILLH V)}’ (13)
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where ¢, , ., ¢, and ¢, are the Dirac spinors describ-
ing, respectively, the electron neutrino, the electron, the up
and the down quarks while L, is given in Appendix A.

B. The Higgs contribution

Coming to the contribution to the EMT from the Higgs
sector, we recall that the scalar Lagrangian for the Higgs
fields () is given by

= (D+H) (D, H) + p HTH
—MHTH)?p?2,  A>0, (14)
with the covariant derivative defined as
D,=0d,—igW,T*—ig'B,Y, (15)
where, in this case, T% = ¢“/2 are the generators of
SU(2);, Y is the hypercharge and the coupling constants
g and g’ are defined by e = gsinfy = g’ cosfy,. As usual

we parameterize the vacuum JH  in the scalar sector in
terms of the electroweak vev v as

THises —
+ My (

eM,
+
sin26y,

+W, (¢+

H(Z,Z

(H—l¢))]+le(A +cot20wZ,) (¢~ 9

sm20

—ieMy[A, (W, =W, ¢ ) +A, (W, =Wid )]+

i2
2c s0

ie?

2 sinHW

+yw— ) —
M R AL AR

e2

2cost9

W,0,6"+W, 0, " +Wid,6" +W,a,¢ ) +Mz03,0Z,+09,6Z,)+

W;L (¢_<§V(H+ l¢)) - W;((b_

e
4 n29W

HZ,W; ¢~ =W, ¢ )+Z,Wid™ =W, o)+
H[A,(W, "

HZ,W b~ +W, d")+Z, (Wi~ +W, o7 )]—
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5'[0:<(3> (16)
V2

and we expand the Higgs doublet in terms of the physical
Higgs boson H and the two Goldstone bosons ¢+, ¢ as

_i¢+
H =<715(U+H+i¢))' a7

then the masses of the Higgs (mp) and of the W and Z
gauge bosons are given by

(18)

We obtain for the energy-momentum tensor of the Higgs
contribution the following expression

Ny Litiges T 9, HI,H+ 3,0, +03,d%0,¢~ +0,6%0,¢~ +MZ,Z,+M3(W W, +W,SW,)

eMy,
sinfly,

HW W, +W;W,)

‘gv(H + ld)))] -

9,07)+ie(A, + cot20WZ,,)(¢*

3,(H—id))
3M¢+)

——AZ2,(dT,H) +Z,($3,H)]— ieMzsin0y[Z, (WS ¢~ =W, ¢")+Z, (Wi~ =W, "]

2
H (W W, + W W, +22,7,)]

2

79 ¢2(W;W,,_ +Wy W, +22,2,)
w

WS ) TAW, " —WidT)]
2

B, Wy 6T W)
w

TA, W, "+ Wi )]+ e*cot®20ydp ¢~ Z,Z, +e*p" (j)*AMAV+2€200t20w¢+¢*(AMZ,,~I—A,,ZM). (19)

In the Higgs Lagrangian Ly, and in the third line of the
previous equation we have bilinear mixing terms involving
the massive gauge bosons and their Goldstone. These terms
will be canceled in the R, gauge by the EMT coming from
the gauge-fixing contribution.

C. Contributions from the Yukawa couplings

The expression of the contributions coming from the
Yukawa couplings are derived from the Lagrangian

— I
£ Yukawa — £

Yukawa

+ L

Yukawa’

(20)

where the lepton part is given by

£1Yukawa - _)‘el_‘g-[lpg - /\e @ﬁg-ﬁL, (21)
while the quarks give
£3{ukawa - _/\ng_[‘pg - /\dl_ﬂg}ﬁQ
— MO H YR — A BRI, (22)
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In the previous expressions the coefficients A, A, and A, are the Yukawa couplings, L = (¢, ¢.), and Q = (¢ ,4,), are
the lepton and quark SU(2) doublet while the suffix R on the spinors identifies their right components. The contribution
from this sector to the total EMT is then given by

Yukawa _— __
T;L v - n nv L Yukawa

= n,uv{melzlewe+mulzjul//u+md‘z/d¢/d+i\/— ‘ (d) l/f PLlwllV{, ¢+JIV(,PR¢B)

2 sinfyy, [Mw
FuPLba— ¢—<ZfdPR¢u)]

+ (@ BaPLY ~ 6T D PrY)
w

l_ﬂePLlﬂe) + —¢(‘_PdPR¢d

2511610W [MW ‘_PMPR%;)]

m[melﬁ Vet magPg + m b, ]} (23)

In the expression above we have used standard conventions for the chiral projectors P ; = (1 = °)/2. For simplicity we
consider only one generation of fermions.

D. Contributions from the gauge-fixing terms

The contribution of the gauge-fixing Lagrangian can be computed is a similar way. We will work in the R, gauge where
we choose for simplicity the same gauge-fixing parameter ¢ for all the gauge sectors. In this case we obtain (see also
Appendix A)

1
TS = E{Gzaﬂ(a”cf;,) +G%9,(07G%) + A,0,(07A,) + A,0,(07A,) + Z,0,(3°Z,) + Z,,0,(0°Z,)

1
+ 5[W;ay(a"W;) + Wy a,(07W,) + W, 9,(0°W5) + W;aﬂ(a"wg)]}

1 1 N IO ) 1 )
- TI‘MV{_E(a Aa’)z _%(a Z(r)2 _E(a Wu')(apr) E(a Ga‘)z +Eap(Apa Aa’) _’_Eap(zpa Za')

1 1
+ EW[W;G"W{; +W,0°Wo ]+ Ea”(GZa"G‘Z,)} + N gM%q’)(b + 77#,,§M ¢ P

—My(Z,0,¢ +2,0,0) — My(W;0,6~ + W, 9,06~ +W, 0,067 +W, 9,07 (24)

E. The ghost contributions
Finally, from the ghost Lagrangian one obtains the ghost contribution to the EMT, which is given by
T8 = =00y Lapost T 8,84(9,8% + g fP°Gh)ct + 9,890,6% + a, fPGh)c + o, 77,m” + 9,770 ,m°
+a,7%,n + 0,7, +a,m79,m +o,h o, +a,m 0,mT +9,7 d,m"
+ig{a, 1 [W, (cosOyn? + sinfyn?) — (cosOyZ, + sinfyA,)n* ]+ 9,77 [W, (cosbyn? + sinfyn?)
— (cosOyZ, + sinfywA, )n* 1+ 9,7 [n (cosOyZ, + sinfyA,) — (cosbyn; + sinfyn,)W, |
+ 9,9 [n (cosOyZ, + sinfyA,) — (cosOynz + sinfyns)W, ]
+ 9, (cosOy n* + sinfy )W, n~ — W, n" ]+ a,(cosOy7” + sinfy 7)WL n~ — W, n" 1}, (25)

where ¢, 9, n% and n~ are, respectively, the ghost of the
gluon, photon, Z and W= bosons while Lopost 18 the SM
Lagrangian for the ghost fields defined in Appendix A.

1
T, =

—%[aﬂay —n, OIHTH

1 H? 2
2—5[8 a, n,u,,D]< +—+¢ ¢ +UH>
F. The EMT from the terms of improvement

The terms of improvement contribute with an EMT of (26)

the form
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IV. THE INTEGRATED ANOMALY
AND THE NONLOCAL ACTION

Before dealing with the actual computation of the vari-
ous vertices of the neutral currents sector involving one
insertion of the EMT, we briefly review the issue of the
extraction of the anomaly poles from these correlators, in
order to render our treatment self-contained. We proceed
from the QED case and then move to QCD.

We recall that the expression of the trace anomaly [7]

T4 = —1[2bC* + 2b'(E — 20R) + 2¢F?]  (27)

brings in the problem of defining an appropriate action
whose EMT satisfies Eq. (27). Such an action, obtained by
integration of the anomaly (anomaly-induced action) can
be searched for by trial and error and is, in general, non-
local. The solution was given by Riegert long ago [20] in
the form

! (2
Sanom[grA] zg [d4x\/_gfd4xl —g’(E—gljR)

2
X Gyl(x, )c’)|:2bC2 + b’(E — §DR) + ZCFM,,F‘“’] ,

(28)

where b, b' and ¢ are parameters. For the case of a single
fermion in an Abelian gauge theory they are given by b =
1/3207%, b’ = —11/57607%, and ¢ = —e?/247>. C? is
the square of the Weyl tensor and E is the Euler density
given by

2 A A R?
C*=C)puppC*""P =R, R = 2R, ,R*Y —l—? (29)

E="R,,,,"R™"" =R,,,,,R""* —4R,,,R*” + R>. (30)

The notation G,(x, x") denotes the Green’s function of the
differential operator defined by

Ay =V, (VAV” + 2R*” — 2RgH")V,,
=[? + 2R*'V,V, + {(V*R)V, —30R,  (31)

as shown in [4,21]. Performing repeated variations of
the ‘““anomaly-induced” action (28) with respect to the
background metric g,, and to the A, gauge field, here
taken as a background, one can reproduce the anomalous
contribution of correlators with multiple insertions of the
EMT or of gauge currents. Notice that an anomaly-induced
action does not reproduce the homogeneous contributions
to the anomalous trace Ward identity, which require an
independent computation in order to be identified.
Obviously, as the rank of the correlator increases the
perturbative study of these correlation functions becomes
more and more involved. Notice also that such an action
does not account for all those terms which are responsible
for the explicit breaking of scale invariance. In the case of
the standard model such terms are obviously present in the
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spontaneously broken phase of the theory and provide
important corrections to the anomalous correlators.

An important issue concerns the reformulation of this
action in such a way that its interactions become local. This
important point has been analyzed in [21]. The authors
introduce two scalar fields ¢ and ¢ which satisfy fourth
order differential equations

(. 2
Ay ==(E-ZOR 2
w0 =5(E-30R). (32
1
At = 3 oy O + - F FP, (320)

which allow to express the nonlocal action in the local form
c
Sunom =b'SEL +bSE) + 5 f d*xJ=gF,, F* ¢, (33)

where

Sinom = % ] d4x\/—_g{—(Dgo)2 + 2<RW _ § gw)
X (V,0)(V, ) + (E - gm)@};

Sihom = fd“x\/'—_?{—(Dgo)(D o) + 2<RW — ggw)
X (Vu@)(Tu) + 5 Crpy 70

1 2
+ 3 (E 3 DR):,&}. (34)
The equations of motion for ¢y and ¢ (32b) can be obtained
by varying (33) with respect to these fields. Notice that in
momentum space, these equations, being quartic, show the
presence of a double pole in the corresponding energy-
momentum tensor. This can be defined, as usual, by varying
(33) with respect to the background metric. The reduction of
this double pole to a single pole has been discussed in the
same work, using a perturbative formulation of the local
action around the flat metric background. In particular the
field ¢ has to be assumed of being of first order in the metric
fluctuation 4 ,,. With this assumption, the quartic pole is
reduced to a single pole and the action takes the simpler
form

Sanoml & A]
—>—%fd4x1/—gfd4x’ —g' RO, [FopFF]y. (35)

Notice that this action is valid to first order in metric
variations around flat space. Its local expression is given by

Sanoml 8 As @, ¢']
R
= [d“xd—g[—WDgo —gzp’ +§FQBF‘)‘B¢7]. (36)

The equations of motion of the auxiliary fields are also now
of second order and take the form
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W' = b0y, (37a)

Oy = gFaBFaﬁ, (37b)
R

Op = -7 (37¢)

R, in the equations above, is the linearized version of the
Ricci scalar

R = 93,0,h*” — Uh, h = n,,h*". (38)
A similar approach can be followed in the case of the chiral
anomaly [4,14,15].

A perturbative test of the pole structure identified in the
anomaly-induced action is obtained by a direct computa-
tion of the correlator TAA, with the insertion of the EMT
on the photon 2-point function (AA) at nonzero momentum
transfer. This test has been performed in QED [1,4] and
generalized to QCD in the 2-gluon case [2]. The advantage
of a complete computation of the correlator, with respect to
the variational solution found by inspection, is that it gives
the possibility of extracting also the mass corrections to the
pole behavior [1]. In fact, anomaly-induced actions analo-
gous to Eq. (28) are not available for spontaneously broken
gauge theories coupled to gravity. The origin of the pole
contribution in the effective action can be attributed to a
special region of the triangle diagram—which is respon-
sible for the generation of the trace anomaly at perturbative
level—in momentum space. This region is identified by a
computation of the spectral density p(s) of this diagram
which turns out to be proportional to a delta function
(8(s)), with s denoting the virtuality of the graviton line
(see the discussion in [4]). A similar behavior of the
spectral density is found for the anomaly loop [22].

The kinematical region which is responsible for such
behavior is briefly illustrated in Fig. 1. For instance, in the
QED case this singular spectral density is generated when
we set on shell the two fermion lines of the anomaly loop,
cut in the s channel. In this configuration the virtual
graviton decays into two on-shell fermions which move
collinearly before reaching the final state, where they
decay into two photons (Fig. 1(a)). The exchange of a
simple pole (Fig. 1(b)) accounts for the contribution com-
ing from this kinematical region, and should be viewed as a
dynamical effect. The similarity between the gravitational
and the chiral case is indeed rather striking, since the decay

AMAANAY ﬁ\/\m———\i

(a) (b)

FIG. 1. The pole contribution as a collinear exchange of a
fermion/antifermion pair (a) and the diagrammatic representa-
tion of the anomaly pole (b).
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of an axial-vector current into two vector currents, which is
the source of the axial anomaly, can be equally described
by a diagram similar to (Fig. 1(b)), with the role of the
scalar exchange taken by an interpolating field with the
quantum numbers of the pion, and the graviton replaced by
an axial-vector current.

V. THE MASTER EQUATION
OF THE WARD IDENTITIES

In this section we proceed with the derivation of the
Ward identities describing the conservation of the EMT
starting from the case of a simple model, containing a
scalar, a gauge field and a single fermion in a curved
space-time and then moving to the case of the full SM
Lagrangian. In both cases we start with the derivation of
two master equations from which the Ward identities sat-
isfied by a specific correlator can be extracted by functional
differentiations.

We denote with S[V4', ¢, , A, ] the action of the model.
Its expression depends on the vielbein, the fermion field ¢,
the complex scalar field ¢ and the Abelian gauge field A,.
We can use this action and the vielbein to derive a useful
form of the EMT

1 6§
Orr = —= —a V¥, (39)
V éVy

in terms of the determinant of the vielbein V(x) = |V (x)|.
Notice that this expression of the EMT is nonsymmetric.
The symmetric expression can be easily defined by the
relation

TH = Y @r + @¥m) (40)

that will be used below. We introduce the generating func-
tional of the model, given by

Z[v, 7, 0%, I, x, ¥
= [ DDt Dy DYDA, exp{iS[V, ¢ . A,
+i f AT ()b () + bt 0I() + X (o)

+ PLOX) + 4094, 01), (41)
where we have denoted with J(x), J#(x) and y(x) the
sources for the scalar, the gauge field and the spinor field,
respectively. We will exploit the invariance of Z under
diffeomorphisms for the derivation of the corresponding
Ward identities. For this purpose we introduce a condensed
notation to denote the functional integration measure of all

the fields
Dd=D¢pDd'Dyy DDA, (42)

and redefine the action with the external sources included
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S=S+i f dx(I#A, + THR G0 + 1) P(x) + He).

(43)

Notice that we have absorbed a factor ,/=¢ in the defini-
tion of the sources, which clearly affects their transforma-
tion under changes of coordinates (see also Appendix B).

The condition of diffeomorphism invariance of the
generating functional Z gives

PHYSICAL REVIEW D 83, 125028 (2011)

ZIV, LI v, %, J*1=Z[V, 1,0 X ) T*] (44)

where we have allowed an arbitrary change of coor-
dinates x'* = F*(x) on the space-time manifold, which
can be parameterized locally as x'* = x* + e*(x). The
measure of integration is invariant under such changes
(DP' = Dd) and we obtain to first order in €*(x)

fD@eiS = [D(I)ei§<1 + ifd4xd4y{—V®“£[—8(4)(x =3,V (x) =[9,,6W(x—y)Vi]

= 9,89 — )T ()] () —

¢ (x)9,[8W(x = )J(0)]—9,[6W(x —y) p(x)] (x) —

P(0),[69(x = y)x(x)]

[0, (7R ()8 (x — y)] + [a,,5<4>(x—y)]aﬁfp<x>]AM<x>}ev<y>). (45)

This expression needs some further manipulations in order
to be brought into a convenient form for the perturbative
test. Using some results of Appendix B we rewrite it in an
equivalent form and then perform the flat space-time limit
to obtain

j cheff[aaraﬁ(y) — TH()aBb(y) — aP ST ()I ()

—J*(y)aPAL(y) + 0, [T (VAP ()]
— Py () x(y) — X(»)P ¥ (y)

o Py (y) — i (y)oP

_%a"(c?jfy) Bgfy))] —0 0

A more general derivation is required in the case in which
we have a theory which is SM-like, where we have more
fields to consider. The master formula that one obtains is
slightly more involved, but its structure is similar. Before
specializing the derivation to the neutral sector of the SM
we discuss the Ward identity for the amputated Green
functions obtained from this functional integral.

A. The master equation for connected and 1PI graphs

We can extend the above analysis by deriving a different
form of the master equation in terms of the generating
functional of the connected graphs (W) or, equivalently,
directly in terms of the effective action (I'), which collects
all the 1-particle irreducible (1PI) graphs. The Ward iden-
tities for the various correlators are then obtained starting
from these master expressions via functional differentia-
tion. For this purpose we extend the generating functional
given in (41) by coupling the model to a weak external
gravitational field A, g

ZIJ I J% X X hag]

= [Dwexpfis - i [ametr, 0] @

The generating functional of connected graphs is then
given by

ZIJ, I T4 X X hp]
Z[0] ’
(48)

normalized with respect to the vacuum functional Z[0].
From this we obtain the relations

exp{iW[J, JT, J#, x, X, hopl} =

oW 4 )4
be(x) = S et L ]
ow
H —

for the classical fields of the theory, identified by a sub-
script “c.” The effective action is then defined via the
usual Legendre transform of the fields except for the
gravitational source h,g

F[d’w d)I!AéL’ lr//c’ lz/c’ haﬁ]
— WLI, Tt J%, . %o hag] - [ AT ()b () + BT (0 (x)

+ P () x (1) + P () x(x) + TH(0)A, (x)] (50)

which satisfies the relations

oI gt oI’ _ or -
oI’ oI’
mz_)((x), m=_-] (x). (51)

Notice that the functional derivatives of both W and I" with
respect to the classical background field A, coincide

sW 8T
Bhap(x)  Shgp(x)

(52)
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Therefore, the Ward identity (46) can be rewritten in terms
of the connected functional integral as

ow ow ow

oW K
g o—=—={JV0P—+ 0F—J+0f —J
“Shup 2{ 8J1 8J 81, "
d (5WJ“)+ var Wy 5620
— 0ol =7 X7 —— =X
oJg ox 135%
1 SW W
L (oS OV ap )} 53

or equivalently in terms of the 1PI generating functional

ST k[ T s oo
dye—=—d———0Bp.— 0P Pl — ———0PA,,
5ha,8 2{ 6¢c ¢ ¢ 5(,{)2: 6Aca
5T _ 8 6T
-9 —Af?)—aﬁ — 4+ 0P
(5i- Tegy 5 Vet
1. (68l - sT
—2o (2L geBy — G goB
535 7w b)) s

having used (49) and (51)—(53).

B. The Ward identity for TVV’

In the case of the TVV/’ correlator in the standard model
the derivation of the Ward identity requires two functional
differentiations of (54) (extended to the entire spectrum of
SM) with respect to the classical fields V& (x,) and VB (x,)
where V and V' stand for the two neutral gauge bosons A
and Z, obtaining

K
- 15 6M<T,u1/(x)Va(xl)vfg(xz»amp
K 1
= =5 {70,890 = 0P (0, %)
— 9,89 (x; — )P LV (xy, x)
+ 94070, 8D (x; — PV (1, %)

+ 10890, — VPV (a1, x)]} (55)

where we have introduced the (amputated) mixed 2-point
function

PV (x1, 22) = OITV o (1)) Vi (2) 0y
_ T
SVE(x)8VL (xy)

(56)

After a Fourier transform
Qm)* 89k — p — @IV, 4(p. )
K ket ivatiay
— _IE /d4zd4xd4y(T,“,(Z)Va(x)V'B(y»ampe lkz+lpx+tq}’
(57)

Equation (55) becomes
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! K — ! _ !

KT (P @) = = S Pt (p)mpy + KPR (@)

- LIVP;};VVN(])) - pVP;IVV/(Q)}-

The perturbative test of this relation, computationally very
involved, as well as of all the other relations that we will
derive in the next sections, is of paramount importance for
determining the structure of the interaction vertex.

(58)

VI. BRST SYMMETRY AND
SLAVNOV-TAYLOR IDENTITIES

Before coming to the derivation of the STI’s which will
be crucial for a consistent definition of the 7VV correlator
for the Lagrangian of the SM, we give the Becchi-Rouet-
Stora-Tyutin (BRST) variation of the EMT in QCD and in
the electroweak theory which will be used in the following.
The QCD sector gives

TP = 1AL 0,07 Dl + Ay, D

- nMVGU(Ai,apDZc/')], (59)

with i, j being color indices in the adjoint representation of
SU(3), while in the electroweak sector and in the interac-
tion basis we have

1
8Ty =E[Wﬂaysj-" + W,0,8F +B,d,8F°

B3, 8F] - nwéa/’[wgaj" + B,5F]
(60)

Here the indices r and O refer, respectively, to the SU(2)
and U(1) gauge groups and can be expanded directly in the
basis of the mass eigenstates (i.e. a = (+, —, A, Z)). We
obtain

1
STﬁ,Vf = E
+Z,0,8F“+ (n < v)]

(Wi0,0F +W,0,8F" +A,0,6F*

1 _ _
— E NP [(Wy 8 F + W, 6F"
+A,8F*+ 72,6 F%] (61)
To proceed with the derivation of the STI’s for the SM,
we start introducing the generating functional of the theory
in the presence of a background gravitational field 4,

(also denoted as “h”)
2= [ Dwexplis—i% [T, 0] @)

where S denotes the action of the standard model (S) with
the inclusion of the external sources (J, w, &) coupled to
the SM fields
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S=8+ [d“x(J;jA“” + @'+ flw + Y+ e,
(63)

with a = A, Z, +, — and i which runs over the fermion
fields. We also define the functional describing the inser-
tion of the EMT on the vacuum amplitude

Zi2) = L)y = [ DOT, ) expiS, (64
where Z,,(J; z) is related to Z(h, J) by

I N
lzz,u,v(‘ly Z) ISh’uV(Z) Z(h, J)thO' (65)
The STI’s of the theory are obtained by using the invari-
ance of the functional average under a change of integra-
tion variables

Z,(J;2) = j DPT,,,(2) expiS = Z1,,(J;2)’

= j DI'T;,,(2) expis’, (66)

which leaves invariant the quantum action S. These trans-
formations, obviously, are the ordinary BRST variations of
the fundamental fields of the theory. The integration mea-
sure is clearly invariant under these transformations and
one obtains

f Do expiS{BTM,,(z) +iT,,(2) [ d*x[J4 5Ara
+ @98 + 87w + ESYl + 5:]/51']} =0, (67

where the operator ¢ is the BRST variation of the various
fields, which is given in Appendix C.

The STI” s are then derived by a functional differentia-
tion of the previous identity with respect to the sources. We
just remark that since the BRST variations increase the
ghost number of the integrand by 1 unit, we are then forced
to differentiate with respect to the source of the antighost
field in order to go back to a zero ghost number in the
integrand. This allows to extract correlation functions
which are not trivially zero. This procedure, although
correct, may however generate STI’ s among different
correlators which are rather involved. For this reason we
will modify the generating functional ZZ;,,(J ; ) by adding
to the argument of the exponential extra contributions
proportional to the product of the gauge-fixing functions
F*(x) and of the corresponding sources y“(x). Therefore,
we redefine the action S as § v

S, =8+ fd‘*xxafa. (68)
The condition of invariance of the generating functional

that will be used below for the extraction of the STI’s then
becomes

PHYSICAL REVIEW D 83, 125028 (2011)
f@@expi§{8Tﬂy(z)+ iT/L,,(z)[d4x[JZ5A/’““
+ @90 + 87w + ES Y+ SYiE +X“6j]-"“]} =0.

(69)

The implications of BRST invariance on the correlator
TVV' are obtained by functional differentiation of (69)
with respect to the source y“(x) of the gauge-fixing func-
tion F¢ and to the source w“(y) coupled to the antighost
fields 5¢. For this reason in the following we set to zero the
other external fields.

A. STI for the TA A correlator

Equation (69) can be used in the derivation of the STI’s
for the TAA correlator by setting appropriately to zero all
the components of the external sources except some of
them. For instance, if only the sources in the photon sector
(w?, x*) are nonvanishing, this equation becomes

[Dq)exp[iS-i- ifd4x(7_7Aa)A +)(A.TA)]

X {5TW(Z) T, () [ d4x<—wf‘£lf FAy XA&A)} —0,
(70)

where the function £4 denotes the finite part of the BRST
variation (with the infinitesimal Grassmann parameter A
removed) of the gauge-fixing function of the photon F*

EA)=8FA(x)=0n +ied*(W,n" —=Wr5m"). (71)

Functional differentiating this relation with respect to
x*(x) and w”(y) and then setting to zero the external
sources, we obtain the STI for the (TAA) correlator

;<T,w<z)aaAa<x>aﬁAﬁ(y>>

= (T, (DENXN) T () + (8T 4, (2)0*Aa ()7 (). (72)

Its right-hand side can be simplified using the fields equa-
tion of motion. The BRST variation of F4, given by £4, is
indeed the equation of motion for the ghost of the photon.
This can be easily derived by computing the change of the
action under a small variation of the antighost field of the
photon 74

74(x) = 7 (x) + €x), (73)
which gives, integrating by parts,
L — L+ ") (0,n* +ie(W,n" —Win7))
=L — edSF4, (74)

and the equation of motion 8 F4(x) = £4(x) = 0. The first
correlator on the right-hand side of Eq. (72) can be ex-
pressed in terms of simpler correlation functions using the
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invariance of the generating functional ZlTW(Z) given in (66)
under the transformation (73). One obtains

Zl,(2) = ffD‘Deig exp{ifd4xe(x)[—5A(x) + wA(x)]}

X (T,U,V(Z) + 87‘]/‘ T,uv(z)) = ZZ;,I/(Z)) (75)

where 64T, (z) denotes the variation of the EMT under
the transformation (73)
85T, (2) = 0, €(@)0,n" + ie(W, 0" — W n7)](z)
+(mev)—n,,07€)
X[a,m* +ie(W,n* —Win)z). (76)

This equation can be formally rewritten as an integral
expression in the form

81T, (2) = f dxe()5,T, (0, (T7)
where & T,,(z, x) has been defined as
8T (2, x) = 1,,08(8W (z — ) Dy (x))
— 93,(8W(z =)Dy A (x))
— 338 (z — x)Dy (). (78)

We have used the notation Dﬁ n* to denote the covariant
derivative of the ghost of the photon

DA (x) = 9, (x) +ie(W, 0" — W0 )x) (79
and its four-divergence equals the equation of motion of
the ghost n#

P DA (x) = E4(x). (80)

Using Eq. (77) and expanding to first order in €, the
identity in (75) takes the form

ffD(I)e"g{TW(z)[—gA(x) + 0 (x)] = i8T,,(z x)} = 0.
(81)

This relation represents the functional average of the equa-
tions of motion of the ghost »”. As such, it can be used to
derive the implications of the ghost equations on the
correlation functions which are extracted from it.

For instance, to derive a relation for the first correlation
function appearing on the right-hand side of Eq. (72), it is
sufficient to take a functional derivative of (81) with
respect to w*(y)

(T, (2EX T (1))
= =0T, (207 () = i8W(x = yKT,, (2)).

Notice that the term proportional to 6*(x — y) corre-
sponds to a disconnected diagram and as such can be
dropped in the analysis of connected correlators. We can
substitute in (82) the explicit form of 67T,,,(z, x), rewriting

(82)
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it in terms of the 2-point function of the covariant deriva-
tive of the ghost n* (D4n*) and of the antighost 7

(T, (EA )7 ())
= —i{n,,,0[6W(z — X)(DAn* ()7 ()]
— (05[8W(z — DA ()R N + (= )} (83)

The correlation functions involving the covariant deriva-
tive of the ghost and of the antighost, appearing on the
right-hand side of (83), are related—by some STI’s—to
derivatives of the photon 2-point function. We leave the
proof of this point to Appendix C and just quote the result.
Then Eq. (83) becomes

(T, (EN ()T ()
- - é{mvBﬁ[S(“’(Z — X)0XA, (DA, ()]

= (03,[8Y(z = x)a5(A, (ALON] + (n = )} (84)

Having simplified the first of the two functions on the
right-hand side of (72), we proceed with the analysis of the
second one, containing the BRST variation of the EMT,
which can be expressed as a combination of BRST
variations of the gauge-fixing functions F*

1 o we
8T, = E[W;(?,,(SF +W,9,6F" +A,d,6F

1 _
+Z,0,6F4 + (u = v)] — Enwap[Wp*é‘F

- A z
+ W, 8F" + A,6F* + Z,6F”]. (85)
Similarly to the photon case, where 8 F* is proportional to
the equation of motion of the corresponding ghost, also in
this more general case we have

oFr=¢&r r=+,—AZ (86)

and 8T ,, can be rewritten in the form
1
_ - — A Z
éT,, = E[W;avg +W,0,E" +A,0,E8+2Z,0,E

1 _ _
+(uwev)] - ET]W,GP[W;E +W,E"
+ APSA + Z,E%] (87)
The appearance of the operators £ in the expression above
suggests that Eq. (72) can be simplified if we derive STI’s
involving the equations of motion of the ghost fields.
Therefore, we proceed with a functional average of the
equation of motions of the ghosts

[Dq)eig)([—gr(z) +w'(z)]=0 r=+,—AZ (88)
The terms appearing in Eq. (87) are obtained by acting on

this generating functional with appropriate differentia-
tions. For instance, to reproduce the term IWTE™ we
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take a functional derivative of (88) with respect to the
source J§(z) followed by a differentiation with respect to
zP obtaining

o 5Ja ,[D@els*[ E(z) + w'(2)]

=ifD@ei§X[—af(AZ(Z)5r(Z))+ 7 (A5 (2w’ (2))]=
(89)

At this stage we need to take a derivative with respect to the
source x“(x) and to the source w*(y) of the antighost field

7
[ DS [0 (A3 ()€ (2) 1 Ao ()7 ()
+i6™02(A,(2)0W(z — ¥)aA,(x)] = 0. (90)

In the expression above the Kronecher 8 is 1 for r = A
and O for r = +, —, Z. This shows that in 67, in (87)
only the photon contributes to the (87, (z)0* A, (x) 7 (y))
correlator and gives

(8T, (2)9A ()7 (y)
- é{aw(‘”(z — )IHA () A (x))
+95,0W(z — y)0%(A,(2)A, (%))
— 002Dz — 1)IHA, DAL O

Using the results of (84) and (91) in (72) we obtain a simple
expression for the STI, just in terms of derivatives of the
photon 2-point function

é<TW(z>aaAa(x>aﬁA,;(y)>

_ é{nwag[amxz — 05(A, ()AL ())]

= 10,0089 (z = 3)0X(A,(2)Aa ()]
= (0,08 (z — 0)954A, (DAL ()]
= 95,6W(z = »)0A, (DAL + (m = v)h  (92)

which in momentum space becomes
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p qBG,waﬁ(p, q)

=— “{pMPi‘é(q)eryP 2 (@) = m,,p" Pad(q)}

+ Ep“{q#P a(P)+ 4, P (p) =1, (p + 9P Pra(p)}
(93)
having defined
Qa6 (k—p—9)Gy.5(p.q)

= —if [ @2 W T DAL WA e e,

@m0 (p~ P(p) = [dd' s AN,
(94)

The STI given in (93) involves the Green function
G ap(p, @) which differs from the vertex function
raa v B( p, q) for the presence of propagators on the external
vector lines. In the 1-loop approximation the decomposi-
tion of G44 ‘ivap(P, @) in terms of vertex and external lines
corrections simplifies, as illustrated in Fig. 2. In momen-
tum space this takes the form

Voo (D, P o(p)PGY 5(q)
+ Tan (P, QPO ()P 5(q)

+ Ve (0, QP (PP 5(q)

+ VIS (0 )P ((P)PIY 4(g), (95)

where V44 (p,q) is the tree-level graviton-photon-
photon interaction vertex defined in Appendix D. The

right-hand side of Eq. (93) can be rewritten in the form

Gihap(P @) =

K&
qBG,uvaﬁ(P: Q) = _15?{17#41/ +qu,u, “NuvP” q}

K&
- lg—z{qﬂpy +4,Pu— Mun(prq+pH}

(—lf)
5P aPVias(p.a), (96)
P q
which implies, together with (95), that
PqPTy 5P q) = 0. €2

A A
A A A
A
= + + +
A
A A A
A A

FIG. 2.
legs.

1-loop decomposition of G/}, 5

(p, q) in terms of the amputated function F;‘L’f}a ﬁ( P, ¢) and of 2-point functions on the external
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This is the Slavnov-Taylor identity satisfied by the 1-loop
vertex function.

B. STI for the TAZ correlator

The derivation of the STI for TAZ follows a pattern
similar to the TAA case. The starting point is the condition
of BRST invariance of the generating functional given in
Eq. (67). Also in this case we introduce some auxiliary
sources y“(x) for the gauge-fixing terms, but we differ-
entiate (69) with respect to y“(x) and to the source w?(y)
of the antighost %#(y), and then set all the sources to zero.
We obtain a relation similar to Eq. (70), that is

f’D@exp[iS+ ifd4x(ﬁZwZ+XAfA):|

<foT@+ im0 [ d4x(—wzé 77+ 0| =0
(98)

where £4(x), the operator describing the equation of motion
of the photon, has been defined in (71). Therefore, by taking
a derivative with respect to y“(x) and to w?(y) we obtain

T OF @ F20)

3
= (T, @DEN () + (8T, () FA7* (). (99)

The right-hand side of this equation can be simplified using
the equation of motion for the ghost of the photon on
z,(J:2).

We start from the first of the two correlators
(T,,(2)EA(x)H*(y)). Using the invariance of Z7,(J;z)
with respect to the variation (73) of the antighost of the
photon 7 and expressing 8,17, (z) as in Egs. (77) and
(78), we obtain Eq. (81). At this point we differentiate this
relation with respect to the source w?(y) obtaining

(T, (DEXX) ()
=—i(64T,, (2. X) 7 (y) — i8W(x = yXT,,(2)). (100)

As in the previous case, we omit the term which is propor-
tional to the vev of the EMT, since this generates only
disconnected diagrams. The explicit form of & 7 T,,(z x)
allows to express Eq. (100) in the form

(T, (2EN ()

= —i{,,0[8W(z — Dy ()7 (V)]
= (0,[6W(z — DL () 7* (V)]
+ 935[8W(z — (DL () 7* (VD)D)

To express (T, (z)E4(x)7*(y)) in terms of 2-point func-
tions and of their derivatives, we use the identity

(101)

(72()DA7A () — éwwa(x» 0 (0
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which is proved in Appendix C. This equation relates the
correlators in Eq. (101) to 2-point functions involving the
photon and the gauge-fixing function of the Z gauge boson
FZ. Using (102), we then conclude that

<T/LV(Z)€A (.X) ”772()’» = 0.

To complete the simplification of (99) we need to re-
express (87, (z) FA(x)7H%(y)) in terms of 2-point func-
tions. This correlation function involves the BRST varia-
tion of the EMT, defined in (87), which contains a linear
combination of operators proportional to the equations of
motion of the ghosts. For this reason it is more convenient
to start from the same equations functionally averaged as
in (88), and then proceed with further differentiations, as
shown in Eq. (89). Finally, we perform a functional differ-
entiation of (89) with respect to the sources y“(x) and
w?(y), analogously to Eq. (89), thereby obtaining the
relation

(103)

[ DbeiSi[a? (AL ()E ()0 Ao () 7()
+i8708(A,(2)6W(z — ¥))9* A, ()] = 0. (104)

Following this procedure for all the terms of 67 ,,(z) we
obtain

(8T, (2) %A, () 7Z(3))
= - é{—nwaé’[cs“)(z — WNZy(2)0%A 4 (x))]

— 950W(z — yNZ,(2)9*A, (%))
= 95,8W(z — Y(Z,(2)9*A, (D))}

Given that this is the only nonvanishing correlator on the
right-hand side of Eq. (99), we conclude that the BRST
relation that we have been searching for can be expressed
in the form

§<Tw(z)ff*(x>f2(y)>

- é{_nﬂvag[5(4)(z - y)<ZU(z)8aAa(X)>]
+958W(z — yNZ,(2)9*A,(x))
+95,6W(z — YNZ,(2)0% A (X))}

Notice that on the left-hand side of this identity, differently
from the case of TAA, appear the gauge-fixing functions of
the photon and of the Z gauge bosons

j:A = aUAUr :FZ = aUZU' - §MZ¢’

(105)

(106)

(107)
which give
(T @F )T () = (T (2)3*An(x)0P Zg(y))

= EM LT, (2)9* A (x) B (1)),
(108)
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where ¢ is the Goldstone of the Z. Going to momentum
space, with the inclusion of an overall —ik/2 factor we
define

Qm)*6W(k—p— @G (P9

K Cikeztiptiay
= —15/d4zd4xd4y(TW(Z)Aa(x)ZB(y)}e ikeztipxtigry

)6~ P = [ty WZgle e,
(2m)*89 (k= p—q)Gura(p.9)
=8 [dd T @A,
(109)
and the final STI (106) in momentum space reads as
PGP GAZ (P, q) — iEM ;P Glila(p, q)
= gp“{quiﬁ(p) +q,P7a(p) = 1, (P + @) PEa(p)}.
(110)

At this point, we are interested in the identification of a STI
for amputated Green functions. For this purpose we per-
form a decomposition on the left-hand side of this equation
similarly to Eq. (95) for Gﬁﬁa 5(P, q), working in the
1-loop approximation. In this case, the decomposition of
the Gﬁza (P, g) correlator, shown in Fig. 3, is given by

G ap(P @) = U055, (0, QPG o (P)PE 5(q)
+ Ve (0, PP o (p)PE” 5(q)
+ Ve (D, QP (PP 4(g). (111)

This decomposition, differently from the one in Eq. (95),
does not contain a tree-level contribution V3% 5(p, q)

PHYSICAL REVIEW D 83, 125028 (2011)

since this vertex is zero at the lowest order. A similar
procedure has to be followed for the correlator

Gf[,’fa(p, g). Also in this case the vertices sz}fg(l’y )
VhAZ'B(p’ g) and VZ%(p, q) are zero at tree-level. The

mra
3-point function Gﬁfa(p, q), shown in Fig. 4, is then
decomposed into the form

Gioa(p, @) = 050 (p, QP (PP (q)

+ Vi PAY (p)P? (g)

+ Vis PP (PP (q). (112)

The tree-level vertices used in Eq. (111) and (112) are
defined in Appendix D. The STI for this correlator is then
obtained from (110) using the decompositions in (111) and
(112). One can show that the terms generated on the left-
hand side of (110) by contracting tree-level vertices with
the 1-loop insertions on the external legs, coincide with
those generated from the right-hand side at the same order.
For this one can use the expressions given in Appendix F.
The result is summarized by the equation

PegPTN 5 q) + iEMpTla(p, q) =0, (113)

which gives the STI at 1-loop for the amputated functions.

C. STI for the TZZ correlator

The derivation of the STI for the 7ZZ follows a similar
pattern. We perform a functional derivative of (69) with
respect to the source y“(x) of the gauge-fixing function
JF#(x) and to the source for the antighost %#(y), which is
w?(y). We obtain a result quite similar to Eq. (98)

A A
A A
Z
= + +
A
VA A
Z Z

FIG. 3. 1-loop decomposition of Gﬁ{,a B( D, q) in terms of the amputated function

lines.

A

o

FAZ

"irap(P> @) and of the corrections on the external

A
A A
@
+ARAAAK +
\\ \\\ A
AN AN .
b

FIG. 4. Decomposition of Gfﬂfa (p, q) at 1-loop in terms of the amputated correlator Fﬁ‘f’al (p, q) and of the corrections on the external

legs.
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[@q)exp[iS+ i/d“x(ﬁzwz +Xzfz)]

1 {57,(0)+ i1,0) [ats{ o7 g7+ e )| =0
(114)

Here, clearly, £%(x) is the operator of the equations of
motion of the ghost »%(x), derived from the BRST varia-
tion of the gauge-fixing function of the Z gauge boson,

ST (x)=E%(x)

—OnZ(x) + ie(;?;g::é)”(wp_ nt=Wino)
# LA H Ficosty (0 4 n')]
— D)+ £ A+
+icosOy(dn~ —¢ )] (115)

where we have introduced, for convenience, the covariant
derivative of the ghost n*(x), DZn*(x), which is given by

( - Wy 7))
(116)

0
Zn%(x) = 9,m%(x) + zeCOS U

Performing a functional derivative of (114) with respect to
x?(x) and w?(y) we obtain the equivalent of Eq. (99),
which is

é(TW(z)FZ(x)fZ(y»

= (T, (QE2 () 7)) + (8T, (D F*()7*(y)). (117)

At this point, the correlation functions on the right-hand
side of (117) must be re-expressed in terms of 2-point
functions and of their derivatives. Also in this case we use
a functional average of the equations of motion of the ghost
of the Z gauge boson, n%, on the generating functional
ZlT“,(J ;z). For this reason we start from the correlator
(T, (z)E%(x)7*(y)) and exploit the invariance of ZJ,,(J;z)
under the BRST variation of the antighost field %%(x),

7%(x) — 9%(x) + e(x), (118)

and express the variation of the EMT 6;:7T,,(z) as an
integral, having factorized the parameter €(x),

Oy i@ = [dxe@spTyn. (119
In this case
82T, (2 x)
= —95[6W(x — 2)DZn%(x)] — 93[6W(x — 2)DZ % (x)]

+ 1,,8W(x — 2)E%(x) + 1, 0¢[6W (x — 2)IDZn?(x).
(120)

PHYSICAL REVIEW D 83, 125028 (2011)
The equation obtained by the requirement of BRST invari-
ance of Z7 ,(J; 2) is
[D(Deis{T#,,(z)[—Ez(x) + w?(x)] = i8T,,(z, x)} = 0.
(121)

At this point we take a functional derivative of (121) with
respect to w?(y) and then set all the sources to zero, obtain-
ing
(T (DE* ()7 (y))

=~ (05T, (2, X) 7 (y) = i6W(x — YT, (2)).  (122)

Notice that if we are looking for a STI of connected graphs,
then the term —i(T,,(z)) does not contribute, being a
disconnected part. Expressing 6 5z T,,(z; x) according to
(120), we conclude that Eq. (122) takes the form

(T (DEX ()T ()
= i{n (XD (W (x = 2)
+ 1,008 (x — DUDEN* () 7 ()

— 9R[6W(x — DI () 7 (y))]
— 93[6W(x = UDE* () (V)] (123)
This equation can be simplified using the identities
W OIDG @) = FF )2, (),
(FAOF* ) = —i£6W(x —y), (124)

which are proven in Appendix C and we finally obtain the
relation

(T, (DEZ () 7(y))
- - é{—ifzmﬁ(‘”(x —)8D(x - z)

+ 1, 86D (x = DKZ, () F* ()

— IL[6W(x = 2UZ, () F* ()]

— 93[8W(x = 2U(Z, () F“()]-
To complete the simplification of Eq. (117) an appropriate
reduction of the correlator (8T ,,,(z) F#(x)7*(y)) is needed.
This can be achieved working as in the previous cases. We
start from the equations of motion of the ghosts averaged
with the functional integral Z7, wv» and then take appropriate
functional derivatives with respect to the sources in order to

reproduce all the terms of Eq. (87) containing F#(x) and
1#%(y). We obtain the intermediate relation

f DbeiS[92 (A%4()E(2)) FA) 7))
+i8702(A,(2)8W(z — y) F4(x)] =0,
a=A,Z +,

(125)

(126)

—, while the final identity is given by
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(8T, (D F* (7)) = — é{%[S“)(Z —WKZ, (2 F* ()
+ 03[6W(z = YKZ, () F#(x)) = 1,,92[6W (2 — yXZ, @ F* ()]} (127)

Finally, inserting into (117) the results of (125) and (127), we obtain

é(T,w(z)IFZ(X)fZ(y» = - i{—ifzmﬁ(‘”(x = 18D = 2) + 1, 9[6W (x — DKZ, () F*(»)

&
= IR[8W (x = 2HZ, () FZN] = a3[8W(x — DNUZ, (D) FZON] + 95[6W (2 — »IKZ,(2) F~(x)
+ 95[8W(z = MKZ, @) F4x) = 1,92 (8W(z — y)(Zp(z)fZ(x»)}- (128)
We then move to momentum space introducing 2- and 3-point functions, generically defined as
m6(p — PHén(p) = [dtd iy, (129)
Qm)*6Wk — p — q)Gi’V‘Z’%(p, q) = ig [a’4zd4xd4y<TM,,(Z)¢[(x)¢m(y)>e—ikz+ipx+i61)', (130)

for generic fields ¢; = (Z, ¢), and rewrite (128) in the form
PUGPGZ 5(p. @) — iEM2p*Grba(p, q) — i€EMqP G 4(p, q) — EMLGLY (P, q)
= E{ip#[—iqBP%(q) EMLPL ()] + ip,[=igPPP%(q) — EM,PLY ()] + iq [—ip®PZ(p) — EMLPY? (p)]
+iq,[~ip*PZZ(p) — EM,PL" (p)] — i,k [—iqsPhs(q) — EMPY,(g)]
— ik [—ipa Py (p) — EMZPY,(p)] — ié%n,,} (131)

As in the cases of TAA and TAZ, we are interested in deriving the form of the STI for amputated correlators. From the left-
hand side of (131) it is clear that there are 3 correlators which need to be decomposed, i.e. G%% v B(p, q), G I-LVO’( p, q) and

( P, q). We have illustrated pictorially their decompositions at 1-loop order in Figs. 5-7, while their explicit
expressmns are given by

G p(Pr @) = VIS (. OPEY (P)PFY 5(@) + Tk, (p )PE a(PIPE 5(9) + VL, (p. )T (p)PE 4(g)
VhZZ (p) q)PgZUa(p)P]ZZﬂB(q)r (132)

uvop

Goba(p, @) = TI50 (0, QPFZ o (P)PL? (@) + VIZL(p, )PEZ (p)PL?(q) + ViSs (b, @) PY” o (p)PL% (), (133)

Z Z

z Z z

Z
= + + +
Z

Z VA Z

A A
FIG. 5. Decomposition of G%Z, o op(P, q) in terms of the amputated rzz ~ «p(P» q) and of the corrections on the external legs.

z
z Z
¢
+ARAAAK +

N DY z

N ~
¢ \\ ¢ \\ \\

¢

FIG. 6. Decomposition of Green G,Z,ﬂfa(p, q) in terms of the amputated function Fiﬁa(p, q) and of the corrections on the external
lines.

o
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> ) o 3 )
¢/// // qﬁ///
P 2 d) < ///

= AAARAARK + % + RAAAK + AAAAK

\\ ~ \\ N

. . . 6
~ 10} S 6 > 0] S ~
~ ~ ~ ~

10}

FIG. 7. 1-loop decomposition of Gifa (P, q) in terms of the amputated function Fﬁf(p, q) and of the corrections on the external

lines.

G2(p, q) = Vis?(p, q)PL? (p)PL? (q) + T14% (p, QPP ()PL? (g) + VELL (p, 9P ()PP ()

+ VIS (p, ) PL? (P)PL? (q).

Equation (131), after the insertion of (132)—(134), gives the
STI for amputated functions that we have been looking for.
One can explicitly verify that the contributions on the left-
hand side of Eq. (131)—generated both by the tree-level
vertices and by the contraction of these with 1-loop 2-point
functions on the external legs—are equal to the right-hand
side of the same equation. These checks are far from being
obvious since they require a complete and explicit compu-
tation of all the correlators, as will be discussed next. Here
we just conclude by quoting the STI for amputated func-
tions, which takes the simpler form

PeaPTs o(p. ) + iEMzp°T70u(p, q)
+iEMqPT 075 (p, q) — EMEATLY (p, ) = 0. (135)

This and the previous similar STI’s are fundamental rela-
tions which define consistently the coupling of one gravi-
ton to the neutral sector of the SM.

VIL. PERTURBATIVE RESULTS
FOR ALL THE CORRELATORS

In this section we illustrate the various diagrammatic
contributions appearing in the perturbative expansion of

f w+
f w+
f W
(a) (b)
ot - 0t
v
AR W+ RARARRS |
~_ ~
¢t U
(e) (f)
FIG. 8.

(134)

the TVV' vertex. We show in Figs. 8—16 all the basic
diagrams involved, for which we are going to present
explicit results. Figures 8 and 12 are characterized by a
typical triangle topology, while 9 and 13 denote typical
terms where the point of insertion of the EMT coincides
with that of a gauge current. We will refer to these last
contributions with the term ‘“‘z-bubbles,”” while those char-
acterized by two gauge bosons emerging from a single
vertex, such as in Figs. 10 and 14, are called “s-bubble”
diagrams. Other contributions are those with a topology of
tadpoles, shown in Figs. 11, 15, and 16.

The two sectors TAA and TAZ involve 32 diagrams
each, while the TZZ correlator includes 70 diagrams.
The computation of these diagrams is rather involved and
has been performed in dimensional regularization using the
on-shell renormalization scheme [23] and the ’t Hooft-
Veltman prescription for s matrix. We have used a reduc-
tion of tensor integrals to the scalar form and checked
explicitly all the Ward and STI’s derived in the previous
sections. The reduction involves nonstandard rank-4 inte-
grals (due to the momenta coming from the insertion of the
EMT on the triangle topology) with 3 propagators.

One of the non trivial points of the computation con-
cerns the treatment of diagrams containing fermion loops

(c) (@

L - T
: (S
\EN WRARS | Y
e ! SN

(2)

Amplitudes with the triangle topology for the three correlators TAA, TAZ and TZZ.
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(e) ®
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’/ \‘ d)i

W
ot/
(b) (©) (d)
‘ 77+ ‘ o
nt N n- k

(2

FIG. 9. Amplitudes with 7-bubble topology for the three correlators TAA, TAZ and TZZ.

W ¢+
-
e BN
\
ARAARS
\ /
\
N < 4
wE o=

(a) (b)

FIG. 10. Amplitudes with s-bubble topology for the three
correlators TAA, TAZ and TZZ.

= N
w* L oF
(a) (b)

FIG. 11. Amplitudes with the tadpole topology for the three
correlators TAA, TAZ and TZZ.

and insertions of the EMT on correlators with both vector
(Jy) and axial-vector (J4) currents. This problem has been
analyzed and solved in a related work [3] to which we refer
for more details. In particular, it has been shown that there
are no mixed chiral and trace anomalies in diagrams of this
type even in the presence of explicit mass corrections, due
to the vanishing of the TJyJ, vertex mediated by fermion
loops. This result has been obtained in a simple U(1), X
U(1), gauge model, with an explicit breaking of the gauge
symmetry due to a fermion mass term. The result remains

|
|
\ H RARARS
|
|

() (®)

FIG. 12.

true both for global and local currents, being the gauge
fields (vector and axial-vector) in the treatment of [3]
purely external fields. This preliminary analysis has been
instrumental in all the generalizations discussed in this
work.

At this point few more comments concerning the num-
ber of form factors introduced in our analysis are in order.
We recall, from a previous study [4], that the number of
original tensor structures which can be built out of the
metric and of the two momenta p and ¢ of the two gauge
lines is 43 before imposing the Ward and the STT’s of the
theory. These have been classified in [1,4]. In particular,
the form factors appearing in the fermion sector can be
expressed (in the off-shell case) in terms of 13 tensor
structures for the case of vector currents and of 22 struc-
tures for the axial-vector current, as shown in [3].

In the on-shell case, the fermion loops with external
photons are parameterized just by 3 independent form
factors. This analysis has been generalized more recently
to QCD, with the computation of the graviton-gluon-gluon
(hgg) vertex in full generality [1]. The entire vertex in the
on-shell QCD case—which includes fermion and gluon
loops—is also parameterized just by 3 form factors. A
similar result holds for the TAA in the electroweak case.
On the other hand the TZZ and the TAZ correlators have
been expressed in terms of 9 form factors. A special com-
ment deserves the handling of the symbolic computations.
These have been performed using some software entirely
written by us and implemented in the symbolic manipula-
tion program MATHEMATICA. This allows the reduction to
scalar form of tensor integrals for correlators of rank-4

W\/\/ z AR | 6
S o < |
H "~ S|
.
©

(d

\

il
/

Amplitudes with the triangle topology for the correlator TZZ.
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(a) (b)

FIG. 13. Amplitudes with the #-bubble topology for the corre-
lator TZZ.
H ¢
/7 T ST N
AAARS ) AR
\ L SV
P o

(@) (b)

FIG. 14. Amplitudes with the s-bubble topology for the corre-

lator TZZ.
W S H WM Y ¢
(a) (b)

FIG. 15. Amplitudes with the tadpole topology for the corre-
lator TZZ.

(@) (b)

FIG. 16. Amplitudes with the Higgs tadpole for the correlator
TZZ which vanish after renormalization.

with the triangle topology. The software allows to perform
direct tests of all the Ward and Slavnov-Taylor identities on
the correlator, which are crucial in order to secure the
correctness of the result.

A.T#72B(p q) and the terms of improvement

Before giving the results for the anomalous correlators,
we pause for some comments.

In our computations the gravitational field is nondynam-
ical and the analysis of the Ward and STI’s shows that these
can be consistently solved only if we include the graviton-
Higgs mixing on the graviton line. In other words, the
graviton line is uncut. We will denote with A***A(p, q)
these extra contributions and with %#”*F(p, ¢) the com-
pletely cut vertex. These two contributions appear on the

PHYSICAL REVIEW D 83, 125028 (2011)

right-hand side of the expression of the correlation function
r#7eB(p, q)

rerabB(p, q) = SrvaB(p, q) + ArB(p, g).

Finally, we just mention that we have excluded from the
final expressions of the vertices all the contributions at tree
level. For this reason our results are purely those respon-
sible for the generation of the anomaly.

(136)

B. Results for the TA A correlator

In this section we present the 1-loop result of the com-
putation of these correlators for on-shell vector bosons
lines and discuss some of their interesting features, such
as the appearance of massless anomaly poles in all the
gauge invariants subsectors of the perturbative expansion.
We start from the case of the TAA vertex and then move to
the remaining ones. In this case the full irreducible con-
tribution 2#"*B(p, q) is written in the form

surab(p,q)=35"P(p,q) + 25" (p,q) + 21"*F(p. q),
(137)
where each term can be expanded in a tensor basis

3
S5 (p.q) = 3 ®irls, 0,0, mp) b P (p,g). (138)

i=1

3
S8 (p, q) = Z D;5(5, 0,0, M) 1P (p, @), (139)

i=1

S87B(p, q) = B, (s, 0,0, M) 1P (p, q)
+ @yy(s,0,0, M) b4 P (p, @) (140)

The tensor basis on which we expand the on-shell vertex is
given by

1P (p.q)= (s = k*k")uF(p,q),

B4 P(p.q) = —2uP(p,q)[sn*" +2(p* p” + q*q")
—4(p*q” +q"p")]

&4 P (p,g)=(p*q” + p"q")m*F + %(n“”nﬁ“ +nnh)
—n*"uP(p,q) = (nP" p# + nPrp")g”
— (™ q* +n**q")pP,

7 (p.q) = (sm — ke k) m. (141)
where u*?(p, g) has been defined as
u*f(p,q) = (p- 90 — q*p¥, (142)

among which only ¢*”*# shows manifestly a trace, the
remaining ones being traceless.

The 1-loop vertex 2#"*B(p, q) with two on-shell photons
is expressed as a sum of a fermion sector (F) [Figs. 8(a) and
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9(a)], a gauge boson sector (B) [Figs. 8(b)-8(g), 9(b)-9(g),
10, and 11], and a term of improvement denoted as 3./ vap,
The contribution from the term of improvement is given by
the diagrams depicted in Figs. 8(c), 8(d), and 10(b), with the
graviton-scalar-scalar vertices determined by the 74*”. The
first three arguments of the form factors stand for the three
mdependent kinematical invariants k> = (p + ¢)*> = s,
p?> = g*> = 0 while the remaining ones denote the particle
masses circulating in the loop.

As already shown for QED and QCD, in the massless
limit (i.e. before electroweak symmetry breaking), the
entire contribution to the trace anomaly comes from
the first tensor structure ¢; both for the fermion and for
the gauge boson cases. In the fermion sector the form
factors are given by

4m?>
D,1(5,0,0,m7) = _lfikQJ%{_g—i_Tf

2
_%]}
S ’

(143)

— Zm%CO (s5,0,0, m}, m%, m?)l: 1

1

D,x(s, 0,0, mf) = —12 Tms Qf{ -

5t}

3m?
- Tf DO(Sy Oy Oy m?‘; m%‘)

2m?
— m2Co(s, 0,0, m2, m?, mj%)[l + Tf]}

(144)
rls0m)
11s
- 2 P Qf{ 3m]2¢ + Dy(s,0,0, m}, mj%)[Smjzr + 5]
+ 5B,(0, m% m?) + 3m§-C0(s, 0,0, m? m> m?)[s + Zm%]}
(145)

The form factor ®, . is characterized by the presence of an
anomaly pole
o
(I)F = 2’
" 9ms oy

1 pole

(146)

which is responsible for the generation of the anomaly in
the massless limit. This 1/s behavior of the amplitude is
also clearly identifiable in a m)% /s (asymptotic) expansion
(s> m?-), where m; denotes generically any fermion of
the SM. In this second case, the scaleless contribution
associated with the exchange of a massless state (i.e. the
1/s term) is corrected by other terms which are suppressed
as powers of m% /s. This pattern, as we are going to show, is
general.

The other gauge-invariant sector of the TAA vertex is the
one mediated by the exchange of bosons and ghosts in the
loop. In this sector the form factors are given by

PHYSICAL REVIEW D 83, 125028 (2011)
5 2M3,
6 K

q)lg(SOOM )—_l_—
2 s

Ka{S

2M,
+2M%Vco(s,o,o,M2,M%V,M%V)[1— SW]}, (147)

Kk a [l M?>
@ ey — =i L M
26(5, 0,0, Myy) ’27Ts{24 2s
3M§V

Do(s 0 OMZ,MZ)

M%v
+ TCQ(S, 0, 0, M2 y M‘Z)V, M‘Z;V)

2M?
X [1 + W]} (148)
N
K « 15s  3M?
d M) =—i— —{-——"—-—"W
(5 0,0, Myy) = ’2m{ 8§ 2
1
) Dy(s, 0,0, M2, M3,)[5M3, + 5]
3
- ZSBO(O’ M3, M%) — Cy(s, 0,0, M3, M3, M%)
X [s? + 4M3,s + 3M‘V‘V]}. (149)

As in the previous case, we focus our attention on @,
which multiplies the tensor structure ¢, responsible for
the generation of the anomalous trace. In this case the
contribution of the anomaly pole is isolated in the form
(DIB,pole =- (150)

It is clear, also in this case, that in the massless limit
(My, = 0), i.e. in the symmetric phase of the theory, this
pole is completely responsible for the generation of the
anomaly. At the same time, at high energy (i.e. for s >
M3,) the massless exchange can be easily exposed as a
dominant contribution to the trace part of the correlator.
Notice that, in general, the correlator has other 1/s sin-
gularities in the remaining form factors and even constant
terms which are unsuppressed for a large s, but these are
not part of the trace.

The contributions coming from the term of improvement
are characterized just by two form factors

(I)”(SOOM )

K
= —i— —{1 + 2M%,Cy(s, 0, 0, M3, M3, M3,)},

>3 (151)

Dy (s, 0,0, M3, )—zf

> on MZCO(s 0,0, M3, M%, M3,)).

(152)

Now we consider the external graviton leg corrections
A#7aB(p, q). In this case only the term of improvement
contributes with the diagram depicted in Fig. 17
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~

FIG. 17. Amplitude with the graviton-Higgs mixing vertex
generated by the term of improvement. The blob represents
the SM Higgs-two vector currents vertex at 1-loop.

AR (p, q) = AP (p, q)
= q’l[(s’ 0’ 0» m]%’ M‘ZIV’ M%{)QZ){LV&B(IL Q)

+ Wy (s,0,0, ME) PP (p, q).  (153)

This is built by combining the tree-level vertex for graviton/
Higgs mixing—coming from the improved EMT—and the
standard model Higgs/photon/photon correlator at 1-loop

\If”(s, O, O, mjzc, M%V’ M%‘I)

K a
—g 2 22 2

2 3as(s — M%{){ mef[
+ (4m]2c — 5)Cy(s, 0,0, m}% mj%, mj%)] + M?% + 6M3,
+ 2M3, (M3, + 6M3, — 45)Co(s, 0,0, M3, M3, M3,)},

(154)

W,(s,0,0, M2) = =Dy (s, 0,0, M3). (155)

ra 1
P (p, q) = (s — k"k”)[i (s — MZ)n*F — q“pﬁ],

ra 1
wreB(p, q) = (MgnHr — 4q“q”)[§(s — M%)n*F — q“pﬁ],
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C. Results for the TAZ correlator

We proceed with the analysis of the TAZ correlator, in
particular, we start with the irreducible vertex
SH#vaB(p, q) that can be defined, as in the previous case,
as a sum of the three gauge-invariant contributions: the
fermion sector (F), [Figs. 8(a) and 9(a)], the gauge boson
sector (B), [Figs. 8(b)-8(g), 9(b)-9(g), 10, and 11] and the
improvement term (I) given by the diagrams depicted in
Figs. 8(c), 8(d), and 10(b), with the graviton-scalar-scalar
vertices determined by the 77"

Surab(p, q) = 34"P(p, q) + 35"P(p, q) + 3P (p, q).
(156)

Each of these terms can be expanded in the on-shell case
(p? =0, ¢* = M2) on a tensor basis f*"“*(p, q)

7
E?Vaﬁ(p’ q) = Z (I)iF(S) 0) Mz: m}Zf)leVaB(p, (1), (157)
i=1

9
SEP(pq) =D Dip(s, 0, M3, M3) 7P (p, q). (158)
i=1

B q) = ®y,(s, 0, M2, M3) P (p, q)
+ Dy, (s, 0, MZ, M3) 5P (p, q). (159)

For the on-shell TAZ correlator the tensor structures are
explicitly defined as

wrebp q) = p"p”[%(s — M%)n*F — q“pﬂ],

e 1 |
wreb(p, q) = [E(s - MY)n*" —2(g"p” + p’*q”)][i (s — M2)n*P — q“pP ]

ra 1 av o v o v v rva
P (p, q) = pﬁ[i(s — M) g* + n**q”) — q*(¢*p” + p*q )],féf A(p, q)

1
= PB[E(S — M2)(n*"p* + nHp¥) — 2q“p“p”:|,

ra o 1 o o
7P (p,q) = (p*q” + p"g*)n*F + 5 (s = M) P+ )

1
- n"”[i(s - MH)nF - qo‘pﬁ] = (P"pk + nPrp")qt — (n*qk + n*q")pF,

FEP(p, q) = (sp*” — kFk”) b,

P (p, q) = q°[3s(nPrp” + P pr) — pPlsm#” + 2k#k")].

(160)

We collect here just the form factors in the fermion and boson sectors which contribute to the trace anomaly, while the

remaining ones are given in Appendix G
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Zm?f Zm%M%

L,

clod—= -
Qf{ 3TSME 5 — MBP
2

2[] 4m
—m _
f —y

1(/1 ]Co(s, 0, M3, m3, m3, m})}

fI)(F)(s 0, M2, mf) = —i% a

- Dy(s, M2, m%, m?
2 37ss,,C, ols Mz f f)

(161)

M2
2(s — M3)

K a

@\ (s,0, M2, M%) = — {12(37 —30s2) — (1254 — 2452 + 11)

2 3mss,,C,,

1\/12
_ 41142 92 2 2 2
2(—M§)2(2M 2(6sy, — 1153, +5) — 2525 + 5) Dy (s, M3, M3, M3,)
M%c2

- A QM6 155+ 8) + (65, — 5ol 0.1, M3 M M%V)}

(162)

Moreover, the improvement term is defined by the following two form factors

2 2

al(c? —s2,

K
D) (5,0, M2 M2) = —i L 5]
11(5,0. M2, Myy) = 267Tswcw(s—M%)

{1 2,505, My M, M), 2L Dy M3 M M%V)} (163)

D,,(s,0, M2, M%) = —i—
21(S Z W) 126

Now we consider the external graviton leg corrections A*”%B(p, g). In this case only the improvement term contributes
with the diagram shown in Fig. 17

ArreB(p, q) = AP (p, q)

This is built by joining the graviton/Higgs mixing tree-level vertex—coming from the improved energy-momentum
tensor—and the standard model Higgs/photon/Z boson 1-loop correlator.

2 M2Co (s, 0, M%, M3, M3, M3,). (164)

= Wy,(s, 0, M2, m2, M3, M3) 1P (p, q) + Wur(s, 0, M, M3) 4P (p. q).  (165)

m, M3, M%) = —i~ -
M M) M3~ )

M2
W, (s, 0, M2, {ijchﬁQfI:Z + 2s — ;% Dy (s, M%, m}, m%)

2 67s,,¢,(s —
+ (4m]2c + M2 — 5)Cy(s, 0, M3, m]%, mj%, mj%)] + M%(1 — 2s2) + 2M%(6s%, — 1152, + 5)

M2

+ M2

(M%(1 — 252) + 2M%(6s3, — 1152 + 5))Dy(s, M2, M3, M3,)

+ 205,Co(s, 0. M3, My, My MM (1 = 25%) + 203(65% — 1553 + 8) + 250455 — 30,

(166)

K ac
W, (s, 0, M3, M%) = _15 67rsw

2
Mz{s e By (0, M3y, M%) — s2.Co(s, 0, M3, M3, M3, M%V)}. (167)
H

10, and 11], the Z and the Higgs bosons masses, M, and
My ((Z, H) sector with the contributions represented in
Figs. 12-15), which cannot be separated because of
scalar integrals with both masses in their internal lines.

D. Results for the TZZ correlator

Our analysis starts with the irreducible amplitude and
then we move to the insertions on the external graviton

leg. The irreducible vertex 2+"*A(p, q) of the TZZ cor-
relator for on-shell Z bosons can be separated into three
contributions defined by the mass of the particles circu-
lating in the loop, namely, the fermion mass m, (fermion
sector (F) with diagrams depicted in Figs. 8(a) and 9(a),
the W gauge boson mass My, [the W gauge boson sector
(W) with diagrams depicted in Figs. 8(b)-8(g), 9(b)-9(g),

There is also a diagram proportional to a Higgs tadpole
(Fig. 16(a)) which vanishes after renormalization and so it
is not included in the results given below. Finally, there is
the improvement term (I) given by the diagrams depicted
in Figs. 8(c), 8(d), 10(b), 12(b)-12(d), and 14 with the
graviton-scalar-scalar vertices given by the T7”. We
obtain
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E,u,voz,B(p’ C]) _ Egvaﬁ(p’ q) + E/‘:lvaﬁ(p’ q)
+ 3557 (p a) + 377P(p, g).

These four on-shell contributions can be expanded on a
tensor basis given by 9 tensors

va v v S a a
7P (p,q) = (sg"” — k*k )[<§—M%)g B—gq pﬂ],

7P (p,q) = (sgh” — k# k") g*®,
7P (p,q) = g gP — 2(gHeg"P + grPgr),

(168)

7P (p,q) = (p* p* + q*q")g*F — M3 (gH* g"P + grBg"®),

7P (p,q)=(p*q” +q*p")g*?

N
- (5 - M%)(g““g”ﬂ +gPg ),

7P (p,q)=(g"*q" +g"*q")p?
+(g#Pp” + P pt)q* — g* pPqc,
7P (p,q) = (g p* +g"*pr)pP + (g"Pq" + g"Pq")q",
7P (p,q) =[2(p" p* + q"q") — M3g"*1pP ",
féwaﬁ(p,q)=[2(17“61”+q“p”)—(%—M%)g“”]Pﬁq“’
(169)

and can be written in terms of form factors ®;

9
SE(p,q) = 3 O (s, M, MG, m)t" P (p, q). (170)
i=1

9
S0 (p.g) = 3 (s, M3, M, MY P (p.q), (171)

i=1

9

35 B(p, q) = Y ®E (s, M3, M3, M3, M) F (p, ),
i=1

(172)

sEreb(p q) = (s, M2, M2, M3, M2, M%) 1P (p, q)
+ O (5, M3, M3, M3y, M3, M) (p, ),
(173)

where the first three arguments of the ®; represent the
mass shell and virtualities of the external lines k> = s,
p* = ¢* = M2, while the remaining ones give the masses
in the internal lines. Moreover, we expand each form
factor into a basis of independent scalar integrals.

1. The fermion sector

We start from the fermion contribution to 7ZZ and then
move to those coming from a W running inside the loop (W
loops) or a Z and a Higgs (Z, H loops). We expand each
form factor in terms of coefficients C

i
(F);

PHYSICAL REVIEW D 83, 125028 (2011)
(F) S : (F)
D (s, M%, M3, m%) = z;_JC(F)/_’(s, MZ,MZmH) I (174)
J=

(F) - :

where J ; are a set of scalar integrals given by

I9=1, IP=Aym3), I =By(s,m?m?),

I(3F) =Dy(s, M2, mjzc, mff) IEF) = Co(s, M2, M2, m}%, m}, m?p)
(175)

As in the previous case, only (I)(]F ) contributes to the
anomaly, and we will focus our attention only on this
form factor. The expressions of all the coefficients C ) ‘

7

for (i # 1) can be found in Appendix G. We obtain
; 2
. iKams
(Flo 6ms’c2s2,(s — 4M3)
n iak
36mclsts

1 — 1
Cer, = Cr, =0

C

(s — 2M2)(CL* + 1)

(c* + ¢,

co ixamy;
(F)s 3ms?cl (s — 4M2)?s?,
X (M3 — 3sM2 + 1) CLF + CIPMA(2M3 + 5)),
: 2
ikam
Cp =~ L (s — 2M3)
(Fa 12752 c% (s — 4M3%)%s2, z

X ((AMY% — 2(8m3 + s)M3 + s(4m? + 5))CL
+ CLAMY, + 2(3s — 8mA)M? — s(s — 4m?))).
(176)

The anomaly pole of <I>(1F) is entirely contained in C, F)Ol
and it is given by
_ iaK(C{:2 + C{,z)

177
36mc2 sl s 77

2. The W boson sector

As we move to the contributions coming from loops of
W’s, the 9 form factors are expanded as

DM (s, M3, M3, M3,) = i)c(w)/_f (s, M3, M3, M3) 1Y
=
(178)
where E»W) are now given by
IV =1, IV =A.m3),
15" = Dy(s, M3, M3, M3,
I = Co(s, M3, M3, M3y, M3y, M3).

I = By (s, M3, M),

(179)

The anomaly pole is extracted from the expansion of CI)(IW),
whose coefficients are
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_ MZ
= iKa { S [2M2(— 1255, + 3254
o 2s2c2ars [6s(s —4M2)
Cony,' =Cw, =0
c —lKaM
(W)3 T 1252 22 ms?(s —4My)
— M
c iKa (—4MS(s2 — 1)(4s2 — 3)(12s,

1
W 1252 ¢2 7752(s — 4M 5)?

—2M2s*(1258 — 9658, + 20153 — 15752 + 41) + 53 (=125, + 325 — 2752 +7)).

As one can immediately see, the pole is entirely contained

in Cy, I and we obtain
60s% — 14852 + 81)
L S G v . (sl
Ipole ) s2c s 72 (181)

3. The (Z, H) sector

Finally, the last contribution to investigate in the TZZ
vertex is the one coming from a Higgs (H) or a Z boson (Z)
running in the loops. Also in this case we obtain

DM (s, M2, M2, M%, M%)
8
i Z,H
= > Clum,'(s M3 M3, M3, My IPH

(182)

—29s2,49) + 5(12s8 — 36s% + 3352 —

PHYSICAL REVIEW D 83, 125028 (2011)

(60s* — 14852 + 81)}
72 ’

10)]+

2(4M (1258, — 3253, + 2952 —9) + 2M2s(s2, — 2)(12s}, — 1252, + 1) + s*(—4s}, + 852, — 5)),

—20s2, +9) +2M%s(18s%, — 3452, +15)(4(s2, — 3)s%, + 7)

(180)

[
with the corresponding E-Z’H) given by

IBZ’H) — 1 ](lz,H) _

AgMp), TP = Ay(M3),
IEM = B(s, M2, M3), I¢H = B(s, M3, M%),
1M = By(M2, M2, M3),

TEM = Co(s, M2, M3, M2, M%, M2),

TEH = (s, M2, M2, M2, M2, M2). (183)

Again, as before, the contributions to <I>(12’H) are those
responsible for a nonvanishing trace in the massless limit.
These are given by

IKa Tiak
C I — M2(s — 2M3) + 3sM% — 2M%) + —————,
ey " Samste (s — am) M T M) ¥ IMz =AM g a e
- iKa 2 an - _ 1
C(Z,H)l o 127Ts202 2 (S — 4M%) (MZ MH)’ C(Z,H)z C(Z»H)l ’
1 _ ika 2 2 oAb 2 2002 _ 4 6
Cam = samec 252.(s — 4M2)> (2My(sMz — 2M7 + 5%) + 35°M7 — 14sM7 + 8M3),
C | lKa (2M%{ + s)(zMIZ-](S — M%) - 3SM%),
(Z.H),  Ddrs 2c2 52 (s — 4M3)?
1 IKa 4 a2 4 4 _ 2 _ 22\A02
Cam; = 127522 (s — 4M3)%s%, (oM = Ol = MM+ (M = 33y = 35792,
1 _ ika 2 2(_ 2 _Apg4 2 2
Com" = simter iz O+ B8y 20+ ) 4 250401 + 9+ 230,
C.o1— ixa M (M2, (sM% — 2M% + s2) — 20sM% + 16MS + s3), (184)
@H7 24grs?cl st (s — 4AM3)?

with the anomaly pole, extracted from C given by

(ZH) ’
Tiak

(ZH) —

pole " 144 775¢2 52 (185)

4. Terms of improvement and external leg corrections

The expression of form factors <D(11) and <I)(21) coming

from the terms of improvement for the >/ vap (p, q) vertex
are given in Appendix G 5.

The next task is to analyze the external leg corrections to
the TZZ correlator. This case is much more involved than
the previous one because there are contributions coming
from the minimal EMT (i.e. without the improvement
terms) Fig. 16(b), Figs. 18(a) and 18(b) and from the
improved T7*”. This last contribution can be organized
into three sectors: the first is characterized by a contribu-
tion from the 1-loop graviton/Higgs 2-point function
Fig. 16(b), Fig. 18(a). The second is constructed with the
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e

FIG. 18. Leg corrections to the external graviton for the 72Z
correlator.

()

Higgs self-energy Fig. 18(c) and the last is built with the
standard model Higgs/Z/Z 1-loop vertex Fig. 17.
Furthermore, it is important to note that the diagram de-
picted in Fig. 16(b) is proportional to the Higgs tadpole and

AL (P, q)

PHYSICAL REVIEW D 83, 125028 (2011)

vanishes in our renormalization scheme. The A***B(p, q)
correlator is decomposed as

ArreB(p, q) =[3h0 (k) + E;ThH<k>] v;;gz
H
hH(k) EHH( ) M2 Vsz
+ AL (pag), (186)

where X,4(k*) is the Higgs self-energy given in
Appendix F for completeness, V55, and Vi are tree-
level vertices defined in Appendix D and A% 72B(p, q) is

expanded into the two form factors of improvement as

= W (s, M2, M3, m3, M3y, M3, M1 P (p, q) + W3 (s, M3, M3, m%, M3, M3, M3t " (p, ).

W (s, M2, M3, m3, M3y, M3, M) = Z C(I)) (5, M3, M3, m2) I + Z C(’)) (s, M3, M3, M) IV

1y (Z.H)
+ Z Clovm, (s M3, M2, M2, M3) T ;

(187)

where the basis of scalar integrals J ;F) and J ;W) have been defined, respectively, in Eq. (175) and (179). The (Z, H) sector is
expanded into a different set (instead of Eq. (183)) which is given by

JED =1, g% = A,(M2),
TED = B(M2, M2, M),

T = Ag(M),

The expressions of these coefficients together with the
graviton-Higgs mixing 2/ (k), 27, (k) can be found
in Appendix G 6.

VIII. RENORMALIZATION

In this section we discuss the renormalization of the
correlators. This is based on the identification of the 1-
loop counterterms to the standard model Lagrangian
which, in turn, allow to extract a counterterm vertex
for the improved EMT. We have checked that the renor-
malization of all the parameters of the Lagrangian is
indeed sufficient to cancel all the singularities of all the
vertices, as expected. We have used the on-shell scheme
which is widely used in the electroweak theory. In this
scheme the renormalization conditions are fixed in terms
of the physical parameters of the theory to all orders in
perturbation theory. These are the masses of physical
particles My, Mz, My, my, the electric charge e and
the quark mixing matrix V;;. The renormalization con-
ditions on the fields—which allow to extract the renor-
malization constants of the wave functions—are obtained
by requiring a unit residue of the full 2-point functions
on the physical particle poles.

T = Bo(s, M3, M),
j(GZ’H) = CO(S) Mz) M%) M%) M%—[) M%-]);

TG = By(s, M3, M%),

TEW = (s, M3, M2, M2, M2, M2). (188)
|
We start by defining the relations
eo = (1+62Z,)e, M}, o = M3, + M3,
M%, = M3 + 6M3, M3, = M3, + 6M3,
Z 1+168Z,, 167z Z
<A0>:< 30Z4z 1+%5ZAA)<A>’
Hy, = (1 + %(SZH>H (189)

At the same time we need the counterterms for the sine of
the Weinberg angle s,, and of the vev of the Higgs field v

Sp0 = 8 t s, vg = v + v, (190)
which are defined to all orders by the relations
MZ M2 2
2=1-20 2= gT W (o))

2
MZ

and are therefore linked to the renormalized masses and
gauge couplings. Specifically, one obtains
oz,

85, _ (5M2 5M§) Sv (1 SM3, N 8s,,
2sw
(192)

Sy M, MZ) v \2 M3 s,
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while electromagnetic gauge invariance gives

1
87, = — = 6Zus + 287, (193)
2 2c,,
We also recall that the wave function renormalization
constants are defined in terms of the 2-point functions of
the fundamental fields as

GEAA(kZ) EAZ(M )
8Zyp = ——L 2 ., 8Zy;=—2Re
AA akz 20 AZ M%
344(0) IZF(k?)
8Zs4 =2 , 8Z,;,=—-Re—L _—~
ZA M% zZZ 8k2 P
0 k?
8Zy = —ReELZ() ,  OM%=ReX%(M2),
ok K= MZ
SM3, =ReSWVW(M3,), OM%=ReSuu(M%).  (194)

From the counterterms Lagrangian defined in terms of the
Zyy factors given above, we compute the corresponding
counterterm to the EMT 6T#” and renormalized EMT

THY = THY + STHY (195)

which is sufficient to cancel all the divergences of the
theory. One can also verify from the explicit computation
that the terms of improvement, in the conformally coupled
case, are necessary to renormalize the vertices containing
an intermediate scalar with an external bilinear mixing
(graviton/Higgs). The vertices extracted from the counter-
terms are given by

S[TAAL*"*P(ky, ky)

- —ig{kl  kyCHYaB + DEreB(ky k)6 Zy,  (196)
S[TAZ] P (ky, k)
= —ig{(acfzkl -k + ScAZME)CHYaB
+ 8cAZDIEAB (ky, ky)}, (197)
S[TZZ]+ P (ky, k)
= —ig{(ac{zkl ks + SFZME) B
+ 8cHZDH B (ky, ky)}, (198)
where the coefficients dc are defined as
Sci? = (5ZAZ +6Z70), 8y’ = 5ZZA,
dctt = SZZZ, 8¢5 = M%8Z,, + 3M§. (199)

These counterterms are sufficient to remove the divergen-
ces of the completely cut graphs (2#”*£(p, g)) which do
not contain a bilinear mixing, once we set on shell the
external gauge lines. This occurs both for those diagrams
which do not involve the terms of improvement and for
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those involving 7,. Regarding those contributions which
involve the bilinear mixing on the external graviton line,
we encounter two situations. For instance, the insertion of
the bilinear mixing on the TAA vertex generates a reduc-
ible diagram of the form Higgs/photon/photon which does
not require any renormalization, being finite. Its contribu-

tion has been denoted as A;“’aﬁ(p, q) in Eq. (153). In the
case of the TAZ vertex the corresponding contribution is
given in Eq. (165). In this second case the renormalization
is guaranteed, within the standard model, by the use of the
Higgs/photon/Z counterterm

M
£ 8Zzam*P

wE=w

S[HAZ]*F = (200)

As a last case, we discuss the contribution to 7ZZ coming
from the bilinear mixing. The corrections on the graviton
line involve the graviton/Higgs mixing i} (k), the Higgs
self-energy i yp(k*) and the term of improvement
A} 7B (p, q), which introduces the Higgs/Z/Z vertex (or
HZZ7) of the standard model. The Higgs self-energy and
the HZZ vertex, in the standard model, are renormalized
with the counterterms

STHH(K2) = i(8Zyk> — M%6Zy — M2, (201)
eM 252 — ¢ §
S[HZZ]*# = i £ [1 + 87, + v Ow
wCw w Sw
1 6M3, | 1 i

The self-energy i3} (k) is defined by the minimal contri-
bution generated by Tmm and by a second term derived
from T/ILV. This second term is necessary in order to ensure
the renormalizability of the graviton/Higgs mixing. In fact,
the use of the minimal EMT in the computation of this self-
energy involves a divergence of the form

S[hHIE!

o ig Stmh, (203)
with 6t fixed by the condition of cancellation of the Higgs
tadpole T, (6t + T,; = 0) and hence of any linear term in
H within the 1-loop effective Lagrangian of the standard
model. A simple analysis of the divergences in iX}!
shows that the counterterm given in Eq. (203) is not
sufficient to remove all the singularities of this correlator
unless we also include the renormalization of the term of

improvement which is given by
1 1
S[hH] (k) = —z—(—g)i[ﬁv + §5ZH]v(k2n'“” —kHk”).
(204)

One can show explicitly that this counterterm indeed en-
sures the finiteness of (%57 (k).
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IX. COMMENTS

Before coming to our conclusions, we pause for some
comments on the meaning and the implications of the
current computation in a more general context. This con-
cerns the superconformal anomaly and its coupling to
supergravity, aspects that we will address more completely
in the near future.

The study of the mechanism of anomaly mediation
between the standard model and gravity has several inter-
esting features which for sure will require further analysis
in order to be put on a more rigorous basis. However, here
we have preliminarily shown that the perturbative structure
of a correlator—obtained by the insertion of a gravitational
field on 2-point functions of gauge fields—can be organ-
ized in terms of a rather minimal set of fundamental form
factors. Their expressions have been given in this work,
generalizing previous results in the QED and QCD cases.
The trace anomaly can be attributed, in all the cases, just to
one specific tensor structure, as discussed in the previous
analysis.

We have also seen that at high energy the breaking of
conformal invariance, in a theory with a Higgs mechanism,
has two sources, one of them being radiative. This can be
attributed to the exchange of anomaly poles in each gauge-
invariant sector of the graviton/gauge/gauge vertex, while
the second one is explicit. As discussed in [5] this result has
a simple physical interpretation, since it is an obvious
consequence of the fact that at an energy much larger
than any scale of the theory, we should recover the role
of the anomaly and its polelike behavior.

In turn, this finding sheds some light on the significance
of the anomaly cancellation mechanism in four-
dimensional field theory—discussed in the context of
supersymmetric theories coupled to gravity—based on
the subtraction of an anomaly pole in superspace [24].
Let us briefly see why.

The theory indeed becomes conformally invariant at
high energy and, in presence of supersymmetric interac-
tions, this invariance is promoted to a superconformal
invariance. In a superconformal theory, such as an N =
1 super Yang-Mills theory, the superconformal anomaly
multiplet, generated by the radiative corrections, puts on
the same role the trace anomaly, the chiral anomaly of the
corresponding U(1)g current and the gamma trace of the
corresponding supersymmetric current. Notice that these
three anomalies are ‘“gauged” if they are coupled to a
conformal gravity supermultiplet and all equally need to
be cancelled. The role of the Green-Schwarz mechanism,
in this framework, if realized as a pole subtraction, is then
to perform a subtraction of these polelike contributions
which show up in the UV region, and has to be realized
in superspace [24,25] for obvious reasons. Then, one can
naturally ask what is the nature of the pole that is indeed
cancelled by the mechanism, if this is acting in the UV. The
answer, in a way, is obvious, since the mechanism works as

PHYSICAL REVIEW D 83, 125028 (2011)

an ultraviolet completion: the “poles” found in the pertur-
bative analysis are a manifestation of the anomaly in the
UVv.

As we have explained at length in [5] these poles
extracted in each gauge-invariant sector do not couple in
the infrared region, since the theory is massive and con-
formal invariance is lost in the broken electroweak phase.
Looking for a residue of these poles in the IR, in the case
of a massive theory, is simply meaningless. Indeed their
role is recuperated in the UV, where they describe an
effective massless exchange present in the amplitude at
high energy.

Therefore, the 1/s behavior found in these correlators at
high energy is the unique signature of the anomaly (they
saturate the anomaly) in the same domain, and is captured
within an asymptotic expansion in v?/s [5]. Thus, the
anomalous nature of the theory reappears as we approach
a (classically) conformally invariant theory, with s going to
infinity.

Obviously, this picture is only approximate, since the
cancellation of the trace anomaly by the subtraction of a
pole in superspace remains an open issue, given the fact
that the trace anomaly takes contribution at all orders both
in Gy and in the gauge coupling. The resolution of this
point would require computations similar to the one that
we have just performed for correlators of higher order.
Indeed, this is another aspect of the “anomaly puzzle” in
supersymmetric theories when (chiral) gauge anomalies
and trace anomalies appear on the same level, due to their
coupling with gravity.

X. CONCLUSIONS AND PERSPECTIVES

We have presented a complete study of the interactions
between gravity and the fields of the standard model
which are responsible for the generation of a trace anom-
aly in the corresponding effective action. The motivations
in favor of these type of studies are several and cover both
the cosmological domain and collider physics. In this
second case these corrections are important especially in
the phenomenological analysis of theories with a low
gravity scale/large extra dimensions. We have defined
rigorously the structure of these correlators, via an appro-
priate set of Ward and Slavnov-Taylor identities that we
have derived from first principles. We have given the
explicit expressions of these corrections, extending to
the neutral current sector of the SM previous analysis
performed in the QED and QCD cases. We hope to return
in the near future with a study of the charged current
sector and a complete characterization of the effective
Lagrangian of the SM. Here we have made a first step
in that direction.
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A. APPENDIX Wi, =a,W;—0a,W, —iglcosOyZ, W,
We summarize here some of our conventions used in the +sinfyA, W, —(u )], (A4)
computation of the various contributions to the total EMT
of the SM. The definitions of the field strengths are

w,,=0d,W, —ad,W, +iglcosbyZ, W,
F4, =9,G%— 9,G% + g, f*GhL,GS, (A1) g g g "

+ sinfyA, W, — (u < v)], (A5)
A _ _ .
Fay = 0,4, = 0,A, + gsinfyx,,, (A2)  ith X v given by x ., = i{W, W,” — Wi W, ]. As usual,
we have denoted with f?¢ the structure constants of
Zyuw = 042y = 0,2, + 8COSOW X s (A3) " SU(3)., while e = gsinfyy. The fermionic Lagrangian is
|
Lo = iy Y20y, + 1y80, e+ 1y5 0, + 1gy20 g + (2 = Wt
ferm. — “pvf'y /.Llpll(. “pe'y ,u,lpe “pu'y ,ulpu “ﬂd’y y,lpd \/ETIEOW lpl/g’y D) we "
- 1—9 e - 1—9 e - 1= )
+ m W, +—— m Z,———— m -2 20) Z
lﬂe’)’ 2 wvg ,u) sm29W lﬁyﬂ’ 2 lﬂv(, " SIHZGW lvbe'y ( 2 S~y lpe "

.

| — 5 1 — 55 2
Y Y Y —Zsin29W§)lpuZ#

e - - - e - 1
+ = by W, + bty W, |+ —,v"
ﬁsinew(lpu'y D) l;bd I lﬂdY B l//u ,u) Sil’l20w !ﬂu?’ (

e - 1—9 _ 1 - 2 - 1 -
- # —2sin?0y = | Z, | + eA, [ — By, + = By, — = m
g v (g asint 3 )z, |+ eau (<o 4 S By, 5 a)
+ 8, GL Y Y, + Py 1 ). (A6)
The gauge-fixing Lagrangian is given by
1 1 1 1
Lo = =5z (FY = 52(F = 2(FNF ) = 55 (FO (A7)

26 26 & 26
where the gauge-fixing functions in the R; gauge are defined by
FOI=0"Gy, FA=0A, Fr=0"2,—EMph, FT=0"Wo —3égud’, FT=0"W, —36gvd,  (AS)

and we have used for simplicity the same gauge-fixing parameter £ for all the gauge fields. Finally we give the ghost
Lagrangian
Lopost = 0#89(9,89 + g, fPGh) et + 0+ %9, m* + d#pta,m* + oFqta,nT + 49" a,m

+ iglo# 7T [W,i (cosOyn? + sinfyn?) — (cosbyZ, + sinfyA,)n"]

+ 949" [n” (cosOyZ, + sinfyA,) — (cosbyn* + sinfyn*)W, ]

M
+ 9#(cosOyn? + sinfy ) Win~ — W' ]} — se'iMW {—i¢pT[cos20y 7" n? + sin20y 7" pt]
Nz

o __ . __ e& = e

+ i¢p [cos20y 7~ % + sin20yn Al — 7ind Mylv+h+i¢p)g n"+@w+h—id)n n ]
W
e& _ ., eEM _

— i My (= 0 + TP T) = 2 (v + Wi (A9)

2 sinfyy, sin26y,

APPENDIX B: WARD IDENTITIES

For the derivation of the Ward identities, the transformations of the fields are given by (we have absorbed a factor ,/—g
in their definitions)

Vi) = VE(x) — j A9 (x — y)a,VA(x) + [9,89(x — y)IVEe" (),

J'(x) = J(x) - f d*yo [8W(x — I (),  X(x) = x(x) - [ d*yd,[8W(x — y)x()]e’(y).  (BI)
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The term which appears in the first line in the integrand of
Eq. (45) can be re-expressed in the following form:

- [ dxVOr [—5D(x = y)a, VE(x) —[9, 6% (x — y)]VE]

=-VO*,, +VOH, Vi,
Ourp — @)/m]

5 (B2)

= —V[@“w + Vo Vi
where in the last expression we used the covariant conser-
vation of the metric tensor expressed in terms of the
vierbein

a a
Buvp = 0= VupVy = —VuV,

avip

=~V Vip. (B3)
Other simplifications are obtained using the invariance of
the action under local Lorentz transformations [26], pa-
rameterized as

1
Vi = wﬂbVﬁ, oY = Ea’“hwgétp,

_ 1-
89 =~ Joile,, (B4)
that gives, using the antisymmetry of w22
oS - 6S 8S _,  8S 4
— oy — ot — — — Vi +—— Vi = 0. (BS)
Sy 8¢ sV, oVyu

The previous equation can be reformulated in terms of the
energy-momentum tensor @~
- oS oS
V(OH1P — @PH) = frghP —— — —— ghP
( )= 50 oy P
which is useful to re-express Eq. (B2) in terms of the
symmetric energy-momentum tensor 7" and to obtain
finally, in the flat space-time limit, Eq. (46).

(B6)

APPENDIX C: BRST TRANSFORMATIONS
AND IDENTITIES

Here we illustrate the derivation of some identities in-
volving 2-point functions using the BRST invariance of the
generating functional

Z[J, Fl= f DdeiS, (Cl)
with
#ﬂw+ﬂmmwwm+w@wm+m
+ XA 0) FA(x) + x(0) F#(x)
X TO)F )+ x )F ()] (C2)

For convenience we have summarized the BRST trans-
formation of the fundamental fields of the SM
Lagrangian used in the derivations of the various STI’s in
Sec. VI
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1
8AY = ADYc?, 8¢ = — Eg)\f“bccbcc,

1 1
5ct = — — FaA— -
¢=-zF £

Sy = —ightAct,

(9*AG)A, S = igActy,
(C3)

for an unbroken non-Abelian gauge theory, and

8B, =Ad,my SW.L=ADLnh=A0,n¢+ e Whno),

A A
Siiy=—=F° oni=—ZF% bny=0,

& &
877L=%g6“b”7]2172, SH=ig'YHAny +igT*HAnS,
SHY = —ig'H'YAny, —igHT T A7, (C4)
for the electroweak theory. We require that

SprsTZ[J, F]1 = 0 under a variation of all the fields and
gauge-fixing functions. We then differentiate the resulting
equation with respect to the sources of the photon and of
the antighost to obtain

52
SJAH(x)S w? (v)

= [ DDA ()54, (1) + 67 (1A, (N} =0.  (C5)

5BRSTZ[J’ j:]

Introducing the explicit BRST variation of the antighost
field 7*(y) and of the gauge field A, (x) we obtain

(A G)DA A () = éwﬁAB(y)AM(x». (C6)

Similarly, in the case of the Z gauge boson, we take two
functional derivatives of the condition of BRST invariance
of Z[J, F], as in Eq. (C5), but now with respect to J*(x)
and w?(y), to obtain the relation

(A0)DZn(x)) = é<fz(y)2,,(x)>-

On the other hand, two functional derivatives of the same
invariance condition, now with respect to JA*(x) and to

w?(y), give

(DA () = ;<f2<y>Ap<x)>.

(C7

(C8)

1. Identities from the ghost equations of motion

A second class of identities is based on the equations of
motion of the ghosts. Differentiating dgrspZ[J, F] with
respect to the source of the photon antighost w”(x) and to
the source of the corresponding gauge-fixing function

() gives
é<aaAa<x>aﬁA,3<y>> — (FAE)).

At this point we consider the functional average of the
equation of motion of the ghost of the photon

(€9)
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[ DFeS{~EA(y) + 0 (y)} = 0

and take a functional derivative of this expression with
respect to the source w”(x) of the antighost 7 (x), obtain-
ing the equation

| Dresi-igtai@ + 89 - i =0. cin
or, in terms of Green’s functions
é<fA(x)fA(y)> = é<aaAa<x>aﬁAﬁ<y>> — (P WE)

= —i6W(x - y),

(C10)

(C12)
|

(1) graviton-gauge boson-gauge boson vertex
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which involves the correlation function of the photon
gauge-fixing function. It is not hard to show, using the
same method, the following identities

(F?(0)*A () = 0= (F*(0)A()) = 0,

(FEO)F4(y)) = —igdW(x —y). (C13)

APPENDIX D: FEYNMAN RULES

We collect here all the Feynman rules used in this work.
All the momenta are incoming

VO(
k1
v 1
h# - —zg{ (k1 - ko + MZ) C8 4 DFoB (ky ky) + EE‘“’“B (k1, kg)}
ko
Ve
(233)
where V stands for the vector gauge bosons A, Z and W~=.
(i1) graviton-fermion-fermion vertex
(G
k1
h =iy (e — ko) Y (ke — o) — 20 (By — fo + 2
=3 Y 1 2 v 1 2 Ui 1 2 mf)
ko
(G
(234)
(iii) graviton-ghost-ghost vertex
]
ky.-
k4
hHv W\/\’\p :ig{klkaUcuupa_Msnuu}
B
n
(235)

where 7 denotes the ghost fields ", ™ and n%.
(iv) graviton-scalar-scalar vertex
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S
]ﬁ,’,
,// . K k k Crvpo M2 g
v , = @5 1pR20 — Mgn
AN ik v v
k\\ - §§{<k1+k2)”(7€1+k2) - (k1+k2)2}
2 N,
S

(236)

where S stands for the Higgs H and the Goldstones ¢ and ¢ ™. The first expression is the contribution coming from the
minimal energy-momentum tensor while the second is due to the term of improvement for a conformally coupled scalar.
(v) graviton-Higgs vertex

k
iV AAAAS - - - H = igL“éMW {k“k” - n“”kz}
e

(237)

This vertex is derived from the term of improvement of the energy-momentum tensor and it is a feature of the electroweak
symmetry breaking because it is proportional to the Higgs vev.
(vi) graviton-three gauge boson vertex
Ve w—r
k1 ko

= —iecvg { CHee (kT — KT) + CH7PT (kS — kS)

W iy (/455 _ kg) + FMPTO (ke ko, /4}3)}

ks
Bl Ww+e
(238)
where Cy = 1 and C; = $*.
(vii) graviton-gauge boson-scalar-scalar vertex
1% S
kl k2/ d
/
/
g K
N =ieCys, s, 5{(7920—/430)0“”“(’}
N\
N\
k3 N\ N
hH S1
(239)

with Cyg g, given by

2 2 ;
C — Sw i
S Czng =

Cavio =1  Crprg = .
Ao 2 25 c.

28,,Cp

(viii) graviton-gauge boson-ghost-ghost vertex
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v i
k1 ko .-
R4
’ = ieCyy 5 iz OV
kY-
hev n
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where V denotes the A, Z gauge bosons and 7 the two ghosts n* and 7~ The coefficients C are defined as

CA.,]Jr:l

(ix) graviton-gauge boson-gauge boson-scalar vertex
Vi vy

R
= eCVlVQS 5 MW C,uua[f

RV

where V stands for A, Z and W* and S for ¢= and H. The coefficients are defined as

CAW+¢7 = ] CAW7¢+ = _1 CZW+¢7 = —

(x) graviton-scalar-ghost-ghost vertex

S Ul
N\
N Ky ko
\\ .(
<« .
h K
. —*iecsniMWﬂW
D
hH K

Cow-g+ =

(240)
CW
Cz.,]* = _S_
w
(241)
s i
— Czzn = Ty 2 Cwrwn = T
w wEw w
(242)

where S = H and 7 denotes n*, n~ and n?. The vertex is defined with the coefficients

1
CH,,fr = CHT]* = F

(xi) graviton-three scalar vertex
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Sl S2

Ky k2//
N ’

hHv Ss
(243)
with § denoting H, ¢ and ¢=. We have defined the coefficients

1 M3 3 M
C =Cp,s, = _H C = TH
Héé He™ ¢ 25,¢, My, HHH 285,C My

(xii) graviton-scalar-fermion-fermion vertex

RV
(244)

where S is only the Higgs scalar H.
(xiii) graviton-photon-fermion-fermion vertex

A~ ¥
ke s

. K: n ro v (0% 1% (0%
=—1Qfez{v‘ '+t =20t y }
k3
hHv "
(245)

where Q is the fermion charge expressed in units of e.
(xiv) graviton-Z-fermion-fermion vertex

ze ¥
Ky ko

K

= —ieg——(C] 0575){7“n”“+7”?7““ Qn’wva}
Sw Cw

k3
v w

(246)

where C/, and CJ, are the vector and axial-vector couplings of the Z gauge boson to the fermion (f). Their expressions are
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Cl, =1 - 2550/

PHYSICAL REVIEW D 83, 125028 (2011)
Ig denotes the third component of the isospin.

ch=1.
(xv) graviton-four gauge bosons vertex
VQB
‘/'101
wte _ ie? Cv.v. o {Gwaﬁap + GHrvBaop + GHvabBpo + Gwﬁapo}
1Vv2 4
hv
Ww-—r

where V, e V, denote A or Z. The coefficients C are defined as

(247)
c
Caia =1 Caz =

ghw| ng

(xvi) graviton-gauge boson-gauge boson-scalar-scalar vertex
VQﬁ

‘/'10(

Sy _

. 9 R
— —je CV1 VaS1Ss 5 Cuua,ﬁ
B

(248)
2 2
¢ — 52
Cangro- =2 Cazpry- =

where V; and V, denote the neutral gauge bosons A and Z, while the possible scalars are ¢, ¢~ and H. The coefficients are
(@ — 57

Crze e =
socn 724" ¢

1
Crzzé¢ = Czznn =
2s2.¢2, 24 2s2c

7
The tensor structures C, D, E and F which appear in the Feynman rules defined above are given by
Cuvpo = 8up8vo T 8ualvp ~ uv8po
Dypolky, k) = g kioka, — [8#7KVKS + gupkiokay — &pokika, + (n < )],
Epolki, ko) = gu(kikiy + kopkoy + kipkay) = [8rakipkiy + 8upkopkas + (1 < V)],

F,lLVpU’/\(kl’ k2’ k3) = g,upga'/\(k2 - k3)1/ + g,ua'gp)\(k3 - kl)v + g,u/\gpo'(kl - k2)v + (/‘L - V)~

(D17)
APPENDIX E: THE SCALAR INTEGRALS
We collect in this appendix the definition of the scalar integrals appearing in the computation of the correlators. The 1-,
2- and 3-point functions are denoted, respectively, as A, B, and C,, with
1 1
Aog(md) = — / d"l ——~
o(mg) im? 2

1
, Bo (k2 m2, m?) = —— / " ’
— m3 o(k", g, m3) i (P = md)((I + k)* — m?)
1
CO((p + q)zy p21 qzy m(z)y ml’

1

2 m2) = - [d”l .
i (2 = mp)((1 + p)* = m})((L — q)* — m3)
We have also used the finite combination of 2-point scalar integrals

1

(ED
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D o(p? q% m3, m3) = By(p*, m3, m3) — By(q?>, m3, m?). We denote with A the infrared regulator of the photon mass.
We denote with m; ;, m, ; and m,; the masses of the lepton,

(E2) u-type and d-type quarks of generation i, respectively.
The explicit expressions of Ay, By and C can be found in The self-energies are then given by
[27].
SAA( 2):_i %ZNfZQZ —(p? + 2m2) By (p2, m2, m2)
APPENDIX F: PROPAGATORS AT 1-LOOP T \P 4347 p £ B0NP I, Mg
We report here the expressions of the self-energies ap- ) S I
pearing in Sec. VI. They refer to the case of two vector +2m fBO(Or my,m f) +§P ]
bosons (V;, V,), one vector boson and a scalar (VS) and 5 ) .
two scalars (SS). The self-energies carrying Lorentz indi- +[Bp? +4M5,) By (p?, My, M3)
ces are decomposed as
P — 4M2, By (0, M3, ,M%V)]}, (F3)
EZM(]?) _ _i<77a5 pap,B)EVlVl( 2 papﬁ Evlv]( 2,
p p?
D () =0, (F4)

SVS(p) = pa215(pY). (F2)

77( .2 a [2 f’Cf2 sz 2 2 2 PRI S
24 (p)Z—E §ZNC W —(p +2mf)fBo(p mf,mf)+2meO(0,mf,mf)+§p

I

_I_

3 1 1
) m}Bo(pz, mf, ? ] + m[((l&fv +2¢2 — E)p2 + (24¢t + 16¢% — IO)M%V) X By(p*, M3, M%)
1

1222

WW

2
— (24¢% — 8¢ + )M, By (0, M2, M2) + (4e?, — 1)5] [(2M§, — 10M3 — p?)By(p®, M2, M2)

(M7 — Mp)

— DML By (0, M2, M) — 2M2 Bo (0, M2, M2,) — (By(p?, M2, M2,) — By (0, MZ,M%,»—— ]} (F5)

— _ f2 _
SH(p?) = 27Ts2Wc% {ZNCC 2By(p?, m2, m3) + M3, (ch — s4)Bo(p?, M3, M3)

- W[((M% = M},)? — 4M5p*)Bo(p?, M7, Myy) + (M — M)(Ao(M}; — J‘\o(M%)))]}, (F6)

3H(p?) =

2 , 1
{— E NéQfC‘f/I:(p2 +2m3) By(p?, m7, m3) — 2m3Bo(0, m7, m7) — —pz]
47ms,c, 13 7 3

- %[((903v + ;)P + (12¢% + 4)M3,) By (p?, M3, M3,) — (12¢% — 2)M3, B, (0, M3, M3,) + 1 3P ]} (F7)

2,22(])2) - _

a
5o My Bo(p?, Miy, M), (F8)

wEw

Ez\qﬁ(pz) — _

a
5 MiyBo(p?, Miy, M), (F9)

w

a M
S74p?) = - i ORI B + M0 0t — 3B M )
+8M S[(M3 — M%>2—3M%p2)30(p2,M%,M%,)+<M%—M%,)(AO(M%,>)]}, (F10)
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30 (p?) = iW{ZNfom [P*Bo(p?, m}, mj%) - 2ﬂ0(m%)]

+— [(6M2 + M2) AgAy(ME) — 4AM2,(p* By (p?, M3, M%) + M3,)]

—[2<(M%, — M2)? — 2M2p?)By(p?, M2, M) + (M2, +2M2) A o(M2) + (BME + 4M2) A o(M2) — 4M4Z]},

S n(p?) = {ZN - Z"Mz [2Ag(m2) + (42 — p)By(p?, 2, mi2)]

M? M2
VB2, M3 03) + (34 5
w w

1
_F[(W%V_zl’z* ) o(M3) — 6M3, ]
1 M4 M2
whw VA

3 M}‘, M3, 5
_g[ M, a2 Bolp? My, M) + 25 ﬂlo(MH)]} (F11)

WW( .2 a [ 1 mi; 2 2 2 P’ 2
2 (p?) = _E{§Z[ y TP )BO(P ,0,mp;) + 3 + m7;By(0, mj,;, mj,)

2,0, mj;) — By 0,0, mzz,i)):l

mZ

. 2
7 Z'Vulz[( v ) X Bo(p?, mi,;, mg ;) + ? * 1 BoO, my i) + g Bo(0, i mg ;)
S i,j
wi Mg )

2p?
M
|:(2M2 + 5p2)Bo(p, M2y, A2) — 2M3, By (0, Moy, M3y) — p;V (Bo(p2, M2, A2) — By(0, M2, A2)) + %]

(Bo(p? mu,, mﬁ,j) — By(0, mj, , mﬁ,j)):l

Wll\)

1
s [((4oc2W — 1)p2 + (1662 + 54 — 10e52)IM2) Bo(p2, M2y, M) — (1662 + 2)(M2, By (0, M2y, M2)
SVV

2 2 M2 M2 2
MR, M3, M)+ 4k = 072 863 + ) MM (0 5, 3) - B0, 05, M) |
P
1
+ | QM — 100, — p)Bo(p?, M3, M) — 25, Bo(0, M3 M)
MZ M2 2 2 2
— o Bo(0, M3 ) — MW M 2 0 vz — B0, M3, M) - 21 (F12)
P
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APPENDIX G: CONTRIBUTIONS TO THE FORM FACTORS

We give here the remaining coefficients appearing in the form factors of the TAZ and TZZ correlators.

1. Form factors for the TAZ vertex

K@ Q;Cu
) 3ms,,c,, s(s —M2%)3 16
-i-ZmZ(sM2 + M3+ 35)Dy(s, 0, mf, mf)

M3[4m3(3sM7 + M3+ 95°) + s(4sM7 + M3 — 35%)]
2(M2% — )

(5,0, M3, m?) = — { (12m3(sM3 + MY + %) — 9s2M% + 125M}, +2M + 5%)

Dy(s, M7, m7, m3) + my(4m7(sM7 + M3 + 5°)

+352M% + 6sM% + MG+ 25%)Co(s,0, M3, m f’mf’m?')}’

®" (5,0, M2, m 7= —lE 127:;ch s(sQf A;%){—é(um% +2M7 + 5) = 2m3 Dy(s, 0, m3, m7)

Mmf(ﬂ;[(%\;_;—sl—)i_ sM7] Dy(s, M7, m7, m3) — mz(4m7 + M7 + 25)Co(s, 0, M7, m7, m7, mjzc)},
®'"(s,0, M2, m7)=— %@@(& 0, M7, m3),
CI)gF)(s,O,Mz,mj%)= —is_ 2 0;Cs { —8m3Dy(s,0,m7, m7)

) 67s,,c,, (s — M2%)?
[sM2 8mf(3M2 —s)]

Do, M3 13, 13) = 6003 M3Co 5 0,0 i i) |

s— M2
P50, m2) =52 QCY L a0 s 0w b Dy (5,0, 2
6 (5,0, ,mf) 1537” cy (s—M2)3 z( my 4 s) milz O(Sy ,mf,mf)
M2[s(M?% —3s) —4m%(OM> + 45)
Mz Lt ]Do<s,M2,m;,m;>

2(M2% —5)

+ f%sz%(4m2 + M2+ 35)Cy(s,0, M3, mj%, mj%, mj%)},
K @ QfC

- 127s,,¢,, (s — M%) 16

2(mH M3+ 4s) + M3)
M2 —s

(I);F)(s, 0, M2, m]%) = { (36m3 24+ MZ+11s)+ (25 —2M2)By(s, mf, m}) + Zm}DO(s, 0, mj%, m]%)

+(4M%— )Do(s M2Z,m f’ f)+6m (2m +5)Co(s,0, M2, m> my, f, f)} (GD)
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1 1
P (5,0, M2, M3) = —i~ —— {— —652M2(12(s%, + 52) — 25) + MS(—72s%, + 17452 — 103
b (S w) 12 3ms,c,, s(s — M%)g 12( s z( (sw sw) ) Z( Sy S )
—365M%(2s3, — 952, +7) + 5%(652, — 5)) — 2c2M%(M% — 5)* By (s, M3, M%)
+ M%c2(6s2,(sM2 + M3 + 35%) — 9sM2 — 3M3 — 135%) X Dy(s, 0, M3,, M3,)
M2

+s3(34sw—35))DO(S,M2,M%V,M‘2V)— M2c% (25> M2 (65, — 352, + 4) + sM5(12(s%, — 5)s2, + 41)

T+ 2M(65%, — 1552 + 8) — 53652 + 5))Cols, 0, M2, M2, M3, M%V)},

K o 1
'212ms WGy S(s — M2)

P (5,0, M2, M3,) = —i { 13 (MH(725}, = 17453, + 103) + 5(5 = 657,)) + 2M33, By (s, My, M)
2 .2

M
+3M%(2s%, — 352, + 1)Dy(s,0, M3, M3,) — Z;Wz (M%(652, — 5) + 25(652, — 7)) Dy(s, M2, M3, M3,)
§— Mz

+ M2 (ML(65% — 1552 + 8) + 5(7 — 652))Cols, 0, M2, M2, M3, M%V)}

1 1
P (5,0, M3, M) = —i5 — Mz)z{—ﬁ(M§ +25)(M2(725% — 17452 + 103) + (5 — 652)
wrw VA
—2M2%c (M2 — 45)By(s, M3, M3,) + 3M%c% (25 (M2 + 25) — M% — 65) Dy (s,0, M3, M%)
M2 2
+ 2zC e (M2 + 25)(M2(652 — 5) + 25(652 — 7)) X Dy(s, M2, M3y, M3
S —

— M3C(M3 +25)(2M3(65%, — 1552 + 8) + 5(7 — 652))Cy (s, 0, M3, M3y, M3y, M@)},

K « 1
i
26ms,,¢,, (s — M2)?

DP(5,0, M3, M3) = — {M%(lSs%v — 19) + 12M%c2 By (s, M}, M3,) + 8M2(3sh, — 4s2 + 1)

M2
— fﬂ (s(24s?, — 6252 + 39) — 12M2%(65%, — 1152, + 5)) Dy (s, M3, M3, M7,)
VA

X po(s, 0,M2 ’M%’V) -
S
+6M%c(M%(25% — 1) — 25)Cy (s, 0, M3, M3, M3, M )}

P (5,0, M2, M3,) = — — M2(M2(72s% — 9052 + 17) + 5(53 — 5452))

K « 1 { 1
is
23ms,c, (s—M2)* L 4
2
2(s Mz)
+ sM3(48s5, — T0s3, + 21) + 2457 c3,) Dy (s, M5, M3, Miy,) — 3M5 .5, (M7(12sy, — 20s7, +9)

= 5M3(6s), — 1153, + 5)Dy (s, 0, M7, M3,) — (18M4(65% — 1152 +5)

T+ SM2(9 — 1452) + 262)Cy (s, 0, M2, M2, M, Mzw)},

K o 1

q)(B) 0, M2,M2
it 2My) = ) 6ms,,c,, (s —M?3)

{24 (M2(545%(7 — 45%) — 161) + 5(270s2, — 277))

+= (M§(43 42s2) + 5(18s2, — 19)) By(s, M3, M3,) + 1c 2 (M2%(65% — 11) — 65) X Dy(s, 0, M2, M%)

1
EpTREYE _Mz)(M 21258 + 852 —21) + 2sM2(24s%, — 7452 + 51) + 1252¢2) Dy (s, M3, M3, M%)
VA
=32 (M%(6sy, — 1152 +5) + sM%(6 — 852) + 252)Cy(s, 0, M2, M3, M3, M3,)},
M iakc,, M
q)(B)(s,O,Mz,Mz)—MiZB (0, M3, M%), cI>(B)(s,0,1\/12,1\/12 y=——""W"2 B(0,M2, M2). (G2)
8 2w 67ss,  ° wr o 2w 6ss,, (s —M2) " ° v
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2. Form factors for the TZZ vertex in the fermionic sector
The coefficients of Eq. (174) are given by

ika, m2 ikam?
2 _ v 4 _ 2 2\ /2 2314 2 2 _ S ~f2
C(F)O = om (s = 4M%)s%v (M5, — 4sM7 + s°)CL~ + 2Cy" M), C(F)I 0, C(F)2 767”0%% .
ikam2M3 . . . . .
2 _ 7z 202 f2 2\ 274 f2 _ ~f2\ag2
C(F)s - 37TSZC%V(S _ 4M%)2S%V (S Ca Z(Cﬂ + Gy )MZ + ZS(CU Ca )Mz)y
2 iKamJZ‘ 8 2 6 2 4 22142 3,2\ /2
Cip,” = 6m (s —AMDPS ((4M5 — 2(8mf + 55)M5 + 3s(12mf + s)M7 — 16s myM7 + 2s mf)Ca
+ CLPMY(AMS, — 28m3 + )M + s(4m? + 5))), (G3)
3 _ iKa 2 2\ 054 2 ~f2 2 S2Y) 172 2 ~f2 /2 /2
C<F>0 = 1927 (s — 405 @(cy” + oMy, 2(32mea + 7s(Cy° + C)MZ + s(16mea + 3s(CL° + C)))),
IKa IKQ iak
Cp =y (C+ D), Cpl’ =y (Bm+9C7 + CP(s = m2) — ———— (CI? + C[))M3,
) 487TC%VS%V( ) P 487rc2 52, (Gmj +5) (s = mz) 247TC§VS§V( )
3 _ IKa 2, 2 f2 £2 o ~f2\6 2 2,2
Cip,> = B8 (s — MEPSD (8s°m;Cq” + 14(Ca” + CyIMY + (8(5Ca™ + €y )my

—17s(CI? + )M + sBs(Cl? + C17) = 21C)7 + [ ymA)MD),
5 iKa
s 487rc2 (s — 4AM2)*s2,

+ ((160m% + 1165m2 + 352)CL* + CLH(4m? + 35)(8m3 + $)M — 2sm%((40m? + 215)CL’

(18(C? + M — 287k + CfPym? + 9s(Cl? + )My

+ CL28m3 + 55)M3 + s2(5CL + CLPym3(2m? + ), (G4)
4 _ _ IKay a2 o Py g6 £2 o A2y, £2 1 A2\ 1
Cip,' = (s — A0S (—44(Ca” + G IMG + 2(96(2C;" + C)m3 + 31s(Ca” + Cy))M,
— 5(48Q2CE° + 3C[m? + 135(Cl2 + CL)ME + s2(sCl + CL2(24m? + ),
IKa
C. 4= CI* + 1) (s — 3M2),
(F) 127sct (s — 4M2)s2, ( s ?)
. 2
IKXMm>;
Cip,t = L (Cl(s = 5M3) — C(s — 3M3)),

4 —

(s 127rsc2 (s — 4M2)s?,
4_ iKa

s 24grscl (s — 4M2)3s

= 25((98m? + 55)CI% + CL*(5s — 22m2)MY + s2(CI7 + CL2)(12m% + )M + 453 (Ch — CL)(Ch + Chym?),

- (=36(CL* + CIMS + 2(56(3CL — ClPym? + 9s(Cl? + ClP)MS

IKa 3 .
Copt = 18(CF” + CHMY — 4(4(1CL + C[Pym? + 35(CY + CLH)MS
P 12752 (s — 4M%)3sfv( ( M (4 Jmj =+ 3s( )My
+ 4m2((40m3 + 215)CH* + CL*(8m? + 115))MG — 2sm3(24(CL> + CLPym? + s(1CL* + 13C[) M3

+ 252m3(CL2(9m3 + 4s) — CI2(3m3 + 25))M3 + 5*(Cl — C)(Ch + Clym2(2m? + 5)), (G5)
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5 _ ika _ee( 2 1 2\ g6 £2 L A2y, 2 F2 o ~f2)) 14
Cir, s (s — IS (—88(CJ* + CL)MG +24(16(2CY + CL)m’ + 55(CF* + CP) M3

—125(8(6CL* + Cj,jz)m% +5s(CL2+ C{z))M% + 32(96m§vC£2 +7s(CL? + 1)),

iKa
Cim,” = CP2+ CP)(s — 6M2),
(P 2477sc%v(s—4M%)s§V( ¢ v s 7
Y= frea —3m2)C* + P (m? - /2 _ 5 f2y,2 12 o A2\ g2
Corn’ = " aamsc (s — apgyst S T3P+ G+ 9) = 2(BCS = 5CTImy +25(Ca” + CI) M),
iKa

C 5 —
(F)s 247sc2 (s —4M%)3s2,

—35(44(CL? = 3CI7)m3 + 55(CL2 + CI)MY + 252((s = 79m2)CLE + CLP(29m2 + 5)) M3 + 453 (5CL? = 217 m3),

(36(CI* + CLY)MS, + 4((s — 84m2)CL + CIP (28m? + 5)) MY

5 _ lka _ 12 1 2710 12 4 o f2),2 12 1 2\ 18
Cip,’ = s (s —AMS (=36(Ca” + Cy )M7 +2(16(7Ca" + Cy)my + 33s(Ca” + Cu))M;,
—2(32(5C8 + ClPymi + 4s(S1CL* + SCIPym? + 1552(CL? + CL?) MG + s(384mtCl* + 165(16CL7 + C[Yym?

+352(Cl2 + CLP)IMY, +252m3(CL2 (6m3 + 5) — CA2(66m? + 355)) M3 + 53 (TCL — CLY)m3(2m? + 5)), (G6)

C 6= iKa
P 288arsc2 (s — 4M3)%s2,

(CI2 + CIH(=T72M$, + 8(48m3 + 195)M}, — 25(144m? + 355)M3 + s*(48m3 + 115)),

IKa . .
Copy © = — Ci? + ClP)(s — 2M3),
(F) 247sct(s — 4M3)s?, ( s ?)
6 — iKa f2 /2 2 (2 2
€’ = 2amsi(s - 4M3)s?, (Ca” + C)(s(my + 5) = 20my + 25)M72),
Cip,° _— Q4(CL? + CIHMS + 24(CI2 + CID)(s — 4m2)MS + 4s(6(11C2 + 3CHym?
z Mz ¥

(Fs "~ 48asc2 (s — 4M2)3s2,
—Is(CI? + CIMS + 52(1(s — 20m3)Cl* + CL(Ts — 44m2)M3 + 453 (SCE + 2C11)m?),

6 _ IKa
B 8ascl(s — 4M3)’s

+ 252(m_% + s))Cj:,2 + Cﬁz(—4M%0 + 2(16m% + 95)M5 — (64mf‘f + 56sm‘}2¢ + 11s2)M§

o

> (M3, — 4m]%M% + sm.}%)(—4Mg + 2(8m% + 9s)M3, — s(12m} + 11s)M2

+25(32m} + 16sm7 + s )My — s°m7(20m7 + 95)M7 + s'm7(2m7 + 5))), (G7)
Cimn' =~ 247TSC%V(;K—CY s (G + CUIMB(6M), — (32m + TS)M3 + 25(4mS + 5))
Cipy, = 12mcgv(ist DB (cl? + M3,
Cp, =~ pT—) (ikf P (1253m3 L = 24(CL7 + CHME — A(CL? + CI)(s — 24m2)MS
= 25((s = 20m3)CL? + CL2(T6m3 + )M + s2(32(CL? — 2CIH)m? + 3s(CH* + CI)MD),
T (S"’i";M%)%a (M — 4m2M3 + si)(4MS, — 16m2M% + s(dm? — 35)M3 + )CL2

+ CLP MM — 4m2 M, + 8sm2(SM? — 4m3)M3 + 5 (3m? + M3) + s*(4m} — 20Mm? — 3M3))), (G8)
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C(F)o o

(F)4

C(F)l

C

C

9
(F)o

9
(F)3

C 12ms23 (s — 4M?2)*s?,

8 —

9 —
(F),

(F)g =

PHYSICAL REVIEW D 83, 125028 (2011)
iKa
144752 c2 (s — 4M2)3s2, (
+ 352(3s — 16m]2p)M% + s3(24m12, +5)),
iKa
C2asA(s — 4M2)*s?,

IKa

Cl? + CIP)(—216M3, + 8(96m?% + 195)MS — 245(16m? + 5)M}

(CI2 + CIP)(—6M% + sM2 + s2),

(C? + CymA(—6M% + sM + s2),
IKX
127s%c% (s — 4M7%,

+ CL2(s — 108m2)MG + s2((34m2 + 35)CL* + CIP(3s — 62mA)M3 + (s — 22m3)CL?

2 (B6(CL* + CIHMY — A(Cl? + C[)(20m? + 35)MY — s((20m? + 5)CF°
SW

+ ClP@m? + )M + 25*2CE + CF)m?),

o (’K“ FYVERE: (=36(CJ2 + CIHMP +2(C + C)(112m2 + 99)MY + 4(—80(CS + CLym?
msec (s — 4M3)*s,,

= 25(15CE* + 31CL7)m3 + 352(CL2 + CI)MS, + sQ256(CL2 + CLPymd + 8s(13C17 = 1CL7)m?
= 9s2(Cl? + CI)MG + s2(=36(CL> + ClPymt + 25(23C)* — 13CL7)m? + 352(CL* + CLP)M,
= £*m2(10(C* + CL)m? + s(15CE + CI)ME + s*m3(2(m? + 5)CI° + CIP@2m? + 5))), (G9)

B IKa
T2 (s — 4M%)3s2,

- 6s2(28m}2( + s)M2 + s3(24m% + ),

(> + CI)(108M5 — 2(192m? + 835)MS + 3s(128m3 + 235)M}

ika 7 7 . 5 ,
6ms>cl(s — 4M2%)2s2, (Ca” + G )BM = 3sM7 + 57),
_ ika (Cf2 + Cf2)m2(3M4 _ 3SM2 + SZ)
6ms>cl (s — 4M2)*s%, - ¢ vz z ,
IKa

(=72(CE + CIOMY + 4(CL? + CIP)(0m2 + 215)M3

 24ms2c2 (s — AM2)*s?,

— 4s(2(CI? + 33C[m2 + 155(Cl2 + CIP)MG + 452 ((5s — 18m3)CL* + 5CH(6m? + )M}

+ $3(sCLP + ClP(s — 48m)) M + 454 (CY* + 2C17)m?),

. IKX
12752 c% (s — 4M3%)*s2,

+ 5(33CL + 49CL7)m? + 352(CL? + CIP)ME — s(352(CH° + CLPymd + 205(5CL + 13C1)m?

(B6(CL? + CIHMP = 16(CL7 + CL))(14m3 + 35)MY + 8(40(CL* + CLPymd

+952(Cl7 + CLH)MS + s2(180(CL* + CLYymd + 85(CL* + 10C17)m? + 352(CL> + CLP)M
— £mAA4(C + CLm? + sGCP + 17CH)ME + s'm((4m? + 5)CF2 + 2052 @2m? + 9))). (G10)

3. Form factors for the TZZ vertex in the W sector

The coefficients corresponding to Eq. (178) are given by
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o

C

2
Cowy,” =

2
C(W)4

3 _
Cowy, =

3 __
C(W)l

3
C(W)s

3 _
Cow, =

4 _
Cowy, =

Coyp 4 =

(W),

Cop * =

(W),

C

C

2 —
(W)

2
(W),

4 —
(W)3

4 —
(W)y

—lKaM
1252,c2, 775 (s — 4M2)

(2M4(—12s8, + 3258, — 2952, +9) + sM2(4(s}, + 52) — 7) — 2s%(s2, — 1)),

—ikaM>
iKa Z(_ggt

=0 Cyl =g L2+ 3k - ),

— 2
ikaM;

Osy,chmms*(s — M3)? (2MY(1255, — 325, + 2955, — 9) + sM}(—24s), + 925, — 11055, + 41)

+ $2M2(—12s3, + 2652, — 13) + 25°(s2, — 1)?),

—lKaM2
A2 s — M2)2( 8ME(s2, — 1)(4s2, — 3)(12sy, — 20s2, + 9) + 4sM5(24s8, — 60sS, + 30s}, + 2552, — 18)
+ 252 M%(—20s5, + 765}, — 10352, + 46) + s3MZ(—4st, + 2452 — 19) — 2s*(s2, — 1)), (G11)
—iKka

AMA(1245% — 22852 + 101) — 2sM%(4125% — 83652 +417) + s2(172s* — 35652 + 181 X
AT (s =) M4, — 22855, + 101) ~ 2sME(A12s], — 8365, +417) + 2(1725), — 3565, + 181))

—IKQ IKa

9 - 1 39
4 _ 102 3_ 2022 (A2 — 7Y 2 _ 4 _ 102
Ty (6sw 10s7, + 5)’ Cow,” = 48S%VC%V7T<§MZ(3SW(4(SW 7)s2, +43) 56) + s(9sw 19s2, + 1 )),

—iKa
96s2,c2 (s — 4M2

— 252 M2 (445t — 7652, + 33) + 2453(s2, — 1)2),

E (2MS(—4855, + 1965% — 30452 + 151) + sM%(2455, — 1485% + 34252 — 209)

—iKa
85 (s — 402 (M8 (452, — 3)(4858, — 3657, + 1652, —31) — 2sM5(4858, + 22856, — 53257, +24752 +7)
+ s2M%5(1258 427656, — 40753, — 1052, + 128) — s M2(36s5, + 1657, — 13352 4 81) + 125%(s2, — 1)?), (G12)

—ika
28852 c2 rs(s — 4M3)? (s
— 2sM%(864sS, — 133257 + 100s2, + 369) + s°(—12s3, + 2052, — 9)),
—ika(12sy, — 2052, + 9)(s — 3M2)
2452, c2 ars(s — 4M3) ’
—ikaM3(s?, — 1)(M2(—36s}, + 9252, — 43) + s(12s}, — 2852 + 13))
2452 c2as(s — 4M2)

2MZ(4(725% — 9352, — 35)s2, + 225) + 4M5(57656, — 11645}, + 74052, — 153)

—iK«a
48s2,c2ws(s — 4M2%)3
— 452M%(3655, + 325, — 16952 + 101) + s3M2 (4855, — 60st, — 4052, + 51)),

—iKa
2452 c2 rs(s — 4M2)?
+ 2sM5(—288s8, + 31258, + 5257 + 1452, — 89) + 252MS(10858, — 6055, — 1035}, — 252, + 58)

+ 3ME(—24s8, — 4858, + 98st + 3452 — 61) + s*M2(12s5, — 165}, — 552 +9)), (G13)

(4M3 (452 (84s% — 37552 + 452) — 641) + 2sMS(—26455 + 13965% — 178652 + 653)

(2M0(4s2 — 3)(48s5 — 3654 + 1652 — 31)
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5
C(W)o

Cowy,

5
C(W)z

C

C

6
Cowy, =

6

Cowy, =

6 —
C(W)z B

6

C(W)3 -

6

C( W), =

7 —
C(W)o B

7

Cowy, =

7

Cowy, =

7 —
C(W)4 B

- 57652 c2ms(s — 4M%

- 24s2,c2 ars(s — 4M2)

5 —
(W) 48s2,c2 ms(s — 4M2)?

5 _
(W) 24522 rs(s — 4M2

—IKQ

7 (8MS(57655, — 1164s% + 74052 — 153) — 48sM4(2455 + 92s5* — 24652, + 127)

+ 2452 M2 (15657, — 31652 + 157) + s3(—492s%, + 102852, — 525)),

RN (G )
2452 2 s(s — 4M2) Sw SwT\® z))

—IiKa

1
(M%(—36s?v + 128s% — 13552 + 43) + ESM%(12S§V + 245}, — 9952 + 61)

+ s2<—9s‘§v + 1952, — ?)),

—iKa

(4M5 (452 (84s%, — 37552 + 452) — 641) + 4sMS(—396s5, + 1600s%, — 178152, + 577)

+ S2MA(69655, — 262054 + 275852 — 839) + 253 M2(—4855 + 22854 — 28452, + 105) — 24s4(s2 — 1)2),

—iKa

7 (2M P (452, — 3)(48565 — 36s%, + 1652 — 31) + sM5(29 — 452 (5405}, — 99552, + 458))

+ 252M(—3658 + 84055, — 1243s%, + 22052, + 205) + s ML(1255, — 37255 + 24554, + 50852 — 391)
+ 8s*M2 (355, + 10s%, — 2852 + 15) — 1253(s2, — 1)?), (G14)

—iK«a
57652 c2 mws(s —4M%
— 852M2(72s5, + 27654, — 79052, + 435) + 5°(540s}, — 110852, + 561)),

: (—24M5(1652 — 13)(125% — 2052 + 9) + 325M*%(10856, — 7254 — 17952 + 141)

24S3VC$V7T;’(<sa— 4M%)(<_6S4W + 1055, = g)(s a 2M%))’
ik (M4(12s° — 3054, + 2952 — 9) — 2 sM3 (1255, + 405 — 12352 + 69) +s2(9s4 — 195 +9))
24s2chms(s—4MH\ AT Y v P v W v v4))
—iKa

182 ms(s — AM2)? (12M8 (452, — 3)(12s%, — 2052, +9) + 12sMS (=365, + 4057, + 52, —7)

+ 2 MA(26455 — 26054, — 10252 + 111) — s3 M2 (4855, + 285% — 18052 + 105) + 245*(s2 — 1)2),
—iKa
8s2,c2ms(s —4M2)?

— s2M5(120s8, + 15258, — 5385t + 21252 4 53) + 3 M5 (1258, + 12058, — 163s%, — 6152 +92)

(—2M (3 —452)2 (1257}, — 2052 4 9) + sM5 (452, — 3)(96s5, — 7653, — 3652 + 15)

—25*M2(856, 4 257 — 2752 + 17) + 45°(s2, — 1)?), (G15)
—ixaM? 552(125%, — 2052 +9
L (4M2(165% — 13)(12s% — 2082 +9) + s(—372s% + 74852 — 375) — (1253, all )),
384sy, ¢y, ms(s —4M7) s—4M;
—iKaM% —ikaM?
1254 —20s2,4+9), C,, = z 1258 — 3254 4+ 2952 —0),
2452 2 ars(s — 4M§)( Sw S t9) W 2452 2 7rs(s — 4M%)( Sw Sw $iv=9)
—ikaM%

T Py ERS (6MS(452 —3)(125% — 2052 +9) + sM3(—45655, + 134854 — 129052 + 393)

+ s2M2(9655, — 220s}, + 10852, + 15) — 653 (457, — 952 +5)),

—ikaM?
8522 msls — M) (—2M5(3 — 4s2)>(12s%, — 2052, + 9) + 2sM5(9658, — 15256, + 205, + 5852, — 21)
— s2M5(2458 4+ 11258 — 33057, + 25452 — 59) + 53 M2(2855, — 4857, + 1552, +5) —45*(s2, — 1)?), (G16)
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8§ —
C(W)o

8 __
Cowy, =

8
Cowy, =

8 —
Cowy,” =

8
Cowy, =

9 __
Cowy, =

9 _
Cowy, =

9
C(W)z

9 __
Cowy, =

9
C(W)4

—iK«a
28852 c2 ms*(s — 4M>%
+ 8sM$(576s5, — 1068s%, + 48452 + 15) + 245> M%(24s5, — 1165, + 16652, — 73)
+ 35°M%(—96sS, + 3325} — 38052, + 145) + s*(12s%, — 20s2, + 9)),

i (—24M3(32s2, — 23)(125% — 2052, + 9)

—ika
24522 752 (s — 4M2)? ((—12s% + 2052, — 9)(s> + sM2 — 6M%)),
w=w VA
—ikaM? . y , . i i
T T d(s = apg2yt (1250 3255 — 2955 + )57 + sM — OMD))
w=w
—iKka

B (s — 4D (8MP(20s2, — 11)(12s%, — 2052 + 9) — 8sM5(324s5, — 908s%, + 83552, — 244)

+ 252MS(74455, — 19965}, + 162652 — 375)

+ 453ME(— 1255 + 20s%, + 3152 — 36)s*MZ(—48s5, + 172s%, — 20852, + 85)),
—IlIKX

24s2,c2 115> (s — 4M?,

+ 2sM 10 (4(38455, — 8765, + 69152 — 218)s2, + 93) — 4s>M5 (10858, + 15655, — 695s%, + 56452, — 130)

— 253MS(60s8, — 49655, + 8655t — 51352 + 84) + 25* M5 (1258 — 4855, + 4158 + 1752, — 21)

+ sSM2(— 1255, + 40s?, — 4552, + 17)), (G17)

K (—4M (42, — 3)(20s2 — 11)(125%, — 20s2, +9)

—iKa
14452,c2 775> (s — 4M2)
+ 352M5(—672s8, + 135657, — 81252, + 113) + 35° M2 (9655, — 21253, + 14852, — 31) + s*(— 1257, + 2052, — 9)),

(=12M8(3252 — 23)(12s}, — 2052, +9) + 25M§ (230455, — 466857, + 285252, — 429)

—iKa

12522 w2 (s — 4M3)? (1253, — 2053, + 9)(s* — 3sM7 + 3M3)),
—ikaM?
1257 IKZT L (1250 = 3260+ 2955, — 0)(s® = 353 + 3M7),
Sw C ,TTS\S — 7
—iKa

10 2 _ 4 _ 2 8(_ 6 4 _ 2
TTC e Ty (4MD0(20s2, — 11)(125% — 2052, +9) + 25M8(—79255 + 20205 — 171852 + 461)

+ 652M5 (12058, — 260s%, + 15852, — 13) + s M%(—288s5, + 58857, — 31652 +9)
+ Y252 — D)(As] — 5653 — 5),

—iKa

22y’ (s — AM5) (x — 2M (452, — 3)(20s2, — 11)(125s%, — 2052, +9)

+4sMIO(5285% — 118855, + 89254 — 22752 + 3) — 252M% (54055, — 96056, + 3615, + 14752 — 76)
+ s3M5 (26458, — 36856, + 2657, + 9052 — 3)
—25*M% (1258 4+ 1256 — 5553, + 3552, — 3)sM2(1256, — 2854, + 2152, — 5)). (G18)

4. Form factors for the TZZ vertex in the (Z, H) sector

The coefficients corresponding to Eq. (182) are given by
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. 2

2 ikaM7; 4 s _
C(Z,H)0 Ty YAy S%V(MZ-i-MHMZ 3sMZ + s%),

IKa
C 2 M2 — M2 — M2 )
(ZH), 247Ts2c,2v(s—4M%)s§V( " 2)s 7)

2 _ 2
C(z,H)z B C(Z,H)l ’

2 _ ika 6 1 3\1s2 2 (e — A2\« — A NS2 2
C(Z,H)3 - 487Tszcgv(s—4M%)2s%V((8Mz+s )My + M35 (s —4M7)(s — 2M7)(3s —2M3)),

c ) iKa
(Z.H)4 487rsc% (s —4M2)%s2,

(2(4M7, — sHMS, — s2M%, + 5)>? M2 + s> M%(2M3, + 5)),

: 2
ikaM7;

Com = Grrals—angysy M~ Mg+ SOME+ Mg+ My +29M2)
. iKa(ZMfi—i-s) a2 \aq6 - 5 .
Clum =~ Gamonea s aniayrsa (478 ~ MM+ 4001 — )05 + 35)0
+2s(—M}, — 2sM%, + s2)M2 + s M3),
iKa
C(Z’H)f =— By’ (s — A0S ((8MS + s )M, + AM2(s — AM2)(2M3 — sM3 + s*)M?%, + 4sM% (s — 4M2)?),

c 3 _ iKa
(ZH)o 38472 (s — 4M2)s2,

(4M7; + 80M% + 3s% — 2(4M3, + 155)M3),

IKX

Corm’ = 4M3 — s),
@0 1927c2 (s — 4M%)s%v( i)
IKa
Com’ =" 4M3 — 8M% + 5),
(Z,H), 1927c2 (s — 4M%)s$v( " z7ts)
3 IKa

Coam,” = 38Amc(s — RS (2M?%, — 4M% + 5)(6M7F, + 6(s — AMZ)M?, + (s — 28M2)(s — 4M32)),

C 3 IKX
@5 384t (s — 4M2

752 (2M?2, — s)(6M}, — 42M3 + s)M%, + (s — 16M%)(s — 6M2)),
SW

IKX
C 3= 32MS — 2(4M% + 195)M% + (6M%, + 11sM? + 6s2)M% — 65sM?),
(Z.H)s 967TC%V(S—4M% ZS%V( VA ( H S) Z ( H Sy S) 7 N H)

Com, = 2 =2 222
: 967cy, (s — 4M7)*ss,
— 8ML(8M2 + s)M% + sM2(16M% + 3sM2 — 52)),

Com,” = 2 e 222
: 967cy, (s — 4M7)*s3,

+ (s — 16M2)(s — 4M%)>M% — 2M3%(s — 4M2%)*(3s — 4M3)),

(3ME, — 42M2 + s)MS, + (32M5, + 6sM% + s*)M3,

(BMSE, + 6(s — 4AMZIMS, + 4(s — TM2)(s — 4MZ)M7,
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c 4_ IKQ
(Z.H)o 2887rsc2 (s — 4M%
4_ IKQ
@ 4875t ME(s — 4M2

i (304MS, — 10sM?3 — 1352M2 + 53 + 12M% (M3 + s) + 12M% (6M% — 8sM3 + s2)),
SW

C

2 (—8MS + 5sM% — 25> M% + M3, (—4M5, + 2sM% + 5%)),
"

IKa

C., .. 4=— 16MS — 9sM% + M2 (—4M% + 2sM2 + s2)),
(ZH), 487Tsc%VM%(s —4M%)2s$v( z z i z z )
. iKa(2M3 —4M% + s)

C —
(ZH)s 967sct (s —4M3%)3s2,

(6(M2 + )M}, + 6(s — 4M%) (M2 + s)M%, + M2(4M2% — 5)(28M% + 115)),

c i iKa
(Z.H)4 96mscl (s —4M%

7y (2M?%, — 5)(96M5 + 265M% — 55> M% + 6M$, (M2 + 5) — 4M%4(2M7 + TsM3)),
SW

IKx
C(Z,H%4 = s M2 — MBS (448M L —2365sM8 — 852 MS + 653 M5, — 2M%,(25s — 3M2)(—24M% — TsM3 + s*) M2

+ M3(44M5 — 16sM5, — 145 M2 + 53)),

4_ IKa
C(z H)y 2 2\3.2
Mo A8arscy, (s —4M7) sy,

—16(8M5 + 5sMS + 25> ME)M?% + sM%(32MS + 22sM% + 45> M2 — %)),

(6(M2 + s)MS, — 4(4M% + 10sM3 + s2)MS, + (64MS + 92sM , + 145> M2 + s3) M3,

IKx
C(Z,H)74 = 487TSC%V(S — 4M%)3S%, (6(M% + S)M% + 12(5 - 4M%)(M% + S)M% + (S - 4M%)(_56M% — 325M% + 7SZ)M?{
+ (s — 16M3)(s — 4AM2)*(2M2 + s)M3, — 4M% (s — 4M2)3), (G21)
5 _ iKa _ 6 _ 2\174 4 2 2\12 4 3
C(Z,H)0 = S76ms (s — 4M%)2s§V( 608M$ + 12(59s — 12M7) M7, — 24(My; + sMF, + Ts*)M7 + 36sMy; + 11s°),
IKa

5 2 _ 2 2 _ 2 4 2 2
Cam,’ = s I — R (M2(s — 2M2)(8M2 + 35) — 4M2%,(2M% — 2sM3 + s2)),

c 5 _ iKa
@Ha 96msct Ma(s — 4M2)%s
C(Z " s iKa(2]V§%I —4M% + 5)
H)s 192752 (s — 4M2)3s2,

5 (=32M¢ + 18sM}, — 55> M + 4M7, (M5, — 2sM% + 52)),

(6(3s — 2MZ)M}; + 6(s — 4M2)(3s — 2M%)M%, + (s — 4M3)(56M3 — S4sM% + 52)),

s ika(2M?, — s)

C -
(Z.H)4 1927sc2 (s —4M%

e (—192MS + 4(4M% + 595)M5, — 12(M%, + 5)(M%, + 35)M>% + s(18 M3, — 4sM %, + %)),
w
c s IKQ
(Z.H)s 487sc2 M2 (s —4M3%)3s2,
+ 5(62M}, +93sM3, + 2451 )M, — 82 M7, (4M3, + s)M% + 25’ M7,),
c s IKa
@ZHs  487scl (s —4M3)3s?,

+8(—16M5 + 14sMS + 552 M) M3, + sM%(32M6 — 26sM3%, — 115 M2 + 25°)),

(—448M10 + 4(36M2, + 1315)MS — 2(22M?%, + 95sM?2, + 107s*) M

((6M% —95)M8, + 8(—2M?% + 4sM2 + s2)MS, — 2(—32M5 + 50sM% + 8s2 M2 + s3)M?*
zZ H V4 Z H Z Z V4 H

IKXY
C(Z’H)f =— s (s — A0S ((9s —6M2Z)MS, + 6(s —4M2)(3s —2M2)MS, + (s — 4M3%)(56 M5 — T6sM2 + 115%) M3,
+2(s — 16M2) (s — 4M3%)?(s — M2)M?%, — 2M3%(s — 4M2)*(3s —2M2)), (G22)
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IKQ
Comt=— Fomsclt - (96MS — 1725M% + 8052 M2 — 75 + 12M?% (35 — 2M2) + 24M%,(10M% — 9sM3 + 52)),
6_ _ iKa _ 6 4 _ 212 2 42
C(Z‘H)1 = 9672 M(s —4M%)2s3v( 16MY + 65sM7, — 35 M7 + 2M7,(4M7 + 57)),

c 6 IKa
ZH: 967sct M2(s — 4M2)2s

> (M3, (AMF, + 57) — sMZ(6M7 + 5)),
pt
C 6_ IKX
@Hs  192qrsc2, (s —4M3
—2(s —4M2)*(3s — AM2)M3, + (s — 4M%)*(8M5, — 30s M2 + 52)),
¢ 6_ Ika
@ 19275¢2, (s — 4M2
+ 5(36M8 — 6sM3, — 45> M3, + 5°)),
C(ZH)56: 2 2lKa 2\3
: 48mscy, M5 (s —4M7)’s
+ 5(—6M}, — 43sM% + 652 )M, + 45> M3 (AM2, + s)M2 — s> M7,),

V2 ((24M2% —365)M$ — 6(7s — 6M3)(s — 4MZ)M3;
SW

72 (4(40OM7, +25M3, — 3s2)M% — 4(6MS, + 49sM b — 265> M7, + 45> )M,
SW

> (12(7s — 4ME)MS, + 6(2M7; + 5sM3, — 55%)M

IKX

C(Z’H)ﬁ6 = 16 (s — 40252 (M3, — 4MEM?, + sM2)((2M% — 3s)M3, + (—8M?% + 8sM3 + s*)M?%, + sM2(2M2 — 3s)),

6_ _ iKa 2 A2 g2\ 16
C(Z‘H)7 = T6mscd(s —AMD)Ps. (M7, —4M3 + 5)((3s — 2MZ)MS,

+2(4M% — 5sM% + s2 )M}, + 2sM% (s — 4M2)?), (G23)
- IKa _ 6 A2 g 4 2y 172

Com, = 96 (s — AME)S2 (—16M$ + 10(s — 4M3)M3} + (AM}, + s M2 + 4sM7)),

7 — IKay 4 _ 2 2 A2
C(Z‘H)1 = 85 (s — A5 8M3, — TsM7 + M7, (6s — 4M7)),

IKQ

7 _ 2 2 2
C(Z,H)2 = 8 (s = 4M%)2s2w ((4M7 — 65)M3, + 55M7),

c - ika
(ZH)s 967scl (s — 4M3%)3s2,

+ (s — 4M2)2(4M2 + s)MZ, + M%(s — 4M2%)>(4M2 + 115)),

(12(M2 + s)MS, + 6(s — 4M2)(3M2 + 25)M%,

c1_ iKa
@Ha 96rsc2 (s — 4M3)’s2,
— s(124M5, + 10sM3 + s>) M3, + s?M2(26M> + s)),

¢ 7_ _ iKa
(Z.H)s 24arsct (s — 4M2%)3s?,

+ sQ20M7, + 2sM%, + 3s2)M% + s°M3)),

(—12(M2 + s)MS, + (80M3, + 54sM2 + 4s*) M7,

(6(4M3, + 95)MS — (6M7; + 59sM?, + 185s*) M5,

c - iKa
(ZH)s 167rsct (s — 4M2%)3s2,

(M}, — AMZM3, + sM%)(2(MZ + s)M}, — (8M% + 4sM2 + s>)M2, + 2sM2(M3 + s)),

7 ikaM?,
C -
(ZH); 167sc2,(s — 4M2%)3s2,

+ (s — 4M2)2(2M2 + s)M?, + 2sM%(s — 4M2)?), (G24)

(M + )M, + (s — 4MZ)(4M2 + 3s)M?,
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Coppn ® =~ e (96MS — 100sMS, + 485> M + 1553 M2 + s*
(ZH)o 2887s2cl (s — 4M2)*s?,
+ 12M3(—6M% + 3sM% + 4s%) + 12M%,(44M5 — 22sM% — 10s>M% + 53)),
c 8 _ ika
@H A8rs? el ME(s — 4M2)3s?,

+ s(8M3, + 135)M% + 25%(s — 8MH)M2 — s°M3,),

(16M8 + 2(4M?, — 9s)M®

IKa
c., . %= 32MS — 2sMS — 1952 M3 + M?,(—8MS — 8sM% + 1652M2% + 7)),
(Z,H), 487Ts2c$VM%(s — 4M§)3si( z SMz S“Myz #( V4 SMz s°M7 + 5°))
8 _ _ ika _agd 2 2\1/6 A2
Comy, = 967’ (s — AV (12(=6M% + 3sM2 + 4s*)MS, + 6(s — 4M2)(—18 M5 + 5sM% + 8s*) M3,

+ 4(s — AM2)*(—8M5 + sM2 + 2s*)M% + M%(s — 4M2)>(2M2 + Ts)),
IKa
C(Z,H)f = — 96772 (s — AME)'S (4(—88M%, + 42sM?% + sHMS + 4(M?% — s)(18M7}, + 57sM?, — 17s*) M3,
+ s(—36M¢, + 218sM7}, — 865°M3, + 9s3)M% — 25*M%(24M7, — 10sM%, + 5?)),
g _ IKa ons8 _ B
ZH)s 17 EMA(s — AME)SE ((—8M% + 60sMS — 100s>M5, — 225°M2 + s*)M7,
+ (96MLY — 228sM5 + 2625°MS + 4253 M — 4s*M2)M?,

— 6sM%(—44M5 + 38sM%, — 252 M2 + 53)),

KX
- _ _ _ 6 —
Com,' = By’ (s — MBS (—4(80MY; — 24sM3, + s* )M + 2(112M$, + 44sM}, — 485> M3, + 95° )M,
— 6(6M?%, + 16sMS, — 38s>M%, + 20s°M?% — 3s*)M5, + s(18M3%;, — 144sM¢, + 9252 M7, — 1853 M3, + s*)M2

+ 252M$,(12M3, — TsM3, + s2)),

s ikaM?,
(ZH), 481rs>cl (s — 4M2)*s?,

+2(7s — 10M3%)(s — 4M%)*(2M% + s)M7, + (s — 4M3%)3(—4M7, + 4sM% + s?)), (G25)

(6(—6M3 + 3sM% + 4s*)MS, + 12(s — 4M%)(—6M3, + 2sM% + 3s*) M3,
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c 9 _ ika
(Z.H)o 1447522 (s — 4M2
+ 12M%(s — 11IM2)2M% — 2sM3 + 5%) + 12M%,(3M% — 4sM3 + 3s?)),
c 9 _ ika
@H 24ms2 I M2 (s — 4M3)’s?,

e (—48M5 + 26sM5 — 35>M7 + 9s3M% + s*
SW

(8ME — 5sMS — 253 M2 + M%,(4MS — 10sM%, + 7s° M3 + 7)),

c 9 _ _ IKa
(Z.H), 2452 M2 (s — 4M2)3s2,
c 9 IKa
(Z.H)s 487s>cl (s — 4M%
+ (s — 4M2%)*(16M% — 18sM% + Ts>) M2, + M2(M2 + 4s)(4M2% — 5)?),
9 _ _ ika 4 _ 2 206 _ 6 _ 4 2002 3\ 1g4
Com =~ Brstells — IS (123M% — 4sM2 + 3s)MS, — 2(88MS — 91sM% + 6452M>2 + 8s3) MY,
+ 5(84MS — 26sM3 + 765°M% + s>)M?, + s*M%(2M35 — 21sM2 — 8s?)),
9 _ ika _ 4 _ 2 2\1/6 4 8 _ 6 _ 3p02 4
Com, =3 Irs M (s — V)R (—6s(22M3 — 16sM7 + Ts )M + My (4M5 — 12sM§ — 2353 M7 + 5*)

+ M%,(—48M%0 + 90sM§ — 3Os2Mg + 585 M5, — 4s*M2)),

(—16M5 + 25sM5 — 145*M%, + M%4(4MS — 10sM3 + Ts*M3 + %)),

g2 (123M35, — 4sM% + 3s1)MY, + 6(s — 4M2)(9IM?, — 10sM% + 65> )M7,
SW

Com” = gt (’SKf T (6(3M3 — 4sM2 + 3s2)MS, — (112M5 — 120sM% + 845°M% + 115°)M¢,
+ 2(80M% — 46sM$ + 2452 M5, + 31s°M2% + s* )M}, — 3sMZ(16MS — 8sM%, + 165>°M% + 55°) M7,
+ s2MZ(2MS + 95> M2 + 5%)),
Com’ =5 iKO‘M%’ (6(3M% — 4sM2 + 352 )M, + 3(s — AM2)(12M% — 14sM> + 9s)M?,
7 2475l (s — 4M2)*s?,
+ (s — 4M2%)2(20M% — 225M2% + 11sP)M?%, + (s — 4M2)}(2M%, — 5sM2 + 52)). (G26)

5. The improvement contribution
The two form factors with the improvement contribution are given by

I K 0%
D\ (s, M2, M2, M3, M3, M%) = ReRvrroyop 4M%)2{(c$v — 52)2[s2 — 6M%s + 8M + 2M2 (s + 2M2) Dy (s, M2, M3, M%)

+2(c2L MZ(8M5, — 6M2%s + s*) — 2MS + 2M%5) X Cy (s, M2, M2, M3, M3, M3,)]+ s> — 6M2s + 8M7,

+2M2%(s +2M2%)[ By (s, M2, M%) — By(M2, M2, M%)]+ (3M2%s —2M?%,(s — M2))[ By (s, M3, M%) — By (s, M3, M3)]

+ M7,(2M3 (s — M%) + 8M% — 6M%s + s7)Co (s, M3, M3, M3, M3, M%) + 2M3 (M3 — 4M2) (s — M3)

+ sM%(s +2M2))Co(s, M2, M3, M3, M%, M%)}, (G27)

K o

2 487rs2,c2 (s — 4M2
+2M%(s* = 2M2%s + 4M% + 42 M2 (s — 4M2)) X Co(s, M3, M3, M3, M3, M3%,)]

+4MZst c2 s(s — 4M3)2Co(s, M3, M2, M3, M3, M3,) + 4M3%(s — 4M2) + (M2%s(s + 2M3)

— M?%,(s* = 2M2s + 4M%))[ By (s, M3, M%) — By (s, M5, M2)]+ 8M% (s — M2)[ By (s, M3, M%) — Bo(M%, M3, M%)]

+ M2,(4M%(s — AM2) + M3, (s> — 2MZ%s + 4M%))Co(s, M%, M%, M3, M3, M%) + (M3 (M?%, — 4M2) (s> — 2M2s + 4M%)
+2M2s(s> — 6MZs + 14M%))Co(s, M3, M2, M2, M3, M%)} (G28)

D (5, M2, M2, M3, M2, M2) = i )2{(c3V — $2)[4M% (s — AM2) + 8M2(s — M2) Dy (s, M%, M3, M3,
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6. Coefficients of the external leg corrections

o _ iKam?.(Cﬁz + C£2)(5 —2M2) 0t g
o 6arstcls(s— M%) (s —4M2)’ ) F
o iKamjzc

P 3752 2 5(s — M%) (s —4M%
o iKam%(s —2M2)

P 127782, c25(s — M7y (s — 4M2

7 [M2(CL? + CIP)(s +2M2) + CJ* (s — 4M2)s],

7 [(CI? + CIP)(Am3 (s — 4M3) + 4MY, + 6MZ2s — 52) + 2C1 s(s —4M3)],  (G29)

wo_ iKam%M%(C{:z + 0 _ g o _ iKcvm;C]a(2
(Fo 3msicls(s — M%) (s — 4M2)’ (), ’ (F), 6ms2c(s — M%)
- 2
(17 _ tkamy 42 4 P2 2 f2172 2
C = — 2M5(Cy” + Cy —M3) + Ci M —4M3) ],
(Fs 3ms2c2s(s — M%) (s — 4M%)2[ 4 )s 2)+ CarMys(s 2
- 2
(n* _ _ Lkamy f2 2\ a4 2o — 2 4 _ 2 2
CP. = " G dsts = )G — ) [(CL? + CI ML (AmA(s — 4AM2) + 4M% — 2M%s + s?)
+2CH7s(s — 4MB)(m3(s — AM3) + M3)], (G30)
' _ _ ika(s — 2M3) 201 _ "2 2(_ 196 4 _ 2 ' _ A
M0 = " Tt eists ) = 0D [M3(1 = 252 + 2M3(— 1255, + 3258, = 2952 +9)],  Clj) = Clf)y =0,
. M2
= ez [M3(1 — 252)2(s + 2M3) — 2(s2 — 1)2ME(125% — 2052 + 9)

U 127752,¢2,s(s — M%) (s — 4M2)?
+ sM%(12s3, — 2052, + 1) + 2s2)],

| i kaM>
b =~ e 2(s2 — M (453 — 3)(125% — 2052 +
(W)4 127TS%VC$VS(S _ M[z-l)(s _ 4M%)2[ (Sw )( Z( Sw )( SW SW 9)
+ 2M%s(—36s8, + 1485t — 16352 + 54) + M%s2(12s5, — 9657, + 12552, — 43) + 453 (25}, — 352 + 1))
— M3 (1 — 2532 (M5(8s3, — 6) + 2M%s(2 — 3s3) + s%(s3, — 1)), (G31)
(n? _ ikaMy 201 _n2\2 20 176 4 _ 2 (12 _
Cow), s 50 — M) (s — M) [M7 (1 — 2s7)% + 2M5(— 1255, + 3253, — 29s7, + 9)], Cay, = 0.
. M2
cr - KWz 854 — 1352 + 5],
W), 24ms2c2 (s — MIZJ)[ w Sw ]
> ik M
= - etz [MAME(1 — 2522 (M2 — 5) — 2(s2 — 1)(MS(12s%, — 2052 + 9)

(W) 6s2,c2s(s — M%) (s — 4M2)
— 3MLs(4(s2, — 3)s2, + 7) + M2s*(7 — 85%) + s3(s2, — 1))],
= - T <;K_QZ§,> o aagy M (AME( = 2537 (sl = 3) + 20152455 = 28s), + 65}, — 1)
+ MZs?(—165° + 1257, + 452, — 1) + 2s3sh(s2, — 1)) + 2(s% — 1)(@M5(4s2, — 3)(12s}, — 2052 +9)
— 2M5s5(2458, — 52s% + 652, + 15) + M%s2(45 — 4s2,(s2, + 13)) + 2M2s3(4sh, + 252 — 5) — s*(st, — 1))],
(G32)
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_ika(2My + M3Z)(s — 2M3)
(Z,H)o 24msy,chs(s — My)(s — 4M3)’
ika(M% — M%)

C(l)] — _C(I)l —
(ZH), @H:127s2,c2s(s — M3y)(s — 4M3)’

o =- frea 2MY (s — M2) + 3MEM2s + 2ML(4MS — 9M2s + 25%)],
(ZH)s 24ars2,c2s(s — M%) (s — 4M%)2[ s 2) HYZS 2(4M7 z5 Sl

B iKa
@Ha 8ars?c2s(s — My)(s — 4M2

(205 — M) — 30331,

' _ lka 2 2 2 _ a2 2 (e — A2
Come = Tamszeists — M2y — apzp MAG + 2MDUMS = M) + 2M3s(s = 4M3))
; 2
o' _ ikaMy 2 (e A2 2 _ a2y g2 2
Ceme = gmstests = M) — M) [2M3 (s — M2)(4M% — M3) — M2s(s + 2M3)],
b = iaM [2M3,(s — M3) + M3(4M% — 2M2s + 5%) + 2M3(8MY% — 14M2s + 35%)]
(ZH); 24752 c2s(s — M3)(s — 4M2)? a z A z 2z z ’

o ikaM3(2M3, + M3) C e ika(M3 — M%) (s — 2M%)
@Ho  127s2,c2s(s — M%) (s — 4M3)’ (ZH)y @H: 24752 c2s(s — M) (s — 4M3)’
c e S[MY,(4MY — 2MDs + 52) + M3, M2s(s + 2M2)

zH)y — 487rs%.c2s(s — M%) (s — 4M2)
— MZ(16M$ — 28M7%s + 18M%s* — 35%)],

2 ikaM3,

n* — _ — —
Czm, = 167s3,chs(s — M7)(s — 4M32)* (M} (4M7, — 2M3s + 5%) — M3s(s + 2M3)],
wEw
2 iKa
ch : (M%s(M3, — 2M2)* — M3M5 (M3, — 4M%) — M%s?],

(ZH)s — 67TS%VC3VS(S - M%{)(S - 4M%

B ikaM?

ZHs — 16ms2c2s(s — M3)(s — 4M3)°
B iKa

(ZH); — 487TS%VC%VS(S - szq)(s - 4M%

— 4MyMZ(8MG — 10Mys + 6M7s® — 5°) + 4M3s(s — 4M3)°]

7 [M&(4M5, — 2M2%s + s%) + 2M},M%(s> — 4M3)

The 1-loop graviton-Higgs mixing amplitude is given by

it (K) = Zinin () + 2750 (k)

min,hH
K e

228850, Mys
+ 6(6M3, + M%) (M3, By(s, My, My,) + M3, — Ao(M3,))
+ s(18M3%,By(s, M3, M3,)) + 18M3, + M%)
+ 3M%(M%, + 6M% — 35)By(s, M%, M%) + 9M}, Bo(s, M3, M%)
= 3(M; + 6M3) Ag(M3) — My Ao(MF)
+303My; + MyM; + 6M3) — s2M3; + IMZ)H(sn*" — kk”)

{2mj%[3(s - 4mj2c)fBo(s, mj%, m]%) + 12./’40(mj2£) + 25 — 12m12(]

K e

) m{chMwﬂo(M%v) + Mz Ao(M7)InH".
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[M%,(4M7 — 2M2s + s?)(M%, — 4M2) + 2MZ%s(16M3% — 6M%s + s?)],
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