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Sommario

In questa tesi vengono presentati risultati originali derivanti dallo studio delle anomalie di gauge
e dell’anomalia di traccia in teorie realistiche come un’estensione abeliana del Modello Standard
(MS) o in una teoria effettiva in cui l'interazione gravitazionale ¢ accoppiata al MS. Per questa
ragione abbiamo effettuato numerosi studi perturbativi dell’azione effettiva ad un loop e, in
particolare, di interazioni di gauge trilineari in presenza di simmetrie di gauge U(1) anomale
addizionali. L’anomalia di traccia e studiata al primo ordine perturbativo attraverso il correla-
tore T'JJ (T indica il tensore energia-impulso e J una corrente di gauge generica). In questo
secondo caso la nostra analisi € concentrata sullo studio delle azioni effettive di QED e QCD.

Mostriamo nella prima parte di questa tesi che per entrambi i tipi di anomalie 1’azione
effettiva ¢ caratterizzata dalla comparsa di gradi di liberta privi di massa che sono pseudoscalari
nel caso dell’anomalia chirale e scalari per 'anomalia di traccia o conforme. Nell’analisi di
QED e QCD questi poli anomali possono anche essere estratti dallo studio dell’azione indotta
dall’anomalia, ottenuta a sua volta come soluzione variazionale dell’equazione per I’anomalia,
come mostrato in analisi precedenti. Nel caso dell’anomalia chirale, e del correlatore triangolare
che ne ¢ all’origine, ¢ dimostrata I’equivalenza di due diverse parametrizzazioni: quella dovuta
a Rosenberg e quella denominata Longitudinale/Trasversa. Uno dei risultati originali riguarda
Pestensione di entrambe le parametrizzazioni a condizioni cinematiche generali. Si discute in
dettaglio inoltre l’accoppiamento infrarosso dei poli sia nel caso del correlatore AVV (denotiamo
con A e V rispettivamente una corrente di gauge assiale-vettoriale e una puramente vettoriale)
che nel caso del correlatore T'JJ, analizzando tutte le possibili regioni cinematiche in cui i poli
appaiono. I risultati ottenuti recentemente da Mottola e Giannotti per il correlatore TJ.J in
QED nel caso conforme sono estesi al caso non conforme (sempre in QED) e sono stati riottenuti
anche in QCD.

Nella seconda parte di questo lavoro di tesi sono discusse alcune caratteristiche fenomenolo-
giche di teorie che estendono il MS con simmetrie U(1) anomale e le loro nuove interazioni di
gauge trilineari. Nel modello studiato la cancellazione delle anomalie ¢ realizzata con un assione
asintotico che generalizza il tradizionale assione di Peccei-Quinn (sotto forma di uno pseudosca-
lare di Stiickelberg) e puo avere una componente fisica in determinate condizioni. Esso pertanto
fornisce un contesto teorico consistente per la descrizione di generiche particelle simili all’assio-
ne. Questo approccio alla cancellazione delle anomalie ¢ alternativo al metodo di sottrazione del
polo anomalo, introdotto in passato per riprisitinare I'invarianza di gauge di una teoria anomala.

Un’analisi critica di questi due approcci é inclusa nella seconda parte della tesi.
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Abstract

In this thesis some original results coming from the study of gauge and trace anomalies are
presented, both analyzed in realistic theories such as an abelian extension of the Standard
Model (SM) or in an effective field theory in which gravity is coupled to the SM. For this reason
we perform several perturbative studies of the one loop effective action and, in particular, of
the trilinear gauge interactions with the addition of extra anomalous U(1) gauge symmetries.
On the other hand, the trace anomaly is investigated at leading order via the T'JJ correlator,
where T’ denotes the energy momentum tensor and J a generic gauge current. In this second
case our analysis is focused on the QED and QCD effective actions.

We show that in both cases the 1-particle irreducible effective action is characterized by the
appearance of massless effective degrees of freedom. These are pseudoscalars in the case of the
chiral anomaly and scalars for the trace/conformal anomaly and are dubbed “anomaly poles”.
In the QED and QCD cases these poles can also be extracted from the anomaly-induced action,
which is obtained from the variational solution of the anomaly equation, as shown in previous
analysis.

In the chiral case we discuss the equivalence between the Rosenberg and the Longitudi-
nal/Transverse representations of the anomaly amplitude, showing the explicit mapping between
the two in the most general external kinematical conditions. The infrared coupling of the poles
is discussed both in the AVV (the correlator of Axial-Vector/Vector/Vector currents) and T'J.J
cases in great detail, analyzing all the possible kinematical regions where they appear. For
the anomalous T'J.J correlator we present its explicit form both in the conformal and in the
non-conformal limits, generalizing results by Giannotti and Mottola derived in QED.

In the second part of the thesis we discuss some phenomenological features of anomalous
extensions of the Standard Model and of its trilinear gauge interactions using an asymptotic
axion for anomaly cancellation. This axion generalizes the traditional Peccei-Quinn axion (in
the form of a Stiickelberg pseudoscalar) and may develop a physical component under certain
conditions, thereby providing a consistent theoretical framework for the description of axion-like
particles.

This second approach to anomaly cancellation is alternative to the mechanism of pole subtrac-
tion for the restoration of the Ward identities of an anomalous theory. A critical investigation

of these points is included.
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Introduction

The search for the identification of possible extensions of the Standard Model (SM) is a chal-
lenging research area both from the theoretical and the experimental point of view.

It is even more so with the early data distributed by the four experiments at the LHC, for which
the hopes are that at least some among the many phenomenological scenarios that have been

formulated in the last three decades can finally be tested.

The presence of so many wide and different possibilities render these studies very challenging.
Surely, among these, the choice of simple abelian U(1) extensions of the basic gauge structure
SU@B)c x SU(2)r, x U(1)y of the SM is one of the simplest to take into consideration (see [I]
for a review). These extensions of the Standard Model (SM) represent an economical but yet
profound modification of the gauge structure of the electroweak sector, which has been tested
first at Tevatron [2] and can be still tested at the LHC [3], 4, [5,[6]. They are also quite numerous.
In fact U(1) interactions abound in effective theories derived from string theory [5, 7, [8, 9] or
from Grand Unified Theories (GUTs), with [10} 1T}, 12} 13}, 14] or without [6l 15l 16} 17, 18] the
introduction of supersymmetry. One of the common features of these models is the absence of
an anomaly-free fermion spectrum, as for the SM.

In the SM case indeed all the trilinear correlators that can potentially generate gauge anomalies
are set to zero by a suitable charge assignment for each SM particle under the corresponding
gauge group. This mechanism for removing the anomaly is called anomaly cancellation by charge

assignment and its realization is verified experimentally.

Nevertheless several compactifications of string theory predict the existence of anomalous
U (1) symmetries [7, 19, 20] and in these cases the mechanism of anomaly cancellation that Nature
selects may not just be based on an anomaly-free spectrum, but may require a more complex
pattern. This case is similar to the Green-Schwarz (GS) anomaly cancellation mechanism of
string theory [21] and invokes an axion [16} [17), 22 23| 24], 25, 26]. Interestingly enough, the
same pattern appears if, for a completely different and purely dynamical reason, part of the
fermion spectrum of an anomaly free theory is integrated out [27) 28], together with part of the

Higgs sector [29].

xvii



xviii Introduction

The interest on the quantization of anomalous models and their proper field theoretical
description has been a key topic for a long period, in an attempt to clarify under which conditions
an anomalous gauge theory may be improved by the introduction of suitable interactions, so to
become unitary and renormalizable [15] 16}, 17, 23] [30].

One of the characteristic features of anomalous effective actions, both in the case of the chiral
and of the conformal anomalies, is the presence of dynamical degrees of freedom generated by
trilinear vertices. One of the open issues related to this point will be addressed in Chapter 5.
There we will be discussing the difference between the cancellation of gauge anomalies obtained
by the introduction of an asymptotic axion, and the same cancellation obtained by the subtrac-
tion of an anomaly pole. We will show that an anomaly pole can be described in terms of two
local degrees of freedom which are kinetically mixed. A similar description emerges for the trace
anomaly, with two extra scalars instead of two pseudoscalars, as in the chiral case.

It should be mentioned that the trace anomaly is part of the effective gravitational action
and is not the result of any model-dependent construction. For this reason one can ask several
questions regarding the true phenomenological impact of the breaking of scale invariance in the
early universe.

It is also worth noticing that there are recent claims [31, [32] of the possible presence of full
conformal invariance in the correlation functions of the CMB and, given the quantum origin
of the CMB anisotropies, this raises significant questions in regard to the role of these scale-
breaking quantum effects. The presence of new effective degrees of freedom as a signature of
the trace anomaly is, for this reason, a significant feature of the quantum gravitational effective

action. We will comment on these points in our conclusions.

General structure of the document

This thesis collects the results obtained throughout our investigation that try to clarify the study
of the effective actions of massless pseudoscalars and scalars degrees of freedom when chiral and
conformal anomalies are present in gauge theories.
Therefore the whole work has been divided into two parts, the first part covering the first four
chapters and the second part the last two chapters.

The first part is focused on the identification and the fundamental properties of the anoma-
lous trilinear correlators for chiral and conformally anomalous theories. The aim of these studies
has been to show the emergence of anomaly poles for both theories in the effective actions and to
describe their formulation in terms of local degrees of freedom. All the results have been obtained

starting from analytical computations of the corresponding one-loop Feynman diagrams.
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The second part is of phenomenological character and tries to apply, at least in part, the
results of the formal studies of the first part to realistic extensions of the SM. The final chapter,
which is dedicated to the study of trilinear gauge interactions in a specific extension of the
SM, dubbed the MLSOM (Minimal Low Scale Orientifold Model) [15], is preceded by a more
formal analysis of the relation between the different mechanisms of anomaly cancellations. In
particular we will compare (Chapter 5) those invoking the subtraction of the anomaly pole for
the restoration of the Ward identities in chiral gauge theories with those requiring an asymptotic
Stiickelberg axion. In this context, the connection between the chiral and the trace anomaly
will appear to its fullest extent, since the framework in which these issues are addressed at the
same time requires a supersymmetric formulation.

For this reason, we recall that in a supersymmetric theory the anomaly supermultiplet con-
tains as its components both the trace anomaly and the chiral anomaly of a global U(1)r
current, besides the gamma-trace of the supersymmetric current. In the context of supergravity
the anomalous current is gauged, and the issues that we have (separately) uncovered in the
first part of the thesis, for the chiral and conformal anomaly cases, will be unified. In partic-
ular we will show that the mechanism of anomaly cancellation introduced long ago by Ovrut,
Cardoso [33] 34] and others as a field theory realization of the GS mechanism of string theory,
performed in a supergravity context, amounts to the subtraction of specific anomaly poles in
the effective action induced by the anomaly supermultiplet. This construction, as we are going
to explain, induces at the level of trilinear gauge interactions some vertices whose features are
unique and at variance respect to any interaction present in the SM. The current limitations of
these approaches and the context in which they find justification is discussed in detail. These
conclusions are reached after a careful analysis of the infrared and ultraviolet properties of the
trilinear anomalous interactions, showing that the subtraction of an anomaly pole should be

viewed as an ultraviolet correction and not as an exact mechanism.

Approaches to anomaly cancellation

Before entering into the detailed description of the first part of this work a comment is in order.
Our attention will be mainly focused on two different approaches to anomaly cancellation: the
first one involves a polar counterterm - as we have just mentioned - and is referred to as a
generalization of the GS mechanism [21] in a four dimensional field theory, while the second one
involves a Wess-Zumino term [35]. These two ways of realizing the cancellation of the anomaly
are not equivalent at the level of the one-Particle-Irreducible (1PI) effective action and the issue
of their completeness [24], [36], from a field theory point of view, is still open, as we are going to

show with a detailed perturbative analysis.
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Obviously, the investigation of the phenomenological implications of the chosen mechanism
should be preceded by a complete study of those vertices which are responsible for the generation
of an anomaly in perturbation theory. This motivates our studies of the anomaly vertices and

of their kinematical limits, which are contained in the first 4 chapters.

The first chapter of this thesis is therefore devoted to the study of the trilinear correlator of an
axial-vector and two vector currents in which the chiral anomaly appears[37, [38],[39]. The nature
of these anomalous poles, in the most general kinematical case, is elucidated by performing a

complete analysis of the kinematical properties of the anomaly vertex at perturbative level [40)].

The computation is presented in the first chapter by the use of two independent (but
equivalent) representations: the well-known Rosenberg representation [41] and the Longitudi-
nal/Transverse (L/T) parameterization [42], used in recent studies of g—2 of the muon [24], 43}, [44]
and in the proof of non-renormalization theorems [45] of the anomaly vertex.

A dispersive analysis of this diagram had shown that this is identical to its pole counterterm
only in a special situation, that is when the two external vector lines are on shell [37]. These

points have been addressed in great detail in [24].

This special kinematic situation (dubbed the “collinear fermion/antifermion limit”) is the
only one in which the cancellation of the anomaly diagram with its counterterm is identical.
In the opposite case (“the non-collinear limit”), when the vector lines have both nonzero virtu-
alities, the counterterm is not part of the vertex and its introduction may look rather artificial.
Stated differently, the anomaly diagram appears to be pole-dominated only in certain configu-
rations [37, [40] which affect both the infrared and the ultraviolet region of the corresponding
correlator. Since these points are crucial in order to understand the origin of these singularities

in perturbation theory, we will proceed from the ground up.

The first chapter then will contain the study of the two parameterizations of the anomaly
diagram, the one due to Rosenberg [41] and the one that we identify as the “L/T parameter-
ization” [42]. This second parameterization corresponds to a solution of the anomalous Ward
identities used in recent studies of g — 2 of the muon (see also [24]).

The mapping between the two, performed in order to prove their equivalence and the isolation
of the pole in both the collinear and the non-collinear limits has been analyzed in [40].

From the second chapter on we discuss the structure of the T'JJ vertex, presenting its
expression for QED (Quantum Electrodynamics), moving then to more complex cases.

The computation of similar diagrams, for the on-shell photon case, appears in older con-
tributions by Berends and Gastmans [46] using dimensional regularization, in their study of
the gravitational scattering of photons and by Milton using Schwinger’s methods [47]. The

presence of an anomaly pole in the amplitude has not been investigated nor noticed in any of
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these previous analysis, nor the 1/m expansion of the three form factors of the on-shell vertex,
contained in [46], allows their identification in the S-matrix elements of the theory. Two related
studies by Drummond and Hathrell, in their investigation of the gravitational contribution to
the self-energy of the photon [48] and the renormalization of the trace anomaly [49] included the
same on-shell vertex. Later, this same vertex has provided the ground for several elaborations
concerning a possible superluminal behaviour of the photon in the presence of an external grav-
itational field [50]. The goal of our analysis has been to investigate the structure of this vertex,
to determine its explicit off-shell expression at 1-loop order, which had not been given before,
and to show that the polar contributions discovered in [51], due to the conformal anomaly, are

indeed reproduced by the explicit analytical result [52].

In our approach we stress on the similarities between the case of the chiral and of the
conformal anomalies, presenting the structure of the off-shell anomalous effective action for the
chiral case and critically analyzing the role of the anomaly poles in this theory, building on
previous investigations [6, 30} 40].

The different off-shell anomalous effective actions - in the presence of different types of
external gauge currents - have been considered separately. We have investigated two vector
gauge currents Jy (in the second chapter), two axial-vector gauge current Jy4; the mixed case
Jy — Ja (in the third chapter), to conclude with the case of two non-abelian gluonic gauge
currents (in the fourth chapter).

As we move in the analysis from simpler to more complex correlators, we expand substantially
our technical tools. A key role in the test of our explicit perturbative results is the derivation
of appropriate anomalous Ward identities which have been derived from first principles and
checked on the final expressions. They allow to define consistently the anomaly vertices for a
generic T'JJ' correlator and are obatained by a procedure which can be easily generalized to

even more complex correlators.

In the second chapter we compute in linearized gravity all the contributions to the gravita-

tional effective action due to a virtual Dirac fermion in the presence of the trace anomaly.

The perturbative analysis deals with a trilinear correlator, called TJJ, having an energy-
momentum insertion 7' and two vector currents J on the external lines (when axial currents
are not considered, J = Jy ), all with generic virtualities. This correlator is responsible for the
appearance of gauge contributions to the conformal anomaly in the effective action of gravity.
The obtained results consist in the presentation of the complete anomalous off-shell effective
action describing the interaction of gravity with the photons in the limit of a weak gravitational
field and in the proof that this correlator exhibits an anomaly pole as well as the chiral one.

So we put in evidence that the effective action describing the interaction of gauge fields with
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gravity is characterized by anomaly poles that give the same intriguing pattern of pole dominance
in the UV and of decoupling in the IR (for massive or off-shell correlators), in complete analogy
with the chiral case studied in the first chapter.

We conclude the chapter by noticing that anomaly poles are the most interesting feature of the

anomalous diagrams, being them of chiral or of conformal type.

The third [53] and the fourth [54] chapter are two extensions of the second one: they both
deal with the gravitational effective action in the presence of conformal anomaly, respectively
showing the computation of the TJJ correlator in the case of mixed axial-vector and vector
currents (third chapter) and within a non-abelian gauge theory (fourth chapter). They are both
an important step of our investigation aiming at the computation of the exact effective action

describing the coupling of the Standard Model to gravity via the conformal anomaly [55] [56].

The correlators that we study in the third chapter are two: the one with one vector and
one axial-vector gauge currents called T'Jy J4 and the one with two axial-vector gauge currents
denoted by T'JaJ 4.

The spectrum of the theory includes a single fermion of mass m and the investigation of the
gravitational vertices has been carried out both in the massless and in the massive case [53].
This study is performed as the one previously done for the vector-like case, the difference con-
sisting in the expansion of the trilinear correlator and in the suitable Ward identities allowing

to unambiguously define it.

It turns out that the pure vector-like correlator TJJ and the corresponding chiral one (with
an insertion of energy-momentum tensor and two axial-vector gauge currents) 7'.J4.J4 start dif-
fering, away from the chiral limit, by contributions proportional to explicit mass breaking terms.
Furthermore we conclude that the effective action obtained by coupling gravity to abelian
vector /axial-vector gauge theories is characterized by effective massless degrees of freedom as
well as in the pure vector case and that the anomalous poles emerge also in this case.
Understanding the physical significance of these effective actions in which a nonlocal polar
counterterm can be described in terms of two auxiliary fields [30L 51, 52], one of them having a

negative kinetic term, is still challenging.

The non-abelian case presented in last chapter is far more involved because the corresponding
effective action is affected by the gauge choice and by ghost terms. This study confirms the
general trend of the appearance of an anomaly pole which contributes to the trace part of the
TJJ correlator, both in the quark and gluon sectors [54] 57]. Pole contributions, in this case,

appear in each gauge-invariant subsector of the perturbative expansion.

Notwithstanding the similarities between the chiral and the conformal anomalies and the

emergence of anomaly poles in both types of correlators that completely account for them, it is
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worth to remind that while in the case of chiral gauge theories the disappearance of the pole
is necessary for ensuring the unitarization of the effective theory at high energy, in the case
of conformal anomalies the corresponding poles [51], 52] play a different role. In fact gravity
breaks unitarity in the UV already at Born level, and there is no compelling need to impose
the cancellation of these contributions in order to preserve unitarity theory. As we have already
pointed out, the local formulation of these types of theories requires two additional scalar (for
conformal) or two pseudoscalar (for gauge anomalies) degrees of freedom - one of them being a

ghost in both cases [30)] - in order to rewrite these polar interactions in a local form.

Pole subtractions, asymptotic axions and phenomenology

We collect here few more comments concerning chapters 5 and 6. The fifth chapter presents a
critical overview of the two different approaches to anomaly cancellation, the local one, based
on the introduction of a Wess-Zumino term, and the non-local one, defined by a subtraction of
the anomaly pole. The non-local subtraction has been proposed in the context of anomaly-free
supergravities long ago. The goal of this investigation is to point out some of the issues which
are still open concerning these types of effective Lagrangians. In particular we offer simple but
plausible arguments to show that a mechanism of pole subtraction should be interpreted as an
ultraviolet procedure which can not be extended to the far infrared. For the moment we just
mention that the most successful mechanism to cancel the anomaly - beside the obvious strategy
of an anomaly-free charge assignment - remains the introduction of an asymptotic axion (the
local mechanism). With the term “asymptotic” we refer to a state which is part of the S matrix

and is not necessarily formulated only as an intermediate effective interaction.

The mechanism of anomaly cancellation by a Wess-Zumino counterterm brings us to the
final chapter of this thesis where we discuss the structure of the trilinear gauge interactions and
their consistent definition in the case of anomalous abelian models. These models involve a kind
of axion with different properties respect to the original axion introduced by Peccei and Quinn
[58 BI] to solve the strong CP problem [60] [61]. Due to the anomaly, the shift symmetry of the
axion is gauged under the anomalous U(1) which extends the SM gauge group. This state is
expected to play a role in the cosmology of the early Universe [26].

These extensions can be generically thought to be the result of a gauging, when the global U(1)
symmetry (as for the Peccei-Quinn case) is promoted to a local one, which brings in rather tight
constraints coming from the requirement of cancellation of the new gauge anomalies. As we
said before, string models based on intersecting branes are one of the possible ways to generate

abelian anomalous gauge interactions and axions whose interactions naturally follow into this
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pattern.

The studied anomalous model contains two Higgs doublets, as in all the supersymmetric
extensions of the SM, a new neutral current with its corresponding gauge boson Z’ (it repre-
sents one of the phenomenological signatures of the model), together with a physical axion-like
particle, called azi-Higgs. This particle can be (almost) massless, with its mass generated
non-perturbatively in the QCD (Quantum Chromodynamics) vacuum as for an ordinary Peccei-
Quinn axion, but can also mix with the scalars of the Higgs sector, becoming a heavy axion.

The model is also characterized by the presence of two different phases, the Stiickelberg phase
([62, [63] for the original papers and [64] for a review) at high energy (~ TeV) and the usual
electroweak phase, called the Higgs-Stiickelberg phase [16] I7]. In the first phase the additional
gauge boson Z' is already massive with a mass M directly related to the Stiickelberg mass
scale, while the shifting axion is still a massless Nambu-Goldstone boson at this level. After the
electroweak symmetry breaking the mass of the gauge boson Z’ gets corrections proportional
to the Higgs vacuum expectation value and, more interestingly, one linear combination of the
shifting axion and a CP-odd component of the Higgs sector becomes physical: this is the so-
called axi-Higgs. Its presence is the main distinctive feature of anomalous U(1) models with this
kind of anomaly cancellation mechanism.

The sixth chapter contains the details relative to the construction of the effective action
at one-loop for this kind of models and an in-depth analysis of the trilinear gauge interactions
appearing in this context [4,[I8]. The study is carried out by means of generalized Ward identities
that allow to define unambigously the necessary counterterms in each of the two phases. Our

conclusions are contained in Chapter 7.



Chapter 1

The emergence of anomaly poles in

the chiral anomaly

1.1 Introduction and Summary

The first chapter presents the study of the relationship between anomalies and massless degrees
of freedom. The case of the axial anomaly in QED is well known, but the general behaviour of
the triangle amplitude in generic kinematic conditions (i.e. when the photons are off the mass
shell), its infrared aspect and above all the appearance of a massless pseudoscalar pole has not
been studied in detail until recently [51]. We present a complete analysis of the 3-point function
connecting three gauge currents, one of them being axial-vector and the other two of vector
nature, denoted in the following as an AV'V correlator. It is well-known that this diagram is the
source of axial anomaly in a four dimensional gauge field theory ad that the correlator involving
three axial currents, the AAA correlator can be decomposed as a sum of AVV ones.

An anomaly is in general the violation of a symmetry, valid at the quantum level, by means
of quantum corrections. In the presence of a gauge anomaly, the gauge invariance of the classical
Lagrangian is destroyed at the quantum level and the theory ceases to be a consistent quantum
field theory.

The Dirac equation for a massive fermion ¢ of mass m in QED reads as
—iyH(0y —ieAy )y +mip =0 (1.1)
and implies that the vector current J# = 1)y is conserved, so
ouJH =0. (1.2)

Another current, called axial current, can be defined as J£' = 1y#1) (and 7° = i7%y'v2+?) and
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obeys at the classical level
O JE = 2imapy°ih. (1.3)

It can be seen that in the limit of vanishing fermion mass m « 0, the classical Lagrangian
exhibits a chiral U(1) global symmetry under ¢ — em'y51/1, in addition to the U(1) local gauge
invariance. The current Jf' is the Noether current corresponding to this chiral symmetry. It
turns out that both symmetries cannot be maintained simultaneously at the quantum level, so
by enforcing U(1) gauge invariance in Eq. (L2), the full quantum theory results affected by a
finite axial current anomaly

e? e?

0 ~ 1672 7 Fy Fpo = ﬁE B (14)

O (J5) A

m=

with the gauge field strength F),, being F,, = 0,4, — 0, A,, E and B the electric and magnetic
fields respectively.

One of the subtle features of the axial anomaly is the presence of massless poles in the
corresponding AVV correlator, which show up in special kinematical regions and in the chiral
limit, and whose interpretation is at times rather puzzling. In fact, on several occasions the
correct interpretation of these singularities have been debated at length [38][65]. Our interest in
the topic, which is one of our reasons and motivations for this analysis, has been the result of a
recent work in which we have suggested the subtraction of the anomaly pole in theories involving
anomalous U(1)’s to ensure anomaly cancellation, by defining a new gauge invariant vertex
[24]. The re-defined vertex is non-local, while its Ward identity is expressed in terms of local
interactions and can be interpreted diagrammatically by introducing a massless pseudoscalar -
an axion field - coupled to gauge fields via Wess-Zumino terms. This coupling is induced by the
anomaly and the subtraction of the anomaly pole is expected to represent the only consistent
way by which a completion of an anomalous theory is supposed to work in the UV region.

However, as known from several previous studies of this vertex, the presence of a longitudinal
pole in an anomaly diagram has always been established only for special kinematical configu-
rations and this raises a serious concern regarding the meaning of the subtraction, introduced
to restore the Ward identity at high energy, a subtraction which should be naturally performed
by the UV completion of the anomalous theory. The main objective of this analysis is to show
that the effective action of an anomalous gauge theory is affected by singularities which are
not necessarily detected using a dispersive analysis in the infrared (IR) [66] (see also [51] for
a recent study), and as such are IR decoupled. These additional poles, which account for the
anomaly, can be extracted by a complete computation of the effective action and have a direct

ultraviolet UV significance. For this reason, assessing the UV significance of an anomaly pole,
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whose identification, in the past, has always been linked to the infrared (IR) using a spectral
approach, certainly helps in establishing a natural link between an anomalous theory and its
completion, which should guarantee the cancellation of these contributions.

To show the existence of these singularities under the most general kinematical conditions
we proceed with a complete and comparative study of the anomaly diagram in two different
parameterizations which are both essential in order to understand the nature of the longitudinal
subtraction. In fact, only a complete and off-shell computation of the effective action for an
anomalous theory allows the identification of these terms which escape detection with the usual
spectral analysis. The nature of these additional singularities of the effective action which, in
some cases, are not evident due to the presence of Schouten relations, is resolved by studying a
special class of amplitudes in which the presence of a pole dominance can be immediately linked
to a non unitary behaviour of the theory. Having clarified these points, we proceed by discussing
the structure of the anomalous effective action of a typical anomalous theory, represented by
expansions in the fermion mass (m). This can be viewed as the generalization to the anomalous
case of the usual Euler-Heisenberg effective action, which now contains additional (anomalous)

trilinear interactions that are absent in the QED case, due to C-invariance.

1.2 Anomaly poles and general kinematics: the Rosenberg case

One of the intriguing features of the anomaly diagrams is that the poles are part of the anomaly
amplitude only under some special kinematical conditions. For instance, the 7 — ~v (pion
pole) amplitude interpolates between the axial vector current (J4) and two vector currents (Jy)
and saturates the anomaly contribution (if we neglect the pion mass) given by the (JaJy Jy)
perturbative correlator. This saturation is at the basis of ’t Hooft’s matching conditions, ac-
cording to which the anomaly of the fermions should be reproduced by a composite particle (a
pseudoscalar) in a confining theory (see also the discussion in [51]). In general, the pole appears
by solving the anomalous Ward identity for the corresponding amplitude, A (k1, ks) (we use
momenta as in Fig. [T with k = ky + ko)

EAAMY (Ky ko) = an, e ko kop (1.5)

rather trivially, using the longitudinal tensor structure

4 k>\ A4
AMY = = ay, = B k1o ko, (1.6)
where a,, = —i/27% denotes the anomaly. The presence of this tensor structure with a 1/k?

behaviour is the signature of the anomaly. This result holds for an AVV graph, but can be
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Vi

Figure 1.1: Triangle diagram with an axial-vector current (\) and two vector currents (u, v). The
momentum parameterization for the direct and the exchange contribution is written here in an explicit

form for future reference.

trivially generalized to more general anomaly graphs, such as AAA graphs, by adding poles in
the invariants of the remaining lines, i.e. 1/k? and 1/k3, by imposing an equal distribution of
the anomaly on the three axial-vector legs of the graph.

Obviously, in the chiral limit, the triangle amplitude and the pole amplitude coincide only
if the two photons are on-shell. In fact, as shown by Dolgov and Zakharov [37], the pole
dominance requires a special kinematics. For this reason, the pole has a nonvanishing residue
only for massless photons. This, in fact, sets a limit on the validity of the matching, since the
perturbative correlator and the pole amplitude are not supposed to coincide for any virtuality

of the photons.

1.2.1 UV completions and decoupled poles in the IR

Being the anomaly closely related to the presence of a pole in the correlation function, the
subtraction of the anomaly pole from the perturbative amplitude is sufficient to restore the Ward
identities of the theory. For this to occur one has to show that the correlator has always an
anomaly pole, which is not obvious. The main goal of this study is to show that the correlator
responsible for the chiral gauge anomaly is always (i.e. under any kinematical conditions)
characterized by the presence of a pole, and to provide an interpretation of this.

We recall that anomaly poles have been identified via an analysis in the IR which shows that
the anomalous correlator has indeed a pole characterized by a nonvanishing residue. In fact, the
IR coupling of the pole present in the correlator is, for a standard IR pole, rather obvious since
the limit

Jlim k2 AMY = BA a7 Ky ko (1.7)

allows to attribute to the anomaly amplitude a non-vanishing residue. Our main conclusion is

that anomaly poles should not be searched for only by the usual dispersive analysis, which is
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effective only for standard IR poles, but require a complete off-shell evaluation of the anoma-
lous effective action. We show that these additional poles are decoupled in the IR, but they
nevertheless control the UV behaviour of the theory. This last point is proved by looking at a
special class of amplitudes which are pole dominated in the UV and which allow to detect the
non unitary behaviour of an anomalous theory rather closely.

For this to happen one needs a separation of the anomaly amplitude into longitudinal and
transverse components. Our results are based on direct computations, using the two parameter-
izations of the anomaly amplitude mentioned above. We work under the most general kinematic
conditions, generalizing the L /T parameterization given in [42] away from the chiral limit and
showing its exact equivalence to that of Rosenberg [41].

We start our discussion by addressing the issue of the extraction of an anomaly pole from the
Rosenberg form of the anomaly diagram [41]. We review the identification of the independent
structures of the AVV diagram in this formulation and then move to the L /T decomposition,

illustrating the connection between the two.

1.2.2 Connecting two parameterizations

In his classic paper [41] Rosenberg provided an expression for the three-point correlator in
terms of a sum of six invariant amplitudes multiplied by different tensorial structures, denoted
by Ai,...Ag. These are given as parametric integrals and are easily computable only in few
cases, for example when the external momenta are on-shell (massless) or with symmetric off-
shell configurations of the two vector lines (k% = k3). We will re-analyze the derivation of the
amplitude, emphasizing the features of the vertex in the most general case, by focusing our
attention on the special kinematical limits in which the pole appears. The AVV amplitude with
off-shell external lines shown in Fig[ITlis therefore written according to [41] in the form
P / i TP = B9 — ]
(2m)* q* (¢ —k)? (g — k1)?

+ exch. (1.8)
with
A = Ag(k, ko)elkr, v, N + As(kr, ko)elka, v, N + As(kr, ka)elki, o, 11, Nk1”
+ A4(k1, /{?2)8[]{1, kQ, M, )\]kg + A5(k1, /{?2)8[]{1, kz, v, )\]/{# + Aﬁ(kl, kg)z’:“[/ﬁ, kQ, v, )\]kg
(1.9)

The four invariant amplitudes A; for ¢ > 3 are finite and given by explicit parametric integrals
[41]
Ag(kil, k2) = —AG(kQ,]Cl) = —1671'2]11(]{31, k2), (110)
Ay(kr, k) = —As(ke, k1) = 167 [Ioo(k1, k2) — Tio(k1, k2)] (1.11)
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where the general massive I integral is defined by

1 1-w
I (k1 ko) = / dw/ dzw’z2' [2(1 = 2)kf + w(l — w)k3 + 2wz (k1 ky) — mQ]_l . (1.12)
0 0

whose explicit form will be worked out below. Both A; and A are instead represented by
formally divergent integrals, which can be rendered finite only by imposing the Ward identities

on the two vector lines, giving

Al(/ﬁ, kg) = ky-ky Ag(/ﬁ, kg) + /{?% A4(/€1, kg), (1.13)
Ag(lﬁ, kg) = k% A5(/€1, kg) + k1 - ko Aﬁ(kl, kg), (1.14)

which allow to re-express the formally divergent amplitudes in terms of the convergent ones.
The Bose symmetry on the two vector vertices with indices p and v is fulfilled thanks to the

relations

As(k1,k2) = —Ay(ke, k1) (1.15)
Ag(kr, ko) = —As(kz, k). (1.16)

1.2.3 Explicit expressions in the massless case

To extract the explicit form of the parametric integrals given by Rosenberg, we proceed with
a direct computation of the invariant amplitudes of the parameterization using dimensional
reduction. We perform the traces in 4 dimensions and the loop tensor integrals in D dimensions,
using the common techniques of tensor reduction. We use dimensional regularization with
minimal subtraction and find, as expected, the cancellation of the dependence of the result on the
renormalization scale. Therefore, the parametric integral 117 and the combinations Iyy — I1g are
trivially identified at the end of the computation. The result is expressed in terms of elementary
functions, except for the function ®(x,y) [67], which is related to one of the two master integrals

of the decomposition, the scalar massless triangle. We obtain for generic virtualities of the



1.2 Anomaly poles and general kinematics: the Rosenberg case 7

external lines

R S 5182 (52 — 51) _ [ﬂ]
Ax(s, 81,82) = 12 + 2, {@(51,52) 5 + 51 (52 — 512) log 5
—S89 (81 — 812) 10g |:8—82] } s (117)
7
As(s,s1,82) = Sr2o02 {—s152 [4s1y + 3 (s1 + $2) 512 + 25182] P(s1, 52)

s
—258190 — 881 [28152 + s12 (352 + s12)] log [?1]
s
—589 [5%2 + 51 (282 + 3512)] log {f} } , (1.18)

1

A4(S, S1, 82) {81 [48?2 + 2 (81 + 282) 8%2 + 25189812 + S1 (81 — 82) 82] ‘13(81, 82)

82502
s
+2ss10 + s (81 + S12) (28%2 + 3132) log [?2]
s
4551 [48%2 — 51 (s2 — 3312)] log {?1} } , (1.19)

where s = k?, 51 = k?, so = k3, s120 = k1 - ko with 0 = 52, — s1s9 and the function ®(x,y) is
defined as [67]

1 . . 1+ 2
O(z,y) = X{Q[Lm(—px) + Lis(—py)] + In % In i ﬁz + In(px) In(py) + %}, (1.20)
with
Az,y) = VA, A=(1-2—y)?—4dzy, (1.21)
plz,y) =21 —z—y+ )", :cz%l, yzs—;. (1.22)

®(x,y) can be traced back to the one-loop three-point massless scalar integral Cy(s, s1,$2), as

mentioned above, involved in the reduction of the tensor integrals with three denominators in
Eq. (L8) as

im?
Co(s,s1,82) = ?Cb(aﬂ,y). (1.23)

Each term in the function ®(z,y) and also the arguments of the logarithmic functions appearing
in the form factors A; (i = 1,...,6) are real if one of these two sets of different conditions is

simultaneously satisfied. In the spacelike region we may have

® 5,517,590 <0 and 5 < —(v/=81 + /—52)?

or in the physical region with positive kinematical invariants

® 5,517,590 >0 and s> (y/51+ \/5)2
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€[k17)‘7/1/71/] E[klakQMU'a)‘] k{ 8[]{1,]{271/7)\] klll €[k1,k2,ﬂ,y] k{\
8[1{32,)\,}1, V] e[klakQ’IU’aA] kl2/ 6[](51,]{52,7/,)\] k; €[k15k2’u’ V] k%

Table 1.1: The eight pseudotensors in which a general amplitude A" (ky, ky) can be expanded.

All the other regions would require some specific analytic continuations by giving to all the

invariants a small imaginary part n (n > 0) according to the in prescription with s; — s; + in.

When discussing the presence of spurious poles for s — 0 we need to work with amplitudes
which are well-defined around s = 0; for this reason the analytic regularizations have been
always performed before taking the s — 0 limit. There is another important observation that
is in order at this point. One may worry if the absence of the pole in s can be attributed to the
redundancy of the Rosenberg representation [41], but, as we are going to show next, this is not

the case.

1.2.4 Four amplitude decomposition in Rosenberg

In order to derive a set of a minimal number of independent invariant amplitudes we proceed
from scratch. The identification of the invariant tensor structures characterizing the amplitude
can be done exhaustively, by starting with the construction of all the possible tensors of rank
three built out of the e-tensor and the external momenta. We follow here an approach similar
to [51] with some minor changes.

The eight tensorial structures listed in Tab[I. ] are the ones needed in the expansion of a generic
triangle correlator with three indices {\, u, v} and external momenta {k1,k2}. Out of these 8
structures, only the six in the first three columns appear in the Rosenberg formulation and can
be reduced to 4 with little effort by requiring conservation of the vector currents. If we impose
the vector Ward identity on the two vector lines of the diagram and fix the divergent coefficients
Ay and A, in terms of the remaining amplitudes, then the form factors A; reduce to the four
ones As, ..., Ag and the tensor structures in front of them get automatically organized in terms
of four linear combinations indicated with n;. These four tensor amplitudes 7; are selected from
a set of six quantities defined in Tabl[[.2, which shows all the possible tensors entering into the
expansion of a generic three-currents correlator after imposing the conservation of the vector

current.

Coming back to our specific case, we obtain for the generic anomalous AVV vertex satisfying



1.2 Anomaly poles and general kinematics: the Rosenberg case 9

m elky, ko, i, V] k7
2 e[k, ko, p, v] k3
n3 | ki - koelki, A\, u,v] + KYelky, ko, p, A]
na | ko - koelki, A\, u, v] + k¥elky, ko, p, A]
ns | k1 - kielke, A\, pyv] + ki'elky, ko, v, Al
ne | k1 - keelke, N\, pyv] + khelky, ko, v, Al

Table 1.2: The six pseudotensors needed in the expansion of an amplitude A (ky, ko) satisfying

the vector current conservation.

the vector Ward identities the parameterization

A%}/ = AB(kl : k2€[k1’ >‘a 12 V] + kije[kla k2a 12 A]) + A4(k2 : k2€[k1’ >‘a 12 V] + k;&[k‘l, k2a 12 A])
—|—A5(k‘1 . k16[k32, )\, H, V] + k"f&[k‘l, k?z, v, )\]) + Aﬁ(k‘l . kﬁz&[ka, )\, s V] + k‘g&[k‘l, k‘Q, v, )\])
= Agmy™ (K1, k2) + Agmy™ (ku,y ko) + As g™ (K1, ko) + Ag g™ (ku, ka).

(1.24)

This is obtained after plugging Eqs. (LI3LI4) into Eq. (L9), where 77;‘“ “(k1,ks2) can be read

from Tabl[[.2l The remaining two homogeneous pseudotensors of degree 3 in ki, ko, denoted by

ni‘“" and né\’“/
U?Hy(kla k?) = k?&[kﬁl, kJQ,M, V]? ng\“y(k’l, k2) = kjg\e[kla k??:u’a V]a (125)

are not present in the Rosenberg parameterization, although they appear in the L/T decompo-
sition, as we show below. The reduction of these two tensors to the four ones already used as a

basis can be achieved by the use of two Schouten relations

k{‘&?[k:l,kg,,u,y] = ki e[k, ko, \,v] — KVelky, ko, \, p] — k2elko, A, i, V] + ki1 - koelky, A, 1, V],
(1.26)

ky elky, ko, pyv] = Kb elki, ko, A\, v] — kY elkr, ko, A, ] — Ky - kaelka, A, i, v] 4 k3elkr, A, p, v,
(1.27)

or equivalently,
Ay _ Apv Ay
m' (k1 ko) = m3" (ke k) — gt (K, ke), (1.28)

ot (kioka) = ™ (ki ke) — 1" (K, k). (1.29)

The set of the 4 amplitudes that we have chosen in the parameterization shown in Eq. (I224]) are

linearly independent and functionally independent respect to the Schouten transformations. The
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claim that one can make is that any tensor structure which is not of the form given in the 4-basis
above can be re-expressed as a combination of these 4 structures using appropriate Schouten
relations. The decomposition of the AVV diagram with respect to this basis is therefore unique.
At this point it is trivial to realize that, starting from the explicit expressions of the invariant
amplitudes A; that we have given above, the absence of a residue at s = 0 continues to hold
(for general off-shell kinematics). The important point to observe is that there is no kinematical
singularity in this limit in each of the 4 independent tensor structures. The conclusion is that, in
general, an AVV diagram has no massless poles. The use of a set of non-redundant amplitudes
clears the ground of any doubt concerning this result. In fact, the poles appear only under

special kinematical configurations, as we are going to discuss next.

1.3 The massive off-shell case for the Rosenberg parameteriza-

tion

Before performing the relevant kinematical limits on the amplitude, we move one step forward
and generalize the results presented in the previous section to the massive case, by writing the
expression of the invariant amplitudes given by Rosenberg (and the corresponding parametric

integrals) in an explicit form.

The computation is performed as in the massless case, using dimensional reduction. The
modifications are minimal and mostly due to the new scalar integrals By and Cy, corresponding
to the massive (scalar) self-energy and triangle diagram respectively. The three-point amplitude

with equal massive internal lines is given by

N / i [V (g =+ m)y(d - iﬁl +mhyt(g+m) exch.  (130)

(2m) (¢> =m?) (¢ — k)? =m?) ((¢ = k1)* —m?)

with k = k1 4+ ks, and can be again cast into the form

AAW/ - Al(kly k2a ’I’I’L2) €[k31, H, v, >‘] + A2(k15 k2, m2) 6[1(52, M, V, >‘]
+ Asz(ky, k2, m?) e[k, ko, pu, N k1¥ + Ag(k1, ko, m?) elky, ko, p, A kY
+ As(k1, ko, m?) e[k, ko, v, N B2 + Ag (K1, ko, m?) elky, ko, v, A] kb, (1.31)

where the tensorial structures are the same as before and the massive form factors A;(kq, ko, m2)
show an explicit dependence on the internal mass. They have been computed by using the tensor

reduction technique to express the tensorial one-loop integrals in terms of the scalar ones. We
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obtain

} 1
A (k1 ko,m?) = —4—;2 t 5, {51 (s2 — s12) D1 (s1,8,m*) — 52 (51 — $12) D2 (82, 5,m?)
+ [8182 (sg —s1) — 4am2] Co (31, $9, s,m2)} , (1.32)
) 1
Ag(ky ko, m?) = —47:20812 + i {—s1 (25182 + s12 (352 + s12)] D1 (51,5, m?)
— 8928182+ 512 (351 + s12)] D2 (32, s, m2)

- [48120m2 + 5159 (43%2 + 3 (s1 + s2) s12 + 28182)] Co (81, 82, 87m2)} )
(1.33)

7 1
As(k1, k2,m?) = T + Srig2 {— (s2 + s12) (23%2 + 8182) Dy (31, s,m2)

—  so[s12 (3s2 + 4s12) — s182] D2 (s2, S,m2)

—  [4soom? + so (—s25] + (53 + 251282 + 4s75) s1

+2S%2 (52 + 2512))] CO (515 52, SamQ)} ) (134)

with s = k%, 51 = k}, so = k3, 0 = s, — 5189. It is possible to check that the Bose symmetry

relative to the two vector vertices

As(k1,ka,m?) = —A;(ke, k1,m?), (1.35)
A6(k1,k:2am2) = _A3(k2aklam2)a (136)
A4(k‘1,k:2,m2) = —A5(k:2,k1,m2) (137)

is respected. As mentioned above, the difference between the massless and the massive decompo-
sition of the triangle amplitude lies in the particular set of scalar integrals involved in the tensor
reduction. Here we define Di and D5 as a combination of two-point scalar massive integrals

(By) of different internal momenta

a; +1

Di(s,s;,m*) = By(k*,m?) — Bo(k?,m?) = in* |a;log

a; —

in which the dependence on the regularization scheme disappears in the difference of the two
scalar self-energies involved in (L38). The expression of Cy can be given explicitly in various
forms [68], for instance as
3
1 b — 1 —b; — 1 —b; +1 bi +1
Co(s,s1,80,m?) = —im?——x [Li : —Li ! + Li ! — Lig—
ols: 51, 52, m) 2\/EZAZ1 2 a; +b; “a; — b; *a; — by 2ai+b;
(1.39)
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with

N PR b= St Stk

S; 20

: (1.40)

where s3 = s and in the last equation ¢ = 1,2,3 and j,k # i. Other expressions, suitable for
numerical implementations, are given in [69]. The region in which all these functions have real
arguments and do not need any analytic continuations are those discussed in section [[L2.3] for
the massless case. In general, the prescription for in in the presence of a mass in the internal
loop - in the fermion propagator - is taken as m — m — in. We have checked numerically the

agreement between the expressions presented above and those given in parametric form.

1.4 The vertex in the Longitudinal /Transverse (L/T) formula-

tion and comparisons

The second parameterization of the three-point correlator function that we are going to discuss
is the one presented in [42]. One of the features of this parameterization is the presence of
a longitudinal contribution for generic virtualities of the external momenta and not just in
the specific configuration under which it appears in Rosenberg’s formulation. Of course, the
true presence of the pole in the IR has to be checked by taking the corresponding limit, since
the Schouten relations allow the extraction of a pole in the IR region at the cost of extra
singularities in the parameterization. For this reason we start by recalling the structure of the
L/T parameterization, which separates the longitudinal from the transverse components of the

anomaly vertex, which is given by

W)\;w — L WL Apy WT)\/,U/

1.41
872 ’ ( )
where the longitudinal component
WL — ke[, v, ko, ko) (1.42)
(with wy, = —4i/s) describes the anomaly pole, while the transverse contributions take the form
W (ki ko) = wy (K62, 83) 1500 ) + i) (KK B5) £, (k. o)
+ @) (k2K K3) B (R ), (1.43)
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with the transverse tensors given by

() (ki ka) = ku el A by k) — kaelv, Ao, ko)

— (k1 - ko) elp, v, A, (k1 — ko)) + W ky elp, v, k1, ko] |
tf\;l(kl,/@) = |(k1 —k2)r — k%k;k% kx| elu, v, k1, ko]
ﬂ;l(kl,kz) = kel N K1, ka] + ko e[v, Nk, ka] — (kr - k2) elu, v, A K. (1.44)

The form factors wy(s, s1, s2) are all defined in the following Eqs. (L54HL50).

Notice that in this representation the presence of massless poles is explicit for any kinematical
configuration and not just in the massless collinear limit, where the diagram takes the Dolgov-
Zakharov form. A second observation concerns the presence of other pole-like singularities in
the transverse invariant amplitude and tensor structures. It is then obvious that one has to
wonder whether the pole present in wy, is balanced, away from the collinear region, by other
contributions which are also singular. Indeed, as we are going to show, this is the case. In fact,
due to the Schouten relations, we are always allowed to introduce new polar amplitudes and
balance them with additional contributions on the remaining tensor structures. In fact we are
going to show that the presence of such pole away from the collinear region becomes significant
in the UV - at least in the perturbative approach - but not in the IR, since it decouples if one

computes the residue correctly in this representation.

1.4.1 Generalization of the L/T parameterization and the anomaly pole

We can generalize the L/T formulation presented above to the case of a triangle amplitude
with a massive fermion of mass m, by simply exploiting the connection between this and the
Rosenberg representation [41]. We use the Schouten relations to show the equivalence between
the tensor structures of both representations. This requires some care since the decomposition
into L and T amplitudes requires a nonzero k, otherwise it is invalid.

At nonzero momentum, by equating the coefficients of the four invariant tensors, we obtain
a linear system of four equations whose solutions return the complete matching between the two

parameterizations in the form

1 e 4y kke— k2
L e e
1 k1 -k ki ko + k2 (_
As(ki,k2) = —Ay(ko, k), Ag(k1, ko) = —Az(ka, k1), (1.47)
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and viceversa

k2 k2 k2 —8—7T2A—A 1.48
wL( s vy 2) - L2 [ 1 2]7 ( )

(we omit, for simplicity, the momentum dependence) or, after the imposition of the Ward iden-

tities in Eqs. (CI3ILI4]),

872
wr (k2 k2, k3) = = (A3 — Ag)k1 - ko + Ag k3 — A5 k7], (1.49)
w2, k2, kD) = —dn® (A3 — Ay + As — Ag), (1.50)
Wi (K, 1, K) = 4r® (Ag+ 45), (1.51)
WSR2 K2 K2 = —4n? (A + Ag+ As + Ag) | (1.52)
where A; = A;(k1,k2). This same mapping holds also in the massive fermion case if A; =

A;i(k1,k2,m) and leads us to the same decomposition. In this case the L/T parameterization
can be obtained starting from the massive A; coefficients shown in Eq. (L32HL34]) and exploiting
the mapping in Eqs. (L4ML52]) between the two parameterizations. We obtain

4
wr,(s1,82,8) = —;Z (1.53)
.S ] s
ngr)(sl, S9,8) = z; + 252 [(512 + 82)(35% + 51(6812 + s2) + 28%2) log ;1
s
+ (s12 4 51)(353 + s9(6512 + 51) + 25%5) log f
+ 8(2512(81 + 52) + 8182(51 + s9 + 6512))(1)(81, 82)] (154)
_ S1— S )
wé—‘ )(81, S92, S) = 1 L . 2 + @ [—(2(52 + 812)8%2 - 81812(351 + 4812)

S
+  s152(s1 + s2 + s12)) log ?1 + (2(s1 + 812)832 — 52512(3s2 + 4512)

—+

s
s182(81 + s2 + s12)) log ?2 + s(s1 — s2)(s182 + 25%2)<I>(51, 52)] (1.55)

ﬁ};_)(sl, S9,8) = —w(_)(sl, S92, 8) (1.56)

in the massless case, which is in complete agreement with the explicit expression given by [45],

while in the massive case the same mapping gives

4i  8m?
wr (s, 51,52, m%) = —;Z - W—ZCO(S’Sl’SQ’m2) (1.57)
.S 1
w(T+)(s, 51,52, m%) = i + 37253 [(s12 + 52)(3s7 + s1(6512 + 82) + 2535) D1 (s, s1,m?)

+ (s12+ 31)(335 + s2(6s12 + s1) + QS%Q)DQ(S, $9, m2)
+  (4mPso + s(2s12(s1 + 82) + s182(s1 + 52 + 6512)))Co (8, 51, 52, m%)]
(1.58)
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wéq_)(s, s1, 32,m2) = ;3 ; 52 + 27$02 [—(2(32 + 812)8%2 — 51512(351 + 4512)
+  s182(s1+ s2+ s12)) D1 (s, 51, m2) + (2(s1 + 312)3%2 — $2512(382 + 4512)
+  s189(s1 + 82 + 512)) Da(s, 52,m?)
4+ (4m20(sy — s2) + s(s1 — 52)(5152 + 25%5))Co (s, 51, 52, mZ)] (1.59)
zbgf)(s, 51, 82,m2) = —wgpf)(s, 51, 52,m2), (1.60)

with s; = k2 (i = 1,2,3, k3 = k), s12 = k1 - ko, 0 = 835 — s182. The functions D; and Cp, defined
in Eq. (I38) and (L39), are respectively a combination of two scalar bubbles and the scalar one-
loop triangle. The Bose symmetry on the vector vertices is fulfilled in both representations by
taking into account the way in which the A; and the wg,wr,... transform under the exchange

of k1, ke and p,v. For the L/T invariant amplitudes we have

wi (62, 8, 83) = w2 R K), (1.61)
W KRR = —wl) (k2 K2 kD), (1.62)
WK R RD) = =l (K2 K2 kD). (1.63)

It is then obvious that there is complete equivalence between the two parameterizations, al-
though there are some puzzling features that need to be investigated more closely. As we have
already mentioned, the L/T parameterization appears to have a pole at s = (k1 + ko)? = 0,
which contributes to the anomaly. In fact, the non-vanishing Ward identity on the axial-vector
line is due to the invariant amplitude wy, and to its corresponding tensor structure. Then, one
obvious question to ask is if this pole is compatible with the pole structure of the Rosenberg
representation [41]. The answer is affirmative as far as the computation of the residue is per-
formed on the entire amplitude and not just on the invariant amplitudes alone. In fact, the L/T
decomposition introduces kinematical singularities both in the longitudinal and in the transverse
components as a price for the appearance of a longitudinal pole. This can be shown explicitly.

In fact, a direct evaluation of the limit (for off shell photons) gives

lim swr,(k3, k3, k%) (k1 + ko)aelp, v, ky, ko) = —4i(ky + ko) aelp, v, k1, ko), (1.64)
) 2i(s1 + s2) log[ 2]
tim 5w (6,3, 6%) ) b ko) = === ka)aeln v bkl (1.63)
_ 2i(s1 + s9)log(ZL

hr% sw(T (K3, ki,k2)t£yl(lﬁ,kz) = |—4i+ S . 2)5 8(5) (k1 + k2)xelp, v, k1, kal,
§— 1 — 92

(1.66)
hn(l)sw(T)(k‘ K3, K28\ (k1 ko) = (1.67)

for the several singular terms present at s = 0. These results have been obtained after performing

the analytic continuation around s = 0 of the explicit expressions for wy, and wr given above.
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Combining these partial contributions we obtain the total result for the residue of the entire

amplitude
llir(l) s W =0, (1.68)

which proves its vanishing at s = 0 for off-shell photon lines. This result, in agreement with what
we had anticipated, shows that in the IR also the L /T parameterization has no pole. This is
expected, being the L/T and the Rosenberg parameterizations [41] equivalent descriptions of the
same diagram (modulo some Schouten relations), hence it is obvious that the decoupling of the
anomaly pole for off-shell external momenta has to take place in both parameterizations. Per-
forming cautiously the limits, we can similarly proof that the pole reappears in correspondence
of specific configurations of the external lines (on-shell photons), as we are going to show next.
An equivalent analysis, of course, can be performed by analyzing the various cuts of the ampli-
tudes in the L/T parameterization using a dispersive approach and looking for discontinuities

proportional to §(k?) in the spectral density of the diagram.

1.5 Special kinematical limits in the massless case

We summarize in this section all the results concerning some specific kinematical conditions in
the infrared and chiral limits of the anomaly amplitude, taken directly on the amplitude given
in the previous sections.

The first analysis carried out involves the massless A; written in Eq. (II7 [I9]) for which
we take three limits. We use the notation A4;(s, s1, s2) to denote each invariant amplitude in the

Rosenberg form for massless internal fermions. We distinguish the following cases
a) s1=0 s9#£0 s#0 m=0
b) s;1 =0 s =0 s#0 m=0
c) sy = M? Sg = M? s#0 m = 0.

While cases a) and b) will be treated here, case ¢) will be left to the appendix [A.T] together

with the same three kinematical configurations for a massive fermion. In case a) we find

7 s S
Ai(s,0,52) = 1 L —232 log f - 1] , (1.69)
7 s S
As(s,0,89) = 3 [5 _252 log ?2 + 1:| , (1.70)
As(s,0, 52) Ag(0 0) ! %2 log 22 4+1 (1.71)
S S = — S9,8 = — og — .
3\9, YU, 52 6\Y) 925 9, 27T2(S—52) s — 89 g S )
Ag(5,0,80) = ——" log>2 (1.72)

272 (s — s9) s
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and a divergent As(s,0,s2) which does not contribute to the physical value of the amplitude.
Indeed AM¥_ in a physical amplitude, is contracted with the polarization vector relative to the
on-shell photon with momentum &, giving €, (k1)k}’ = 0, so that the contribution coming from
As disappears.

Notice that this amplitude satisfies the Ward identities in Eqs. (LI3ILI4]) and can be written

as

AN (5,0, 59) = As(s,0, 59) n3" (k1, ko) + Aa(s, 0, s2) my™ (k1, ko) + As(s,0, s2) e (k1, ka),
(1.73)

with the tensors n;(k1, k2) written in Tab[l.2l Notice that the poles are located at the various
thresholds of the amplitude, describing the production of a photon of invariant mass ss, having

set the first photon on-shell, and that all the residues are vanishing

lim s As(s,0,s2) = hH(l] s Au(s,0,52) = lir% s Ag(s,0,s2) =0, (1.74)

s—0

including the one of the whole amplitude

lim s AMY (5,0, s9) = 0. (1.75)

s—0

In the L/T parameterization we find

4

wr,(s,0,82) = —;Z, (1.76)
21 S+ 82 S9

ngr)(s,(),sQ) R S_S2log?+2, (1.77)
— — 23

wh(5,0,8) = i (s.0.) = =g (1.78)

which also show the presence of the same threshold singularity, but, in addition, also of an
anomaly pole in wy, which is absent in Rosenberg’s parameterization. As we have commented
above, the pole is spurious, since the tensor structures are also singular in the same (s — 0)

limit, and there is a trivial cancellation of this contribution. Indeed we find

liH(l) swr(s,0,s92) kaelu, v, ki, ko] = —4iky elu, v, k1, ko], (1.79)
lim s [w§" (s,0,50) £57) (ko) + ol (653,12 65,0 (b ko) | = =4 b el v, b, o),
(1.80)
liH(l) sw(_)(s,O,SQ)fg\;?/(kl,kg) =0 (1.81)
which gives
. . L Auv T v
llir(l) s Wy (5,0, 82) = Wilil’(l] s [W e — WA ] =0 (1.82)
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in agreement with Eq. (LL68]).
Therefore, in this case, with only one leg on-shell, the kinematics does not allow a polar structure
for the entire amplitude; in the Rosenberg parameterization this result can be derived in a
straightforward way since each amplitude has a vanishing residue and the tensor structures are
regular in the IR (i.e. s — 0) limit. On the contrary, in this limit the L/T formulation involves
both the longitudinal and the transverse components, as the tensorial structures multiplying the
coefficients w(s, 0, s2) are not independent as s — 0. Obviously the final result, obtained with
the correct limiting procedure, is the same in both cases.

Let’s take in exam another kinematical configuration, more specific than the previous one,

i.e. the case in which the two photons are both on-shell and massless or
b) s1 = s9 =0 s#0 m = 0.

In this case it is well known that the AVV vertex exhibits a polar structure, as Dolgov and
Zakharov showed in [37], therefore we expect to recover this amplitude in the s — 0 limit. The
computed form factors are extremely simple. We obtain
i
R’
i
22

Al(S,0,0) = —AQ(S,0,0):— (183)

Ag(S,0,0) = —AG(S,O,O)Z (1.84)

which clearly exhibit the Bose symmetry for the two vector vertices, since s; = s3. Notice that
Ay, As are physically nonessential, as before; indeed they are multiplied, respectively, by k&
and kf' in the total amplitude AMY (k1, k2), and vanish after their contraction with the physical
polarization vectors of the photons.

The amplitude AM¥ (ky, ko) satisfies the Ward identities written in Eq. LT3, since s1o — s/2

when both photons are on-shell
A1(s,0,0) = gAg(s, 0,0), As(5,0,0) = % Ag(5,0,0). (1.85)
In this case the entire correlator is obtained from only two form factors A; (As and Ag), giving

AAMV(Sa 0’ 0) = A3(Sa 0’ 0) ng\w(k’l, k2) + A6(5’ 0’ 0) néuy(kjla k2)
)

y 1
575 Khelky, ko, v, N] — k{elky, ko, u, A | — 4—5[(k1 — k2), A\, 1, V).

(1.86)

This expression can be reduced to its polar Dolgov-Zakharov form after using the Schouten

identities in Eqs. (L2611.27)
. ik
AM(5,0,0) = ——5— e[k, ko, 11, V] (1.87)

212 s
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as s1 = s9 = 0.
In the L/T parameterization we expect a similar polar result, after summing over the contri-
butions coming both from the longitudinal and transverse tensors. In this case, the only two

non-vanishing coefficients are wy, and wgﬁL)

wi(5,0,0) = wf(s,0,00= -2, (1.88)
wi(5,0,0) = @y (5,0,0) =0 (1.89)

and the residues must be computed combining them with the corresponding tensor structures.

()

It is worth noticing that by

(k1,k2) = 0 for s; = so = 0. This can be immediately checked
starting from its definition given in Eq. (L43) and with the aid of the two Schouten identities

shown in Eqgs. (L26IT.27)), which in this case become

S
kﬁ{‘&[kﬁl,k‘Q,M,l/] = —kf&[k?l,kj,)\,,u]+§€[k1,)\,p,y], (190)

k) el ko, pov] = Kl elky, ko, A v] — ge[k‘Q,)\,,u, v, (1.91)
so that the unique contribution to the residue for s — 0 comes from the longitudinal part
1
hH(l] sWuwr(s,0,0) = —5lim s Wi
S—

= 52 llir(l] swr(s,0,0)kxe[p, v, k1, ks

1
= _ﬁk)\e[klykauuﬂy]’ (192)

We conclude that the pole is indeed present in the L /T amplitude if the conditions s; = s =0

with s # 0 are simultaneously satisfied

AN (5,0,0) = Wina(5,0,0) = ———* clty ka1, (1.93)
272 s

Another interesting case is represented by a symmetric kinematical configurations in which
the external particles are massive gauge bosons of mass M. This will turn useful in the next
sections, when we will discuss the behaviour of a BIM amplitude with massive external lines
at high energy, showing, also in this case, its pole dominance. There are some conclusions
that we can draw from this study which are important for the analysis of the next sections.
Notice that in all the cases that we have discussed it is possible to isolate a 1/s contribution
in wy, for any kinematical configurations other than the massless (s — 0) one, where the L/T
formulation requires a limiting procedure. This is clearly suggestive of the fact that a longitudinal
component is intrinsically part of the vertex and not just of its collinear and chiral limit. This

contributions is paralleled, in the Rosenberg amplitude(s) by a constant behaviour of A; and A,
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(A; = i/(47%) + ...). Massive external gauge lines or mass corrections due to the fermion mass
in the loop do not shift this 1/s pole.

As we have mentioned, under the general configurations contemplated in these last cases,
these poles are not coupled in the IR, although this does not necessarily exclude a possible role
played by these contributions in the IR region. However, the complete absence of a scale in
their definition makes them suitable also of a completely different interpretation, as longitudinal
contributions that survive in the asymptotic s — oo limit of these amplitudes. In fact, we
are going to show that any UV completion of these theories has necessarily to deal with the

cancellation of these terms.

1.6 Effective actions and the gauge anomaly

In this section we are going to discuss the formulation of the effective action in the presence
of anomaly poles, generalizing the Euler-Heisenberg (EH) result to an anomalous theory. We
will focus our attention exclusively on the trilinear gauge terms, coming from the anomalous
structure, which are new compared to the EH formulation.

The simplest example that we can consider is a theory describing a single anomalous gauge

boson B with a Lagrangian
- 1,
Lp :7/1(2/8+€/B’Y5)¢—ZFB- (1.94)

The effective action of the model suffers from a trilinear gauge interaction which is anomalous
(BBB). In this case the anomalous vertex is obtained by a simple symmetrization of (L9) which

generates a A4 vertex
1
Apaa = 3 (Aavv +Avay +Ayya). (1.95)

The anomalous gauge variation (6B, = 0,0p)

ieday,

ol =
B 24

/ d*z0p(z) Fg A Fp (1.96)

can be reproduced by the nonlocal action
e3

48 2 (0B(x)07 (= — y) Fs(y) A F(y)), (1.97)

F10ole =

which is the variational solution of (IL96]). To derive a 1/m expansion of the effective action, we
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perform an expansion of the Rosenberg form factors, obtaining

. . 2 1
A 2) = —A e ot — L.
1(s,0,0,m*) 2(s,0,0,m7) 1872 12 + 3602 i +0 el (1.98)
1 ) S 1
A 2y _ _Y4 2y L — 1.
3(s,0,0,m%) 6(s,0,0,m") 5172 ? + 13072 i +0 5 ) (1.99)
1 ) S 1
Au(5,0,0,m?) = —A5(5,0,0,m?) = ——— + —— > o= 1.100
4(85 y U, m ) 5(85 y U, m ) 1272 1m2 + 12072 mA + mb /7 ( )

where s = k2. We will also use the notation s; and s, to denote the virtuality of the two
external photons (s; = k},sy = k3). Due to the chiral gauge anomaly, the effective action
is gauge-variant. For our choice of momenta (incoming k on the axial-vector of index A and

outgoing k; and k2 on the two vector currents of indices p and v) we obtain

v A4k d*ky d*k o
Ty @,y 2) :/W&(/ﬂ—kl—kz)em ihva=ikey A (K Ky ko) (1.101)

with the contribution of the anomalous vertex being given by
ré = —% / d*z dy d*z TM (2,y, 2) B\(2) Bu(x) B, (y), (1.102)

where TM (. y, 2) is the symmetrized correlator given by

v L1 A A
T (,y,2) = 2 [TA%(@ ys 2) + Ty (e, y, 2) + TR (2, 2) |- (1.103)

The explicit form of the new anomalous contributions (the symbols ( ) denote spacetime inte-

gration) can be obtained by plugging in the expression of the various form factors expanded in

1/m written in Eqs. (LOSHL.I00). We obtain

) 1
re = 6 [487T2m2 e (BB By, By) — (HB\B,0aBy))
1
i< ({07 Bada BB, — (O° BAB,0aBy))
1 Oéﬁll)\ v ozﬁu)\ M
573 (N0a0, BuBAOS BY) — (0,8, Br050" B,))
1 afpA v afv
T 18072mA <6 H2 (000, B,OB\0gB") — € <3aBuDBA553“By>>
T2m
1 afBu v affu w
+127T2m2 <6 {00 B.030, B"By) — € (0a0,B B)\aﬁBu>)
1
_W <€aﬁﬂ)\<aaBﬂaﬁayDB)\> — GCVBI/A <8a0ﬂB“DBAagB,,>)] . (1104)
T2m

Naturally, the p/m expansion hides the nonlocal contributions which are present in the
effective action. These can be identified from the off-shell expression of the anomaly vertex,

which in the L /T parameterization takes a close form only in momentum space. For this reason



22 The emergence of anomaly poles in the chiral anomaly

we rewrite this parameterization as a pole (wy, = —4i/s) plus mass corrections in the equivalent
form
WEMY = (wp, — F(k, ki, ko,m)) K e[p, v, ky, ko] (1.105)
8m? 5
F(m,s,s1,82) = —5—Co(s, s1,82,m"), (1.106)
s

where C has been given in Eq. (I39]). Obviously, the anomaly is completely given by wy. The

complete action is instead given by

3 -
r® = 4+ (1.107)
with the pole part given by
3 1 _
P]E)o)le T 82 / dizd'y - B(x)O;LF(y) A F(y) (1.108)

and the rest (f’(?’)) given by a complicated nonlocal expression which contributes homogeneously

to the Ward identify of the anomaly graph

3 3
r® = —4;T2/d4xd4yd4z8-B(Z)FB($)/\FB(y)
AUy dEy iy o2k (y2)
—ik1-(x—2z)—tke-(y—2 k. k. k
/ (27-()8 e ‘7:( s 1,y 2am)
&3
5 / d*z d*yd*2By(2)B,(z)B,(y)
d4k1 d4k2 —ik1-(x—2)—ike-(y—2z) yp7 AV
/We 1-(w—2)—ik2-(y )WTN (k, k1, ko, m),

(1.109)

where k = k1 + ko. A second form of the effective action is obtained by expanding around
m = 0, i.e. for a small mass. A simple, but very instructive case, is the one with two on-shell
photons (s; = s2 = 0) and a nonzero fermion mass. We obtain, for instance, in the AVV case

the following expressions for the form factors after the series expansion around m = 0

4i  4im? s
wp = = =g log (g ) + 0(m?), (1.110)
121 44 s 4im? 52 s
wii(5,0,0,m?) = —~ 5 o8 (—W) T [2 +log <W> ~ log’ (_W)] +0(m?).

(1.111)

It is clear that this second expansion allows to isolate the pole term from the mass corrections,
and is probably a more faithful description of the anomalous content of the theory, identified by

the anomaly pole.
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1.7 Conclusions

The presence of anomaly poles in the perturbative expansion of the effective action, appears to be
an essential property of anomalous theories, even in the most general kinematical configurations
of the anomalous correlators. We have shown in this chapter that only a complete computation
of the effective action allows to identify such contributions, which affect the UV behaviour of a
correlator even if they are decoupled in the IR. The goal of this investigation has been to show
that more general anomaly poles are present in the perturbative description of the anomaly.
Previously, the appearance of these terms was considered a pure IR phenomenon, while their
isolation in the L/T parameterization was probably considered an artificial result due to the
presence of Schouten relations in the anomaly graph. We have also shown how the Schouten
relations can “dissolve” a pole, by allowing its rewriting in terms of additional form factors
which are not of polar form.

In this chapter we have performed a complete and very detailed analysis of all the relevant
regions of the anomaly graph, identifying all the relevant sources of singularities in the correlator
and generalized the L/T parameterization to the massive case. This result has been used to
derive an effective action which generalizes the Euler-Heisenberg result to anomalous theories.
In the next chapter we are going to investigate the significance of anomaly poles in the case of
conformal anomaly, showing the perfect (and striking) analogy with the patterns of anomaly

poles discussed in this chapter.






Chapter 2

Conformal Anomalies and the
Gravitational Effective Action: The

TJJ Correlator for a Chiral Fermion

2.1 Introduction

From now on we begin investigating the trilinear correlators involving an insertion of energy-
momentum tensor T'. In this chapter we focus on the correlator responsible for the appearance
of the trace anomaly at leading order, and denoted by T'J.J, where J are vector gauge currents.
In the previous chapter we showed how the 1-particle irreducible effective action is characterized
by the presence of massless effective degrees of freedom of pseudoscalar type when dealing with
chiral anomalies. Our aim here is to discuss in detail the case of the conformal anomaly, starting
from a detailed perturbative analysis of the T'JJ correlator.

Investigations of conformal anomalies in gravity (see [70] for an historical overview and
references) [71] and in gauge theories [72], [73] [74] as well as in string theory, have been of
remarkable significance along the years. In cosmology, for instance, [75] (see also [76] for an
overview) the study of the gravitational trace anomaly has been performed in an attempt to
solve the problem of the “graceful exit” (see for instance [77, [78, [79, [80]). In other analysis it
has been pointed out that the conformal anomaly may prevent the future singularity occurrence
in various dark energy models [81] [82].

In the past the analysis of the formal structure of the effective action for gravity in four
dimensions, obtained by integration of the trace anomaly [83] [84], has received a special atten-
tion, showing that the variational solution of the anomaly equation, which is non-local, can be

made local by the introduction of extra scalar fields. The gauge contributions to these anomalies

25
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are identified at 1-loop level from a set of diagrams - involving fermion loops with two external
gauge lines and one graviton line - and are characterized, as shown recently by Giannotti and
Mottola in [51], by the presence of anomaly poles. Anomaly poles are familiar from the study
of the chiral anomaly in gauge theories and describe the non-local structure of the effective
action. In the case of global anomalies, as in QCD chiral dynamics, they signal the presence of
a non-perturbative phase of the fundamental theory, with composite degrees of freedom (pions)
which offer an equivalent description of the fundamental Lagrangian, matching the anomaly, in
agreement with 't Hooft’s principle. Previous studies of the role of the conformal anomaly in
cosmology concerning the production of massless gauge particles and the identification of the
infrared anomaly pole are those of Dolgov [37) [85], while a discussion of the infrared pole from

a dispersive derivation is contained in [86].

In the first chapter and in [40] we have shown that anomaly poles are typical of the per-
turbative description of the chiral anomaly not just in some special kinematical conditions, for
instance in the collinear region, where the coupling of the anomalous gauge current to two (on-
shell) vector currents (for the AVV diagram) involves a pseudoscalar intermediate state (with
a collinear and massless fermion-antifermion pair) but under any kinematical conditions. They
are the most direct - and probably also the most significant - manifestation of the anomaly in
the perturbative diagrammatic expansion of the effective action. On a more speculative side,
the interpretation of the pole in terms of composite degrees of freedom could probably have
direct physical implications, including the condensation of the composite fields, very much like
Bose Einstein (BE) condensation of the pion field, under the action of gravity. Interestingly, in
a recent paper, Sikivie and Yang have pointed out that Peccei-Quinn axions ([58, 59]) may form
BE condensates [87]. With these motivations in mind, in this chapter, which parallels a previ-
ous investigation of the chiral gauge anomaly [40], we study the perturbative structure of the
off-shell effective action showing the appearance of similar singularities under general kinematic
conditions. Our investigation is a first step towards the computation of the exact effective action
describing the coupling of the Standard Model to gravity via the conformal anomaly, that we

hope to discuss in the future.

In our study we follow closely the work of [5I]. There the authors have presented a complete
off-shell classification of the invariant amplitudes of the relevant correlator responsible for the
conformal anomaly, which involves the energy momentum tensor (T) and two vector currents
(J), TJJ, and have thoroughly investigated it in the QED case, drawing on the analogy with
the case of the chiral anomaly. The analysis of [51] is based on the use of dispersion relations,
which are sufficient to identify the anomaly poles of the amplitude from the spectral density of

this correlator, but not to characterize completely the off-shell effective action of the theory and
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the remaining non-conformal contributions, which will be discussed in this paper. The poles
that we extract from the complete effective action include both the usual poles derived from the
spectral analysis of the diagrams, which are coupled in the infrared (IR) and other extra poles
which account for the anomaly but are decoupled in the same limit. These extra poles appear
under general kinematic configurations and are typical of the off-shell as well as of the on-shell
effective action, both for massive and massless fermions.

We also show, in agreement with those analysis, that the pole terms which contribute to the
conformal anomaly are indeed only obtained in the on-shell limit of the external gauge lines, and
identify all the mass corrections to the correlator in the general case. This analysis is obtained
by working out all the relevant kinematical limits of the perturbative corrections. We present
the complete anomalous off-shell effective action describing the interaction of gravity with the
photons, written in a form in which we separate the non-local contribution due to the anomaly
pole from the rest of the action (those which are conformally invariant in the massless fermion
limit). Away from the conformal limit of the theory we present a 1/m expansion of the effective
action as in the Euler-Heisenberg approach. This expansion, naturally, does not convey the
presence of non-localities in the effective action due to the appearance of massless poles.

The computation of similar diagrams, for the on-shell photon case, appears in older contri-
butions by Berends and Gastmans [46] using dimensional regularization, in their study of the
gravitational scattering of photons and by Milton using Schwinger’s methods [47]. The presence
of an anomaly pole in the amplitude has not been investigated nor noticed in these previous
analysis, since they do not appear explicitly in their results, nor the 1/m expansion of the three
form factors of the on-shell vertex, contained in [46], allows their identification in the S-matrix
elements of the theory. Two related analysis by Drummond and Hathrell in their investigation
of the gravitational contribution to the self-energy of the photon [48] and the renormalization of
the trace anomaly [49] included the same on-shell vertex. Later, this same vertex has provided
the ground for several elaborations concerning a possible superluminal behaviour of the photon

in the presence of an external gravitational field [50].

2.2 The conformal anomaly and gravity

In this section we briefly summarize some basic and well known aspects of the trace anomaly
in quantum gravity and, in particular, the identification of the non-local action whose variation
generates a given trace anomaly.

We recall that the gravitational trace anomaly in 4 spacetime dimensions generated by

quantum effects in a classical gravitational and electromagnetic background is given by the
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expression
1 2
T = -3 [2502 + 20’ <E - gDR) + 2cF2] (2.1)

where b, b’ and c are parameters that for a single fermion in the theory result b = 1/32072,
V = —11/5760 72, and ¢ = —e? /24 72; furthermore C? denotes the Weyl tensor squared and E
is the Euler density given by

2
C? = CrupCMP = RyupRMP — 2R, R* + i (2.2)
E = "Ryup R = Ry, R — AR, R + R. (2.3)

The effective action is identified by solving the following variational equation by inspection

9 6T
Guv =
VT g

Its solution is well known and is given by the non-local expression

_ T[j. (2.4)

Sanom [97 A] = (25)

1 2 2
3 /d4x\/—g/d4x'\/—g’ (E - gDR) Gy(z, ") [Qb c? 4+ (E — §DR> + 2cFWFW]

Notice that we are omitting \/§R2 terms which are not necessary at one loop level. The notation

G4(z,2") denotes the Green’s function of the differential operator defined by
2 2
Ay =V, <V“V” + 2RM — gRgW> v, =0%+ 2RV, V, + - (V“R)V — §RD (2.6)

and requires some boundary conditions to be specified. This operator is conformally covariant,

in fact under a rescaling of the metric one can show that
G = eaguy — Ay = 672054. (27)

Notice that the general solution of (2Z.4]) involves, in principle, also a conformally invariant part
that is not identified by this method. As in ref. [5I], we concentrate on the contribution
proportional to F? and perform an expansion of this term for a weak gravitational field and
drop from this action all the terms which are at least quadratic in the deviation of the metric

from flat space

G = Nuw + K Ry k2 =167 G, (2.8)

with G the gravitational constant. The non-local action reduces to

Sumomlgs A] = —< / Aoy =g / o/ \/=g RO O, [Fag o9, (2.9)
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valid for a weak gravitational field. In this case
RV =902 b —Oh,  h=nu, k" (2.10)

The presence of the Green’s function of the [J operator in Eq. (2.9]) is the clear indication that
the solution of the anomaly equation is characterized by an anomaly pole. In the next sections
we are going to perform a direct diagrammatic computation of this action and reobtain from
it the pole contribution identified in the dispersive analysis of [51] and the conformal invariant
extra terms which are not present in Eq. (20). We start with an analysis of the correlator
following an approach which is close to that followed in ref. [5I]. The crucial point of the
derivation presented in that work is the imposition of the Ward identity for the T'JJ correlator
(see Eq. ([242) below) which allows to eliminate all the Schwinger (gradients) terms which
otherwise plague any derivation based on the canonical formalism and are generated by the
equal-time commutator of the energy momentum tensor with the vector currents. In reality,
this approach can be bypassed by just imposing at a diagrammatic level the validity of an
operatorial relation for the trace anomaly, evaluated at a nonzero momentum transfer, together

with the conservation of the vector currents on the other two vector vertices of the correlator.

2.3 The construction of the full amplitude I'***’(p, q)
We consider the standard QED Lagrangian
L= —EFWF‘“’ + i Py (0, — ie Ay )y — mapp, (2.11)

with the energy momentum tensor split into the free fermionic part T, the interacting fermion-

photon part T, and the photon contribution 7}, which are given by

T8 = —ipy 19 + g (ipy Oaip — mpyp), (2.12)
T}‘;’ = —eJWAY) 4 gt T A, (2.13)
and
1
T:}:/ — F/J)\FVA _ ZgHVFAPF)\p, (214)

where the current is defined as

T4 () = Bl () . (2.15)

In the coupling to gravity of the total energy momentum tensor

™™ =T + Tp) + 1) (2.16)
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we keep terms linear in the gravitational field, of the form h,,T"", and we have introduced
some standard notation for the symmetrization of the tensor indices and left-right derivatives
H®) = (H"™ + H"")/2 and 9, = (9~ 0,)/2- It is also convenient to introduce a partial

energy momentum tensor 7T),, corresponding to the sum of the Dirac and interaction terms

Y =T+ Ty (2.17)

which satisfies the inhomogeneous equation

0, T} = —&,T;‘:. (2.18)
Using the equations of motion for the e.m. field 0, F* = JH, the inhomogeneous equation
becomes

AT = FM ], (2.19)

There are two ways to identify the contributions of T7#” and Tj" in the perturbative expansion
of the effective action. In the formalism of the background fields, the T},JJ correlator can be

extracted from the defining functional integral

<TZ§W(Z)>A = /DT;Z)DT;E Tlﬁ“'(z) eifd4:vl:+f J-A(z)d*z
— <TIéLV eifd4x J-A(x)> (220)

expanded through second order in the external field A. The relevant terms in this expansion are

explicitly given by

(T (2)) 4 = %(T}“’(z)(J AT A+ (T A+ (2.21)

with (J - A) = [d*zJ - A(z). The corresponding diagrams are extracted via two functional

derivatives respect to the background field A, and are given by

rvo . _ 52 <Tlé“/(z)> _ vo va,
el 5z, y) = m T vl yyuvas (2.22)
yies — (je)? <T;”(Z)Ja(;c)ﬂ(y)> ) (2.23)

5? <T}‘;(z) (J - A)>
5@ 0450) | ass
= 0w —2) g" I (2, y) + 0% (y — 2) 7TV (2, 2)
—g" [6*(z — 2) — 6*(y — 2)] T’ (z,y)

Wwes

(2.24)
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These two contributions are of O(e?). Alternatively, one can directly compute the matrix element
v v 4 4
MH = (0|3 (2) /d wd*w'J - A(w)J - A(w')|yy), (2.25)

which generates the diagrams (b) and (c) shown in Fig[2ZT] respectively called the “triangle” and
the “t-p-bubble” (“t-” stays for tensor), together with the two ones obtained for the exchange
of p with ¢ and « with g.

The conformal anomaly appears in the perturbative expansion of 7T, and involves these
four diagrams. The electromagnetic contribution is responsible for other two diagrams whose
invariant amplitudes are well-defined and will be used to fix the ill-defined amplitudes present
in the tensor expansion of Tj" by using a Ward identity.

The lowest order contribution is obtained, in the background field formalism, from Maxwell’s

e.m. tensor, and is given by

82 (Th (2)
ghvas —< ) . (2.26)
6Aa(2)0A8(Y) | 4=
Equivalently, it can be obtained from the matrix element
01, 1) (2.27)

which allows to identify the vertex in momentum space. Using (2.26]) we easily obtain

S;wa,@(za €, y) = 290{63(“590231/)5312 - 296(;1 81/)51‘2’60:53}2 - 2ga(u 8;;)5312865902
+gaugﬁua)\5yza)\5xz + gaugﬁ,ua)\(syza)\émz + guuaﬁémzaaéyz - 8p5y28p5$zgaﬁguu
(2.28)

where 0,,0,. = 0/0x"6(x — z) and so on. In momentum space this lowest order vertex is given
by
srrel = (ptg” +p"q") ¢*° +p - q (9™ 9" + g*"g") — ¢ (- ¢ 9" — ¢°p°)
— (g7 p" + ¢%p”) 4™ — (97" + g™"q") p°. (2.29)

The corresponding vertices which appear respectively in the triangle diagram and on the

t-bubble at O(e?) are given by

1
VI (k1 ko) = = [V(k1 + ko) +77 (k1 + k2)H] — 59’“/[7/\(%1 + k2)x —2m], (2.30)

B~ =

1
Winve _5(,Yugua AV ghe) + gy, (2.31)

where k1 (k2) is outcoming (incoming). Using the two vertices V' (ky, ko) and W< we obtain
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a P
K N k Pl
= P =
VWAV P = VWA I + exch. + + exch.
uv ‘1lV
2} I-
q\. a N
A e
g q
(@) (b)

Figure 2.1: The complete one-loop vertex (a) given by the sum of the 1PI contributions called V***#(p, q)
(b) and W% (p, q) (c).

for the diagrams (b) and (c¢) of FiglZT]

v o [ w{VI Ut p =) — g+ mN (I +m)y (L + P+ m)}
Vet =% | g =1 = q = m [+ )2 = ) |

(2.32)
and
dl W @+ m)y (L — g +m)}
Wuuaﬁ — _(ip2\;2 / 2.33
(p,q) (i€”)i (2 12— m2|[(l — q)2 — m?] ’ (2.33)
so that the one-loop amplitude in Fig. 2] results
4B (p, q) = VI (p,q) + VIP(q,p) + WP (p, q) + WHP%(q,p). (2.34)

The bare Ward identity which allows to define the divergent amplitudes that contribute to the
anomaly in I' in terms of the remaining finite ones is obtained by re-expressing the classical
equation

&,T:,:' =—F"], (2.35)

as an equation of generating functionals in the background electromagnetic field
0, (T )4 = —F*(J,)a, (2.36)
which can be expanded perturbatively as
B, (Thy)a = —F“”<Jy/d4w(¢e)J CAW)) g e (2.37)

Notice that we have omitted the first term in the Dyson’s series of (.J,,) 4, shown on the r.h.s of
237) since (J,) = 0. The bare Ward identity then takes the form

6% (F™\(2) (Ja(2)) 4)
0 Aa(2)0A5(y)

9, THred — (2.38)

A=0
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P e’ | pp pd® | p'ped® | ptetetp® | p'eva?d® | g g*P
q"q*q" | pp ep® | prepid® | @' e’ | @'Y d® | g*rg™”
e p?p’ | g'p'pd® | ¢'q'p°” | a"¢'pe” | g™
q¢"'p"p°p° ¢"q"q"p°

prptg®? | pPprgct | pPprg | ptprgtr | prpg® | prpPgt
g’ | PPevger | pPatg™ | ptqrgtt | prtqtg™ | pPdPg
¢'p' g™ | g | g | pie® | ¢pd® | PP
¢q"g*" | g | Pt | e | e | g

Table 2.1: The 43 tensor monomials built up from the metric tensor and the two independent momenta

p and ¢ into which a general fourth rank tensor can be expanded.

which takes contribution only from the first term on the r.h.s of Eq. (Z37). This relation can

be written in momentum space. For this we use the definition of the vacuum polarization

1% (2, y) = —ie?(Ja(2)J5(y)), (2.39)
2, . ot (@ +mAP U+ p+m
1) = i [ A
= (p*¢* —p* ) (P, m?) (2.40)
with
2
(p%,m?) = 36:'72])2 [6./40(7712) +p? — 6m? — 3By(p*, m?) (2m?* +p?) |, (2.41)

which obviously satisfies the Ward identity p, II*?(p) = 0. The expressions of the Ay and By

contributions are given in Appendix [A.2]

Using these definitions, the unrenormalized Ward identity which allows to completely char-

acterize the form of the correlator in momentum space becomes

k, TP (p.q) = <q“p°‘p6 — q"g*Pp* + g’ P — g"Ppp - Q) I(p?)

+ <p“q“qﬁ — P + g pPg? — g ¢Pp - Q> I(¢?). (2.42)
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2.3.1 Tensor expansion and invariant amplitudes of I"

The full one-loop amplitude I" can be expanded on the basis provided by the 43 monomial tensors
listed in Tab2.1]

4B (p, q) Z Ai(k,p%, @) 187 (p, q). (2.43)
Since the amplitude T'## (p,q) has total mass dimension equal to 2 it is obvious that not all

the coefficients A; are convergent. They can be divided into 3 groups:

a) Ay < A; < Ay - multiplied by a product of four momenta, they have mass dimension —2
and therefore are UV finite;

b) A1 < A; < Ajg - these have mass dimension 2 since the four Lorentz indices of the

amplitude are carried by two metric tensors

c) Ay < A; < Ayz - they appear next to a metric tensor and two momenta, have mass

dimension 0 and are divergent.

The way in which the 43 invariant amplitudes will be managed in order to reduce them to the 13
named Fj(k?, p?,¢?) is the subject of this section. The reduction is accomplished in 4 different
steps and has as a guiding principle the elimination of the divergent amplitudes A; in terms of

the convergent ones after imposing some conditions on the whole amplitude. We require
a) the symmetry in the two indices p and v of the symmetric energy-momentum tensor T#;
b) the conservation of the two vector currents on p® and ¢?;
c¢) the Ward identity on the vertex with the incoming momentum k defined above in Eq. (2Z3.1]).

Condition a) becomes
P8 (p,q) = T (p, q), (2.44)

giving a linear system of 43 equations; 15 of them being identically satisfied because the tensorial
structures are already symmetric in the exchange of u and v, while the remaining 14 conditions

are
As = Ag, Ag = Ay, Ao = Ann, A1z = A, A1z = Ao,

Az = Ago, Agy = Aps, Aos = Agg, Ao = Aso, Aoy = Asy,
Aszy = Asg, Asy = Az, Aszz = Asg, Aszs = Asg, (2.45)
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where all A; are thought as functions of the invariants k2, p?, ¢?. After substituting (2.45) into
[rves (p,q) the 43 invariant tensors of the decomposition are multiplied by only 29 invariant
amplitudes. Condition b), which is vector current conservation on the two vertices with indices

« and (3, allows to re-express some divergent A; in terms of other finite ones

Pa TP (p, q) = gz T**P(p,q) = 0. (2.46)

This constraint generates two sets of 14 independent tensor structures each, so that in order to
fulfill ([2:46]) each coefficient is separately set to vanish. The first Ward identity leads to a linear

system composed of 10 equations

Ao+ Assp-p+ Azrp-q=0,

Assp-p+ Asgp-q=0,

A7+ Agp-p+ Ap-q=0,

Anp-p+Asp-q=0,

paTHB(p g) = 0 = A +2A28 + A1p-p+ Asp-q =0, (2.47)
243+ Asp-p+Arp-q=0,

Ago + Agg + Asp-p+ An1p-q=0,

A1+ Agp-p+ Aup-q=0,

A9z + Arap-p+ Agp-q=0,

Aisp-p+Asp-q=0;

we choose to solve it for the set {A15, A17,A19, A23,A28,A29, A307A31,A39, A43} in which only
the first one is convergent and the others are UV divergent. The set would not include all the
divergent A; since in the last equations appear two convergent coefficients, A5 and A,.

Following our choice the result is

Az = —Ay Z%i, Arr = —Agwp-p—Anp-q, (2.48)

Ayg=—Asep-p— As7p-q, Agz = —App-p—Asp-q, (2.49)

Agg = % [—Azo —Alp'p—Au?'Q], Agg = —Agy — Agp-p— An1p-q, (2.50)

Agoz—%[Agp-p+A7p-q}, Azt = —Agp-p— Aup-q, (2.51)

Asg = —Agg 2L Agz = —Ap 22, (2.52)
p-q p-q

In an analogous way we go on with the second Ward identity (WI) after replacing the solution

of the previous system in the original amplitude. The new one is indicated by I’f vaf (p,q), where
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the subscript b is there to indicate that we have applied condition b) on I'. The constraint gives

Agpp-q+Anqg-q =0,

Aip-q+Aszq-q =0,

45T (p,g) = 0 = A0+ Asp-q+Arq-q =0, (2.53)
Ase +Asp-q+Agq-q =0,

Agg + Asr + Aup-q+ Auug-q =0,

2433 + A1ap - q — A I = 0.

We solve these equations determining the amplitudes in the set {A1, Agg, Age, Asg, Ass, Ago} in

terms of the remaining ones, obtaining

Aop-pp-q —Aop-qq- Apq-
Agg — — 12P-PPq 2P-qq q7 Ay = — 414 q’ (2.54)
2p-p p-q
Aag -
Al:_%, A= —Asp-q —Arq-q, (2.55)
Ao = —A3zr —Anip-q — Aaq-q, Asg = —Asp-q —Agq-q.  (2.56)

The manipulations above have allowed a reduction of the number of invariant amplitudes from
the initial 43 to 13 using the {u, v} symmetry (14 equations), the first WI on p,, (10 equations)
and the second WI on g3 (6 equations).

The surviving invariant amplitudes in which the amplitude I' vaf (p, q) can be expanded using the
form factors are {Aq, As, Ay, Ag, A7, Ag, A11, A12, A14, Ass, As7, Ag1, Ag2}. This set still contains
3 divergent amplitudes, (As7, A41, As2). The amplitude prved (p, q) is indeed ill-defined until we
impose on it condition ¢), that is Eq. (2.42]). This condition gives

—A; [H%} +Ag+ 5 A7 — Ag — 248 =0,

A+ A +As[p-p+p-q + Aup-qg+31 A7 q-q+

1 . .
Eq.(2.42) = +A11 q-q + 5 A3 BB =0,
g Ap TLED — A PPEAD — S Azp-p+ Ar(p-p+5p-q) + Asp-q

+A1(GP q+q-9) + Au(p-q+2q-q) + 245 —II(p?) —(¢?) = 0
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From this condition we obtain

Asp-qq- 1 1 1 p4q-
A37:_Zzw+_A3p.p__A7(2p.p+p.q)+_A4l(w)
p-p 4 4 2 P-q
1 1 1 1
—§A6p-q—ZAlz(p-qu?q-q)—§A14(p-q+2q-Q)+§[H(p2)+ﬂ(q2)]
(2.57)
Az
A41=—7P'p—(As—AG—A7+A9)P'q (2.58)
A : : 1
A42:—3p-p<u+1—u>+—A7(p-p+p-q—q-q)—A4(p-p+p-q)
2 pP-q P-q 2
—(Ag —Ag)p-p+ (Ars — An1)(q-q+p-q). (2.59)

After these steps we end up with an expression for I' written in terms of only 10 invariant ampli-
tudes, that are X = {Aqg, A3, Ay, Ag, A7, Ag, A11, A12, A14, A16}, significantly reduced respect to
the original 43. Further reductions are possible (down to 8 independent invariant amplitudes),
however, since these reductions just add to the complexity of the related tensor structures, it is
convenient to select an appropriate set of reducible (but finite) components characterized by a
simpler tensor structure and present the result in that form. The 13 amplitudes introduced in the
final decomposition are, in this respect, a good choice since the corresponding tensor structures
are rather simple. These tensors are combinations of the 43 monomials listed in Tab2.11

The set X is very useful for the actual computation of the tensor integrals and for the study
of their reduction to scalar form. To compare with the previous study of Giannotti and Mottola
[51] we have mapped the computation of the components of the set X’ into their structures F;
(1 =1,2,..,13). Also in this case, the truly independent amplitudes are 8. One can extract, out
of the 13 reducible amplitudes, a consistent subset of 8 invariant amplitudes. The remaining

amplitudes in the 13 tensor structures are, in principle, obtainable from this subset.

2.3.2 Reorganization of the amplitude

Before obtaining the mapping between the amplitudes in X and the structures F;, we briefly
describe the tensor decomposition introduced in [51] which defines these 13 structures. We define

the rank-2 tensors

u(p,q) = (p-q) 9°° — ¢ 97, (2.60)
w(p,q) =P g™ + (- )p* " — ¢ p* 1’ - p* ¢ 7, (2.61)

which are Bose symmetric,
u*(p,q) = u’*(q,p), (2.62)

w*(p,q) = w*(q,p) (2.63)
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and conserve vector current,

B(p,q) = qgu®(p,q) =0, (2.64)
*%(p,q) = qgw*(p,q) = 0. (2.65)

Pa U
Pa W

These two tensors are used to build the set of 13 tensors catalogued in Table 2.2l They are
linearly independent for generic k2, p?, ¢? different from zero. Five of the 13 tensors are Bose
symmetric, namely,
t;'tuaﬁ(
1

p,q) = "7 (q,p), i=1,2,7,8,13, (2.66)

while the remaining eight tensors form four pairs which are overall related by Bose symmetry

5% (p, q) = 47 (q,p) (2.67)
4% (p, q) = th7*(q,p) , (2.68)
% (p, q) = t4%°%(q, p) (2.69)
H1* (,0) = th57(0,) (2.70)
The amplitude in (2.34) can be expanded in this basis composed as
4B (p, q) ZF (5551, 80,m?) 17 (p, q), (2.71)

where the invariant amplitudes F; are functions of the kinematical invariants s = k? = (p +
q)%, s1 = p?, s2 = ¢ and of the internal mass m. In [5I] the authors use the Feynman
parameterization and momentum shifts in order to identify the expressions of these amplitudes
in terms of parametric integrals, which was the approach followed also by Rosenberg in his
original identification of the 6 invariant amplitudes of the AVV anomaly diagram. If we choose
to reorganize all the monomials into the simpler set of 13 tensor groups shown in Tab[2.2] then

we need to map the A; in x and the F;’s. The mapping is given by

1
F = [A4(4p q+3p-p) +2A11(p-q+2q-q) +2A6p-p

3k2
A P'pQ'Q]’

+247q-q —2A14q-q — Asq-q + 243 P (2.72)

1
Fr = — |-243 — +2 4A A; —249 — A 2.73
2 3k2[ 3<pq+>+ 6 + A7 9 12}7 (2.73)
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i 7% (p, q)

1 (K2g" — k'k") u (p.q)

2 (k‘ g — k:“k”) wo‘ﬁ(p q)

3 (p?g" — 4p"p”) u (p.q)

4 (p?g" — 4pt'p”) w*? (p.q)

5 (®g"™ — 4¢"q") u*? (p.q)

6 (¢°g" — 4¢"q”) w* (p.q)

7 [p-ag™ —2(q"p” + p"q")] u’(p.q)

8 [p-qg" —2(¢"p” + p"q")] w*’ (p.q)

9 | (p-ap™ —1%¢™) [P° (¢"p +p"q") — p- q (g7 p" + g°1p")]

10| (p-qd”® — *°) [¢® (¢"p” + p"q") — p- ¢ (g™ ¢" + g**q")]

11 (p-ap™ = p*¢®) [2d°¢"¢" — P (d% ¢" + ¢°"¢")]

12 (p-ad® — ¢*°) [2p°pp” — P2 (g™ " + g*p¥)]

13| (p"g" +p"4")g*" +p - q (99" + g*g?) — g ucP
—(g%p" + ¢%1p")q* — (9°" ¢ + g°*q¥)p”

Table 2.2: Basis of 13 fourth rank tensors satisfying the vector current conservation on the

external lines with momenta p and q.

1
272 [A4(2p-q +3q-q) —2A1(p-q +2q-q) —246p-p
—247q-q +2A14q-q +A6q-¢ —2A3%] (2.74)
A L hou (BB ) —adg — A 424y 44 (2.75)
ipp 12K 5\ pog 6 7 9 12 :
Asg 1 q-qp-p

2 Agp-p —2A LIP3 —dp.
4+12k2[ 6P D S + A4 (=3p-p —4p-q)
—2An(p-q+2¢-q)—2A7q¢-q +2A14q-q +Asq-q], (2.76)
A12 1

4Ag— A7+ 249+ A 245 (L 4+ 2 2.77

104 12k2[ 6 7+ 9 + A1z + 3<p q-i- )] ( )

AH 1 AG A14
— + s (Aoq-qp-p+—pPp-a+—4qqp-q
2 P-q 2 2

sz[A4( dp-q —3p-p)—2An(p-q+2q-q)—24p-p — 2479 ¢
+2A1q-q+ Aeq-q — 2A3w]a

p-q
(2.78)
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1 : A
Fy = —2[2A3<M+2>—3—9<p-p+q-q)—4A6—A7—4A9+Au (2.79)
6k p-q p-q
A .
Fy = —6+qu—(12, (2.80)
p-q p-q
: A
Fio = Ay 22 14 (2.81)
p-q? p-q
A A
Fun = 2 (2.82)
2¢g-q 2p-p
As Az
Fs = + , 2.83
2p-q  2p-p (2:83)
1 1 Asp-qq-q
Fla = =Ag (p- g —gq- ~A- (p- g —q- 2P AT
13 56 PP +pa—qq)+ Ar(pptpa—qq)t 1 p
: 1
+Aw <Z%+q-q)+zz412 (p-q+2q-q)
A3 2
Ty PP et )Py +2paq-q)
1 2q-q 1
+549 [q “q+p-p (ﬁ + 1” = 5 [[(p) +1(g)]. (2.84)

We have shown how to obtain the 13 F;’ s, starting from our derivation of the one-loop full
amplitude T3 (p, q) leading to the ten invariant amplitudes of the set X. Since we know the
analytical expression of the A; involved, we can go one step further and give all the F;’ s in their

analytical form in the most general kinematical configuration.

2.4 Trace condition in the non-conformal case

Similarly to the chiral case, we can fix the correlator by requiring the validity of a trace condition
on the amplitude, besides the two Ward identities on the conserved vector currents and the Bose
symmetry in their indices. This approach is alternative to the imposition of the Ward identity

(2:42) but nevertheless equivalent to it. At a diagrammatic level we obtain

2

(&
9" (p,q) = A (p,q) — o u®®(p, q). (2.85)

We comment below on this equation, in relation to the scales present in the perturbative
expansion of the correlator, which are, besides the fermion mass m, the energy at which we

probe the correlator (s) and the subtraction point after renormalization (u or M). We have also

defined

1) = e [daatyerinn (5o @) W)
(2.86)
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A direct computation gives

AP (p,q) = Gi(s, 51,52, m*) u?(p, q) + Ga(s, 51,52, m*) w* (p, q), (2.87)
where
o2
35 Fi(s,s1,52,m%) = Gl(S,Sl,SQ,mQ)—W (2.88)
s
35 Fy(s,s1,52,m%) = Gafs,s1,59,m?) (2.89)
and
2,02 2 2 2
e“ym e*Dsy(s, 89, m") sSam
Gl(S,Sl,SQ,mQ) = fYQ + 2( ; 5 ) 52 [82—|—4818—2528—5S%+S%+48132]
mo w0
2 2 2
e“Di(s,s1,m*) sym
- 1l 7_‘_;0_2 L [— (s —s1)2 4555 — 4 (s + s1) s2]
2
— €2Cy(s, 51,52, m?) {% (s —s1)® — s34+ (3s + 51) 53
2mty
—35% - 10 N 59| —
+ (—3s 515+ s7) 2] -y },
(2.90)
2e2m? 22 Dy(s, s9, m?)m?
Go(s,s1,80,m?) = — — 2(8, 53, m”) [(5—51)2—25%+(8+51)82]

20 m202

2e’Di (s, s1, m?) m?
- 1(7T2012 ) [s7 + (51— 259) s — 287 + 3 + 5152]

4m? m?2

— 6260(8, s1, 52,m2) [53 — (81 + s2) s? — (s% — 68951 + s%) s

- + -
20 w02

+ (51— 52) % (51 + 52)] |, (2.91)

where v = 5 — 51 — 59, 0 = 5% — 2(s1 + 52) 5 + (51 — s2)? and the scalar integrals D (s, s1, m?),
Dy (s, s1,m?), Co(s, 51,52, m?) for generic virtualities and masses are defined in Appendix [A2

We have checked that the final expressions of the form factors in the most general case, obtained
either by imposing this condition on the energy momentum tensor or the Ward identity in the
form given by Eq. (2Z36]) exactly coincide. In Appendix [A3] we discuss this relation in the

simpler case of a massless fermion in the loop.

2.5 The off-shell massive (T'JJ) correlator

To obtain the explicit expression of the parametric integrals which describe the form factors,
we follow an approach similar to that of [40], for the case of the chiral gauge anomaly. These
have been obtained by re-computing the anomaly diagrams by dimensional reduction together

with the tensor-to-scalar decomposition of the Feynman amplitudes. For instance, in [40] we
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have given the explicit expressions of the parametric integrals of Rosenberg using this trick. The
correctness of the result can be checked numerically by comparing the parametric forms to the
explicit computation. In this case the procedure is identical, though the computations are very
involved. By comparing the two approaches we extract, indirectly, an explicit expression of the
parametric forms of these integrals, introduced in [5I]. We have checked that indeed there is
perfect numerical agreement between our computation and the parametric result, as discussed
in Appendix [A4l

We introduce in this section the main results of our computation which will be used in the
next sections for further analysis. The complete expressions of the form factors F; (i = 1,...,13)
in the massive and then in the massless case are contained in Appendix[A5] and respectively,
whereas the master integrals are collected in Appendix[A.2l In both cases the virtualities of the
external lines are generic and denoted by sq, s9. After presenting the complete expressions, we
discuss several kinematical limits of the result, in particular the on-shell limit for the two vector
lines (s; — 0, s2 — 0) in order to better understand the structure of the whole correlator. The
appearance of generalized anomaly poles in the correlator and their IR decoupling under the
most general conditions will be discussed thoroughly.

Notice that Fi3 contains two vacuum polarization diagrams with the two photon momenta
which are divergent and we are bond to define a suitable renormalization of the 2-point function
which will affect the running of the coupling. In the next section we will address the explicit
relation between renormalization schemes and running of the coupling in the context of the

renormalization of the correlator.

2.5.1 Anomaly poles and their UV /IR significance

There are close similarities between the effective action in the case of the chiral gauge anomaly
and the conformal case, due to the presence of massless poles. In [40] we have analyzed the
fact that in the chiral case the anomaly is entirely generated by the longitudinal component
wr,, which is indeed isolated for any configuration of the photon momenta. This is somehow
unexpected since the dispersive analysis shows that the pole in wy is coupled only under a
specific kinematic condition, and is usually interpreted as an infrared effect. Nevertheless there
is a complete equivalence between the representation of the anomaly diagram in the Rosenberg
representation [41] - where the pole is not extracted as an independent component - and the
L/T representation in which the pole is isolated under any kinematical configuration (and even
in the massive case). This is apparent from the broken anomalous Ward identities satisfied by
the AVV diagram where the mass corrections and the anomaly term can be separately identified
[40].
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To illustrate the emergence of a similar behaviour in the case of the conformal anomaly, it
is sufficient to notice in the expression of Fj given in Eq. (A.94]) the presence of the isolated
contribution (Fjpoe = —€?/(1872s)) which survives in the massless limit but is present also
in the massive case. This component, indeed, is responsible for the trace anomaly also in the
massive case, even though there appear extra corrections with mass-dependent terms. Obviously
also in this case, which is generic from the kinematical point of view, one can clearly show that
the pole does not couple in the infrared if we compute the residue of the entire amplitude. The
anomaly pole, in fact, appears in the spectral function only in a special kinematic configuration
when the fermion-antifermion pair of the anomaly diagram is collinear. However both in the
case of the AVV diagram and in the conformal case, as evident from the expression of F}, it
reappears as an extra contribution and is responsible for the trace anomaly. It is rather easy
to show the pole dominance of the anomaly away from the conformal point (massive case) at
high energy, since the non anomalous terms present in F} and F5 are subleading at large s. We
are entitled to separate the pole contribution, which describes the non-local contribution to the
trace anomaly, from the rest, and rewrite the F; form factor and effective action, respectively,
as

Fy :Flpole+ﬁl (292)

and

S = Spoie + S. (2.93)

The reminder (S) includes all the remaining contributions coming from the several form factors

of the expansion, while the pole part gives

o2
3672

As we have just mentioned, it is not difficult to show that the anomaly pole in FY, in the general

Spole = / d*zdy (Oh(z) — 8,0, (x)) Oy s Fap(z) F* (). (2.94)

kinematical case (e.g. for off-shell photons and a massive fermion in the loop) decouples in the
infrared (i.e. its residue vanishes) while it remains coupled in the massless on-shell limit. In
other configurations (for any of the two photons off-shell) is also decoupled. This behaviour is

in perfect analogy with the chiral case [40].

2.5.2 Massive and massless contributions to anomalous Ward identities and

the trace anomaly

Anomalous effects are associated with massless fermions, and for this reason, when we analyze
the contribution to the anomaly for a massive correlator, we need to justify the distinction

between massless and massive contributions. The latter contribute to the anomalous Ward
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identity, in our approach, via terms of O(m?/s?), where s = k? is the virtuality of the graviton
vertex. At nonzero momentum transfer (k # 0) the second term on the right-hand side of
Eq. (Z85) is interpreted as an anomalous contribution, proportional to an asymptotic 4 function
(Bas) of the theory, coming from the residue of the anomaly pole which appears in the form factor
Fy. While the appearance of the asymptotic 3 function of the theory (which coincides with the
3 function of the MS scheme) is expected at large s, where all the remaining scales of the
theory (s1,s2,m) can be dropped, corrections to the asymptotic description in the ultraviolet
(UV) are expected. At the same time, in the far infrared (IR) region, below the fermion mass,
the anomalous contribution should approach zero in a certain fashion, which will be specified

below.

A complete quantitative understanding of this point for a general kinematics (e.g. for s # 0)
remains, in a way, an open issue, but much more can be said for the simpler case of zero
momentum transfer, where a consistent pattern of separation between massless and massive
contributions to the correlator emerge in the UV region. In this case the virtuality of the two
photons and the fermion mass m (plus a renormalization scale p or M) are the scales which
appear in the renormalized perturbative expansion. Related analysis have been presented in [88]
and [51] and our conclusions do not differ from these previous investigations. We summarize the

main points.

Respect to the case of the chiral anomaly, the trace anomaly is connected with the regular-
ization procedure involved in the computation of the diagrams. In our analysis we have used
dimensional regularization (DR) and we have imposed conservation of the vector currents, the
symmetry requirements on the correlator and the conservation of the energy momentum tensor.
As we move from 4 to d spacetime dimensions (before that we renormalize the theory), the
anomaly pole term appears quite naturally in the expression of the correlator. This is not sur-
prising, since QED in d # 4 dimensions is not even classically conformal invariant and the trace
of the energy momentum tensor in the classical theory involves both a F? term (~ (d—4)F?) be-
side, for a massive correlator, a v contribution. Let’s summarize the basic features concerning

the renormalization property of the correlator as they emerge from our direct computation.

1) The anomalous Ward identity obtained by tracing the correlator (I'*” O‘5) with g, involves
only the F; and F5 form factors in the massive case; in the massless case the scale breaking
appears uniquely due to Fy via the term e3/ (12772)u°‘5 (p, q), as pointed out before. The finiteness
of the two form factors involved in the trace of the correlator is indeed evident. 2) The residue
of the pole term (e2/(1272)) in Fy is affected by the renormalization of the entire correlator (the
form factor Fys is the only one requiring renormalization) only by the re-definition of the bare

coupling (e?) in terms of the renormalized coupling (e%) through the renormalization factor Zs.
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At this point, the interpretation of the residue at the pole as a contribution proportional to the
B function of the theory is, in a way, ambiguous [89], since the 3 function is related to a given
renormalization scheme. We stress once more that Eq. (Z85]) does not involve a renormalization
scheme - which at this point has not yet been defined - but just a regularization. We have
regulated the infinities of the theory but we have not specified a subtraction of the infinities.

For this reason, the substitution
(63/(127T2)) - 2/3(18(6)/6 (2.95)

which attributes the mass-independent term in Fj to a specific § function, the asymptotic one
(Bas), as we are going to elaborate below, requires some clarification.

To fully appreciate this point, it is convenient to go back to the unrenormalized Ward identity
(242) and differentiate it with respect to the momentum ¢ and then set p = —q (k = 0) by

going to zero momentum transfer. One obtains the derivative Ward identity

dIT
g (0 =) = 20 5 ) WP — ") (2.96)

The appearance of the derivative of the scalar self-energy of the photon on the right-had side
of the previous equation is particularly illuminating, since it allows to relate this expression to
a particular 3 function of the theory, which is not the asymptotic (3,5 considered in Eq. (2.93]).
This § function is useful for describing the IR running of the coupling.

To illustrate this point we start from the expression of the scalar amplitude appearing in the
photon self-energy in DR

e (1 « ! m? — p?z(1 — x)
(p%,m) = 53 (& ~% _/0 dxz(l — x)log pry > (2.97)

whose renormalization at zero momentum gives

2 pl 2_ .2
_ 1_
Ma(p?, m) = (2, m) ~T1(0,m) = — - [ 21— a)log Tm—Z 2= (9 95)
271'2 0 m2
Using this expression, we can easily compute

dIl dllp e e2m? [t z(1—x)
2P — =2 = —— d : 2.99
P dp? P dp? 672 + 72 /0 T m2 —p?z(l —x) (2.99)

Notice that this result does not depend on the renormalization scheme due to the presence of
the derivative respect to p?. Notice also that the 3 function of the theory evaluated in the zero

momentum subtraction scheme is exactly given by the right-hand side of the previous expression

dllg B(e*, p?)
2p? = 2.1
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(where (€2, p?) = 2¢f(e, p?)), but this result does not hold, generically, in any scheme. The
identification of anomalous (massless) effects in the theory, as exemplified by these simpler Ward
identity, should then be obtained by extracting the appropriate § function of the theory, whose
running should be driven by the effective massless degrees of freedoms (fermions, in our case)
at the relevant observation scale (p?).

Clearly, in the case of Eq. (2.J00) all the mass contributions have been absorbed into the
very definition of the 3 function. Notice that if p?> < m? this 8 function, after a rearrangement
gives

e? 2

B _ e /1dx 7272%2(;_”6)2 (2.101)
o m?2—p?x(l—ux)

and therefore it vanishes as 3 ~ O(p?/m?) for p> — 0. Equivalently, by taking the m — oo
limit we recover the expected decoupling of the fermion (due to a vanishing ) since we are
probing the correlator at a scale (p?) which is not sufficient to resolve the contribution of the
fermion loop. On the contrary, as p?> — oo, with m fixed, the running of the 3 function is the
usual asymptotic one B,5(e?) ~ e¢/(67?) modified by corrections O(m?/p?). The UV limit is
characterized by the same running typical of the massless case, as expected.

Notice that the right-hand side of Eq. (2.90), as we have already remarked, does not depend
on the renormalization scheme, while the 5 function does and Eq. (Z100) should be understood
as a definition. For this reason, B(e?, p?) correctly describes the IR running of the coupling as
p? < m?, and in this case it is obvious that massless anomalous effects of scale breaking are not
present in this specific limit.

In the case of regularization scheme different from zero momentum subtraction, there are
some differences which should be taken into consideration. For instance, in a mass-dependent
scheme one subtracts the value of the graph at a Euclidean momentum point p? = —M?,

redefining the scalar self-energy as

3 1 2_ .2
- 1—x)
R (2, m, M) = TI(p*,m) — T(p* = —M%,m) = ~— /d 1) log 2 P
(12, m, M) = TH(p?,m) — T1(p m) = g | [ e 2 — ) tog T
(2.102)
which gives, respect to the previous (M = 0) scheme, a  function now of the form
e d e [! m? — p?z(1 — x)
= —M-—— drz(l—1x)l
ble) 2 dM 2x? /0 ze(l —a)log m? + M?z(1 — z)
et [l M?%x(1 - x)
= — drz(l — . 2.103
272 J, v ( x)mQ + M?z(1 — x) ( )

For large values of M, this § function describes the usual UV running since

e3 e3

1
Ble) ~ ﬁ/o dex(l —x) = B(€)as = 193 (2.104)
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In this second scheme, the (regularization independent) right-hand side of Eq. (2.96]) can be
interpreted as due to an anomalous contribution coming from the pole plus some explicit mass
corrections, as obvious from the first and second term of (2Z99). We conclude with some consid-
erations on a third (mass-independent) scheme.

In the MS scheme, the renormalization of the photon self-energy is performed via the sub-

traction

e? 1
OR(p?, m, u) = I(p?, m, u) — 152 <E +7v —log 47r> (2.105)

which gives directly an asymptotic 8 function since

e d

= —u—TIIp(p?
ﬁ(e) QMdM R(p ’mnu’)
B3l o3
= 1—2)= : 2.1
222 J, dxx(l — x) 192 (2.106)

It is clear, from these considerations, that a judicious definition of the § function allows a correct
interpretation of the right-hand side of (Z96) and (Z99). In the MS scheme, the breaking of
scale invariance can be attributed to a UV running of the coupling (for p? > m?) plus mass
corrections which are suppressed as O(m?/p?). Notice that in this case the renormalization
scale (u?) should be O(p?), since we should not allow large logarithms to be present in the
perturbative expansion. In this sense, the extrapolation of the MS result to p? ~ p? < m?
should be forbidden by the same criterion, since large logs of the relevant scales (log(m/u))
would otherwise be generated. In the far infrared region p? < m? the use of the same 3 function
is indeed not appropriate, since the same scheme does not correctly describe the decoupling of
the anomaly, which instead should occur, since there is no massless fermion in the theory.

To conclude this discussion we just mention that the MS scheme can be used, obviously,
both to describe the far IR and the far UV regions of the theory, with the condition that we are
bound to choose a vanishing 3 function at p?> < m? and an asymptotic one for p? > m? and
assuring continuity of the gauge coupling across the fermion mass scale though the g-function
is discontinuous. This is the standard procedure followed in the M S scheme as, for instance, in
QCD factorization, improved with the inclusion of threshold effects at the crossing scales (see

for instance [90, [91]) where the number of massless flavours change.

2.5.3 The off-shell massless (T'J.J) correlator

Clearly, as we perform the massless limit on the amplitude, the residue of the same anomaly
pole - identified above in the contribution F} . - is still present, but will now be decoupled in

the infrared.
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In the massless case the scalar functions F; depend only on the kinematic invariants s, s1, s2
but we still retain the last entry of these functions and set it equal to 0 for clarity, using the
notation F; = F;(s; s1, $2,0). These new functions are computed starting from the massive ones
and letting m — 0 and Ag(m?) — 0, i.e. eliminating all the massless tadpoles generated in the
zero fermion mass limit.

The off-shell massless invariant amplitudes F;(s; s1, s2,0) are here given in terms of a new set
of master integrals listed in Appendix[A.2l We give here only the simplest invariant amplitudes,
leaving the remaining ones to the appendix [A.6l The anomaly pole is clearly present in F7j,

which is given by

2
e
Fi(s; s1,82,0) = T18:25 (2.107)
while
F2(S; S1, S2, 0) = 0. (2108)

The complete (T'JJ) correlator is very complicated in this case as the long expressions of the
form factors show, but a deeper analysis of its poles by computing the residue in s = 0 can be

useful to draw some conclusions. The single pieces of T#(s; 51, 59, 0) indeed contribute as

2
lim sFy(s; 51, 2, 0) 11" = —# el (2.109)
2
lim sF5(s; s1, s2, 0) el — e—t“”aﬁ‘ (2.110)
sp TR S S 72023 =0 '
2
. 4 € 14
ll_)n% sF5(s; s1, s2, 0)tE of = th 0‘6‘8:0, (2.111)
2
. 4 € 14
lim sFy(s; s1, 52, 0) 5" = Tk B o (2.112)

while Fy is absent in the massless case. The residues of the Fj(s; s1, s2, 0) not included in the
equation above are all vanishing. Combining the results given above one can easily check that
the entire correlator is completely free from anomaly poles as
lir% sTHB(s: 51, 59, 0) = 0 (2.113)
S—>

in this rather general configuration. A similar result holds for the correlator responsible for the

chiral anomaly and shows the decoupling of polar contributions in the infrared.

2.5.4  The on-shell massive (T'J.J) correlator

A particular case of the (T'J.J) correlator is represented by its on-shell version with a massive

fermion in the loop. If we contract u®®(p, ¢) and w*?(p, ) with the polarization tensors €, (p) and
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€3(q) requiring e, (p) p® = 0, €3(p) p® =0, the first tensor remains unchanged while w3 (p, q)
becomes WP (p,q) = 5152 9. This will be carefully taken into account when computing the
s1 — 0, s — 0 limit of the product of the invariant amplitudes F; with their corresponding
tensors tl-“mﬁ (1=1,...,13).

The invariant amplitudes reported below describe Fj(s;0,0,m?) whose tensors ! a8 are also

finite and non-vanishing. They are

9 2 9 2,2 2
e 2m e2m 1 2m
Fi(s; 0,0, m?) = - - 0.0.m%)|5 ~ =
l(sa ,0,m ) 18725 + 37242 3r2s CO(Sa ,U,m )|:2 A :|7
2 2,2 2m2
e em e"m
Fuls 0.0 m?) — _ _ - D(s,0,0,m>
3(5, , U, 1m ) 144725 127122 4252 (87 ’ 7m)
2.2 2
2 m, 1 m
_ Co(5,0,0,m?) |= + —
671'28 O(Sa ,U,m ) |:2 + s :| ’
F5(s; 0,0, m?) = Fs(s; 0,0, m?),
Fr(s; 0,0, m?) = —4F;(s; 0,0, m?
1162 62m2 m4 m2
F 10,0,m?%) = -+ ¢*Co(5,0,0,m%) |55+
13R(57 5 5 m ) 1447‘{2 + 47T25 + (& 0(87 9 7m ) 27T2S + 47T2
5m? 1
2 2
D(5.0.0 - 2.114
+e (Sa , U, M ) |:127T28+12:|, ( )

where the on-shell scalar integrals D(s,0,0,m?) and Cy(s,0,0,m?) are computed in Appendix
[A2l here Fi3pr denotes the renormalized amplitude, obtained by first removing the UV pole
present in the photon self-energy by the usual renormalization of the photon wavefunction and
then taking the on-shell limit. The remaining invariant amplitudes Fj(s,0,0,m?) are zero or
multiply vanishing tensors in this kinematical configuration so they do not contribute to the
correlator.

The limit from the massive on-shell form factors to the massless ones is clearer by looking at

the series expansion of the scalar integrals around m = 0

1 5\12 2m? s
2y _ 3
Co(s,0,0,m?) = 54 [log <_m2>] - log <_W> + O(m?) (2.115)
and from this we obtain for F}
2,2
, 9y €°m 1 5 \12
Fi(s,0,0,m*) = 3252 {1 ~1 [log <——m2>} }, (2.116)

where the notation F] denotes the first form factor after the subtraction of the pole in 1/s.

Using the results given above, the full massive on-shell amplitude is given by

F“"aﬁ(s;O,O,mQ) = F (S;0,0,mz)?{‘”aﬁ + I3 (8;0,0,m2) (%gwaﬁ + ?éwaﬁ - 4?7‘Waﬁ)
+ Fi3, 1 (50,0,m?) 115", (2.117)
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so that the invariant amplitudes reduce from 13 to 3 and the three linear combinations of the

tensors can be taken as a new basis

(e’ = lim 1108 — (5 g — bRV u®P (p, q) (2.118)
81,82—
ftvéuuaﬁ + ftvéwaﬁ _ 4’{%111016 _ Slligfio (téulzaﬁ + téulxaﬁ _ 475#1/&,8) _

—2u™(p,q) (s g™ + 20" p" + ¢" ¢") — A (0" ¢ + ¢"p")) (2.119)

Y : v v S v v
titgua,@ _ 811;21)0 t{g/aﬁ _ (puq +p qu)gaﬁ + 5(goz gﬁu +gaugﬁ )
v s 12 4 vV v
—g" (59“”3 —q°p") — (""" + ¢""p") g™ — (9™ " + g""q")p",
(2.120)

as previously done in the literature [46]. If we extract the residue of the full amplitude we realize
that even though some functions Fj(s,0,0,m?) have kinematical singularities in 1/s this polar
structure is no longer present in the complete massive correlator

lim s T8 = 0 (2.121)

s—0

showing that in the massive case the (T'JJ) correlator exhibits no poles. In a following section
we will comment on the interpretation of these massless poles exploiting the analogy with a

similar situation encountered in the case of the gauge anomaly.

2.6 The general effective action and its various limits

In this section we present results for the correlator in various kinematical limits. We start from
its expression in the on-shell massive case and then perform its expansion in 1/m which will be
used in a next section to extract the corresponding effective action. As a final step we show the
on-shell structure of the invariant amplitudes in the conformal limit.

It is possible to identify from them the structure of the effective action in its most general
form. If we denote by S; the contribution to the effective action due to each form factor F;, then

we can write it in the form

. d*pd* ; ;
S, = /d4x d4yd4ztéﬂ/0¢5(z’x,y)hw(z)Aa(x)Aﬁ(y)/ (; )Sqe_’p'(x_z)_’q'(y_Z)ﬂ(k7P7 Q)
T
(2.122)
where k = p + ¢. We have introduced the operatorial version of the tensor structures ¢' vaf ,

denoted by t; that will be characterized below. Defining

>
Q
I1l
-~
>
Rl
11l

)
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and using the identity

(L. A A d'pd —ip-(z—2)—igq-(y—=
Flls b0 (o = 0y = 2) = [ w00 g (2.124)

where formally F; is the operatorial version of F;, we can arrange the anomalous effective action

also in the form
S; = / dradyd 2 Fy (ks P, y) [04 (2 — 2)8%(y — 2)] 5P (2,2, 9) hyw Aa(x) Agly).  (2.125)

For instance we get

0 (2 2, )y A (1) Ag(y) = (Dzh(z) 07051 (2)) Fap(x)F*(y), (2.126)
%M%%WW%@%@::( h(z) = G050 (2)) 0 (@)D, F (), (2.127)
B (2, )y Aal) Aa(y) = 51 (2) (Chagpes — 40507) Fap(2) F 1) (2.128)
%Wmmm%m%@thMQw~wwaﬂmmwu (2.129)
98 (5 )by Ag (1) Ag(y) = —h"”(z) (Oy G — 4040Y) Fop(z)F*" (y) (2.130)
WWwwm%m%@thMQw—wwawwMWm (2.131)
B (2 )y Aa(@) Aply) = 5h(2) (0700 — 200407 + V5 ) Faple) F2(y),
(2.132)
8 2y, ) by Aa(@) Ap(y) = 0 (2) (0709, — 2000% + OL05) ) O (2)0, ()
(2.133)

and similar expressions for the remaining tensor structures. However, the most useful forms
of the effective action involve an expansion in the fermions mass, as in the 1/m formulation
(the Euler-Heisenberg form) or for small m. In this second case the non-local contributions
obtained from the anomaly poles appear separated from the massive terms, showing the full-
fledged implications of the anomaly. This second formulation allows a smooth massless limit,
where the breaking of the conformal anomaly is entirely due to the massless fermion loops.

In the 1/m case, for on-shell gauge bosons, the result turns out to be particularly simple.

We obtain

7€ 1 e2s 1 1
Fi(5,0,0,m?) = O — 2.134
1(:0.0m7) = Siem e T 300aa it T <m6> (2.134)
e? 1 es 1 1
F3(5,0,0,m?) = Fy(5,0,0 4+ O — 2.135
3(,0,0,m%) (5:0,0,m%) = foo5mm 72 + Goas0nZ mt + <m6> (2.135)
Fy(5,0,0,m?) = —4F3(8,0,0,m) (2.136)

11es 1 11282 1 1
Fi3,r(5,0,0,m?) = s — +O<—>, (2.137)

1440 72 20160 72 m0
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which can be rearranged in terms of three independent tensor structures. Going to configuration
space, the linearized expression of the contribution to the gravitational effective action due to

the T'JJ vertex, in this case, can be easily obtained in the form

Sryy = / dadyd = T (2, y, 2) Aa(z) Ag(y) hyu (=)

7 2
= e | PO ) P
m™m
62 4 9
m /d X <DhF — 8aﬂFa,6’auFaﬁh“V + 4(8p8uFaﬁ)Fa6hw/>
11¢?
1440 72 m? / d*a T Ohy. (2.138)

which shows three independent contributions linear in the (weak) gravitational field.

2.7 The massless (on-shell) (T'JJ) correlator

The non-local structure of the effective action, as we have pointed out in the previous sections,
is not apparent within an expansion in 1/m, nor this expansion has a smooth match with the
massless case.

The computation of the correlator T'***%(s;0,0,0) hides some subtleties in the massless
fermion limit (with on-shell external photons), as the form factors F; and the tensorial structures
t; both contain the kinematical invariants s1, so. For this reason the limit of both factors (form
factor and corresponding tensor structure) F; ¢!’ a8 has to be taken carefully, starting from the
expression of the massless Fj(s;s1,s2,0) listed in Appendix [AJ6] and from the tensors ¢! vaf
contracted with the physical polarization tensors. In this case only few form factors survive and
in particular

62

F1(5,0,0,0) = ——— 2.139
1(87 y Yy ) 1871'257 ( )
2
e
F: = LI =—— 2.14
3(s,0,0,0) 5(5,0,0,0) s ( 0)
F;(s,0,0,0) = —4F35(s,0,0,0), (2.141)
e? s
F 0,0,0) = - 121 —-——]-35 2.142
13,R(87 s s ) 14472 |: Og( M2> :| ) ( )
and hence the whole correlator with two onshell photons on the external lines is
99 (50,0,0) = Fi(s,0,0,0) 1" + Fy(5,0,0,0) (#" + 77 — 477} + Fyg n 15"
62 v v v iy
= “&Bs [(21)6(1“ - 89‘“5) 2p"p” +24¢" ¢" — s g" )] + Figptly?,

(2.143)
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where ¢/ 8 are the tensors defined in Eqs. (ZIIREZIZ0).

The study of the singularities in 1/s for this correlator requires a different analysis for F}
and the remaining form factors, as explicitly shown in eq. 2143l where F; has been kept aside
from the others, even if it is proportional to F3. Indeed Fj is the only form factor multiplying
a non zero trace tensor, t~1“ vaf , and responsible for the trace anomaly. If we take the residue of
the onshell correlator for physical polarizations of the photons in the final state we see how the

4 form factors and their tensors combine in such a way that the result is different from zero as

2

lim s "% (s;0,0,0) =

lim — oz WP+ "), (2.144)

where clearly each singular part in 1/s present in Fi, F3, F5, F7 added up and the logarithmic
behaviour in s of Fi3 has been regulated by the factor s in front when taking the limit. The

result shows that the pole, in this case, is coupled in the IR, as shown by the dispersive analysis.

2.8 Conclusions

We have presented in this chapter a computation of the T'JJ correlator, responsible for the
appearance of gauge contributions to the conformal anomaly in the effective action of gravity.
We have used our results to present the general form of the gauge contributions to this action, in
the limit of a weak gravitational field. One interesting feature of this correlator is the presence
of an anomaly pole [51].

Usually anomaly poles are interpreted as affecting the infrared region of the correlator and
appear only in one special kinematical configuration, which requires massless fermions in the
loop and on-shell conditions for the external gauge lines. In general, however, the anomaly pole
affects the UV region even if it is not coupled in the infrared. This surprising feature of the
anomaly is present both in the case of the chiral anomaly [40] and in the conformal anomaly.
Here we have extracted explicitly this behaviour by a general analysis of the correlator, extending
our previous study of the chiral gauge anomaly.

As we noticed at the end of the previous chapter, anomaly poles are the most interesting
feature, at perturbative level, of the anomaly, being it conformal or chiral, and are described by
mixed diagrams involving either a scalar (gravitational case) [51] or a pseudoscalar (chiral case)
[30L [40]. The connection between the infrared and the ultraviolet, signalled by the presence
of these contributions, should not be too surprising in an anomalous context. The pole-like
behaviour of an anomalous correlator is usually “captured” by a variational solution of a given
anomaly equation, which implicitly assumes the presence of a pole term in the integrated func-

tional [92]. By rediscovering the pole in perturbation theory, obviously, one can clearly conclude
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that variational solutions of the anomaly equations are indeed correct, although they miss homo-
geneous solutions to the Ward identity, that indeed must necessarily be identified by an off-shell
perturbative analysis of the correlators. This is the approach followed here and in [40].

We have also seen that the identification of the massless anomaly pole allows to provide
a “mixed” formulation of the effective action in which the pole is isolated from the remaining
mass terms, extracted in the Spole part of the anomalous action, which could be used for further
studies. We have also emphasized that a typical 1/m expansion of the anomalous effective action

fails to convey fully the presence of scaleless contributions.



Chapter 3

The Trace Anomaly and the
Gravitational Coupling of an
Anomalous U(1)

3.1 Introduction

In the previous chapter we have presented a complete computation of the off-shell graviton-
photon-photon vertex for an abelian gauge theory, which is derived from the correlator of the
energy-momentum tensor (7') with two vector currents (J) (the T'JJ correlator) [51} 52]. Pre-
vious studies of this correlator, included those of [46], [48], 49, [85], were limited to the QED case,
while, surprisingly, there has not been any previous attempt to discuss the structure of more
general vertices, such the T'J4Js or T Jy J4 correlators, carrying one insertion of the energy
momentum tensor and of one or more chiral currents. They become the object of investigation
of this third chapter.

These correlators appear indeed in the expression of the 1 particle irreducible (1PI) effective
action which describes the interaction of gravity with the fields of a chiral theory, such as
the Standard Model, and contribute, to leading order in the gauge coupling expansion, to the
radiative breaking of scale invariance. In turn, this is the prominent perturbative feature of
the trace anomaly, which appears to be generated by specific pole terms, as we are going to
elaborate in the following of this chapter.

Correlators of this type can potentially carry mixed anomalies. Specifically, this can be a
trace anomaly, due to the insertion of an energy momentum tensor, in combination with a chiral
anomaly, due to the presence of axial-vector currents. This anomaly mixing, in principle, is

expected to be present both in the case that we investigate - involving one or two axial-vector
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currents - and in higher point functions. In the latter case they may involve a larger number of
axial-vector gauge currents, such as the T'JaJaJa vertex and many others, which are divergent

by power-counting, as one can easily figure out, and contribute to higher perturbative orders.

As in the case of the AVV diagram (with Axial-vector/Vector/Vector currents), responsible
for the chiral anomaly and discussed in the first chapter, also in the case under analysis one of
the crucial points relies on the derivation of the correct Ward identities which allow to define
this trilinear vertex consistently. This point requires some care, due to the formal manipulations
involved in the handling of the functional integral and to the presence of mass corrections. In
the massless case, instead, the computation of this correlator can be formally related to the
vector case (the T'JJ case) of [51] [52] by a naive manipulation of the chiral projectors in the
loops. Our investigation addresses all these points in some detail, offering a general approach
that can be applied to the realistic case of the Standard Model. In this respect, the study of
the gravitational coupling of a chiral abelian theory (with one anomalous U(1)) contains all the

issues that appear in of the fermion sector of the non-abelian case.

3.1.1 The anomalous effective action

As we have mentioned above, one of the key features of the trace anomaly is the appearance in
the 1PI effective action of dynamical massless poles which mediate the anomalous interaction
[51, 52]. The story of massless poles in anomaly-mediated interactions, obviously, is not new,
and goes back to Dolgov and Zakharov [37], in their analysis of the chiral anomaly. The nonlocal
“1/0” structure of the effective anomalous interaction, due to the pole term in the correlator,
is, in fact, a distinctive feature of the diagrammatic expansion of these effective theories. These
can be made local at the cost of introducing two pseudoscar (auxiliary) fields [30]. In the
case of conformal anomalies, the identification of similar massless poles and their interpretation
has been addressed recently in [51], and in [52], by direct computations. These singularities,
as discussed throughout this thesis, affect both the infrared and the ultraviolet region of the
anomaly diagrams, as we will illustrate in the next sections. These features, present in the QED
and QCD cases, are naturally shared by an anomalous abelian theory when it gets coupled to

gravity.

The possible physical implications of this behaviour of the effective action have been discussed
in [93], and for this reason similar analysis in the complete Standard Model and for other

correlators (such as the TTT vertex ) are underway.
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3.1.2 Aspects of the computation

Coming to other features of our computation, it should be remarked that a direct derivation from
first principles of correlators with axial-vector/vector currents and energy momentum insertions,
in general, runs into difficulties. This is due to the appearance of commutators of the energy
momentum tensor with the chiral current, situation that we will try to avoid.

As in the vector-like case, we will provide explicit expressions of all the form factors appearing
in the correlator, for a simple theory. We have selected an abelian model with two vector/axial-
vector currents and a single massive fermion. One important point that we intend to stress is
that the local (gauge) or global nature of the two currents, in the example that we provide,
is not relevant for the conclusions and the goals of this analysis, being the two gauge fields to
which the two currents couple just classical background fields. For this reason, our investigation
is essentially the search of the correct conditions for defining anomalous correlators of the form
TJyJa and T JaJ s (with a single insertion of T),,). The approach is the exact analogous of the
one followed in the investigation of the AVV graph of the chiral anomaly, and in principle could
be generalized to more complex correlators. Unfortunately, however, the explicit test of the
Ward identities containing higher point functions becomes increasingly difficult in perturbation
theory.

Another remark concerns the use of Dimensional Reduction (DRED) with a 4-dimensional
v5 [94] in our analysis. Typically, in these types of studies, it is necessary at each step to check
the consistency of the perturbative result against the constraints posed by the anomalous Ward
identities. Our results, which are more complex than in a previous analysis of the T'JJ vertex,
indeed satisfy these conditions. It has also been checked that Dimensional Regularization (DR)
and DRED give the same expression for the T'J4J4 vertex, while they differ in the case of the
T Jy J4 vertex by infinite contributions. In this second case, as we are going to show, both the
condition of charge conjugation invariance (C-invariance) and the Ward identity extracted from
the functional integral imply that this specific vertex is required to vanish identically for any

fermion mass.

3.2 The Lagrangian and the off-shell effective action

To establish notations, here we will briefly summarize our conventions. The diagrammatic
contributions will be presented both in the usual V/A (vector/axial-vector) form, with Dirac
spinors, and in the L/R (Left-Right) form, using chiral fermions. We will include mass effects in
the fermion loops and we will keep all the external lines off their mass-shell in order to establish

the most general form of the corresponding effective action.
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We consider a theory with a Dirac fermion ¢ and two abelian gauge bosons, namely V' and
A, described by the Lagrangian

1 y o1 v T ot -
Lo = —ZFVWFg — ZFAWF;; + Py (30, + gVyu + g7° Ap)b — mapp, (3.1)

where the fermion couples to the two gauge bosons with, respectively, a vector and an axial-
vector interaction. In our conventions, the axial-vector gauge boson is denoted by A, while the
vector one is denoted by V. The axial current will be denoted J* = 1)v*v51, and sometimes we
will be using a suffix “5” to emphasize its axial-vector character. For instance II55 will denote the
axial-axial two-point function while II = Il will denote the corresponding two-point function
of the vector case. In the derivation of the Ward identities which will be discussed below, the
gauge fields will be considered as external background fields both in the V/A and in the L/R
formulation. This theory couples to gravity in the weak gravitational field limit via the energy
momentum tensor of (B.1).
In particular, the corresponding effective action will be formally defined as the sum of

1) the tree-level action given by (B.1)

So = / d*zL (3.2)

and 2) the trilinear interactions T'JuJy,TJyJy and T'JaJ4. These extra graphs appear as

leading corrections to the effective action, which is defined as

Sanom = (TaahAA) + Ty ahV A) + (TyyhV A) (3.3)

with
(Than) = / Az dbe dy TP (2) Aa(z) Ag(y) (3.4)

and similarly for all the other terms. The field h,, denotes the linearized fluctuations of the

metric around a flat background

g‘uy - 77“1/ + K/hﬂy, R = \/ 167TGN (35)

with G being the 4-dimensional Newton’s constant.

One of the principal goals of our investigation is to provide a correct definition of Synom by
deriving the essential Ward identities of the anomalous correlators. At the same time we will
show, as in a previous case study for QED, that the effective action is characterized by massless
anomaly poles. The extraction of these singularities, in our case, is not based on dispersion
theory as in [51] but the results are obviously equivalent to the dispersive treatment [52] in the

massless case, with a generalization for massive fermions.
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3.2.1 Symmetries and the energy momentum tensor

The Lagrangian in (8.1)) remains invariant under the local vector gauge transformation U(1)y

Y - ey, (3.6)
) = pe 0l (3.7)
VE S VR4 9ta(z), (3.8)

which implies the conservation of the vector current J{j = JW = ¢py"ep. If the fermion mass is

zero the Lagrangian is also invariant under a local axial-vector gauge transformation U(1)4

R eigﬁ(m)%w’ (3.9)
1; N djeiyﬁ(x)%’ (3.10)
AF — AP 4 0M (), (3.11)

implying the conservation of the axial-vector current J4. Obviously, this is explicitly broken by

the contributions of massive fermions
uJl = 2im sy (3.12)

The energy-momentum tensor comsists of four contributions: the free fermion part T, the
fermion-boson interaction parts T;, and 7;,, due to the interactions of the axial and vector

gauge fields with the fermions, and the gauge term T, which are given by

T8 = —ipy 19 + g™ (ipy Oatp — mpi)), (3.13)
Tit‘tfv _ _gJ(uVV) + gg" TV (3.14)
T =~ I A0 + g DA, (3.15
and
1 1
Ty" = FVF\I;A - ZQWFépFV a T FXAFZA - ZguijpFA/\p- (3.16)

The complete energy-momentum tensor is

T = T}W + TZ"‘/V + TZ.’:V + 13", (3.17)

which couples to gravity with a linearized term of the form h,,T"”. The Lagrangian (3.1
can be rewritten in the chiral basis decomposing the fields in terms of their left-handed and
right-handed components by using the chirality projectors

_ 1% py— LT

P
L 2 2

(3.18)
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We define the chiral fermion fields as

Y, = Pri, Yr = Pry (3.19)
and the left and right gauge fields, A;, and Ag, as

Al = VR AR (3.20)
A = VR AR (3.21)

so that the Lagrangian takes the form
1 1 - . - .
L=~ Fup FY — (Firp FE + Pumu(i 0%+ gAR) vy + Gy 0% + gA) p (322)

when the mass term has been set to vanish. The energy momentum is separated into the various

chiral contributions

TV = —ipy 9" Pry + g iy o Pro, (3.23)
Tih = —igy" 9" PR+ ¢" by 0 Pro), (3.24)
T = —g(JAY — ¢ IR ALY), (3.25)
T = =g (T AT — g™ ThAR), (3.26)
with
Ji(x) = Pl Pry(e), (3.27)
Jp(x) = (@) Prip(x). (3.28)

Notice that the Lagrangian in ([8.22]) is invariant under the chiral transformation U (1), x U(1)g.

3.2.2 Perturbative expansion of the axial-vector contributions

The analysis of the vector-like contributions, i.e. of the (T'J.J) correlator, has been performed in
great detail in [52]. For this reason we will consider, at this point, a vanishing vector contribution
(V' — 0) in the defining Lagrangian ([8.I]) and we will focus our discussion at the moment on its
axial part. A relation between the vector and axial contributions will be worked out in the later
sections, where we will show that mixed vector-axial vector correlators vanish for any nonzero m.
We will also show how to relate pure vector like to axial vector like contributions, as indicated
below in Eq. .93

To extract the one-loop contributions to the (T'.J4.J4) correlator in the perturbative expan-

sion and identify those due to the conformal anomaly, it is sufficient to consider only the partial
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energy-momentum tensor 7), given by the Dirac and the interaction term in Egs. (8.13) and

B.15)
T = TP + T, (3.29)

while the gauge term in Eq. (3.16]) is only responsible, to second order (g?), of two non-amputated
diagrams removed from the perturbative expansion of the effective action. We also recall that
the conservation of the energy momentum tensor can be reformulated as a partial conservation
equation

0, T = —0,Th", (3.30)

with
1
v A v v A
Thy = Fi"Fiy - 19“ FAPFaxp. (3.31)

Using diffeomorphism invariance one can derive formally a quantum relation similar to (3:30I),
which takes the form

0, (T4 )4 = g Fi (Jax)a. (3.32)

This relation is the analogue - for the axial case - of the relation identified in [51], which allows to
extract the momentum conservation Ward identity in the case of the T'J.J (for vector currents).

In (332)) the functional average of T," is now defined as
(T} (2)a = / DYDp TH (z) ¢t '@ LrW)tig [ dle Ja-Al) (3.33)

with
Ly (1) = i 91 (3.34)

being the kinetic fermion Lagrangian in flat spacetime, and we will denote by S (1)) the corre-
sponding action. Notice that equation (8.32]) can be naively thought as the quantum counterpart

of the non-homogeneous equation
B, TH = g F{ Jay (3.35)

satisfied by T}". Here the axial vector field A is taken as a background. A rigorous derivation
of this relation requires the use of invariance under diffeomorphism of the generating functional
of the full theory (expressed in terms of g,, and a A,) and an expansion around flat space, as
can be checked.

The conservation equation (B.32]) is relevant for the extraction of one of the Ward identities
necessary to define the correlator. Notice that the expectation value of T}, in the background of

the gauge field A is the generating functional of the correlation functions that we need. These



62 The Trace Anomaly and the Gravitational Coupling of an Anomalous U (1)

are obtained by an expansion through second order in the external field A. The relevant terms
in this expansion are explicitly given by
(ig)*

(T4 (2)) 4 = S (TF () (Ja - A) (Ja - A)) +ig (T (2) (Ja - A)) oy (336)

with (Ja - A) = [diz Ja - A(z).
The corresponding diagrams are extracted via two functional derivatives respect to the back-

ground field A and are given by

0* (13" (2)) o

pHvaeb zx, —_—
ax (BE8Y) = S A )

= VP (22, ) + W (211, y), (3.37)

A=0

where

Vi ) = (9 (TF()I5@IL) (3.38)

and

% (TH (2) (Ja - A))
0A. () 6A5(Y) | aco

= §a — 2) ") (2, y) + 54y — 2) TS (2, 1)

— g 54z — 2) + 64y — 2)] 0% (2, ),

WP (2 0,y) = (ig)

(3.39)

is a second term expressed in terms of the correlator of two axial currents

3h@y) = —ig E@I3w)| . (3.40)

3.3 Ward identities

The consistent definition of the (I'J4.J4) correlator requires the imposition of some Ward iden-
tities on it, that we are going to derive below. We start from the Ward identity to be satisfied by
the axial vector current and then move to the conservation equation of the energy momentum
tensor.

3.3.1 Axial vector Ward identities

The axial vector Ward identity is given by

a T (i, y) = 08 [V (s, y) + W (z,m)| (3.41)
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The two terms in the previous equation take the form

VI zay) = (19005 (T} (2)I5(@)I3W)) (3.42)
WL () = ¢ VT (2, ) 0264w — 2) + 2mi 8 (y — 2)g" T (2, 0)
- g‘“’Hjﬁ(w, Y)0%6 (z — 2) — 2mi g" [0 (z — 2) + 6 (y — Z)]Hﬁp(.%', Y),
(3.43)

while I1% (2, y) is defined by

0% p(2,y) = —ig”(J (z)P(y)) o (3.44)

«,

Here, P denotes the pseudoscalar current P = vy5¢, and 4, 11 Aﬁl are related by the PCAC

condition
2im 15, (z,y) = 0 119, (x, y). (3.45)

The derivative of the correlator with the insertion of the free energy momentum tensor (1) can
be calculated using functional techniques. For this purpose we consider the generating functional

with the fermionic sources 1 and 7 and the classical background sources V# and A* coupled

respectively to the current operators J{j = ¢y and J = pyFsi

<T;W(Z)>V,A,77J7 — /D¢D1E T;W(Z) eiSk(w)-f-ifd‘la: (g Jv-V+g Ja-A+in+ib) (346)

and exploit the consequence of a chiral transformation on the corresponding Green’s functions.
The functional integral must be invariant under a reparameterization of the integration variables,

giving the identity

/ DyDy TH (z) €' Sk()+i [ d*z (g Jv-Vig Ja-A+dntip) _

/sz'sz’ T}“’(z)’ ot Sk (W) +i [ dha (g T4 Vbg Ty - A+d i) (3.47)
For a local infinitesimal chiral transformation of the fermion fields defined by

vy = Ytige(z) s, (3.48)
b= = Y +ige(z)y s, (3.49)

we can compute the variation of the action S and of T} appearing on the right hand side (r.h.s.)

of Eq. (83:47). The action changes as

Sp(W") = Sp(v) + /d4x €(z)(0a I3 () — 2imP(x)), (3.50)
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whereas the vector and the axial-vector currents are obviously invariant
JE=Jb, I =J4 (3.51)
The variation of the free energy-momentum tensor is instead given by
0T (2) = % JW(2)0"e(2) + Jﬁ(z)@“e(z)} —g" [Jj(z)(%\e(z) — 2mie(z)P(2)|. (3.52)

We note that this change of variables is not a gauge transformation; V' and A are therefore
invariant. For this reason, using also the invariance of the two currents, the interaction terms
T; 4 and T;y of the energy momentum tensor remain invariant as well. It follows that the
variation of 7" (z) is due only to the free contribution shown above.

If we rewrite the infinitesimal parameter €(z) as €(z) = [ d'z e(z)d*(2—z), the energy momentum

variation can be recast in the following form
6T}“’(z) = /d4x e(x) HH (x, 2), (3.53)

where this definition of H*(x, 2)

HM (2, 2) = % JH(2) 0% 6% (z — o) + % J4(2) 0% 64 (2 — x)

—gt <J2(z) 0% 6*(z — ) — 2imP(2) 6% (2 — m)) (3.54)

will turn useful in the following. Given the chiral nature of the transformation, we include also

the anomalous variation of the measure
— - 1
DwTW/:[WJWMXp{{/d%x@m%[gﬁmegfﬁp+ﬁmwﬂgEx}} (3.55)

2
where a,, = Hg;? is the anomaly coefficient. Expanding the r.h.s. of Eq. (8.47) to the first
order in € and taking into account the variation of the measure we obtain the Schwinger-Dyson

equation
0 = /dﬁw@)/iWJW{ﬂﬁW@ﬁ&dﬁ@)—Qmﬂﬁw+4mﬂﬂwm@%+mmwhﬂﬂﬂ
+ an (éFA(w)FA(x) + Fv(x)FV(m)> } JrH“"(Oc,z)}eisk(w’“ﬁﬂm (9. 7v:Vikg Ja-Atv+nv)

(with F F = eo‘ﬁWFang,). The expression takes a simplified form if we set the sources n, V'

and 7 to zero, and hence we obtain the anomalous Ward identity

HTF (0 Ja(w)a = —2m{TP(2) P —ian g PAW)PAW)TE ()4 = (0 0. 2) - (3.56)
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From Eq. (856) we can extract Ward identities on correlation functions which contain one
insertion of the energy-momentum tensor and several gauge currents just by functional differen-
tiation respect to the external sources. For example, taking a derivative of (8.56]) with respect

to background field A* we obtain the constraint

X 5 v (e
aoz 5Aﬁ(y) <T}l (Z)JA(:E)>V,AJ7777

V,A,n,n=0

1) v . v
S 2T ) P@) v + (v

)

V,An,n=0
(3.57)

and performing explicitly the functional derivative we obtain the axial Ward identity
02 (T (2)T3 () TR (y)) = 2mi (T4 (2) P(x) ] (y)) + i(H" (x, 2).T3 () (3.58)
where the last term is given by

v a1 )
@A vans| = (i) G0 o
V,An,1=0

R
+ 5 W (=) 2 6%z — @)

- g [Hzi(z, y)030% (2 — x) — 2mi Hip(z, y)ot(z — x)] }
(3.59)
Notice that Eq. (8.58) allows to derive indirectly the vacuum expectation value of the commu-
tator of Ty with J4 by comparison with the canonical expression
L (T (2)T3 (2) T4 (y)) = 2mi(T4" (2) P(x) J5(y)) + ([T (2), J§ ()] ga00(x0 — 20)J5(»))
(3.60)
or
([17 (2), 7§(2)] ga08 (w0 — 20) T4 () = i(H" (2, 2) T3 (). (3.61)

Proceeding with the functional differentiation one can derive further unrenormalized Ward iden-

tities for correlators of the form T J4J4Ja

(ig)? 05 (T (2) JA () JG () T4 (w)) = (ig)* (TH"(2) 2miP(x) J§(y) J4(w))
g an €907 9,832 — ) 0, (& — w) (T (2))
i (ig)? (M (2, 2) J§ () 4 (w)),
(3.62)

which can be analyzed and checked in perturbation theory in a specific regularization scheme.
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3.3.2 The axial Ward identity in momentum space

The Ward identity on the (T"JaJ4) vertex is extracted combining Egs. (8.58]) and (8.59) with
Egs. (8:42) and (8.43) and it is explicitly given by

176 .. v 1 v
TH (zw,y) = 2miig)? (T} (2)P@)T4(y)) + {5 I, (2, ) 2 §*(= — @)
1,
+ 3 HA/Z(Z', y) o 54(2' — )
- g [Hzi(z,y) 05 54(2 —x)— QmiHﬁP(z,y) 54(2' — x)] }
+ gl (2, ) O 64 (@ — 2) + 2mi 6t (y — 2)gP P (2, )

— ¢TI () (@ — 2) — 2migh [0 (x — 2) + 8y — )] T p(x,y).
(3.63)

By defining
@2m) 64k —p — ) TP (k,p, q) = /d4x dry dz e i ativaticy prral g ) (3.64)
and
(2m)" 8" (k —p — ) A% (k. p.q) = / diw dbydtz e B (TR ) P() T(y)) . (3.65)
we obtain its form in momentum space
: prafB _ o N2 A VB | —yC
i T ) = 2milio? ME ) + {5 T )
1. v . A .
+ izp“HfA(Q) —g" [ZPAHABA(Q) —2mi Hﬁp(q)] }
~ ipag® M (0) +2mi "V TI (p)

i)~ 2mig” [ Wpl@) + W] (300
We will be using this identity in the definition of the correlator with two axial-vector currents.

3.3.3 Ward identity for the conservation of 7},

Moving to the conservation equation of the energy momentum tensor, the derivation of the

corresponding Ward identity involves the functional relation (3.32]) which is given by

0 e o) o au O
—azyfﬁAﬁ(Z;x,y) = 5 84z — ) Y (2, y) + g™ 5 3z — 2) I (2, y)
nw
8 767 a (0%
— o ey I (@ 2) + g™ 5 8 - ) I (2 ), (367)
1%
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p h A
— Aa wy
A, 2 P
k kK P+ k P
— 7 —
WAL p = AAA + exch. + [ -+ exch.
h 3 huv
. I-q
P e’ Ay
q
q
@ (b) (c)

Figure 3.1: The complete one-loop vertex (a) given by the sum of the 1PI contributions called Vggmﬁ (p,q)
(b) and Wé‘;aﬁ (p,q) (c) with a graviton h,,, in the initial state and two gauge bosons with axial-vector

couplings A,, Ag in the final state.

which can be simplified using the PCAC relation (3.45]). In momentum space it gives

kDA (0,q) = (9% Ky — g2 p) YA (0) + (6% Ky — g7 ) I (p). (3.68)

The complete set of defining conditions of each vertex, beside the two Ward identities derived
above, is the request of a symmetry on its yu, v indices, i.e. Fffffﬁ = I #. We will be using
these conditions in order to fix the entire structure of the correlator and check the consistency

of a given regularization scheme.

3.4 Diagrammatic expansion

The relevant diagrams responsible for the conformal anomaly are shown in Fig. B.1] and take
the form of Eqgs. (338]) and (3.:39). They consist of an amplitude with triangular topology (see
Fig.[30b) and of a bubble-like diagram (called a “t-bubble”, see Fig.[3.Ik). This has the topology
of a self-energy loop inserted on each of the gauge lines and attached from one side to the T
vertex. These contributions are all of O(g?). At this point, we recall that the tree-level vertex
with a graviton and a Dirac fermion, namely V/#”, and the trilinear graviton-gauge boson-
fermion coupling, i.e. W:*’®, induced by the two contributions Ty and Tj4 are respectively

given by

1
VI (ki k) = 5 1" (k+ k2)” 49" (ks + k)] = S g™ [ (R + k2)s — 2m] - (3.69)

AN

1
Wi = =259 159" + 9" s (3.70)

where k; and ko are generic momenta, incoming and outgoing, respectively. Notice that the

first contribution is vector-like, derived from (B.I3]) and, naturally, is the same appearing in the
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previous analysis of the (T'J.J) correlator in [52]. The second one, W:***, due to ([3.15), differs
from the analogous vertex W’/# appearing in the case of the (T'J.J) correlator because of the
presence of the 5 matrix.

If we denote with k the incoming momentum of the graviton and with p and ¢ the two outgoing

momenta of the A gauge bosons we obtain

(2m)* 64k — p— q) VP (p,q) = / dh dly dz e D (T8 () 9 (@) T) (3.71)

2m)* 6tk —p— q) WP (p,q) = / dz dlydiz em Tty (TR () G () IS (y).  (3.72)

Explicitly
va ey U V(4 p = q)( = g+ m)y s L+ m) v sl +p+m))
B p0) = ‘292/ (2r)? 12— m2[(1 = q)> = m?] [+ p)2 — m?] ’
(3.73)
e , d*l s {WER L+ m) YOy (L + g+ m
WL (p,q) = —ng/ o { Tlg _(’an] [(l)lq’))’z(/l_ Wi] )}, (3.74)

so that the complete one-loop amplitude (see Fig. B.)) is built up by symmetrizing on the

external boson lines as

T4 (p, q) = VI (b, q) + VI (q,p) + WEEP (b, q) + WEEP* (¢, p). (3.75)

3.5 Tensor decomposition and naive manipulations

As we have mentioned, the correlator is completely defined by a set of Ward identities, which
amount to renormalization conditions which should be imposed in such a way 1) to respect
its Bose symmetry and 2) the conservation of the fundamental currents of the theory. This
is the case for all the anomalous correlators, both for chiral and conformal anomalies. At
the same time, one needs a good regularization scheme in order to proceed with the actual
implementation of these conditions, which could be obviously violated. This may require a
(final) finite renormalization of the result in order to force the result to satisfy the original
Ward identities. In this respect, various regularization schemes are available for chiral vertices,
from a partially [95] to a totally anticommuting 5. As we have already mentioned, in the
computation of the correlator we have used DRED [94], with loop momenta computed in D
spacetime dimensions and traces performed in 4 dimensions, and we have verified all the Ward

identities formally derived in this chapter.
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3.5.1 Vanishing of the 7'Jy,J4 correlator

We start our analysis by studying the T'Jy J4 correlator.
For this reason we just recall that this specific correlation function can be extracted by the

generating functional
@ Eva = [ DYDE T (a) o] FHER O 0 VT )

o <T1§W eifd4:vg(JV'V($)+JA'A(1))>_ (376)

Here we have introduced two independent sources Jy and Ja. The corresponding correlators

are obtained via functional variations respect to the background fields V' and A, namely

(T3 (2))v,a

phves 2x,Y) = —————
va (589 = Sr )

= ngozﬁ(z; , y) + W;Vaﬁ(z; , y) (3.77)
V,A=0

whose expressions in momentum space are (for the direct and the exchange contributions)

va 9. d*l 1
Virwn = | @) [P =m0~ ¢ = m?][(+p)? —m?]
o {vm et = =g+ w0 G m) sl + )]
(3.78)
va o [ dY 1
W) = o [ o e
o {vma - pie - g mpns@em i g+ m}].
(3.79)
va, . . dil tr {W'ere m p m
Wfdirﬁ(pa q = —(—19)213/ (2r) i 2 _’Y;n(é]—i[_(l _21)2@_—’_732—{ )}a (3.80)
At {Wwmws m)ye m
W;eyfﬁ(pa q) = _(_19)213/ (2dﬂ.§4 bt 12 _('lmj;] [(;17932@—+752T )}7 (3.81)

and where the vertices V/# and W'#® are defined as

1 1
VI (ky, k) = 1 (V¥ (k1 + k2)” +~" (k1 + k2)!'] — 59“”[7A(k‘1 + ko) —2m],  (3.82)
1
WIS = =S (7"g" +179") + g (3.83)

We will use the same trick used for the proof of Furry’s theorem to show the vanishing of this
correlator, which is formally divergent and therefore ill-defined. For this reason one needs some
external Ward identities in order to resolve its structure. For the T'Jy J4 vertex the situation
is quite peculiar since one can show, using DRED and by allowing momentum shifts, that the

three Ward identities are indeed homogeneous

kD47 = pali? = qalirs? = 0, (3.84)
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while the properties of symmetry of the correlator are respected. Obviously, this indicates that
there is a regularization scheme in which the anomaly of the axial-vector current J4 does not
appear. A closer inspection shows that this result is caused by a cancellation between the
direct and the exchange contribution, since the e-tensor is present in each of the two (direct
and exchange) diagrams contributing to the vertex, but not in their sum. Indeed, this clearly
seems to indicate that this correlator may be vanishing identically. A second argument, based
on charge conjugation invariance brings to identical conclusions.

For this reason, we take the expression of the triangle diagram and insert the identity
C~'C =1 - involving the charge conjugation matrix C' between every v matrix - together

with the relations
CotC™l = —()7, CrysCh =15, (3.85)
so that the trace in Eq. (B.78]) becomes
T = w{V"(4p =) (= d=m) O (= m) () sl +p—m)" }
= e { V' p = )+ P = m)rs (L= m) A (L —m) } (3.86)
where V/# differs from V’#” only for the sign of the mass term
VI (ko) = 3 Gk B2)” 9 (b 4 B l] = 2gP A+ k) 2m) (387)
Changing the integration variable [ — —[ in Eq. (3.806]) we get
T = —tr {V'™( = p, L+ q)( = P+ m)y™5 (L +m) 7 (+d+m)}, (3.88)

while the three denominators in Eq. (B.18) change according to
1 1

. 3.89

[N (RS Ry [ I PR Bl PRy § (B ety (g o) M o)
Combining Eq. (3.88]) and (3.89) it is easy to recognize that

Vel (p,q) = =V (p,q) (3.90)

so that the sum of the two triangles vanishes.
The last point to check in order to be sure of the vanishing of the vertex concerns the contribu-

tions from the t-bubble diagrams. These have been defined in Eq. (8.80) and (3.81]) and their

topology is the one showed in Fig. B.Ik. These are both separately equal to zero because they

consists of a combination of 2-point functions of the form H?‘,i(p) given by

o o At {yys (L+m)YP (L +p+m) }
R |

which are also identically vanishing.

(3.91)
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P e’ | pp pd® | p'ped® | ptetetp® | p'eva?d® | g g*P
q"q*q" | pp ep® | prepid® | @' e’ | @'Y d® | g*rg™”
e p?p’ | g'p'pd® | ¢'q'p°” | a"¢'pe” | g™
q¢"'p"p°p° ¢"q"q"p°
prptg®? | pPprgct | pPprg | ptprgtr | prpg® | prpPgt
g’ | PPevger | pPatg™ | ptqrgtt | prtqtg™ | pPdPg
¢'p' g™ | g | g | pie® | ¢pd® | PP
a"q" 9" q’ gor Pqt g™ q“q" g’" q¢“g” | ¢®qPg™

Table 3.1: The 43 tensor monomials called ¥’ vap (p,q) built up from the metric tensor and the two

independent momenta p and ¢ into which a general fourth rank tensor can be expanded.

3.5.2 The computation of the (T'J4J4) correlator

We now going to address the computation of the T'J4J4 vertex, but prior to that we briefly
review the vector/vector case. As discussed in [51] and in [52] the full one-loop amplitude with
the energy momentum tensor coupled to two vector currents, I’ﬁ%}lﬁ , can be expanded on the
basis provided by the 43 monomial tensors /' vaf (p, q) listed in Tab. B.1]

43

Dl oog) = Y Ak 0%, ) 1P (p,q),
=1

(3.92)

whose form factors A;(k?,p?,¢?) are not all convergent, since the amplitude has total mass

dimension equal to 2. It has been shown in [52] that they can be divided into 3 groups:

a) A; < A; < Ay - multiplied by a product of four momenta, they have mass dimension —2
and therefore are UV finite;

b) A1z < A; < Ajg - these have mass dimension 2 since the four Lorentz indices of the

amplitude are carried by two metric tensors

c) Ay < A; < Ay3 - they appear next to a metric tensor and two momenta, have mass

dimension 0 and are divergent.

In [51] the 43 invariant amplitudes A;(k?,p?, ¢?) have been cleverly reduced to the 13 named
F;(k%,p%,¢%). A similar result is obtained in [52] using a different intermediate basis. This
reorganization of the amplitude shows conclusively that the effective action of theories with

conformal anomalies is affected by anomaly poles which contain the entire signature of the

anomaly [92].
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i 7% (p, q)

1 (k‘QgW - k:“k:”) uo‘ﬁ(p.q)

2 (k2gW — k:“k”) w? (p-q)

3 (p?g" — 4ptp”) uP(p.q)

4 (p?g" — 4pt'p”) w*? (p.q)

5 (429" — 4g"q") u*’(p.q)

6 (429" — 4g"q") w*P (p.q)

7 [p-ag™ —2(q"p” + p"q")] u*’(p.q)

8 [p-qg" —2(¢"p” + p"q”)] w*’(p.q)

9 | (p-ap™—p%¢) [p° (¢"p" +p"¢") —p - q (g% p" + g°"p")]

10| (p-qd” — *°) [¢® (¢"p” + p"q") — p- q (g™ q" + g*"q")]

11 (p-ap™ —1*¢®) [2d°¢"¢" — (g% ¢" + ¢°"¢")]

12 (p-ad”® — ¢p°) [2p°p'p” — P2 (g™ " + g*p¥)]

13| (p'¢” +p"q") g™ +p-q (g™ g + g°tg?) — g uP
—(g%p" + g% p")q* — (9°"q" + g°*q¥)p”

Table 3.2: The 13 fourth rank tensors ¢ vaf (p, q) satisfying the vector current conservation on

the external lines with momenta p and gq.

As we are going to show, a similar result holds also for the (T'J4J4) vertex. At the same
time, we are going to demonstrate the appearance only of conformal anomalies, since the mixed
anomalies cancel, and present the complete expression of this vertex.

To illustrate this point, we observe that the insertion of the non-chiral component of TH”
(represented by T' f ”) in the correlator Vss, defines one of the two subamplitudes which may
potentially generate mixed anomalies. On the other hand, it is however obvious - by a glance
at the structure of the correlator - that we could remove symmetrically the chiral matrix all
together. Therefore, the (T'J4J4) correlator can be split in two terms, the first being the

correlator with two vector currents called T'Jy Jy, while the second is an extra contribution,

proportional to the fermion mass m, denoted by 2
e (p,q) = T (9,9) + 2P (p, q). (3.93)

The explicit computation of the correlator with two vector currents I”(/V\f‘ﬁ can be borrowed from
[52], but the computation of the extra terms is very involved, due to the need to select a specific
number of tensor structures in its expansion. Notice that the decomposition in Eq. (393) is

particularly useful because shows that the vector and axial-vector cases coincide in the chiral
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limit, i.e. for Qo8 =,
As we have just mentioned above, the amplitude F’(}{f‘ﬁ can be expanded in the reduced basis

given in Tab.
13
T (p,q) = Y Fi(sis1,s2,m?) 117 (p,q), (3.94)
i=1

where the invariant amplitudes F;(s; sy, so, m2) are functions of the kinematical invariants s =
k* = (p+q)?, s1 = p?, s2 = ¢>. Their explicit expressions in the general case have been given in
[52]. In the simplest case, i.e. for an internal zero mass fermion (m = 0) and on-shell photons

on the external lines (s; = sy = 0), the only non-vanishing F;(s; s1, s2, m?) are given by

2
- 9
Fi(5,0,0,0) = -, (3.95)
2
g
F: = F - _ .
4 (s,0,0,0) 5(5,0,0,0) = — 0 3.96)
Fi(5,0,0,0) = —4F3(s,0,0,0), (3.97)
2
g S
F 0,0,0) = -— 121 —— ] =35 3.98
13,R(5, y Uy ) 14472 |: Og( M2> :|’ ( )

(with s < 0) where Fy3 is affected by charge renormalization (with a scale p). As we are going to
discuss next, Fj is the only form factor contributing to the trace anomaly in the massless case,
and contains an anomaly pole. In this sense we can say that the pole saturates the anomaly
and completely accounts for it. In [51] this 1/s terms is identified by a spectral analysis of the
correlator, while the same structure emerges form the complete expressions of the form factors
derived in [52] and presented above.

Coming instead to the new contribution Q***# appearing in Eq. (393), this can be written

as
QB (p, q) = QP (p, q) + Q4 (q,p) + P (p, q) + QP (g, p), (3.99)

where the amplitudes Q"‘,"O‘ﬁ and Q"f{;aﬁ are given by

v : At (V' (4 p,l— q) (L — d +m)y m
W) = —2n-is) [ { i 4
(3.100)
4 r o ~ m
.0 = am(-ig?) [ ot A, o0

with the V/# and W'#* defined in eqs (8.82]) and (3.83). The remaining two terms in Eq. (3.99)

are simply the Bose symmetric amplitudes obtained exchanging the indices @ and 8 and the
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momenta p and ¢ of (3100) and BI0I). The extra term Q***5 can be expanded on the basis
provided by the 43 monomial tensors I!' vaf (p, q) listed in Tab. 3]

43
QB (p.q) = Y Ei(k2,p%, ¢ m?) 1" (p,q), (3.102)
=1

where the form factors E;(k?, p?, q%, m?) are some functions of the kinematical variables and of
the mass of the fermion in the loop. This needs to be identified by a direct inspection. The
explicit computation shows that not all the 43 invariant amplitudes E;(k?, p?, ¢*, m?) are really
present in this expansion and therefore the surviving ones can be appropriately combined in a
lower number of composite tensor structures. This result can be organized in a more compact
form after introducing a new tensor basis whose elements f/* vap (p,q) (i=1,...,9) are listed in
Tab[3.3l We obtain

9
QMVOJﬁ(p, Q) = Z Ri(SaSIaSQ)mZ) f;tyaﬁ(p; q), (3103)

i=1
where the invariant amplitudes R;(s, s1,s2,m?) depend on the kinematical variables s = k? =

(p+q)?, s1 = p?, 52 = ¢° besides the fermion mass m.

Three of the nine tensors are Bose symmetric, namely,

7% (p,q) = f%(q,p),  i=1,6,9, (3.104)

while the remaining ones form three pairs related by Bose symmetry

5% (p,q) = 577 (q,p), (3.105)
1% (p,q) = L7 (q.p), (3.106)
2o (p,q) = 57 (q,p) .- (3.107)

This basis is particularly useful because only the first three of the nine tensors have a non-zero

trace
gl (p,q) = 3k*g*", (3.108)
guuféwaﬁ(pa q = g;wfzéwaﬁ(p, q) = Q(paqﬁ — pﬁqa) , (3.109)

while the remaining six tensors are traceless
G Sl (p,q) =0, i=4,5,6,7,8,9. (3.110)

At this point, the goal is to express the amplitude Q8 (p,q) in an analytical form. We start
from the evaluation of the integrals in Egs. (3.100]) and (3.I0T]), obtaining the form factors E;. At
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1% (p.q)
(kQQ;W — kuku) PR
p’q° g + prgP g™ — p¥qgPr — ptq®g®”
p2q¥ g% + pPatg? — pPar gt — pPatg®”
p’pP gt + ptpPg — pYp®gPr — prpe gt
¢ 9" + ¢“q" 9" — ¢°¢" g — P gt g™
(P'q” + ¢"p")9*" +p - q (g™ g"" + g*g" — g*Pg™")
(p2 g — 4ptp”) g*P
(%9 — 4q"q") 9P
(p-ag"” —2(¢"p" +p"q")) g*”

~.

O |0 | N ||| =W ||

Table 3.3: Basis of 9 fourth rank tensors called f/* vaf3 (p,q).

a second stage we map them into the new parameterization defined in eq. (8:103]), determining
in this way the coefficients R;. The relations between the two sets {E;}i=1,. 43 and {R;}i=1,.. 9,

for the most general external momenta are

1
Ry = @ (E20 p2 + 2F5 p-q—+ E23 q2 + 4E17 + 2E’18) ) (3'111)
Ry — B, (3.112)
Ry = Eu, (3.113)
Ry = FEsg, (3.114)
Re = Eu, (3.115)
E
Ry = 2% (3.116)
p-q
R; = L (Byp®+2E Ea3q* + 4Ey7 + 2E 2 11
= _W( 20"+ 2891 p-q+ Loz q” +4E17 + 18)_77 (3.117)
1 E
Rg = ~ o2 (Exp” +2E21p-q+ Essq” + 4E17 + 2F15) — %7 (3.118)
1 E E
Ry = o2 (Es0p® + 2B21p - q + Bag ¢* + 4E17 + 2E18) + 2p1‘8q - %, (3.119)

where all the dependence on the kinematical invariants k2, p?, ¢*> and m? appearing in the sets
R; and E; has been omitted. The explicit expressions in DRED of the form factors R; have been
collected in Appendix [A.9 and represent an important step in the computation of the (T'J4.J4)
correlator. These form factors are affected by the usual ultraviolet singularities, which in a
renormalizable theory would be removed by standard renormalization counterterms. In our case

they turn out to be proportional to 2-point functions.
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Figure 3.2: Chiral decomposition of the correlator.

Except for these possible counterterms, the main techniques and methods used in this anal-
ysis remain invariant and are of an easy application also in the case of the Standard Model.
Notice, in particular, that the main equation (3.93)) implies that the non-renormalizable con-
tributions are proportional to mass corrections contributing to 2, and the non-renormalizable
terms indeed involve correlators of two axial-vector currents, as just mentioned above. The
renormalization of the first contribution I'yy is canonical, and is attributed to the form factor

Fi3 of Eq. (8.98), which is induced by a renormalization of 2-point functions of vector currents.

Before coming to the analysis of the other vertices, in closing this section we just remark
that our analysis in the V/A basis can be rewritten completely in terms of chiral L/R currents,

since the following relations hold for nonzero m

(TdvJy) = (TJpJr)+ {(TJrJr)+ (T JrJRr) + (T JRJL), (3.120)
<TJAJA> = <TJLJL> + <TJRJR> — <TJLJR> — <TJRJL>, (3.121)
(TJada) = (TIvdv)—=2(TJrIr) + (T'JRJL)). (3.122)
(TIIk) = (Tnd) = 3 (TJT) + (TTals)), (3.123)
while
(TyJ0d1) = (TdJr) = %(TJJ> (3.124)

is valid for a vanishing fermion mass m. The formulation in terms of L /R currents is the most
convenient for the study of vertices containing trace anomalies, in the case of realistic theories
such as the Standard Model.
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3.6 Trace anomaly of the (T'J4J4) correlator

We now move to analyze the trace of the (T'J4J4) correlator. We consider generic virtualities
of the external lines and a massive fermion.

In the absence of anomalies, the naive trace of the I“Xfﬁ amplitude is simply obtained by
replacing the partial energy-momentum tensor 7, in the (T'J4.J4) correlator with its classical

trace Ty, = —mapt) and it is given by

AV (pg) = —m(ig)? / dia dy P (TG (2) 05 (y))
B o [ dll i 5 i, i
= —mg /(27.‘.)41571{1_;4_7”’7 75l_m7 75l+¢_m}+eXCh-
(3.125)

As in Eq. (3.93]) we can split the Ajﬁ y into two terms: the first, Af}@, being the classical trace
obtained from the (T'Jy Jy) correlator, whereas the second, Agﬁ , takes into account the axial

contribution to the amplitude as
AL (. 0) = AP (0. 0) + A (0. 0). (3.126)
The A{'}Q, amplitude refers to the (T'Jy Jy) correlator. It can be written in the form
A%/(P? q) = G1(s, 51,59, m?) u®®(p, q) + Ga(s, 51, 52,m*) w*?(p, q), (3.127)

where the rank-2 tensors are defined by

B_qopf (3.128)

u®(p,q) = (p-q) g° :
5 5

w(p,q) =P’ 9" + (- 9) "¢’ = "0’ - p* " ¢, (3.129)
with coefficients G;(s, s1, s2,m?) which are left to an Appendix (Appendix [A10).

The second term A%ﬁ in Eq. (B126) can be decomposed into two tensorial structures as
A (p,q) = Hi(s, 51,50, m*)g™ + Hy(s, 51,50, m%) (p"¢” — ¢°p”) (3.130)

where the functions H; are related to the invariant amplitudes R; listed in Appendix[A.9] by the

relations

3sR1(s, 51,82, m%) = Hy(s, 51,82, m?) — *—— (3.131)

2 )
T
2Rs(s, s1, 52,m2) + 2R3(s, s1, 82,m2) = Hy(s, s1, 82,m2) . (3.132)
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The analytical expressions of the off-shell H;(s, sy, 52, m?) form factors are given by

2,2
H,(s,s1,50,m?) = 92 Tr; [Dl(s,sl,mQ) + Dy(s, 59, m?) — 2 By(s%, m?)
s
+ (s — 4m?) Co (s, 51, 52, mQ)} , (3.133)
g2 m?
Hy(s,s1,50,m?) = =, [(s + 81 — 82) D1(s,51,m?) + (5 — 51 + 89) Da(s, 52, m?)
+5s(s—s1 —52)C0(5,51,82,m2)], (3.134)

where 0 = 52 — 2(s1 + s2)s + (51 — s2)? and the scalar integrals By(s?,m?), Di(s,s1, m?),

Dy (s, s1,m?), Co(s, 51,52, m?) for generic virtualities and masses are defined in Appendix [A2

Tracing the Fffffﬁ correlator we obtain the relation

2 2,,2

g g'm
9T (0, 0) = A4 (0, 0) — @uaﬁ(p, q) — g°h, (3.135)

2
where the first term on the right-hand-sice is the trace anomaly appearing already in the
(T JyJy) correlator. The second term, proportional to m?, comes from the axial extra term
QrveB and denotes an additional explicit breaking related to the fermion mass. In particular,
the anomaly —é’%uo‘ﬁ is carried by the form factor F}, whose expression is given in [52], whereas
the mass correction —g?m?/n2g®? is induced by R;. This additional contribution is gauge vari-
ant and its origin can be traced back to the breaking of the U(1)4 gauge symmetry due to the
fermion mass term.

In the conformal limit the anomalous trace equation (3.I35]) takes a simpler form because, as we
have already discussed in the previous sections, the (T'J4J4) correlator reduces to the (T'Jy Jy)

and we obtain

2

v Vi g
9 T8 (p,q) = g T (p, q) = —WUO‘B (p, q). (3.136)

We give in Appendix [A.9] the general expression of the form factors R; (i = 1,...,9), which,
combined with the results of the 13 form factors F;, characterize completely the contributions to
the effective action of a vector/axial-vector abelian theory mediated by the conformal anomaly.

Concerning the connection between the anomalous contribution and the g function of the
theory, also in this case remain valid our previous conclusions, given in [51], [52]. Specifically, we
just recall, at this point, that in the (mass independent) regularization scheme M S scheme, the
e? term in the trace is directly related to the 3 function in this scheme since 3(g) = ¢%/(1272).
In particular, the form factor Fis is affected by renormalization via the electric charge [51]

[52]. We close this section with few remarks concerning the structure of the effective action for
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Figure 3.3: Polar form of the correlator for external on-shell lines: (a) the contribution to the spectral

density from the collinear on-shell region of the anomaly loop; (b) the pole as virtual exchange in T'*™°™,

these types of theories, which can be identified from the variational integration of the anomaly
equation [83]. This approach is, in a way, complementary to the strategy that we follow, based
on a direct computation. As shown in [51] there is perfect agreement between the operatorial
structure of variational solution, which also exhibits a 1/0 effective interaction, and the anomaly
pole found in our analysis. In the variational solution of [83], the 1/s massless exchange appears
after a linearization of the same solution around the flat spacetime limit, as pointed out in [51].

In fact, one obtains in the weak gravitational field limit
Sanoml|g, A] = —% / d*zy/—g / d'a'\/—g RO, L, [Fup ), (3.137)
(c = —g¢?/(247?)). In this case
R =007 ' —Oh,  h =y, " (3.138)

is the linearized scalar curvature. As in the case of the TJJ correlator [51] the anomalous

contribution to the trace is all contained in the (conformal) anomaly pole (Fig. B3 b)

o wtion 02 Tamom(0) g 1
Fuuaﬁ — d4 / d4 ip-x+iq-y anom — - MV]CQ — kMEY af
anom(p’ Q) / € ye 5Aa(-%')514ﬁ(y) 187‘(’2 /{:2 (g ) U (p, Q) ’
(3.139)
where [51]
Th . (2) = % (g0 —0"o"), / d'a' 0}, [FaﬁFﬂ " (3.140)

This effective action is trivially obtained from the tensor structure Fit} vafs , present in the

expansion of T***% and accounts for the full trace of the correlator in the massless fermion limit,
as shown in Eq. (B.136)).
3.6.1 Infrared couplings of the anomaly poles and UV behaviour

Before coming to conclusions, we pause here in order to comment on these results and on their

meaning on a wider perspective.
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We recall that a similar analysis in the QED case [51], [52] also manifests such pole singu-
larities, which appear to be rather generic in anomaly amplitudes. They can be attributed,
diagrammatically, to specific configurations of the loop momenta, as illustrated in Fig. (B.3)).
The diagram in this figure describes a massive external line decaying into two massless interme-
diate fermions, in turn decaying into two on-shell axial (or vector) lines (the equivalence between

the axial and the vector case in the massless limit is the content of Eq. B.93 (2 — 0)).

The pole is detected by a computation of the spectral density (p(s)), which turns out to be
proportional to a delta-function (p(s) ~ d(s)). p(s) can be found just by evaluating the s-channel
cut of the anomalous graph using Cutkovsky rules. This approach, as discussed before [511 [52],
allows to identify the anomaly poles which are of infrared origin (s ~ 0). Other contributions,
also characterized by form factors of the form 1/s, as we have shown, appear in the anomalous
amplitude when one performs an off-shell computation of the anomalous correlator. These
contributions describe the UV behaviour of an anomalous amplitude (s — oo) and as such they
are usually referred to as “ultraviolet poles”, although the name is slightly misleading, being
only generated after an asymptotic expansion of the massive correlator. In fact, the residue of
the correlator as s — 0 is indeed vanishing in the massive fermion case [52], showing that no
pole is coupled in this limit. Apart from this important detail, it is however correct to retain
their appearance in a perturbative computation - even in the UV region - as a manifestation of
the same phenomenon of the trace anomaly. In the case of the chiral anomaly the situation is

identical.

These computations [52] show that the asymptotic expansion - at large energy - of the
regulated graphs responsible for the trace anomaly can be accompanied by corrections which
are suppressed as m?/s? (as s > m?) in the high energy limit, where m is the mass of the
fermion in the virtual loop. This organization of the effective action in the UV region allows to
recover the ordinary radiative breaking of scale invariance at high energy, being mass corrections
negligible in this regime. The use of a mass-independent regularization scheme, such as DRED
or DR, is perfectly well taylored in this case, since the separation between pole term and mass
corrections involves an asymptotic expansion (at high energy). In particular the § function

computed in such schemes consistently accounts for the UV running of the coupling [52].

We have described this point at length in the case of the gauge anomaly in [40], to which
we refer for more details. This implies that the anomaly is saturated by a pole in very different

kinematical regions, in agreement with previous analysis performed in chiral theories [40, [42].

These conclusions show that the description of the effective action in terms of two auxiliary
fields - which are introduced in order to recover the local form of the Lagrangian - is significant

both in massless theories [51l, [96] (for instance on null surfaces, i.e. s =0), but also in the high
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energy domain, for large values of s. We refer to [51], [96] for a discussion of the auxiliary field
formulation. Similar arguments have been presented in [30, 40, 24] for the axion pole in the
chiral coupling of anomalous U(1)’s (in the AVV vertex), proving that these auxiliary degrees

of freedom are the most significant signature of chiral and conformal anomalies.

3.7 Conclusions

We have presented in this chapter an off-shell computation of the correlator of the energy
momentum tensor and two vector/axial-vector currents in a chiral theory with an anomalous
fermion spectrum, useful for the study of the coupling of anomalous U(1)’s to gravity. These
interactions are mediated by the trace anomaly. Starting directly from the functional integral,
we have derived the Ward identities for the corresponding vertices. These apply, in general, to
any correlator of similar type. All the computations have been performed using DRED, and we
have shown the cancellation of mixed chiral/conformal anomalies for these types of vertices.

Our computation can be viewed as the generalization of the classical analysis of the AVV
diagram to these new vertices and as the extension of the studies contained in the first and
second chapter. We have allowed explicit mass breaking terms to investigate the most general
form of the Ward identities for these correlators, that are of crucial importance for the more
general analysis in the Standard Model case.

Obviously, the inclusion of this study into a theory with spontaneous symmetry breaking
and Yukawa couplings, such as the Standard Model, would allow to relate the explicit chiral
symmetry breaking terms (mass terms) to the extra interactions of the theory, in particular to
the Higgs sector.

We have also shown that, similarly to the case of a vector-like theory studied in the second
chapter, also in the case of a mixed vector/axial-vector theory, the effective action obtained by
coupling gravity to the gauge currents is characterized by effective massless degrees of freedom.
An extension of these analyses to the QCD case and then to the coupling of gravity to non-

abelian gauge currents will be presented in next chapter.






Chapter 4

Trace Anomaly, Massless Scalars and
the Gravitational Coupling of QCD

4.1 Introduction

The study of the effective action describing the coupling of a gauge theory to gravity via the
trace anomaly [97] is an important aspect of quantum field theory, which is not deprived also of
direct phenomenological implications. This coupling is mediated by the correlator involving the
energy momentum tensor together with two vector currents (or T'JJ vertex), which describes the
interaction of a graviton with two photons or two gluons in QED and QCD, respectively. At the
same time, the vertex has been at the center of an interesting case study of the renormalization
properties of composite operators in Yang Mills theories [98], in the context of an explicit check
of the violation of the Joglekar-Lee theorem [99] on the vanishing of S-matrix elements of BRST
exact operators. In this second case it was computed on-shell, but only at zero momentum
transfer. In this chapter we are going to extend this computation and investigate the presence
of massless singularities in its expression. These contribute to the trace anomaly and play a
leading role in fixing the structure of the effective action that couples QCD to gravity. The
analysis of [98], which predates our study, unfortunately does not resolve the issue about the
presence or the absence of the anomaly pole in the anomalous effective action of QCD because
of the restricted kinematics involved in that analysis of the T'JJ vertex, and for this reason we
have to proceed with a complete re-computation.

As we have already stressed, anomaly poles characterize quite universally (gravitational
and chiral) anomalous effective actions, in the sense that account for their anomalies. They
have been identified and discussed in the abelian case both by a dispersive analysis [51] and

by a direct explicit computation of the related anomalous Feynman amplitudes quite recently

83
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[52, 92]. Extensive analysis in the case of chiral gauge theory for anomalous U(1) models have
shown the close parallel between solutions of the Ward identities, the coupling of the poles in

the ultraviolet and in the infrared region and the gravity case [24] 40)].

It is therefore important to check whether similar contributions appear also in non-abelian
gauge theories coupled to gravity. We recall that the same pole structure is found in the vari-
ational solution of the expression of the trace anomaly, where one tries to identify an action
whose energy momentum tensor reproduces the trace anomaly. This action, found by Riegert
long ago [83], is nonlocal and involves the Green’s function of a quartic (conformally covariant)
operator. The action describes the structure of the singularities of anomalous correlators with
any number of insertions of the energy momentum tensor and two photons (7".J.J), which are
expected to correspond both to single and to higher order poles, for a sufficiently high n. For
obvious reasons, explicit checks of this effective action using perturbation theory - as the number
of external graviton lines grows - becomes increasingly difficult to handle. The T'J.J correlator
is the first (leading) contribution to this infinite sum of correlators in which the anomalous

gravitational effective action is expanded.

Given the presence of a quartic operator in Riegert’s nonlocal action, the proof that this
action contains a single pole to lowest order (in the TJJ vertex), once expanded around flat
space, has been given in [51] by Giannotti and Mottola, and provides the basis for the discussion
of the anomalous effective action in terms of massless auxiliary fields contained in their work.
The auxiliary fields are introduced in order to rewrite the action in a local form. We show by an
explicit computation of the lowest order vertex that Riegert’s action is indeed consistent in the
non-abelian case as well, since its pole structure is recovered in perturbation theory, similarly to
the abelian case. Therefore, one can reasonably conjecture the presence of anomaly poles in each
gauge invariant subsets of the diagrammatic expansion, as the computation for the non-abelian
TJJ shows (here for the case of the single pole). In particular, this is in agreement with the
result of [51], where it is shown that, after expanding around flat spacetime, the quartic operator
in Riegert’s action becomes a simple 1/00 nonlocal interaction (for the 7°JJ contribution), i.e.
a pole term. We remark that the identification of a pole term in this and in others similar
correlators, as we are going to emphasize in the following sections (at least in the case of QED
and for the sector of QCD mediated by quark loops), requires an extrapolation to the massless
fermion limit, and for this reason its interpretation as a long-range dynamical effect in the
gravitational effective action requires some caution. In QCD, however, there is an extra sector
that contributes to the same correlator, entirely due to virtual loops of gluons in the anomaly
graphs, which remains unaffected by the massless fermion limit. The appearance of such a

singularity in the effective action, however, does not necessarily imply that its contribution
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survives in the physical S-matrix. We will also establish the appearance of other singularities in

the trace-free form factors which, obviously, are not part of Riegert’s action.

We will comment at the end of this chapter on the possible implications of these results
and on some recent proposals to link this type of behaviour [100, 10I] to cosmology and to
the dark energy problem. We also remark that, in general, the coefficient in front of the trace
anomaly, for a given theory, can be computed in terms of its massless fields content, and as such
it is well known. However, the structure of the effective action and the characterization of its
fundamental form factors at nonzero momentum transfer and its complete analytical structure
is a novel result. In this respect, the classification of all the relevant tensor structures which
appear in the computation of this correlator is rather involved and has been performed in the
completely off-shell case. We remark that the complexity of the final expression, in the off-
shell case, prevents us from presenting its form. For this reason we will give only the on-shell
version of the complete vertex, which is expressed, as we have mentioned, only in terms of three

fundamental form factors.

Concerning the phenomenological relevance of this vertex, we just mention that it plays an
essential role in the study of NLO corrections to processes involving a graviton exchange. In
fact, in theories with extra dimension, where a low-gravity scale and the presence of Kaluza-
Klein excitations may enhance the rates for processes mediated by gluons and gravitons, the
vertex appears in the hard scattering of the corresponding factorization formula [102] and has
been computed in dimensional regularization. However, to our knowledge, in all cases, there
has been no separate discussion of the general structure of the vertex (i.e. as an amplitude) nor
of its Ward identities, which, in principle, would require a more careful investigation because
of the trace anomaly. Anomalous amplitudes, in fact, are defined by the fundamental Ward
identities imposed on them, that we are going to derive from general principles. We cover this
gap and show, that both dimensional regularization and dimensional reduction reproduce the
correct Ward identity satisfied by this vertex, showing at the same time that the use of these
regularizations is indeed appropriate. Results for this vertex will be given only in the on-shell
case, since in this case the result can be expressed in terms of just three form factors. We have
computed also the off-shell effective action, but its expression is rather lengthy and will not
be discussed here, since it is gauge dependent and of less significance compared to the on-shell
result. Most of our work is concerned with a technical derivation of the leading contribution
to the anomalous effective action of QCD coupled to gravity. We have summarized in our
conclusions a brief discussion of the relevance of this study in the ongoing attempt to link the
trace anomaly and QCD to a possible alternative solution of the problem of dark energy, using

this effective action as an intermediate step [100] [1T01].
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4.2 Anomalous effective actions and their variational solutions

In this section we briefly review the topic of the variational solutions of anomalous effective
actions, and on the local formulations of these using auxiliary fields.

One well known result of quantum gravity is that the effective action of the trace anomaly
is given by a nonlocal form when expressed in terms of the spacetime metric g,,,. This was
obtained [83] from a variational solution of the equation for the trace anomaly [97]

(4.1)

2
— / //
TW=bF +b (E— §DR> +V'OR+ cFOm e

(see also [103] [104] for an analysis of the gravitational sector) which takes in D = 4 spacetime

dimensions the form

Sanom[g, A] = (42)
é/d‘lx\/—g/d‘lx/\/—g’ (E - §DR> A (z,2) [sz + 0 (E - §DR> + 2cFWF‘“’]

1./

Here, the parameters b and b’ are the coefficients of the Weyl tensor squared,

R2
F = CupCM" = Ry R — 2R, R™ + = (4.3)

and the Euler density
E ="Raup RN = Ry, R?? — 4Ry, R + R? (4.4)

respectively of the trace anomaly in a general background curved spacetime. Notice that the
last term in ([£.2)) is the contribution generated in the presence of a background gauge field, with
coefficient ¢. For a Dirac fermion in a classical gravitational (g,,) and abelian (A4,) background,
the values of the coefficients are b = 1/(32072), and V' = —11/(576072), and ¢ = —e?/(24 72),
with e being the electric charge of the fermion. One crucial feature of this solution is its origin,
which is purely variational. Obtained by Riegert long ago, the action was derived by solving the
variational equation satisfied by the trace of the energy momentum tensor. Azl(az, x') denotes
the Green’s function inverse of the conformally covariant differential operator of fourth order,

defined by
v v 2 v 2 v 1 2
Ay=V, VIV 2R — ZRg™ |V, = P 4 2RV, Y, + S(V'R)V, — ZRO.  (45)

Given a solution of a variational equation, it is mandatory to check whether the solution is
indeed justified by a perturbative computation. One specific feature of these solutions is the

presence of anomaly poles. In the previous chapters we have elaborated on the significance of
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Figure 4.1: The diagrams describing the anomaly pole in the dispersive approach. Fig. (a) depicts the
singularity of the spectral density p(s) as a spacetime process. Fig. (b) describes the anomalous pole

part of the interaction via the exchange of a pole.

these interactions, extracted from a direct perturbative computation, by a painstaking analysis
of anomaly graphs under general kinematical conditions, and not just by a dispersive approach.
The dispersive approach allows to connect this behaviour of the spectral density to a very specific

infrared configuration.

4.2.1 The kinematics of an anomaly pole

In our conventions we will denote with p and ¢ the outgoing momenta of the two photons/gluons
and with k the incoming momentum of the graviton. s = (p + ¢)? denotes the invariant mass
of the external graviton line. A computation of the spectral density p(s) of the T'JJ amplitude
in QED shows that this takes the form p(s) ~ d(s). The configuration responsible for the
appearance of a pole is illustrated in Fig. [4.1] (a). It describes the decay of a graviton line into
two on-shell photons. The decay is mediated by a collinear and on-shell fermion-antifermion pair
and can be interpreted as a spacetime process. The corresponding interaction vertex, described
as the exchange of a pole, is instead shown in Fig. [41] (b). The actual process depicted in
Fig. 1] (a) is obtained at diagrammatic level by setting on-shell the fermion/antifermion pair
attached to the graviton line. This configuration, present in the spectral density of the diagram
only for on-shell photons, generates a pole contribution which can be shown to be coupled in
the infrared. This means that if we compute the residue of the amplitude for s — 0 we find that
it is non-vanishing. In the general expression of the vertex, a similar configuration is extracted
in the high energy limit, not by a dispersive analysis, but by an explicit (off-shell) computation
of the diagrams. Clearly, the pole, in this second case, has a vanishing residue as s — 0, but is
nevertheless a signature of the anomaly at high energy. Either for virtual or for real photons,
a direct computation of the vertex allows to extract the pole term, without having to rely on a
dispersive analysis. This point has been illustrated in our previous computations of the chiral

anomaly vertex [40] and in the computation of the TJJ vertex for QED [52]. The identification
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of this singularity in the case of QCD is in perfect agreement with those previous results.

4.2.2 The single pole from Ay

In the case of the gravitational effective action, the appearance of the inverse of A4 operator
seems to be hard to reconcile with the simpler 1/ interaction which is predicted by the pertur-
bative analysis of the T'JJ correlator, which manifests a single anomaly pole. In [51], Giannotti
and Mottola show step by step how a single pole emerges from this quartic operator, by using the
auxiliary field formulation of the same effective action. Clearly, more computations are needed
in order to show that the nonlocal effective action consistently does justice of all the poles (of
second order and higher) which should be present in the perturbative expansion. Obviously, the
perturbative computations - being either based on dispersion theory or on complete evaluations
of the vertices, as in our case - become rather hard as we increase the number of external lines of
the corresponding perturbative correlator. For instance, this check becomes almost impossible
for correlators of the form TTT"T" or higher, due to the appearance of a very large number of
tensor structure in the reduction to scalar form of the tensor Feynman integrals. In the case of
T'JJ the computation is still manageable, since it does not require Feynman integrals beyond
rank-4.

Expanding around flat space, the local formulation of Riegert’s action, as shown in [51] 96],

can be rewritten in the form

Sanom[ga A] - _% /d4x\/ —g/d4x/ V _gl Rm D;i/ [FaﬁFaﬁ]a:’, (4'6)

which is valid to first order in the fluctuation of the metric around a flat background, denoted

as hyy
Juv = NMuv + Khw/, Kk =+/1671Gy (47)

with G being the 4-dimensional Newton’s constant. The formulation in terms of auxiliary

fields of this axion gives

Sumomly Asip ') = [ do /=g |00 = G0+ §FaaF" (4.

where ¢ and v are the auxiliary scalar fields. They satisfy the equations

P =009, (4.9)
D¢':§ g0 (4.10)
Op=_1 (4.11)
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In order to make contact with the 7T'JJ amplitude, one needs the expression of the energy
momentum extracted from ([.8) to leading order in hj,, or, equivalently, from (&6]) that can be
shown to take the form

Tho(2) = 5 (90— 00, / a'' 2L, [Fag P

anom

(4.12)

:Bl

Notice that Thnom is the expression of the energy momentum tensor of the theory in the back-
ground of the gravitational and gauge fields. We recall, in fact, that in the QED case, for
instance, the energy momentum tensor of the theory is split into the free fermionic part 7%, the

interacting fermion-photon part T, and the photon contribution 7}, which are given by

T = —ipy 19 + g (ihy Oaip — mpi)), (4.13)
T = —eJWAY) 4 egh M A, (4.14)
and
1
T:]: _ F;MFVA _ ZngFAPF)\p7 (4.15)

where the current is defined as

JH(z) = Y(a)d(z). (4.16)
The connected components of T'JJ can be obtained directly from the quantum average of
T, defined as the sum of the fermion contribution and its interaction part with the photon field,

Y =18+ Ty, . (4.17)

In the formalism of the background fields, the T'JJ correlator then can be extracted from

the defining functional integral

Ty (2)a = / DYDY T} () ¢ St FAw T

_ <T1§W eifd4:v J-A(:r)> (418)

via two functional derivatives respect to the background field A, and generates the effective

action ) .
(15" (2)) a

T (.
59 = S @0 As(y)

= vl | puvaf (4.19)

anom
A=0

We have separated in ([@I9) the pole contribution Tgpem from the rest of the amplitude (T'),
which does not contribute to the trace part. Notice that I'yom, derived from either the classical

generating functional (£12]) given by Riegert’s action or from the direct perturbative expansion
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of ([AI9), should nevertheless coincide, for the pole term not to be a spurious artifact of the
variational solution. In particular, a computation performed in QED shows that the pole term

extracted from T,0m via functional differentiation

o wotion 0> Timom (0) e 1
Fuuaﬁ _ d4 / d4 ip-x+iq-y anom _ - ;u/kZ — kMEY af
tmom (D> @) / x ye (1) Asy) ~ 182 R (9 ) u®’(p, q)
(4.20)
with
u(p,q) = (p-q) 9" — ¢’ (4.21)

indeed coincides with the result of the perturbative expansion, as defined from the first term on

the rhs of (4.19). Thus, the entire contribution to the anomaly is extracted form Tgom as

2
G T = cFogF® = — S _F, ;5P (4.22)

anom 247‘1’2 Q

As we have already mentioned, the full action ([A2]), varied several times with respect to the
background metric g,,, and/or the background gauge fields A, gives those parts of the correlators
of higher order, such as (I'TT...JJ) and (T'TT...), which contribute to the trace anomaly. In
particular, the anomalous contributions of the T JJ’s vertices are obtained by varying the local

action both respect to the metric and to the gauge fields.

4.3 The energy momentum tensor and the Ward identities

Moving to the QCD case, we introduce the definition of the QCD energy-momentum tensor,

which is given by

a Q, 1 a N\o a 1 a loa a a o2 a
Tw = —gwlqcp — Fj,F)7 — EgMVap(Apa Ag) + E(Auau(a Ag) + AL0, (97 Ag))
[ - . a Aa AR . a Aa " - . a Aa
+ 2 [P(By —igT A (D, +igT ALt + B (D — igT* A
— E(gu + igTaAZ)%Q/)] + 0, @ (Ow" — gfabcA,‘iwb) + 0,0 (Ow” — gf“bcAZwb),
(4.23)
where Fy, is the non-abelian field strength of the gauge field A

Ff, = 0,A% — 0,A% + gf** Ab A (4.24)

and we have denoted with w® the Faddeev-Popov ghosts and with w® the antighosts, while £ is the

gauge-fixing parameter. The T%’s are the gauge group generators in the fermion representation
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and f¢ are the antisymmetric structure constants. For later use, it is convenient to isolate the

gauge-fixing and ghost dependent contributions from the entire tensor

L a a a 1 1 a a
TS = ¢ [A20,(0- A%) + A0, (0 - A")] — g9 (0 A)?+07(A50- A)| , (4.25)
Tgl/} — 8 aDabwb + 8, aDabwb _guyapwaDab b (426)

The coupling of QCD to gravity in the weak gravitational field limit is given by the interaction

Lagrangian
Lint = L R 4.27
int - 5 K e ( . )

Notice that 7, as defined in Eq. (£.23)) is symmetric, while traceless for a massless theory. The
symmetric expression can be easily found as suggested in [105], by coupling the theory to gravity
and then defining it via a functional derivative with respect to the metric, recovering (£23]) in
the flat spacetime case.

The conservation equation of the energy-momentum tensor takes the following form off-shell
[106], 107]

6S 6S 6S 6S
'uTV = —w; 0 v v v VAa
Pl = =g0eb =i b 50 (G dmuy) 0k
LOS\  6S . . 59
+ 8;,, <Al, 6AZ> — (Sw—a&,w — 8,,w S0 (428)

where 0, = i['yu,'yy]. It is indeed conserved by using the equations of motion of the ghost,
antighost and fermion/antifermion fields. The off-shell relation is particularly useful, since it can
be inserted into the functional integral in order to derive some of the Ward identities satisfied
by the correlator. In fact, the implications of the conservation of the energy-momentum tensor
on the Green’s functions can be exploited through the generating functional, obviously defined

as
Z[J7n7ﬁ7X7X7 /DAD¢D¢DWDW exp{ /d x([,—l—J AH
R+ P + Xw + DX + h T) } (4.29)

where L is the standard QCD action and we have added the coupling of the energy-momentum
tensor of the theory to the background gravitational field h,,, which is the typical expression
needed in the study of QCD coupled to gravity with a linear deviation from the flat metric. We
have denoted with J, 7,1, x, X the sources of the gauge field A (J), the source of the fermion and
antifermion fields (77, 7) and of the ghost and antighost fields (, x) respectively. The generating
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functional W of the connected Green’s functions is, as usual, denoted by

s = = ZJ7n7ﬁ7X7X7h
expi WI[J,n,7,x, X, h| = Z[[O 0000 0]] (4.30)

(normalized to the vacuum functional) and the effective action, defined as the generating func-
tional I' of the 1-particle irreducible and truncated amplitudes. This is obviously obtained from
W by a Legendre transformation respect to all the sources, except, in our case, hy,, which is

taken as a background external field

D[ Ac, Ve, e, @ey wey h] = W, m, 1, X, X, h) — / d*z (J, A + e + Pen + Xwe + @ex) - (4.31)

The source fields are eliminated from the right hand side of Eq. (£31]) inverting the relations

oW oW W oW W

AM:—a T;Z) = - T We = ——), We = —— (432)
<, < on T op oy oy
so that the functional derivatives of the effective action I' with respect to its independent vari-
ables are
or or or or or
_:_J — = —n — = — = —Y = — 433
6A/gf 123 6¢C 7, 51/16 7, 6(4)6 X5 6(“—)0 X5 ( )
and for the source h,, we have instead
or ow
Ohyy — Ohy,

The conservation of the energy-momentum tensor summarized in Eq. ([£28]) in terms of classical
fields, can be re-expressed in a functional form by a differentiation of W with respect to h,, and

the use of Eq. ([4.28)) under the functional integral. We obtain

oW oW oW 1 oW oW
= 7 - R S| L -
8# 5huy 70y 57 + 0, o1 n 28 (770;111 57 o1 J;u/’?)
oW oW oW oW
y—dJu — ~—Jv X0y —— v ) 4.
+ (95JMJH (9“<5JMJ>+X6 oy +0 5XX (4.35)

and finally, for the one particle irreducible generating functional, this gives

5T 5T 6T 1. [T T
0y—— = ——0"Y, — thp— + =0 BV oy, — oo™ —
b 5ol Ve gt “(6%“ Ve m e wc)
5T ST\ T 5T
VAR 12 v _ v A -
P Aesar T9 (AC 6Aé‘> Suo) We T I e (4.36)

obtained from Eq. ([@35]) with the help of Eqs. (£32]- A34)). We summarize below the relevant

Ward identities that can be used in order to fix the expression of the correlator.
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e Single derivative general Ward identity
The Ward identities describing the conservation of the energy-momentum tensor for the
one-particle irreducible Green’s functions with an insertion of 7),, can be obtained from
the functional equation (436l by taking functional derivatives with respect to the classical
fields. For example, the Ward identity for the graviton - gluon gluon vertex is obtained
by differentiating Eq. (436]) with respect to A%, (1) and AI;B(:UQ) and then setting all the

external fields to zero

(9“<TW(m)AZ(ml)A%(xg»tmnc = -0, 6%z, — ) D;é(xg, z) — 9, 6*(zg — 2) D;ﬁl (1, )

+ 0 (ga 0" (21 — ) Dy (w2,2) + g3, (w2 — 2) D} (21, ))

(4.37)
where Dgﬁl (21, x2) is the inverse gluon propagator defined as
D1, 22) = (Aa()As(22) o (439
ap\T1,22) = al\T1 T2) ) trunc = .
g g 542 (21)6 A (22)

and where we have omitted, for simplicity, both the colour indices and the symbol of the

T-product. The first Ward identity (437) becomes

(T (k) Aa(0) A5(@))trune = auDayi (9)9p0 + PuD3, (0)9er — 0Dy (p) — D5 (4)
(4.39)

e Trace Ward identity at zero momentum transfer

It is possible to extract a Ward identity for the trace of the energy-momentum tensor for
the same correlation function using just Eq. (£39). In fact, differentiating it with respect
to py (or g,) and then evaluating the resulting expression at zero momentum transfer

(p = —q) we obtain the Ward identity in d spacetime dimensions

(T3 (0)Aa(p)Ag(—P))trunc = (2 —d+p- a%) D_;(p) (4.40)

where the number 2 counts the number of external gluon lines. For d = 4 and using the

transversality of the one-particle irreducible self-energy, namely

D_5(p) = (0°gap — Pagp)L(p?), (4.41)

the Ward identity in Eq. (£40]) simplifies to

<T;7(0)Aa (p)Aﬁ(_p»trunc = 2])2 (p2gozﬁ - paQB)j—]g(p2)' (4'42)
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The trace Ward identity in Eq. ([£40) at zero momentum transfer can also be explicitly
related to the § function and the anomalous dimensions of the renormalized theory. These
enter through the renormalization group equation for the two-point function of the gluon.

Defining the beta function and the anomalous dimensions as

dg 0 om
B(g) Fm 7(9) Mo 108V mym(g) = p o (4.43)
and denoting with Z 4 the wave function renormalization constant of the gluon field, with
g the renormalized coupling, and with m the renormalized mass, the trace Ward identity

can be related to these functions by the relation

0

(T4/(0)Aa(p) As(=p))trunc = 6(9)3—9 —2v(g) + m(vm(9) — 1)% D_j(p).  (4.44)

e Two-derivatives Ward identity via BRST symmetry

We can exploit the BRST symmetry of the gauge-fixed lagrangian in order to derive some
generalized Ward (Slavnov-Taylor) identities. We start by computing the BRST variation of the

energy-momentum tensor, which is given by

§AS = ADMW, (4.45)
ow® = —%g)\f“bcwbwc, (4.46)
—a 1 a

B = (0" A (4.47)
0 = iglwt, (4.48)
) = —igt I, (4.49)

where A is an infinitesimal Grassmann parameter.

A careful analysis of the energy-momentum tensor presented in Eq. (£23]) shows that the
fermionic and the gauge part are gauge invariant and therefore invariant also under BRST.
Instead the gauge-fixing and the ghost contributions must be studied in more detail. Using the

transformation equations (£45) and (@47 in (Z26]) one can prove the two identities

a —a a —a 1 as—a a —a
NI = —AL0.06" — 40,66 + gy | 50 - A"0E" + AGDP66" | (4.50)

ATY) = —0,@"6AL — 0,0 0 A} + g, 0’ D 6 AL, (4.51)

which show that the ghost and the gauge-fixing parts of the energy-momentum tensor (times the

anticommuting factor \) can be written as an appropriate BRST variation of ghost/antighost
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and gauge contributions. Their sum, instead, can be expressed as the BRST variation of a

certain operator plus an extra term which vanishes when using the ghost equations of motion
1
MNTgh ) = [—%w“Aﬁ — 0" AL+ gy (Agapwa +50- A%ﬂ)]
L, b, b
+ G A0 DW, (4.52)

which shows explicitly the structure of the gauge-variant terms in the energy-momentum tensor.
Using the nilpotency of the BRST operator (62 = 0), the BRST variation of T, is given by

6T = 0(T%) +T9)) = 2 [A;ayaﬂpgbwb + A%0,0° DS’ — g,,07 (AL0° D) |, (4.53)

where it is straightforward to recognize the equation of motion of the ghost field on its right-hand
side. Using this last relation, we are able to derive some constraints on the Green’s functions
involving insertions of the energy-momentum tensor. In particular, we are interested in some
identities satisfied by the correlator <TH,,A3A%> in order to define it unambiguously. For this
purpose, it is convenient to choose an appropriate Green’s function, in our case this is given by

(T,,0*A%&), and then exploit its BRST invariance to obtain

§(T 0% A%&YY = (6T, 0% A%&") + N(T),, 0% D2we’) — §<TwaaAgaﬁAbﬂ> =0, (4.54)

where the first two correlators, built with operators proportional to the equations of motion,
contribute only with disconnected amplitudes, that are not part of the one-particle irreducible

vertex function. From Eq. (£54]) we obtain the identity

02,09 (Tp () A% (21) A%(22)) trune = 0, (4.55)

1 -x2

which in momentum space becomes

paqﬁ<Tﬂu(k)Ag(p)A%(Q)>trunc =0. (4'56)

A subtlety in these types of derivations concerns the role played by the commutators, which are
generated because of the T-product and can be ignored only if they vanish. In general, in fact,
the derivatives are naively taken out of the correlator, in order to arrive at Eq. (£356]) and this
can generate an error. In this case, due to the presence of an energy momentum tensor, the
evaluation of these terms is rather involved. For this reason one needs to perform an explicit
check of Eq. (4350]) to ensure the consistency of the formal result in a suitable regularization
scheme. As we are going to show in the next sections, these three Ward identities turn out to

be satisfied in dimensional regularization.
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Figure 4.2: The fermionic contributions with a graviton h,, in the initial state and two gluons A%, A%

in the final state.

4.4 The perturbative expansion

The perturbative expansion is obtained by taking into account all the diagrams depicted in
Figs. 2] 4.3l [4.4] where an incoming graviton appears in the initial state and two gluons with
momenta p and g characterize the final state. The different contributions to the total amplitude
are identified by the nature of the internal lines and are computed with the aid of the Feynman
rules defined in Appendix [A.T1l Each amplitude is denoted by I, with a superscript in square
brackets indicating the figure of the corresponding diagram.

The contributions with a massive fermion running in the loop are depicted in Fig. [£2} for
the triangle in Fig. 4.2k we obtain

4

K [2a] ab K o bra d*l
A o - _= T L.
19 pwap (P, q) 59 tr( )/ (2m)*

AT {V;:u(l —q,l +p)[ - ;_ m’Yﬁl _1m7al +][$1_ m}
(4.57)

where the color factor is given by tr(T°T%) = %5‘”’; the diagram in Fig. L2 contributes as

4
K _[2c]ab K o arrb d=l , 1 1
—i=T = ——g tr(T"T tr ¢ W 4.58
Z2 praf (p7Q) 29 1“( )/(271_)4 I‘{ uua/l_g_mVﬁ/l_m ’ ( )

with the vertices V};, (I —g¢,l+p) and W}, defined in Appendix[A.T1l Egs. (A.138]) and (A.141)
respectively. The remaining diagrams in Fig. are obtained by exchanging a < 3 and p < ¢

. K [2b] ab . K _[2a]ab
_Zgr,ﬂyié (p,q) = —Z§FLJ’£ (P,Q)‘O“_) 5 (4.59)
pP=q
. K [2d] ab . K [2c]ab
—15%1; (pg) = —sziig @9, (4.60)
p—q

Moving to the gauge sector we find the four contributions in Fig. 3} the first one with a
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Figure 4.3: The gauge contributions with a graviton h,, in the initial state and two gluons A%, A% in
the final state.

triangular topology is given by

4
K [3a]ab _ K 92 ade pbde d*l 1 Ie.
— 15 F“yaﬁ (p7 q) - _59 f f / (27’(’)4 l2 (l +p)2 (l _ q)2 Vﬂy‘%‘g.(l —q, —1 —p) X

Vrgaoz(_lJ +p, _p) Vp?;—ﬁ(_l +q, l, —Q) s (461)

where the color factor is fed€ fbde = C'4 §9. Those in Figs. @3b and @3k, containing gluon loops
attached to the graviton vertex, are called “t-bubbles” and can be obtained one from the other

by the exchange of a « 8 and p < ¢. The first “t-bubble” is given by

G
— i pBRleb, gy = _lngf“defbde/ Al Vipas(=L1 =P, =) Voo (k. —p, =L + p)
2 mwal M 22 (2m)4 12(1—p)?

which is multiplied by an additional symmetry factor % There is another similar contribution

(4.62)

obtained from the previous one after exchanging o <~ 3 and p < ¢

- 22 uvaf (p7 Q) = _22 uva (463)

a3
p—q

The last diagram with gluons running in the loop is the one in Fig. [£.3d which is given by

G
L Vit (L= p = )07 Vi (164
g~ wwap DD =559 | (on) Z({—p—q? ’ '
where V4 is the four gluon vertex defined as
— iVt = —ig? | [ P (G0 — GuoGup) + IS GG — o o)
+ fadefbce(g,uugpo - gupguo) (4.65)
and therefore
5df Vﬁﬂ’éd = _CA(Saprigﬁ = _CA(Sab (gaogﬁp + 9ap98s — QQaBgap) ) (4'66)
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Figure 4.4: The ghost contributions with a graviton h,, in the initial state and two gluons A%, A% in
the final state.

so that the amplitude in Eq. (4.64]) becomes

VGgg

4
K [3d]ab Ik 4 ab d*l Viwpe (=11 —p—q) Vpaoﬁ
—igl D) . 4.

22 uraf (p7 q) 9 29 CA(S / (27’(’)4 12 (l —p— q)2 ( 67)

In the expression above we have explicitly isolated the color factor C40% and the symmetry

factor % .

Finally, the ghost contributions shown in Fig. 4] are given by the sum of

4 _ AP o _
K [4a]ab K 9 cade pbde d’l CMVPU(Z q) (l +p) lOé(l Q)ﬁ
A N =_Z 4.68
i5 Lo (P:4) 59 ff /(%)4 E+ 2 —q)? (4.68)
for the triangle diagram in Fig. [£4h and
4 o
K [4b]ab K 9 cade pode [ 41 Cuvacl”(l —q)s
—i=T = — 4.
12 praf (p7 Q) 29 f f / (271')4 l2 (l _ q)2 ( 69)

for the “T-bubble” diagram shown in Fig. 4. 4k. The two exchanged diagrams are obtained from
those in Eqgs. ([A68]) and ([A69]) with the usual replacement o <=  and p < g.

. K [4b] ab . K [4a] ab

_zirLyig (p,a) = —Z§PLfi§ (p,Q)'aH 5 (4.70)
p—q

. K [4d] ab . K [4c]ab

—ngLyi§(7 ) = —Z§PLJ’C{Z(, Voo s (4.71)
p—q

Having identified the different sectors we obtain the total amplitude for quarks, denoted by a

[1P=)

q” subscript

2a) ab 2b]ab 2c] ab 2d] ab
T2 s (D:0) = T’ (9,0) + Tt (9, 0) + Dy (0,0) + Ty (9, 0) (4.72)
and the one for gluons and ghosts as
ja] ab jb] ab jc] ab jd] ab
T e @) = Y [FB% (p,q) + TS (p,q) + THI % (p, ) + TH (p, q)] SNCNE)

j=3,4
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4.5 The on-shell (T'AA) correlator, pole terms and form factors

We proceed with a classification of all the diagrams contributing to the on-shell vertex, starting
from the gauge invariant subset of diagrams that involve fermion loops and then moving to
the second set, the one relative to gluons and ghosts. The analysis follows rather closely the
method presented in the case of QED in previous works [51l [52], with a classification of all the
relevant tensor structures which can be generated using the 43 monomials built out of the 2 of
the 3 external momenta of the triangle diagram and the metric tensor g,,. In general, one can
proceed with the identification of a subset of these tensor structure which allow to formulate the
final expression in a manageable form. The fermionic triangle diagrams, which define one of the
two gauge invariant subsets of the entire correlator, can be given in a simplified form also for
off mass-shell external momenta, in terms of 13 form factors as in [51l 52] while the structure
of the gluon contributions are more involved. Some drastic semplifications take place in the
on-shell case, where only 3 form factors - both in the quark and fermion sectors - are necessary
to describe the final result.

We write the whole amplitude T**5(p, ¢) as
reB(p, q) = T4 (p,q) + T4 (p, ), (4.74)
referring respectively to the contributions with quarks (I';) and with gluons/ghosts (I'y) in
Egs. (@12) and (£73). We have omitted the color indices for simplicity. The amplitude I' is
expressed in terms of 3 tensor structures and 3 form factors renormalized in the M.S scheme

3
FZ7;6(p’ q) = Z ®iq/9(5,0,0, m?) 5% ¢§wa6(l), q). (4.75)
i=1

One comment concerning the choice of this basis is in order. The 3 form factors are more easily
identified in the fermion sector after performing the on-shell limit of the off-shell amplitude,
where the 13 form factors introduced in [51], 52] for QED simplify into the 3 tensor structures
that will be given below. It is then observed that the tensor structure of the gluon sector,
originally expressed in terms of the 43 monomials of [51], [52], can be arranged consistently in
terms of these 3 reduced structures.

The tensor basis on which we expand the on-shell vertex is given by

1Ppq) = (sg" — KB u(p,q), (4.76)

2% pq) = —2u%(p,q)[s g™ + 200" p¥ + ¢"q”) — 4 (" ¢” + ¢ p¥)], (4.77)
1% 1% s v 1%

B g) = (pd" +p"q")g™’ + 3 <90‘ g+ gt gt )

192 S af a, B By, 1 B, v @ av v
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ol ol

Figure 4.5: Higher order contributions to the anomaly pole involved in the covariantization of the

graviton/2-gluons amplitude.

where u®?(p, q) has been defined in Eq. (@ZI)). The form factors ®;(s, s1, so,m?) have as entry
variables, beside s = (p + ¢)?, the virtualities of the two gluons s; = p? and sy = ¢°.
In the on-shell case only 3 invariant amplitudes contribute, which for the quark loop amplitude

are given by

®14(s, 0,0, m?) _36977223 é’:ﬁ — QG;QSQCO(S,O,O,mQ)[% - 277”2] (4.79)
Bag(s, 0, 0,m) = _283;5 - zig; - ‘gi;ﬁz@(s,o,o,m?)

_ i—gco(s,o, 0, m?2) E + m;] : (4.80)

%D(S’O’ O,mQ) + 22721.2 B(J)\/Iis(sam%, (4.81)

where the on-shell scalar integrals D(s,0,0,m?), Co(s,0,0,m?) and B(]]‘/I—S(s,mQ) are computed

in Appendix[A.2l In the massless limit the amplitude I’gmﬁ (p, q) takes a simpler expression and

the previous form factors become
q)lq(sy Oa 0’ 0)
q)2q(5, Oa 0’ 0)

P3,4(s,0,0,0)

where

92
2
g
T 288725’ (483)
92
S

In the gluon sector the computation of I"g‘”aﬁ (p, q) is performed analogously by using dimensional
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regularization with modified minimal subtraction (M.S) and we obtain for on-shell gluons

3

Tvef(p.q) = > Bi4(5,0,0) 0 " (p,q) | (4.86)
i=1

where the form factors obtained from the explicit computation are

11 g2

(b19(87 07 0) = 7271'2 s CA7 (487)
g2
D2(5.0.0) = g5 Ca, (4.88)
65 11 375 1 s S
D34(5,0,0) = —g*°Ca 5832 +@B{]‘4 (s,o)—ﬁzsé” (0,0)+ﬁco(s,o,o,o) .

(4.89)

The renormalized scalar integrals can be found in Appendix [A.2
The full on-shell vertex, which is the sum of the quark and pure gauge contributions, can

be decomposed by using the same three tensor structures ¢ vaf appearing in the expansion of
T4 (p.q) and T5"*(p, q)

3
r#ved(p, q) = 4% (p, q) + TH*P(p,q) = > ®i(s,0,0) 5" ¢’ (p, q), (4.90)
=1
with form factors defined as
nf
D;(5,0,0) = B; 4(s,0,0) + > _ P; 4(5,0,0,m3), (4.91)
j=1

where the sum runs over the ny quark flavors. In particular we have

g’ PN L1 1 N
(1)1(8,0,0) = —m(an—lch)—{—m m; {g_gco(s,o’o,mi)[l_ Sz:|},
i=1
(4.92)
2
g
(DQ(SaO,O) = _m(nf_cA)
g2 ny o1 3 oy 1 ) 2m?
_ 24772<1mi 8—2+ED(S,O,O,mi)—i—;Co(s,O,O,mi) 1+ . . (4.93)
i
? 20411 15 —
7 <~ [ 1 s 2 2|1 5 2
+ W £ {580 (s,mi) —i—mi |:; + gD(s,0,0,mi)

2mm2
+CO(850,05m22) |:1+ TZ:|:|},

(4.94)
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with C4 = N¢ and the scalar integrals defined in Appendix [A.2l Notice the appearance in
the total amplitude of the 1/s pole in ®;, which is present both in the quark and in the gluon
sectors, and which saturates the contribution to the trace anomaly in the massless limit. In this
case the entire trace anomaly is just proportional to this component, which becomes

2

9

®1(s,0,0) = o2 s

(2n) — 11Cy). (4.95)

The correlator ['*8 (p, q), computed using dimensional regularization, satisfies all the Ward

identities defined in the previous sections. Notice that the two-derivatives Ward identity intro-

duced in Eq. (£50)
Pt T"*(p,q) = 0, (4.96)

derived from the BRST symmetry of the QCD Lagrangian, is straightforwardly satisfied by the
on-shell amplitude. This is easily seen from the tensor decomposition introduced in Eq. (£75])

because all the tensors fulfill the condition

Pads o{"*’(p,q) = 0. (4.97)

Furthermore, we have checked at one-loop order the validity of the single derivative Ward identity
given in Eq. (439) and describing the conservation of the energy-momentum tensor. Using the

transversality of the two-point gluon function Eq. (4.39) this gives
ka7 (p,q) = (¢ 70" = ¢" 7 p? + ¢ ¢ = "7 p"p - q) TI?)
+ <p” ¢ =09+ - p- Q> (g%, (4.98)
where the renormalized gluon self energies are defined as

QQCA(')‘ab

14472

g25ab ng - , , , S ) ) ,

7271.21)2; {6./40 (m7)+p°—6m; —3By""(p 7mz‘)(2mi+p )] . (4.99)
1=

() (15875 (p,0) - 2)

_l’_

The QCD S function can be related to the residue of the pole and can be easily computed

starting from the amplitude I'*e? (p, q) for on-shell external lines and in the conformal limit

9 B(g) af

9uw TP (p,q) = 35 ®1(5;0,0,0) u (p, q) = — " (p,9), (4.100)

with the QCD ( function given by

3
Blg) = (—% Ca+ %nf> : (4.101)
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As we have already mentioned, after contracting the metric tensor g,,, with the whole amplitude
I', only the tensor structure (ﬁ’l‘mﬁ (p,q) contributes to the anomaly, being the remaining ones
traceless, with a contribution entirely given by ®1|,,—¢ in Eq. (£92), i.e. Eq. ([£95). In the
massive fermion case, the anomalous contribution are corrected by terms proportional to the
fermion mass m and represent an explicit breaking of scale invariance. From a direct computation

we can also extract quite straightforwardly the effective action, which is given by

¢ - a a
Spie = < [[ateaty RO@) O o) Py 7o
1 g 11 2
T3 12 2 (‘E A*g"f> /d4$d4y3(1)(90)51(m,y) FopF?  (4.102)
Y[

and is in agreement with Eq. (£6]), derived from the nonlocal gravitational action. Here RM

denotes the linearized expression of the Ricci scalar
R =002 ™ —Oh,  h=mnu, " (4.103)

and the constant c is related to the non-abelian § function as

Blg)
pt

c=-2 (4.104)

Notice that the contribution coming from T'JJ generates the abelian part of the non-abelian
field strength, while extra contributions (proportional to extra factors of g and g?) are expected
from the T'JJJ and T JJJJ diagrams (see Fig. [A5]). This situation is analogous to that of
the gauge anomaly, where one needs to render gauge covariant the anomalous amplitude given
by the triangle diagram. In that case the gauge covariant expression is obtained by adding to
the AVV vertex also the AVVV and AVVVV diagrams, with 3 and 4 external gauge lines,

respectively.

4.6 Comments

The appearance of massless degrees of freedom in the effective action describing the coupling of
gravity to the gauge fields is rather intriguing, and is an aspect that will require further analysis.

The nonlocal structure of the action that contributes to the trace anomaly, which is entirely
reproduced, within the local description, by two auxiliary scalar fields, seems to indicate that
the effective dynamics of the coupling between gravity and matter might be controlled, at least
in part, by these degrees of freedom. As we have just mentioned, however, this point requires a

dedicated study and for this specific reason our conclusions remain open ended.
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Our computation, however, being general, allows also the identification of other massless
contributions to the effective action which are surely bound to play a role in the physical S-
matrix. They appear in form factors such as ®9 (Eq. [£93)) and ®3 (Eq. £94) which do not
contribute to the trace, but are nevertheless part of the 1-loop effective action mediated by the
triangle graph.

There are also some other comments, at this point, which are in order. Notice that while the
isolation of the pole in the fermion sector indeed requires a massless fermion limit, as obvious
from the structure of I'j, the other gauge invariant sector, described by I'y, is obviously not
affected by this limit, being the corresponding form factors mass independent. This obviously
does not imply necessarily that the gluon pole, which survives the extrapolation to the massless
limit, is coupled in the physical S-matrix.

Building on considerations of this nature, in particular on the possible significance of massless
effective degrees of freedom, the role of the trace anomaly in establishing the effective interaction
of gravity with matter has been reconsidered [100, I0I]. The explicit goal of this approach has
been to trying to bypass the existing hierarchy problem between the value of the expected
vacuum energy density (p ~ (1073eV)?), well-described by a cosmological constant, and the
Planck mass (p ~ Mj‘;), which is a fundamental issue in contemporary cosmology that has not
found yet a convincing explanation. In fact, it has been known for a long time that free massless
particles contribute to the anomaly by an insignificant amount (7}, ~ Hél), proportional to the
fourth power of the current Hubble rate, which is far too small as a value to solve the dark energy
problem, due to the fact that we are living in a flat universe. However, it has been suggested that
this small value for the vacuum energy density, originally attributed to the anomaly, could be
raised to the expected one if the gravitational effective action is characterized by some effective

nonlocality. In this case the contribution due to the trace anomaly could be modified as [10§]

TH ~ Ho Adop ~ (107%eV)?, (4.105)

where Agcp is the QCD scale, which is tantalizingly close to the estimated value. While this
proposal and similar others are clearly not the only possible solutions of the dark energy problem
(similar values of the vacuum energy can be obtained, for instance, using axions misaligned at
the electroweak scale [I09] and in several other ways) they share the positive feature of being
characterized by few minimal assumptions. If so, one could envision a solution of the problem
of the origin of dark energy without the need to enlarge the Standard Model spectrum with yet
unknown particles and symmetries. Crucial, in these types of approaches, appears to be the role
played by the effective scalar fields in the anomalous effective action, which are present in the

local formulation of Riegert’s action, together with their possible boundary conditions.
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4.7 Conclusions

One of the standing issues of the anomalous effective action describing the interaction of a non-
abelian theory to gravity is a test of its consistency with the standard perturbative approach.
Thus, variational solutions of the effective action controlled by the trace anomaly should be
reproduced by the perturbative expansion. Building on previous analysis in QED and contained
in the previous chapters, here we have shown that also in the non-abelian case there is a perfect
match between the two approaches. This implies that the interaction of gravity with a non-
abelian gauge theory, mediated by the trace anomaly, indeed can be reformulated in terms of
auxiliary scalar degrees of freedom, in analogy to the abelian case. We have proven this result by
an explicit computation. Our findings indicate that this feature is typical of each gauge invariant
subsector of the non-abelian T'JJ amplitude, a result which is likely to hold also for singularities
of higher order. These are expected to be present in correlators with a larger number of energy

momentum insertions.






Chapter 5

Anomaly cancellation by pole

subtraction and ghost instabilities

5.1 Introduction

The goal of this chapter is to stress on some (and unique) features of this subtraction from a
perturbative perspective, in particular on the issues left open - at field theory level - and which
have not yet found a satisfactory answer. Two different approaches appear in the description
of the mechanism of anomaly cancellation, involving either a counterterm in the form of a pole
subtraction [33] 34], or a Wess-Zumino term (see for instance [35]). This goes under the name -
rather generically - of the Green-Schwarz mechanism (GS) in four dimensional field theory.

These two forms of the mechanism at the level of the 1-particle irreducible (1PI) effective action
are, obviously, not equivalent, and the issue of their completeness, from a field theory point of
view, is still open. For instance, axionic shift symmetries, which are present in some formulations
of gauged supergravities, have been investigated using a Wess-Zumino approach [I10, [IT1]. On
the other hand, the subtraction of the anomaly pole in superspace - which is the one that we
will mostly address in this note - has also been introduced as a possible way to give consistency
to the effective action, in the presence of quantum anomalies. At the same time, a large amount
of work along the years has addressed the problem of anomaly cancellation in matter-coupled
supergravities using, at least in some cases, the subtraction mechanism. These studies have
been and are focused on the role of Kéhler and sigma model anomalies [34], 112, 1T3], 114] and

on their implications in anomaly-mediated supersymmetry breaking [115].

107
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5.1.1 Open issues

We point out that there are two challenges to the understanding of the subtraction mechanism in
field theory. They are related 1) to the presence of ghosts in the spectrum of anomalous theories
after the subtraction and 2) to the question whether a simple pole subtraction can actually
erase the trace anomaly, in case also this needs to be cancelled. This second point is rather
subtle since in supergravities the gauging combines several different symmetries, by requiring
the invariance of the complete action under a combination of scaling symmetries (super-Weyl)

together with ordinary Kéhler transformations in addition to a U(1)r gauge symmetry.

A third issue concerns the relation between anomaly induced actions, which are derived by a
solution of the anomaly equation, and the complete perturbative action obtained from a direct
(and complete) diagrammatic approach. Both methods determine effective actions which are
characterized by anomaly poles, the second approach being, obviously, more complete. Explicit
computations, in fact, allow to understand the significance of the anomaly poles also as specific
ultraviolet (UV) contributions, emerging from the perturbative expansion in the large energy
limit. This point, as we are going to explain below, allows to put into the right context the

meaning of the subtraction mechanism, which should be part of a UV completion.

All these issues have some implications for supersymmetric Yang Mills theories when these
are coupled to conformal supergravity or to the various (old and new) multiplets of Poincare
supergravities, due to the emergence of an infrared instability at perturbative level, induced by
the mechanism. This can be identified by a direct analysis of the Coleman-Weinberg potential

of the corrected theory, which shows the presence at 1-loop level of a ghost condensate.

Therefore, a true understanding of the mechanism of anomaly mediation and/or cancellation,
to be significant at phenomenological level, has to address the role of the axion-ghost system and
of the scalar-ghost system which, as we are going to explain, are introduced by these subtractions.
Our simplified analysis has the role to stress the essential features of the pole subtraction, using
very simple examples, but coming to conclusions which are, in fact, quite general. As we are
going to show, much of the problem arises due to the nature of these pole counterterms in
perturbation theory. The lifting of this approach to superspace, while necessary, complicates
considerably the matter, especially since chiral gauge anomalies and trace anomalies may be
jointly involved in the cancellation. This may happen if the Kéhler symmetry has physical

significance and needs to be preserved [112].
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5.2 Removing the chiral gauge anomaly by an axion or by a pole

subtraction

The simplest Lagrangians that in field theory realize the Wess-Zumino version of the mechanism
can be written down quite straightforwardly, starting, for instance, with a single anomalous

U(1)p model. It is defined as

L =1(i0 + gBys)Y — %F,_% + (ApppBBB) + ¢ %FB A Fp (5.1)
and contains one chiral fermion, which indeed introduces an anomaly at quantum level. A
discussion of this action is given in [22]. We have included in its structure the (Appp BBB)
interaction, which represents the contribution from the triangle diagram [16]. We can fix the
counterterm ¢; from the requirement of gauge invariance, balancing the anomalous variation of
the anomaly diagram with the variation of the axion counterterm. The axion undergoes a local

shift under a gauge transformation
db = M0Op(x) 0B, = 0,0p(x) (5.2)

where 6 (z) parameterizes a gauge transformation. The Lagrangian implements in a simple form
the GS mechanism (via an asymptotic axion b) and is obviously generalizable to supersymmetry
via a shifting supermultiplet (see for instance [35] and [I16] for a theoretical and phenomeno-
logical discussions in the supersymmetric case). As we have already mentioned, there is no
equivalence between the pole subtraction mechanism and the Wess-Zumino counterterm, and
these approaches are sometime not clearly distinguished in the literature. This difference, at the
level of the 1-particle irreducible effective action, is indeed substantial.

The model Lagrangian introduced in (5.J]) has some pitfalls, the first of them being the
absence of a kinetic term for the axion. We can try to avoid the problem by introducing a
kinetic term in a gauge invariant form. There is only one possibility, the Stiickelberg mass term,

obtaining the modified action

- 1 b 1
L =(id + gBs) — ZFg + (ApppBBB) + clMFB AFg+ 3 (8,b— MB,)*.
(5.3)

This Lagrangian has a typical MbOB interaction that one could try to remove via a gauge
fixing. In fact, one can do so and investigate the behaviour of the perturbative expansion in
such a gauge (of R¢ type). These studies have been performed in [16]. The theory describes
consistently the mechanism of anomaly cancellation up to a certain scale, which is essentially

the Stiickelberg Mass M, since there is, indeed, a unitarity bound. There is a second limitation
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of this type of action, coming directly from gauge invariance. In fact one could choose a gauge in
which b is set to vanish, and the theory would turn out to be equivalent to a massive Yang Mills
theory coupled to a chiral fermion. For this reason, this action should necessarily be viewed
as an approximate description of a more general one. This could be deduced starting from an
anomaly free theory and decoupling even a single chiral fermion from the functional integral
[29]. It has been shown that the effective action obtained by this decoupling is indeed corrected
by an infinite number of higher dimensional operators. In this respect, the Lagrangian given in
(53) has a unitary completion, at least in a field theory sense. Notice that b can be thought
of as the phase of an extra Higgs field (complex scalar) having decoupled its modulus. For this
reason, Lagrangians of this type are sufficient to describe the leading behaviour of the effective
action in a 1/M expansion.

A second version of the mechanism is described instead by the second (nonlocal) Lagrangian
o 1, 1 .
LZT/)(Z(?—{—QB’}B)T,Z)— ZFB+ <ABBBBBB>+C28BEFBFB (5.4)

where the term 0B %F s Fp is the anomaly pole. It does not take much to realize that the
cancellations corresponding to (5.3) and (5.4]) allow to restore gauge invariance of the effective
action. In general, extra counterterms can also be added to these types of actions in the presence
of at least two gauge simmetries, in the form of Chern-Simons (CS) interactions. In the case
that we consider the only possible anomaly is the consistent one, given the symmetry. For all
practical purposes, CS interactions simply allow to re-distribute the partial anomalies (a;) on
a given leg of a diagram, keeping their sum fixed (a1 + a2 + a3 = a,). In the case of a theory
with two U(1)’s (e.g. U(1)a x U(1)p) with A vector-like and B axial-vector-like, terms such as
(ABAN\ Fp, AB A F4) allow to move from the consistent to the covariant form of the anomaly. In
any case, the discussion of CS interactions is not relevant for our goals and it will be omitted.
This second version of the mechanism, realized via (5.4]), introduces one additional degree of
freedom compared to (5.3). As we are going to show, this extra degree of freedom is an anomaly
ghost. In fact, the Lagrangian (5.4]) admits a different (local) formulation, now in terms of two

extra pseudoscalars of the form

- 1
L = Ib(Z ﬁ—i—e/B’y5)1/1—ZFEQ;—F<ABBBBBB>+03FB/\FB(a+b)
+

(9ub — M1B,)* — = (Oua — M1B,)?, (5.5)

1 1
2 2
where both a and b shift as in (5.2]). The equivalence between (5.4]) and (5.5]) can be proven
directly from the functional integral, integrating out both a and b, which gives two gaussian

integrations. Notice that b has a positive kinetic term and a is ghost-like.
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There is a third equivalent formulation of the same action (5.5) which can be defined with
the inclusion of a kinetic mixing between the two pseudoscalars. This has been given for QED
(with a single fermion) coupled to an external axial-vector field B, [5I] and takes the form

e? ~
L'z@,m@“x—xa[)’—i—WnFF, (5.6)
where F'is the field strength of the photon A, while B, takes the role of a source. An anomaly

pole is indeed induced by the BAA anomaly vertex. It is quite straightforward to relate (B.5])
and (5.6). This can be obtained by the field redefinitions

(a+b)
- 2=, (5.7)
X = M(a+b), (5.8)

showing that indeed a mixing term is equivalent to the presence of either an anomaly pole or to
two pseudoscalars in the spectrum of the theory, one of them being a ghost. It is obvious that

the pole subtraction in superspace does exactly the same thing, in a rather unobvious way.

5.2.1 The anomaly pole and the trace anomaly

The appearance of an anomaly pole in the perturbative expansion is not limited to the chiral
anomaly. To clarify this point, let’s denote with k the incoming momentum of the anomalous
gauge current or of the graviton and with p and ¢ the outgoing momenta of the two vector gauge
bosons.

Similar singularities appear in explicit computations of the correlation functions for the trace
anomaly in the absence of any second scale in the loop, involving one insertion of the energy
momentum tensor (7') on 2-point functions of gauge fields (VV’), the TVV' correlator. By a
second scale we refer either to a fermion mass term m in the anomaly loop, or to any of the two
virtualities s; and sy (s1 = P2, s9 = q2) of the two gauge currents. With the term “first scale”
in the loop we refer to the virtuality of the graviton s (s = k?), or, in the case of the chiral
anomaly, the virtuality of the axial-vector current. This is the scale that as s goes to zero (with
kE* — 0, soft infrared (IR) limit) or as s goes to infinity (i.e. k" goes to infinity with a large
invariant mass) controls the effects of the anomaly on the trilinear vertex. In fact the TVV’
correlator takes a role quite similar to that of the corresponding AVV diagram of the chiral
gauge anomaly. Surprisingly, this correlator has never been computed explicitly until recently
in QED, QCD and the Standard Model. In the case of QED, for instance, the effective action
takes the form [51] [52] 54]

S(mom [ga A] - _% /d4x\/ —g / d4.%'/ V _g/ RJ: D;i;/ [FaﬁFQ'B]x’ 9 (5'9)
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(c = —e?/(247%)) which is valid to first order in the fluctuation of the metric around a flat

background, denoted as h,,

G = M + Khyw, k= 14/167Gy, (5.10)

with G being the 4-dimensional Newton’s constant. The pole emerges from a single form factor
evaluated in momentum space. If we denote with I',05 = (11, VaVp) the correlation function
responsible for the trace anomaly, this takes the form

pHvel %(g‘“’k‘2 — EFEN uP (p, q) + ... (5.11)
where u®?(p, q) is a tensor structure obtained by functional differentiation of the FF term of
the trace anomaly Fourier transformed to momentum space,
§2F,, F™

—5‘/&(:6)5‘/6@) . (5.12)

1 X .
ua,@(p’ C]) — _Z /d4xd4yelp-m+zq-y

The ellypsis refer to terms which are traceless. This relation is the analogous of the anomaly
pole expression
A K

AWy = anaz e pags + - (5.13)
for the chiral anomaly, with a, being the anomaly. The pole structure above is usually called
a Dolgov-Zakharov pole (DZ), which is IR coupled only in the absence of any second scale in
an anomaly diagram. It is important to remark that only in this case (i.e. for two on shell
vector lines and massless particles in the loop) the cancellation between an anomaly diagram
and the subtraction countertem is identical. There is no identical cancellation under any other
circumstance. For this obvious reason, in the presence of any second scale in the anomaly loop,
the anomaly cancellation mechanism amounts to an “oversubtraction”.

The meaning of this last term can be clarified quite simply. In fact we just recall that in
the case of the chiral anomaly, the pole subtraction can be absorbed into a redefiniton of the
anomaly vertex - this is not the case for the Wess-Zumino cancellation with a single axion (b)
[24] - which now satisfies regular Ward identities (i.e. non anomalous) on each of its three
external legs. This redefined vertex, however, now has a pole which is infrared coupled for any
virtuality of the external vector lines, a feature which is unique among all the known vertices in
local quantum field theory and, in particular, in the Standard Model. We will come back to this
point in the next sections, trying to address the issue in the case of the chiral anomaly vertex.

As in the case of the chiral anomaly pole, also for the trace anomaly two auxiliary fields
allow to re-express in a local form the corresponding nonlocal action (5.9]) which takes the form

1
Sanom[g7A; 9071//] = / d4.%' V—3g |:_1//|:| 2 ?1// + %FCVBFQ'G()O ’ (514)



5.2 Removing the chiral gauge anomaly by an axion or by a pole subtraction 113

where ¢ and 1)/ are auxiliary scalar fields. Also in this case one can perform the same changes of
variables as in Egs. (B75.8) and remove the kinetic mixing from this Lagrangian. Notice that
the two auxiliary fields, in this case, are scalars. One of the two degrees of freedom is indeed
a ghost. It is then clear that the subtraction of a anomaly pole induces into the theory some
ghosts which are supposed to cancel those present in the trilinear anomalous vertices. As we are
going to show, simple arguments in perturbation theory show that as soon as eq. 5.4 is used in
the computation of quantum corrections, one discovers the presence of an infrared instability.
For this we need to use the local version of (5.4]), but before moving to that discussion we briefly

comment on some of the main features of a pole subtraction in superspace.

5.2.2 The superconformal case and the gauging to gravity

Several puzzles emerge as soon as we put together the pieces of our previous discussion and
frame it into a supersymmetric context (see [117), 118] for an overview).

When we come to analyze a super Yang-Mills theory, the trace anomaly, the gamma-trace
of the supersymmetric current and the anomaly of the U(1)gr current are part of the same
anomaly supermultiplet (7}/,7 - s,0J5) [119]. In this case the supermultiplet describes the
radiative breaking of the superconformal symmetry. In particular, the presence of an anomaly
pole for the axial-vector U(1)g global current indeed implies that a similar pole should appear
in the correlation functions involving the insertion of either an energy-momentum tensor - or of
the supersymmetric current - on two vector currents. This result is necessary for a consistent
formulation of the anomaly-free effective action in superspace. Indeed, explicit computations
support this picture to lowest order in the case of the trace anomaly, being obviously true (and
to all orders) for the U(1)r anomaly.

The gauging of such an anomaly multiplet to gravity, for instance via a conformal mul-
tiplet (guv,%u, By) containing a graviton, a gravitino and an axial-vector gauge field, indeed
produces an anomaly. In this case the energy momentum tensor couples to gravity (g,.), the
supersymmetric current couples to the gravitino background (¢,) and the anomalous U (1) cur-
rent couples to the axial-vector gauge boson B,,. Diffeomorphism invariance gives the standard
conservation conditions for 7} and the spinor current s, (V,T"* =0,V ,s* = 0), but the super-
Weyl and U(1)g symmetry of the theory ((T}; = 0,v-s = 0,9J5 = 0) are radiatively broken (see
also [120} 121, 122] for related studies). It is obvious that the cancellation of the superconformal
anomaly can’t be obtained by using a single pole in superspace, given the different nature of the
chiral and trace anomalies.

Anomaly induced actions [II5] for N = 1 matter coupled supergravities carry both the

signature of the breaking of scale invariance and of gauge invariance under Super-Weyl-Kéahler
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transformations of the effective action, as shown by the presence both of the 1) RO~'FF and
of the 2) 9BO~'FF terms in the effective action, with R being the scalar curvature [I15] [33].

While the appearance of the second term is, in a way, obvious, since it is generated by the
Dolgov-Zakharov (DZ) anomaly pole present in the AVV diagram in superspace[37], the first
one is far from being obvious since its identification requires a rather involved computation of
the full correlator, not carried out until recently [51l [52] 54]. Similar poles emerge in the same
vertices of the Standard Model, so far computed in the case of the neutral currents [53] [55]. It
is then amusing that the lifting to superspace of the DZ pole of the U(1)g current, induces a
similar pole in the correlator responsible for the trace anomaly.

It is however clear that the RO™!FF result is just valid to lowest order (O(Gng?)) in
Newton’s constant G and gauge coupling g. Indeed, in general, the structure of the anomaly-
induced effective action for the trace anomaly is expected to be far more involved compared to
the simple pole result. For instance, this action should describe the structure of the singularities
of anomalous correlators with any number of insertions of the energy momentum tensor and two
photons (T"VV).

For obvious reasons, explicit checks of the corresponding effective action using perturbation
theory - as the number of external graviton lines grows - becomes increasingly difficult to handle.
The TV'V correlator is the first (leading) contribution to this infinite sum of correlators in which
the anomalous gravitational effective action is expanded. One proposal for the effective action
is due to Riegert [83], which has been successfully tested, so far only for the TV'V case, by two
independent groups [51], 52| 54].

Given the presence of a quartic operator in Riegert’s nonlocal action, the proof that this
action contains a single pole to lowest order (in the TVV vertex), once expanded around flat
space, has been given in [51] and provides the basis for the discussion of the anomalous effective
action (B.I14) in terms of massless auxiliary fields.

This shows that the ghost appearing in the trace anomaly is a genuine result which is
extracted in two ways: 1) by integration of the anomaly and 2) by a direct perturbative com-
putation using dispersion theory [51] or the complete evaluation of the diagrammatic expansion

52, 54].

5.3 Features of an anomaly pole and oversubtractions

Once we allow a pole solution of the anomalous Ward identities (see [92] for a general discus-
sion) of a certain correlator, we need to define the kinematical range in which this solution is

reproduced in perturbation theory, since explicit computations show that the tensor decom-
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positions of anomaly diagrams are not unique. We start with the case of the AVV diagram.
For simplicity, we will still denote with k£ the incoming momentum on the axial-vector line,
and use symmetric expressions (k1 = p, ko = ¢) for the two outgoing momenta of the vector
lines. s = k? denotes the virtuality of the momentum of the axial-vector current. We have the

standard parameterization due to Rosenberg [41]

AS\MV = Al(k17k2)€[klau7 v, )‘] + Az(l{)hl{:Q)&‘[kQ,,u,V, )\] + A3(/€1,k2)€[l€1,]€2,ﬂ7 )\]kly
+ A4(k1, /{?2)8[]{1, kz, M, )\]ké’ + A5(k1, /{?2)8[]{1, kz, v, )\]/{?? + Aﬁ(kl, kz)z’:‘[/ﬁ, kz, v, )\]kg
(5.15)

This parameterization is not always the most convenient. For instance, if one wants to study
the mechanism of pole subtraction, it is convenient to use Schouten’s relation and re-express
Rosenberg’s expression in an alternative form. A second decomposition of the anomaly graph
into longitudinal and transverse form factors [42] is possible. It has been shown [40] that this
representation is equivalent to the Rosenberg expression [41] (see the discussion in [123]). It

takes the form

WA — % WA _ T ] (5.16)
where the longitudinal component
WEMY — o ke, v, ky, ko) (5.17)
(with wy, = —4i/s) describes the anomaly pole, while the transverse contributions take the form
Wk k) = wit (kK2 k3, k3) t&t)y(k:l,kz) + wl ) (K2, k3, 13) t&;)y(klakz)
+ @) (KK RE) T (R k), (5.18)

with the transverse tensors given by

80 (ki ko) = kel Ak, ko] — Kol Mk, kol — (k- ko) e[, v, A, (ky — k)]

Apv
ki + k3 — k?
% k)\ €[M7V7k17k2] )
o k?2 o k?2
tgpz,(k‘hk:z) = |(k1—k2)x — 1/<:2 2 kx| elp, v, Ky, ko)
jt\()\i)v(k‘l’ka) = klue[ﬂa)\, kl’k2] + k2ll«6[ya )" kl,k2] - (kl : k2)€|:lt1’7 V7>\,k]- (519)

One should notice the presence of pole-like singularities in both the L and the T' components
proportional to s, which clearly invalidate the separation as s goes to zero. The presence of
such singularities is also the signal that in the absence of any extra scale beside s, the two terms

(L/T) reduce to a single structure.
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To illustrate this point, let’s consider in fact the case s; = so = 0. In this case the two

nonzero form factors are wy, and ngr)
4
wr(5,0,0) = wi(s,0,0) = —;Z, (5.20)
wi)(5,0,0) = @} (s,0,0) = 0. (5.21)

The only contributions to the anomaly vertex come from the longitudinal W, component and

by ¢()

A the second one being irrelevant when the two vector lines are set on-shell. Therefore,

the parameterization reduces only to the longitudinal contribution, and generates, correctly,
the anomaly pole. This is essentially the only case in which the pole is IR coupled, since
with the inclusion of any other scale in the vertex (beside s), this structure, although present,
does not have the right IR limit. However, this is not the end of the story, since there is a
second kinematical configuration where the pole-like 1/s component becomes significant, and
this involves the UV limit. In fact, we are allowed to perform a large s limit, in any direction
away from the light cone, and observe the persistence of a 1/s component related to the anomaly.
Notice that - differently from the case in which the two vector lines are on-shell - in this limit there
is no redundancy between the longitudinal and transverse structure of the L/T decomposition
(the two structures are independent), and the 1/s behaviour is indeed a genuine (irreducible)
part of the amplitude.

Indeed, we can repeat the same analysis for the case in which at least one of the three scales
(m, s1, $2) is non-vanishing. Let’s suppose, for instance, that only m is non-zero. In this case

we obtain (with wy (s1,s2,s,m?) = W(0,0,s,m?))

4i 2 1
wL(O,O,$7m2) = —?Z |:1 + Tn?l()g2 <Z§—i_1>:| , (5.22)
: 2
tH 2y g e (B e (2L 5
wy (0,0, s,m*) . [3 + - log <a3 — ag log s 1)| (5.23)
() 2 () 2 4m?
wy *(0,0,s,m") =y ’(0,0,s,m") =0, a3 =1\/1— — (5.24)

It is straightforward to verify that there is no residue for the 1/s pole term contained in wy,. This
involves a cancellation between the two terms present in wy, the constant and the logarithmic
(~ log?) term.

We conclude that the coupling of the pole in the infrared is controlled - in the absence of
any other scale except s in the diagram - by the 1/s component of Wp. This structure indeed
saturates the anomaly. As soon as any other scale is generated, there is no IR coupling of this
invariant amplitude, although it is formally present in the L/T decomposition. It is then clear

that, if other scales are also present, we are still formally allowed to restore the Ward identities
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of the anomalous vertex by a subtraction of W, (which is what the GS mechanism does), but, by
doing so, we have generated a vertex which is unique in its IR properties respect to any trilinear
gauge vertex of the Standard Model. We refer to this situation as to an “oversubtraction” which
can be potentially dangerous in the context of perturbative unitarity. This occurs whenever we
move off-shell on the external lines (with s or sy nonzero) or include a massive exchange in the
loop, while still allowing an ordinary GS subtraction.

A final comment, in this section, is due for the second (and independent) region where the
W, contribution plays a role, which is the UV region. Notice that in the UV, being the external
virtualities and mass negligible compared to the large value of s, we are again approaching the
“pole dominance” typical of an IR (m, s1, so ~ 0) amplitude. It is instructive to perform a large

s limit of the massive form factors given in (5.24)), obtaining

47 4im? S
wy = —: — &2 10g (_W) + O(m?’), (525)
124 41 s 4im? s? S
+
w(T )(S,O,O,mQ) = log (_W) + 7 [2 + log (W) — log? <_W>] +0(m?).

(5.26)

The result above is susceptible of a simple intepretation. The anomalous contribution can be
uniquely attributed to the pole in W, and the anomalous Ward identities are corrected by
suppressed terms of the form m?/s which include logarithms of the same ratio. Differently
from the s — 0 case, in this limit of large s there is no “overlap” between the two L/T tensor
structures, and one can unambiguously attribute the anomalous contribution to Wp. This is
the second - unequivocally distinct - region where the anomalous 1/s contribution appears. It
is somehow a misnomer, since there is no residue to compute in this case, but this contribution
can still be called an “anomaly pole”, since it is a manifestation of the anomaly and saturates
the anomalous Ward identities as s grows large. It is then clear which are the open issues typical
of the mechanism of pole subtraction. If viewed as an asymptotic statement, we then should
look for a completion of this mechanism. On the other hand, if we insist that the subtraction
represents the only logical way to erase the anomalous variation of the action, then we are bound

to face the issue of oversubtraction that we have mentioned before.

5.4 Quantifying the oversubtraction of an anomaly pole

For the reasons mentioned above, one can ask the question whether there is a completion of the
GS mechanism - viewed as a pole subtraction - in order to avoid possible problems with the new

(corrected) effective action in the infrared.
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The simplest possibility is to cancel identically the anomaly vertex and not just to restore its
Ward identities under any kinematical configurations, which is what the pole subtraction does.
We are going to do it using as a reference the ordinary cancellation via charge assignment, which
allows to generate a complete unitary theory. However, we will be separating the contribution
to the cancellation which can be attributed to the exchange of the pseudoscalars, from the rest,
with the residual interaction fixed by the condition of complete vanishing of the vertex. The
residual terms, not included in the pole subtraction, could be attributed to the dynamics of the
completion theory (e.g. a string theory), but can be quantified in a definite form, as we are
going to show, also in ordinary field theory.

Thus, let’s consider a theory with a single chiral fermion with vector and axial-vector gauged
interactions and the corresponding AVV diagram. A similar analysis can be done for the AAA
diagram of the same model.

We have seen that in this diagram any configuration - except for the on-shell case (m, s1,s9 =
0) of the two V lines - does not allow an identical cancellation of this diagram by a pole coun-
terterm. It amounts, therefore, to an oversubtraction, as we have explained above. We denote
this vertex by W™¥(m, s, s1,s;) and using a standard Pauli-Villars regularization procedure,
we subtract the same amplitude with a generic fermion of mass M in the loop. We obtain, in a

simplified notation, the regulated amplitude
Wgr=W(m)—-W(M) (5.27)
which is obviously finite and satisfies ordinary Ward identities of the form
kAW = 2mW (m) — 2M W (M). (5.28)

Obviously, in a standard Pauli-Villars regularization one could send M to infinity, recuperating
the anomaly contribution from the 2MW (M) term (up to a sign). At this point we re-express

each of the amplitudes in terms of a pole plus the transverse contributions obtaining
Wgr = (Wr(m,s1,s2)) + Wr(m, s1,82)) — (Wr(M,s1,s2) + Wp(M, s, s1,52)) . (5.29)

Notice that each of W (m,s1,s2) and W (M, sy, s2) are made of an anomaly pole plus mass
correction terms.

Eq. (5:29) can be decomposed in terms of wy, and wp, showing that W is free of anomaly
poles, leaving some extra contributions both in the L and T parts which are mass dependent.
However, Wg simplifies remarkably if the mass of the subtracted fermion is zero (M=0), since
the anomaly diagram has no correction on the longitudinal structure Wp. In this specific case
we obtain

Wg = (Wi(m, s1,82)) + Wp(m, s1, 52)) — Wr(s, s1,52), (5.30)
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where W] denotes the L component of the diagram for the physical fermion with the subtraction
of the anomaly pole. The interpretation of equation (530]) is now obvious. Had we performed
a pole subtraction on an AVV diagram, W (m, sy, $2), the result would have been given just
by the first two terms in the round bracket, causing on oversubtraction. This is corrected by
the second term Wr(s, s1,$2) which performs the unitarization of the vertex at any scales. We
stress once more that this unitarization is obtained from field theory arguments and does not
necessarily correspond to the unitarization that a nonlocal completion theory, such as a string
theory, should perform on the subtraction.

We have gone through this argument to show that if the subtraction of a pole can be under-
stood as a procedure which can be, eventually, unitarized in some way, then we can obviously
give a coherent interpretation of the complete mechanism. This would allow us to attribute the
subtraction of the pole term to one interaction, for instance to the exchange of an axion-ghost
couple, while, at the same time, extra terms, not directly related to axionic contributions, would
be involved in the extra correction. In the example that we have described, this extra term is
given by Wr(s, s1, s2), whose explicit expression, in this case, is known [40].

It is clear that there is a way out and a possible answer to the unitarization of the chiral
anomaly pole, but it may not be so in the case of the trace anomaly. It appears obvious that
such a procedure is bound to fail in the trace anomaly case, unless extra contributions to the
running of the beta function will manage to induce a conformal phase. In this respect, while a
coherent formulation of a pole subtraction in superspace treats the trace and the chiral anomaly
components of an anomaly supermultiplet equally, in practice one can’t ignore the different
nature of the two anomalies. This may pose severe constraints on the coupling of superanomaly
multiplets to gravity, since the mechanism of cancellation of the anomaly, if realized by a pole
subtractions in superspace, is not satisfactory. Pole-like contributions appear indeed both in the
case of chiral and trace anomaly diagrams. However, the anomalous effective action generated
by the insertion of arbitrary powers of the energy momentum tensor on correlators of gauge
currents is far more involved. It may not be completely saturated just by a pole to all orders,

even in the weak field limit of the external gravitational field.

5.5 Conclusions

There is an incomplete understanding of the effective action which emerge at low energy from
string theory and which involves a GS mechanism. It should be realized that this discussion
is not just of formal nature, since it involves some issues which are of fundamental interest.

First among them is the possible role played by the GS axion in the cosmology of the early
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Universe. The appearance of an axion is, in fact, the crucial feature of the anomaly cancellation
mechanism also in its realization in terms of a pole subtraction. The superspace formulation of
the subtraction is not so obvious for Kahler anomalies, given the different nature of the chiral
and conformal anomalies which are involved in combination in this subtraction.

Our analysis, clearly, is far from being conclusive, but it raises, we believe, some points
which should motivate further discussions. Taken frontally, the subtraction of an anomaly pole
to ensure the cancellation of some of the anomalies in a certain theory is the correct thing to
do. At the same time, however, it leaves some issues of consistency wide open. In fact, this
approach could be possibly correct only in the on-shell case. By rewriting the nonlocal action
into a local form, using a formulation with two extra degrees of freedom, one ghost and one
axion, one indeed finds that the effective action breaks the Lorentz symmetry. In these effective
actions the dynamical generation of the breaking is, in fact, rather economical. There is indeed a
signal of vacuum instability in theories corrected by a pole subtraction, which seems to indicate
that the ghost can be taken out of the physical spectrum, leaving for the rest a theory which
could be potentially useful but in a nontrivial vacuum.

Studies of gravity expanded around nontrivial background of ghosts are at the center of an
increasing theoretical interest [124] [125] as are studies of the breaking of the Lorentz symmetry
in brane models [126], 127]. Certainly, our comprehension of the vacuum structure of these
theories on more physical grounds, especially in the presence of gravity multiplets, will probably

require a big effort.



Chapter 6

Trilinear gauge interactions in
extensions of the Standard Model

with anomalous abelian symmetries

6.1 Introduction

Models of intersecting branes (see [I128] for an overview) have been under an intense theo-
retical scrutiny in the last several years. The motivations for studying this class of theories
are manifolds, being them obtained from special vacua of string theory, for instance from
the orientifold construction [7, 19, 129, 130]. Their generic gauge structure is of the form
SU(3) x SU(2) x U(l)y x U(1)P, where the symmetry of the Standard Model (SM) is en-
larged with a certain number of extra abelian factors (p). Several phenomenological studies
[15] [16], 17, 20l 23, 131] have allowed to characterize their general structure, whose string origin
has been analyzed at an increasing level of detail [132] 133, 134] down to more direct issues,
connected with their realization as viable theories beyond the SM. Related studies of the Stiick-
elberg field [2] [I1] 135, 136, 137] in a non-anomalous context have clarified this mechanism of
mass generation and analyzed some of its implications at colliders both in the SM and in its
supersymmetric extensions.

In scenarios with extra dimensions where the interplay between anomaly cancellations in
the bulk and on the boundary branes is critical for their consistency, very similar models could
be obtained following the construction of [I38, [139], with a suitable generalization in order to
generate at low energy a non abelian gauge structure.

Specifically, the role played by the extra U(1)’s at low energy in theories of this type after

electroweak symmetry breaking has been addressed in [15, 16 [17], where some of the quantum
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features of their effective action have been clarified. These, for instance, concern the phases
of these models, from their defining phase, the Stiickelberg phase, being the anomalous U(1)
broken at low energy but with a gauge symmetry restored by shifting (Stiickelberg) axions, down
to the electroweak phase - or Higgs-Stiickelberg phase, (HS) - where the vev’s of the Higgs of the
SM combine with the Stiickelberg axions to produce a physical axion [I5] and a certain number
of goldstone modes. The axion in the low energy effective action is interesting both for collider
physics and for cosmology [23], working as a modified Peccei-Quinn (PQ) axion. In this respect
some interesting proposals to explain an anomaly in gamma ray propagation as seen by MAGIC
[140), [141] using a pseudoscalar (axion-like) has been presented recently, while more experimental
searches of effects of this type are planned for the future by several collaborations using Cerenkov
telescopes (see [140], [141] for more details and references). Other interesting revisitations of the
traditional Weinberg-Wilczek axion [142 [143] to evade the astrophysical constraints and in the
context of Grand Unification/mirror worlds [144] may well deserve attention in the future and be
analyzed within the framework that we outline below. At the same time, comparisons between
anomalous and non anomalous string constructions of models with extra Z’s should also be part
of this analysis [8] 9, [145], [146].

The presence of axion-like particles in effective theories is, in general, connected to an anoma-
lous gauge structure, but for reasons which may be rather different and completely unrelated,
as discussed in [23]. For the rest, though, the study of the perturbative expansion in theories of
this type is rather general and shows some interesting features that deserve a careful analysis.
In [16, 17] several steps in the analysis of the perturbative expansion have been performed. In
particular it has been shown how to organize the loop expansion in a gauge-invariant way in
1/My, where M, is the Stiickelberg mass. A way to address this point is to use a typical R
gauge and follow the pattern of cancellation of the gauge parameter in order to characterize it.
This has been done up to 3-loop level in a simple U(1) x U(1) model where one of the two U(1)’s

is anomalous.

The Stiickelberg symmetry is responsible for rendering the anomalous gauge bosons massive
(with a mass M) before electroweak symmetry breaking. A second scale M controls the in-
teraction of the axions with the gauge fields but is related to the first by a condition of gauge
invariance in the effective action [23]. In general, for a theory with several U(1)’s, there is an

independent mass scale for each Stiickelberg field.

In the case of a complete extension of the SM incorporating anomalous U(1)’s, all the neutral
current sectors, except for the photon current, acquire an anomalous contribution that modifies
the trilinear (chiral) gauge interactions. For the Z gauge boson this anomalous component

decouples as M; gets large, though it remains unspecified. For instance, in theories containing



6.1 Introduction 123

extra dimensions it could even be of the order of 10 TeV’s or so, in general being of the order of
1/R, where R is the radius of compactification. In other constructions [7, [19] based on toroidal
compactifications with branes wrapping around the extra dimensions, their masses and couplings
are expressed in terms of a string scale M, and of the integers characterizing the wrappings [20].
Beside the presence of the extra neutral currents, which are common to all the models with
extra abelian gauge structures, here, in addition, the presence of chiral anomalies leaves some
of the trilinear interactions to contribute even in the massless fermion (chiral) limit, a feature

which is completely absent in the SM, since in the chiral limit these vertices vanish.

As we are going to see, the analysis of these vertices is quite delicate, since their behaviour is
essentially controlled by the mass differences within a given fermion generation [17], and for this
reason they are sensitive both to spontaneous and to chiral symmetry breaking. The combined
role played by these sources of breaking is not unexpected, since any pseudoscalar induced in an
anomalous theory feels both the structure of the QCD vacuum and of the electroweak sector,
as in the case of the Peccei-Quinn (PQ) axion. In this chapter we are going to proceed with a
general analysis of these vertices, extending the discussion in [I7]. The analysis performed here

is organized as follows.

After a brief summary on the structure of the effective action, which has been included
to make our treatment self-contained, we analyze the Slavnov-Taylor identities of the theory,
focusing our attention on the trilinear gauge boson vertices. Then we characterize the structure
of the Zvy~ and ZZ~ vertices away from the chiral limit, extending the discussion presented
in [I7]. In particular we clarify when the CS terms can be absorbed by a re-distribution of
the anomaly before moving away from the chiral limit. In models containing several anomalous
U (1)’s different theories are identified by the different partial anomalies associated to the trilinear
gauge interactions involving at least three extra Z’s. In this case the CS terms are genuine
components which are specific for a given model and are accompanied by a specific set of axion
counterterms. Symmetric distributions of the partial anomalies are sufficient to exclude all the

CS terms, but these particular assignments may not be general enough.

Away from the chiral limit, we show how the mass dependence of the vertices is affected
by the external Ward identity, which is a generic feature of anomalous interactions for nonzero
fermion masses. This point is worked out using chiral projectors and counting the mass insertions
into each vertex. On the basis of this study we are able to formulate general and simple rules
which allow to handle quite straightforwardly all the vertices of the theory. We conclude with
some phenomenological comments concerning the possibility of future studies of these theories
at the LHC. In an appendix we present the Faddeev-Popov Lagrangian of the model, which has

not been given before, and that can be useful for further studies of these theories.
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6.1.1 Construction of the effective action

The construction of the effective action, from the field theory point of view, proceeds as follows
[15, [17).

One introduces a set of counterterms in the form of CS and WZ operators and requires that
the effective action is gauge invariant at 1-loop. Each anomalous U(1) is accompanied by an ax-
ion, and every gauge variation of the anomalous gauge field can be cancelled by the corresponding
WZ term. The remaining anomalous gauge variations are cancelled by CS counterterms. A list

of typical vertices and counterterms is shown in Fig. 6.1 We consider the simplest anomalous
w<[:: Mmi -~ Ji AN~ - J\Li
A B C D

Figure 6.1: Counterterms allowed in the low energy effective action in the chiral limit: anomalous
contributions (A), CS interaction (B), WZ term (C) and B — b mixing contribution (D). In
particular the bilinear mixing of the axions with the gauge fields is vanishing only for on-shell
vertices and is removed in the R gauge in the WZ case. A discussion of this term and its role

in the GS mechanism can be found in [30].

extension of the SM with a gauge structure of the form SU(3) x SU(2) x U(1)y x U(1)p model
with a single anomalous U(1)p. The anomalous contributions are those involving the B gauge
boson and involve the trilinear (triangle) vertices BBB, BY'Y, BBY, BWW and BGG, where
W’s and the G’s are the SU(2) and SU(3) gauge bosons respectively. All the remaining tri-
linear interactions mediated by fermions are anomaly-free and therefore vanish in the massless
limit. Therefore the axion (b) associated to B appears in abelian counterterms of the form
bFp N\ Fp,bFp A\ Fy,bFy A Fy and in the analogous non-abelian ones bTrW AW and bTrG AG.
In the absence of a kinetic term for the axion b, its role is unclear: it allows to “cancel” the
anomaly but can be gauged away. As emphasized by Preskill [22], the role of the WZ term is,
at this stage, just to allow a consistent power counting in the perturbative expansion, hinting
that an anomalous theory is non-renormalizable, but, for the rest, unitary below a certain scale.
Theories of this type are in fact characterized by a unitarity bound since local a counterterm
is not sufficient to erase the bad high energy behaviour of the anomaly [30]. Although the
structure of the vertices constructed in this chapter is identified using the WZ effective action
at the lowest order (using only the axion counterterm), their extension to the Green-Schwarz

case is straightforward. In this second case the vertices here defined need to be modified with
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the addition of extra massless poles on the external gauge lines.

The b field remains unphysical even in the presence of a Stiickelberg mass term for the B
field, ~ (Ob — M B)? since the gauge freedom remains and it is then natural to interpret b as a
Nambu-Goldstone mode. In a physical gauge it can be set to vanish.

Things change drastically when the B field mixes with the other scalars of the Higgs sector of
the theory. In this case a linear combination of b and the remaining CP-odd phases (goldstones)
of the Higgs doublets becomes physical and is called the axi-Higgs. This happens only in specific
potentials characterized also by a global U(1)pg symmetry (Vpg) [15] which are, however,
sufficiently general. In the absence of Higgs-axion mixing the CP odd goldstone modes of
the broken theory, after electroweak symmetry breaking, are just linear combinations of the
Stiickelberg and of the goldstone mode of the Higgs potential and no physical axion appears in
the spectrum. For potentials that allow a physical axion, even in the massless case, the axion
mass can be lifted by the QCD vacuum due to instanton effects exactly as for the Peccei-Quinn

axion, but now the spectrum allows an axion-like particle.

6.1.2 Anomaly cancellation in the interaction eigenstate basis

The anomalies of the model are cancelled in the interaction eigenstate basis of (b, Ay, B, W)
and the CS and WZ terms are fixed at this stage. The B field is massive and mixes with the
axion, but the gauge symmetry is still intact. The Ward identities of the theory for the triangle
diagrams assume a nontrivial form due to the BOb mixing. In the case of on-shell trilinear
vertices one can show that these mixing terms vanish.

The CS counterterms are necessary in order to cancel the gauge variations of the Y, W and G
gauge bosons in anomalous diagrams involving the interaction with B. These are the diagrams
mentioned before. The role of these terms is to render vector-like at 1-loop all the currents
which become anomalous in the interaction with the B gauge boson. For instance, in a triangle
such as Y BB, the Ay BA Fp CS term effectively “moves” the chiral projector from the Y vertex
to the B vertex symmetrically on the two B’s, assigning the anomalies to the B vertices. These
will then be cancelled by the axion b via a suitable WZ term (bFp A Fy).

The effective action has the structure given by
S =80+ San +Swz + Scs (6.1)

where Sy is the classical action. It is a canonical gauge theory with dimension-4 operators
whose explicit structure can be found in [I7]. In Eq. (6] the anomalous contributions coming

from the 1-loop triangle diagrams involving abelian and non-abelian gauge interactions are
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summarized by the expression
1 1 1
San = oy (Teww BWW) + o (Tpee BGG) + 5 (Tppp BBB)
1 1
+ 5 <TBYY BYY> + 5 <TYBB YBB>, (6.2)

where the symbols () denote integration [16]. In the same notations the Wess Zumino (WZ)

counterterms are given by

_ Cps Cyy Cyp
Swz = i (bFp A Fp) + i (bFy A Fy) + i (b Fy A Fp)
F D
—Tr[FYV AFY]) + = (bTr[F¢ A FC :

and the gauge dependent CS abelian and non abelian counterterms [133] [134] needed to cancel

the mixed anomalies involving a B line with any other gauge interaction of the SM take the form

Scs = di(BY AFy)+da(YB A Fp) + c1 ("7 B,C5U D) ¢y (et B, OS5 Gy,

vpo vpo
(6.4)
Explicitly
N ,
(TpwwBWW) = /dw dy dzTB%‘%(z,x,y)B’\(z)Wi“(x)Wj (y) (6.5)
and so on.
The non-abelian CS forms are given by
csu@ — Ly (g Lo cmawk) o ey (6.6)
uvp - 6 o L, Up 3 92¢ v''p cycuicy .
1 1 .
Cos® = 5 [GZ <F§fyp +39 fabcal;c;;> + cyclzc] : (6.7)
In our conventions, the field strengths are defined as
BN, = 0.Wi—0,W\.— geipWiWwy = FY, — gyeij WiW, (6.8)
Faciuy = aprf - auGZ - ngachZGzc/ = Fac,;w/ - g3fachZGzcn (69)
whose variations under non-abelian gauge transformations are
1 A .
5SU(2)055§,(2> = 3 [Bﬂéﬂ (Fzml/,p) —i—cyclzc} ) (6.10)
1 - .
55U(3)CSV%(3) =5 [(9“19“ (F(f,/p) + cyclzc} , (6.11)

where F' denotes the “abelian” part of the non-abelian field strength.
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Coming to the formal definition of the effective action, interpreted as the generator of the
1-particle irreducible diagrams with external classical fields, this is defined, as usual, as a linear
combination of correlation functions with an arbitrary number of external lines of the form

Ay, B,W,G, that we will denote conventionally as W(Y, B, W). It is given by

e 35
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where we have explicitly written only its abelian part and the ellipsis refer to the additional non
abelian or mixed (abelian/non-abelian) contributions. We will be using the invariance of the
effective action under re-parameterizations of the external fields to obtain information on the
trilinear vertices of the theory away from the chiral limit. Before coming to that point, however,
we show how to fix the structure of the counterterms exploiting its BRST symmetry. This will

allow to derive simple STT’s for the action involving the anomalous vertices.

6.2 BRST conditions in the Stiickelberg and HS phases

We show in this section how to fix the counterterms of the effective action by imposing directly
the STI’s on its anomalous vertices in the two broken phases of the theory, thereby removing
the Higgs-axion mixing of the low energy effective theory. As we have already mentioned, the
Lagrangian of the Stiickelberg phase contains a coupling of the Stiickelberg field to the gauge
field which is typical of a goldstone mode. In [16, [I7] this mixing has been removed and the
WZ counterterms have been computed in a particular gauge, which is a typical R¢ gauge with
¢ = 1. Here we start by showing that this way of fixing the counterterms is equivalent to require
that the trilinear interactions of the theory in the Stiickelberg phase satisfy a generalized Ward
identity (STI).

After electroweak symmetry breaking, in general one would be needing a second gauge choice,
since the new breaking would again re-introduce bilinear derivative couplings of the new gold-
stones to the gauge fields. So the question to ask is if the STI’s of the first phase, which fix
completely the counterterms of the theory and remove the b-B mixing, are compatible with the
STT’s of the second phase, when we remove the coupling of the gauge bosons to their goldstones.
The reason for asking these questions is obvious: it is convenient to fix the counterterms once
and for all in the effective Lagrangians and this can be more easily done in the Stiickelberg
phase or in the HS phase depending on whether we need the effective action either expressed
in terms of interactions or of mass eigenstates respectively. In both cases we need generalized

Ward identities which are local. The presence of bilinear mixings on the external lines of the
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3-point functions would render the analysis of these interactions more complex and essentially
non-local.

This point is also essential in our identification of the effective vertices of the physical gauge
bosons since, as we will discuss below, the definition of these vertices is entirely based on the
possibility of parameterizing the anomalous effective action, at the same time, in the interaction
base and in the mass eigenstate basis. We need these mixing terms to disappear in both cases.
This happens, as we are going to show, if both in the Stiickeberg phase and in the HS phase we
perform a gauge choice of R¢ type (we will choose £ = 1). These technical points are easier to
analyze in a simple abelian model, following the lines of [16]. In this model the B is a vector-axial
vector (V — A) anomalous gauge boson and A is vector-like and anomaly-free.

We will show that in this model we can fix the counterterms in the first phase, having
removed the b-B mixing and then proceed to determine the effective action in the HS phase,
with its STI’s which continue to be valid also in this phase.

Let’s illustrate this point in some detail. We recall that for an ordinary (non abelian) gauge
theory in the exact (non-broken) phase the derivation of the conditions of BRST invariance

follow from the well known BRST variations in the R¢ gauge

SprsT A% = sAY =wDiq, (6.12)
1

0BrsT ¢ = sc® = —§wgf“bccbcc (6.13)

dBrsTC” = sc” = %QLA‘W. (6.14)

These involve the non-abelian gauge field Ay, the ghost (c*) and antighost (¢*) fields, with w
being a Grassmann parameter. We will be interested in trilinear correlators whose STI’s are
arrested at 1-loop level and which involve anomalous diagrams. For instance we could use the
invariance of a specific correlator (¢AA) under a BRST transformation in order to obtain the

generalized WUI’s for trilinear gauge interactions
s{(0|T E“(:U)AZ(y)A;(zNO) =0. (6.15)

These are obtained from the relations (6.14]) rather straightforwardly

s (01T ¢ (2) Ay (y)Ag(2)[0) = (O[T (sc”(x)) A7 (y) A5(2)[0) +
O[T ¢ (2) (s A3 (1)) A5 (2)[0)  +  (0]T () A} (y) (sA5(2))[0) = 0. (6.16)

In fact, by using Egs. (612) and (6.14]) we obtain
1
s (OIT &(2) A () Ay (2)]0) = E<0\TWBMAWAIJ(2/)AZ(Z)\O> +

+(0|TEa(:v)nglcl(y)Acp(zﬂO) + <0|TEa(x)AZ(y)wD;mcm(zﬂO):O. (6.17)
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Figure 6.2: Graphical representation of Eq. (6.19) at any perturbative order.

Choosing ¢ =1 we get

0 (O[T A% () AL () A5 ()]0)

+ (0T e (2)[0" 8, — 9" Ay a(y)lei(y) Ag(2)|0)
+ (0T &) AL ()08, — g f ™ Apr(2)lem (2)[0) = 0. (6.18)

The two fields A, 4(y)ci(y) e Apr(2)em(2) on the same spacetime point do not contribute on-shell

and integrating by parts on the second and third term we obtain

O (O[T A4 ALy A5(2)[0) aiyyw & () () A%(2)[0)
O[T 2 (@) AL () (2)]0) = 0, (6.19)

which is described diagrammatically in Fig. 6.2l Let’s now focus our attention on the A-B model
of [16] where we have an anomalous generator Yp. This model describes quite well many of the
properties of the abelian sector of the general model discussed in [I7] with a single anomalous
U(1). It is an ordinary gauge theory of the form U(1)4 x U(1)p with B made massive at tree
level by the Stiickelberg term

1
Lg; = i(a“b + M B,)*. (6.20)

This term introduces a mixing M;B,0"b which signals the presence of a broken phase in the

theory. Introducing the gauge fixing Lagrangian

1
Lo = —%—B(fg [Bu))?, (6.21)
fg[Bu] = 0,B" — {pMib, (6.22)

we obtain the partial contributions (mass term plus gauge fixing term) to the total action

1
Lsi+Lop =3 (0ub)* + M B, B" — (9,B")? — £ M7 (6.23)
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and the corresponding Faddeev-Popov Lagrangian

o0F oB* ob
ﬁFPZEB 505 CB = Cp a“@—53M1@ CB, (6.24)

with ¢p and ¢p are the anticommuting ghost/antighosts fields. It can be written as
Lrp=cp (O+EpMT) e, (6.25)
having used the shift of the axion under a gauge transformation
b = — M. (6.26)

In the following we will choose £g = 1. The anomalous sector is described by

San = S1+ 83 (6.27)
2
St = [dedyds (BT (002 B A0 A0)) (6.29)
3
S; = /dmdydz <g3—?TQ‘XIA(x,y,z)B,\(z)BM(x)By(y)>, (6.29)

where we have collected all the anomalous diagrams of the form (AVV and AAA) and whose

gauge variations are

1 i 1
553 [TAVVBAA] = gag(ﬂ)z [FA A FAQB] (6.30)
L Sy [TanaBBB] = %35y A Frop) (6.31)
31 B |[1AAA - 3134 B BYB/, .

having left open the choice over the parameterization of the loop momentum, denoted by the
presence of the arbitrary parameter § with

) ap, 7

i
_ - = — = —— 6.32
a3(ﬁ) 471'2 + 27_[_2/3 a3 3 67'('2’ ( )
while
1 i 2
E(SA [TAvaAA] = Eal (6)1 [FB AN FAQA] . (6.33)
We have the following equations for the anomalous variations
9594 1 igp an3
S5Lan = IBIA 4 (3)=Fy A Fabp+ I8 92 pp A Frop (6.34)
2! 4 31 34
i9594 2
54Lan = ggf]f‘ a1(8) 7 Fp A Fabla, (6.35)

while £ ., the axionic contributions (Wess-Zumino terms) needed to restore the gauge symmetry

violated at 1-loop level, are given by

C C
Ly = —AApFANFy+ BBy pp A Fp. 6.36
b= 0 A+ 2 PEEAEE (6.36)
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Figure 6.3: Relation between a correlator with non amputated external lines (left) used in a
STI and an amputated one (right) used in the effective action for a triangle vertex and for a CS

term.

The gauge invariance on A requires that § = —1/2 = 3y and is equivalent to a vector current
conservation (CVC) condition. By imposing gauge invariance under B gauge transformations,

on the other hand, we obtain
0B (['b + ['(m) =0 (6.37)

which implies that

. 2 . 3
19pgs 1 M igp 1 M
Cyn= g! 4 1 asz(Bo) TR Cpp = 3—f31 n 3L (6.38)

This procedure, as we are going to show, is equivalent to the imposition of the STI on the
corresponding anomalous vertices of the effective action. In fact the counterterms Cs4 and
Cpp can be determined formally from a BRST analysis.

In fact, the BRST variations of the model are defined as

dprsT By = wiyucp (6.39)
dprsTb = —wMicp (6.40)
oprsT Ay = wdyca (6.41)
dprsrcp = 0 (6.42)
_ W, g w u
dprsrép = —Fp=—(0,B" —EpMb). (6.43)
9 3

To derive constraints on the 3-linear interactions involving 2 abelian (vector-like) and one
vector-axial vector gauge field, that we will encounter in our analysis below, we require the

BRST invariance of a specific correlator such as

doprst (0T ¢p(2)Au(2) A (y)[0) =0, (6.44)
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Figure 6.4: Representation in terms of Feynman diagrams in momentum space of the Slavnov-
Taylor identity obtained in the Stiickelberg phase for the anomalous triangle BAA. Here we deal
with correlators with non-amputated external lines. A CS term has been absorbed to ensure

the conserved vector current (CVC) conditions on the A lines.

(Fig. shows the difference between the non-amputated and the amputated correlators) and

applying the BRST operator we obtain
5% (0T [03BA(2) — EpMib(2)] A (2) A (9)|0)  + (O|T ep(2)wdyca(a) Ay (y)|0)
+ (O[T ep(2)Ap(x)wdyca(y)|0) = 0,
(6.45)

with the last two terms being trivially zero. Choosing {5 = 1 we obtain the STI (see Fig. [6.4))
involving only the WZ term and the anomalous triangle diagram BAA. This reads

0

5. 0T B (2)Au(x) Ay (y)[0) — M1 (0|T b(2) Ay () A, (y)]0) = 0. (6.46)
A similar STT holds for the BBB vertex and its counterterm

0

5. 0T B(2)By(x) By (y)[0) — My (0T b(2) By, () B, (y)|0) = 0. (6.47)

These two equations can be rendered explicit. For instance, to extract from (6.46]) the corre-
sponding expression in momentum space and the constraint on C4 4, we work at the lowest order

in the perturbative expansion obtaining

1 0

2192 0T B(2)Au(2) Ay (y) [J5B] [TAJ [0) — M:(0|T b(2) Ay () Ay (y) [bFa A Fa] 0) = 0,

(6.48)
where we have introduced the notation [ | to denote the spacetime integration of the vector (J)

and axial current (J5) to their corresponding gauge fields
JA = —gapy"yA,, (6.49)
JsB = —gpy"y°yB, (6.50)

~ ) me —
JsGp = QZQBM—f1/1’751/1GB ; (6.51)
B
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where Mp is the mass of the B gauge boson in the Higgs-Stiickelberg phase that we will analyze
in the next sections.

In momentum space the STI represented in Fig. becomes (£ = 1)

1, [ik)‘/} [ igAN ] [_igmﬂ} [_igw/] [—gngi] AN (ky, ky)

2! k2 — M2 k2 k2
i iguu’ 19y’ uv o
- 2M — — Vi“(k1,ke) =0 6.52
] [ ] e o 652

where the factor % comes from the presence in the effective action of a diagram with 2 iden-
tical external lines, in this case two A gauge bosons, and the factor 2, present in both terms,
comes from the possible contractions with the external fields. Using in (6.52]) the corresponding

anomaly equation
/{?)\A)“uy(/ﬁ, kz) = ag(ﬁo)ewja’gklakgg (6.53)

and the expression of the vertex Vi* (ki, ko)

4C 44

Vi (k1 ko) = v Pl kg (6.54)
we obtain
i _Zgﬂ,ll/ _Z.gl/y/ Zngiag(BO)Euyaﬁklakzﬁ o 2M1 4CAA EuyaﬁklakQB — 0
Roa2) | K K2 M ’
(6.55)
from which we get
. 4C 44 igpg3l M
2 BIA
—2M - - ey .
igBgaa3(Bo) 1737 = Caa 57 (%) 7 (6.56)

This condition determines Cy4 at the same value as before in (6.38]), using the constraints of
gauge invariance, having brought the anomaly on the B vertex (Gy = —1/2).

In the case of the second STI given in (6.47]), expanding this equation at the lowest relevant
order we get

1 0

319 o B(2)Byu() By (y) [J5B]” |0) — M1(0|T b(2) B, () By (y) [bF5 A Fp]10) = 0. (6.57)

Also in this case, setting {g = 1, we re-express (6.57)) as

1 o/ ) ’ 7 / ) ! v
=3 [zk)‘} {— k;gM ] [ Juup } { Y ] [—g%] AN (ky, ko)

3! —MZ| | K2—MZ] | K2 — M2
i Z.gﬂﬂl igl/l/’ n o
- 2M — — VI (ki ko) = 0 6.58
e i) [etie] e -o (659
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Figure 6.5: Diagrammatic representation of (6.59]) in the Stiickelberg phase, determining the

counterterm Cpgpg.

where, similarly to BAA, the factor % comes from the 3 identical gauge B bosons on the external
lines, the coefficient 3! in the first term counts all the contractions between the vertex AM¥ and
the propagators of the B gauge bosons, while the coefficient 2 comes from the contractions of

VEY with the external lines. From Eq. (6.58]) we get

‘ ig ! igm/ . v y
[k‘2—M12] [_k;% _!”;\412] [_k%—MIZ:| [Zg%k)\AM (k1, ko) — 2 M VEY (k1,k2)| =0,

(6.59)

as depicted in Fig.
The anomaly equation for BBB distributes the total anomaly a, equally among the three

B vertices, therefore
AN (ky ) = C;—"ewﬁkmkzg, (6.60)

and for the V£ (k1, k2) vertex we have

4C
Véw(kil, k2) == %Euyaﬁklakzg. (661)
Inserting (6.60]), (6.61)) into (6.59]) we obtain
3 ap 4Cpp igh1la, M
n_onm =B _In = 62
195 i = Cpp=—"3"773 M, (6.62)

in agreement with (G.38]). Therefore we have shown that if we gauge-fix the effective Lagrangian
in the Stuckelberg phase to remove the b-B mixing and fix the CS counterterms so that the
anomalous variations of the trilinear vertices are absent, we are actually imposing generalized
Ward identities or STI’s on the effective action. On this gauge-fixed axion the b-B mixing is
completely absent also off-shell and the structure of the trilinear vertices is rather simple. We
need to check that these STI’s are compatible with those obtained after electroweak symmetry

breaking, so that the mixing is absent off-shell also in the physical basis.
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6.2.1 The Higgs-Stiickelberg phase (HS)

Now consider the same effective action of the previous model after electroweak symmetry break-
ing. If we interpret the gauge-fixed action derived above as a completely determined theory
where the counterterms have been found by the procedure that we have just illustrated, once
we expand the fields around the Higgs vacuum we encounter a new mixing of the goldstones
with the gauge fields. Due to Higgs-axion mixing [16] the goldstones of this theory are extracted
by a suitable rotation that allows to separate physical from unphysical degrees of freedom. In
fact the Stiickelberg is decomposed into a physical axi-Higgs and a genuine goldstone. It is then
natural to ask whether we could have just worked out the Lagrangian directly in this phase by
keeping the coefficients in front of the counterterms of the theory free, and had them fixed by
imposing directly generalized WI’s in this phase, bypassing completely the first construction.
As we are now going to show in this model the counterterms are determined consistently also
in this case at the same values given before.

Let’s see how this happens. In this phase the mixing that needs to be eliminated is of the
form B*0,,Gp, where Gp is the goldstone of the HS phase. In this case we use the gauge-fixing
Lagrangian

Ly = ~5= (F)* = —56= (05" — €5 M5Gi). (6.6
and the BRST transformation of the antighost field ¢p is given by

w w
SpRrsT B = —Ff = — (0,B" — EgMpGp) . (6.64)
&B {B
Also in this case we use the 3-point function in Eq. (638]) and {5 = 1 to obtain the STI
0
50 —— (0| BX(2) Ay () A, (9)|0) — Mp(O|T Gp(2)Ap(2) A, (y)]0) = 0. (6.65)
To get insight into this equation we expand perturbatively (6.65]) and obtain
1 0
o1 5o O B(2)A(x) Ay (y) [JsB] [TAJ* |0)

— Mp (0|T Gp(2)Apu(x)
)

v(y) [GBFa N Fal|0)
— Mp (0T Gp(2)Au(z)Au(

A
A (y) [LGB] [JAJ%|0) = 0, (6.66)
where the first term is the usual triangle diagram with the BAA gauge bosons on the external
lines, the second is a WZ vertex with G on the exernal line and the third term, which is absent
in the Stiickelberg phase, is a triangle diagram involving the Gp gauge boson that couples to
the fermions by a Yukawa coupling (see Fig. [6.6]). In the Stiickelberg phase there is no analogue
of this third contribution in the cancellation of the anomalies for this vertex, since b does not

couple to the fermions.
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Figure 6.6: Diagrammatic representation of Eq. (6.60) in the HS phase, determining the coun-
terterm C44. A CS term has been absorbed by the CVC conditions on the A gauge bosons.

Notice that the STI now contains a vertex derived from the bF4 A F4 counterterm, but
projected on the interaction GgFa A F4 via the factor M;/Mp. This factor is generated by the

rotation matrix that allows the change of variables (¢,,b) — (x5, Gp) and is given by
g | costlp sinfg (6.67)
sinfg cosfp

with 05 = arccos(M;/Mp) = arcsin(qgggv/Mp). We recall [16] that the axion b can be ex-
pressed as a linear combination of the rotated fields x and G g of the form

My
Mp
where y is the physical axion and Gp the Goldstone boson; we also recall that the gauge field

qdp9gpv
Mp

b:a1XB+a2GB = XB+ GB7 (668)

B,, gets its mass Mp through the combined Higgs-Stiickelberg mechanism

Mg = \/M? + (4p050)°. (6.69)

Now we express the STI given in (6.66]) choosing {5 =1
1 Y ’L'g)\)\/ iguu’ Z.gyu’ 2 Y%
72 [ [_kQ—MfJ [_ i | [ ) omed AT k)
i ig,u,u/ iguu’ Ml nz
_ M _ _ 9 1
o) ] [ P

+op 219894 <22 M—B> Aé;AA(mf,kl,kQ)} =0,

(6.70)

where the [GpF4 A F4] interaction has been obtained from the [bF4 A Fy4] vertex by projecting
the b field on the field G, and the coeflicient 2im¢/Mp comes from the coupling of Gp with
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the massive fermions [I6]. The remaining coefficient M /Mp rotates the Vi (ki, ko) vertex as

in Eq. (670).
Replacing in (670) the WI obtained for a massive AVV vertex

AN (3, ki ke) = as(B)e PREKS + 2mp AP (my, by, k), (6:71)
where

1
A“"(mf,kl,kg) = mfz’:“aﬁ”y/ﬁ,akgﬁ (ﬁ) I(mf)

1 11—z 1
o o 6.72
() /0 /0 YV @ - Dakl + (y — DykE — 2ayky by 7

and the expression for the V" (ki, ko) vertex

akag, (6.73)

we get

LGN :| [iguu/] |:iguu/:| {Z 2 uvaf
9894 a3(Bo) € k1akap
[k‘z ~ M| | K k3
4C a2

+2ing% myg A" (myg, ki, ko) —2Mp Te“mﬁklak%

. m Y
—2igpgi Mp M—j; AG, aalmy, K, kz)} =0. (6.74)

Since Aé’; aa =AM Eq. ([6.74) yields the same condition obtained by fixing C'44 in the Stiick-
elberg phase, that is

. 4C 44 igrg3l M
2 BIA
1 a =2M = Cuap = —a —. 6.75
9Bgaa3(Bo) i 5 1 3(6o) M, (6.75)
A similar STI can be derived for the BB B vertex in this phase, obtaining
0
L OIT BX) By (@) B (4)]0) — Mp{O[T G (2) By (@) B (1)[0) = 0. (6.76)

Expanding perturbatively (6.76]) we obtain

% a;zx (0T B*(2)B,.(x)B,(y) [Js B]* |0)

— Mp <O‘TGB(Z y) [GBFB/\FB] ’0>
y) | JsC| [13B)70) =0, (6.77)

)Bu(2) By (
— Mp (0|T Gp(2)Bu(x)B,(

m v
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that gives

1 N ig)\)\/ Zg ! iguu’
— 3! A _ _ mp _ 3 Auv
517 [Zk H k?-MgH k%—MgH k3 — M3 [=g] Ay, b, k)
7 L 1y ]\/[1 v
- M - - VI (ky, k
B[kQ—MQ] [ kQ—MQ} [ kQ—ng { Mp 7 k)

1_. y
+5 21933 (22 M—B> Alé BB(mf,krl,k‘g)} :0, (678)

where we have defined
A / dq Tr [V°(/a— [k +mp)v"7°(/a = [k + mp)y"2° (/g + my)]
GpBB (

S G | | (R S N CR]
+{p vk <k} . (6.79)

Since this contribution is finite, it gives

4 1 11—z 2mdi ,ul/aﬁk ak
P dzdy mAE Mak2p (6.80)
GpBB (27‘(‘)4 3
0 Jo ¢ = K3(y — )y — K}z — D + 2y — m3]

and we obtain again
v 1
A pp = A" = ek ko gy (ﬁ) I(my), (6.81)
Using the anomaly equations in the chirally broken phase
v _ 9 ool p
/{?)\Ag (/{?1,]{2) = ?E /{?1 k2 +2mfA (6.82)

and the expression of the vertex

4C
VE (k1 ko) = %e““aﬁkmkw, (6.83)
we obtain
;3
1gpl a, M
Opp="3"173 an, (6.84)
Expanding to the lowest nontrivial order this identity we obtain
/a 4 My v
(3 (gne‘uyaﬁklakgg + 2mwa/) — QMB <MCBBM—B> ewja’gkl kgg — MB (22M—> AléBBB 07
(6.85)

which can be easily solved for Cpp, thereby determining Cpp exactly at the same value inferred

from the Stiickelberg phase, as discussed above.
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Figure 6.7: The anomalous effective action in the two basis in the R¢ gauge where we have

eliminated the mixings on the external lines in both basis.

6.2.2 Slavnov-Taylor Identities and BRST symmetry in the complete model

It is obvious, from the analysis presented above, that a similar treatment is possible also in
the non-abelian case, though the explicit analysis is more complex. The objective of this in-
vestigation, however, is by now clear: we need to connect the anomalous effective action of the
general model in the interaction basis and in the mass eigenstate basis keeping into account that
both phases are broken phases. In Fig. this point is shown pictorially. In both cases the
bilinear mixings of the goldstones with the corresponding gauge fields, Z0Gz, Z'0G 7 have been
removed and the counterterms in the eigenstate basis have been fixed as in [I7], where we have
just shown it for the A-B model. Equivalently, we can fix the counterterms in the HS phase by
imposing the STI’s directly at this stage, thereby defining the anomalous effective action plus
WZ terms completely. For this we need the BRST transformation of the fundamental fields. As
usual, in the gauge sector these can be obtained by replacing the gauge parameter in their gauge
variations with the corresponding ghost fields times a Grassmann parameter w. Denoting by s

the BRST operator, these are given by

SAY = wOuey +i07) gow (¢ W,F — W), (6.86)
$Z, =woycy +i04 gow (c_WJ — C+Wu_) , (6.87)
SZ/; =wdycy +1 O3 gaw (chj — C+W/;) (6.88)
SW; = wd,c — iggW;w (Oﬁcfy + O?lcz + O?lczr)
+ gz (011 Ay + O3 Zy + O?ﬁZ/;) we', (6.89)
sW, = wiuc” +igoW, w (Oﬁcv + Ofcy + O?ﬁczl)
— gy (O Ay + 0 2 + 031 Z), ) we™, (6.90)

where the O;-L]‘» are matrix elements defined exactly as in Eq. (6I11]) below. To determine the
transformations rules for the ghost/antighost fields we recall that the gauge-fixing Lagrangians

in the R¢ gauge are given by
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1 1
£§f = _2§—Z‘7:[Za GZ]Z = _2§—Z(3MZM — SZMzGZ)27 (691)
, 1 , 1 ,
Eng = —252/ f[Z"GZ ]2 _ _252/ (a“Z/H _ £Z’MZ’GZ )2’ (692)
oo oo L g,any (6.93)
9f 264 g %4 uay )
1 f— —
Ly = —S—Wf[W+7G+]f[W ,GT] =
1
= —5—(aﬂW+“ + i&w Mw GT)(0,W ™ —i&w My G™), (6.94)
w

where GZ, GZ', G and G~ are the goldstones of Z, Z/, W+ and W~ respectively.

In particular, the FP (ghost) part of the Lagrangian is canonically given by

—a6‘7:a[Z’ Z] b

Lrpp=—¢C 5 € (6.95)

where the sum over a and b runs over the fields Z, Z/, A,, W' e W~ and is explicitly given in

the appendix. For the BRST variations of the antighosts we obtain

7

séa:—g—w}"“ a=272,7"+, - (6.96)
and in particular

séy = —éw (0,2" — €2 M2 G7) (6.97)

Z
_ i < " 7

sty = ——w (0,2" -4 MpG ) (6.98)
§z/

se, = ——w (9,4 (6.99)
&y

sty = _SLW (0, W + iy My G) (6.100)
w

s = —glw (0, W — iy My G™) , (6.101)
w

giving typically the STI

%<OIT ZM(2) Ap(x) Ay ()10) — Mz(0|T Gz(2)Au(x) A, (y)]0) = 0, (6.102)

and a similar one for the Z’' gauge boson.
We pause for a moment to emphasize the difference between this STI and the corresponding

one in the SM. In this latter case the structure of the STI is
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Y u y Y u
d » ¢ G, A G
= — 2M,-~ — 2M, -~ =0
d
Yy
Y Y
a) b) c)

Figure 6.8: The general STI for the Z~vy vertex in our anomalous model away from the chiral

limit. The analogous STT for the SM case consists of only diagrams a) and c).

LA y
z G
iz\ A - 2Mm, -2 - 0
d
y Y
a) b)

Figure 6.9: The STI for the Z~~ vertex for our anomalous model and in the chiral phase. The

analogous STT in the SM consists of only diagram a).

k, GPVH = (k1+k2) el

1—x1
= E 2 cvpef 1
cosH gAQ € kiakop [ mf/ dxl/ dxo ], (6.103)

where GPY* is the gauge boson vertex, which is shown pictorially in Fig. (diagrams a and c).
Notice that the goldstone contribution is the factor in square brackets in the expression above,
being the coupling of the Goldstone proportional to mff /Mz. In the chiral limit the STT of the
Z~~ vertex of the Standard Model becomes an ordinary Ward identity, as in the photon case.
In Fig. the modification due to the presence of the WZ term is evident. In fact, expanding

(6102) in the anomalous case we have
k?pGPV,u — (k1+k2) G PVH
1—x1
— 2 _vuaf L 1
- 7T2C059WZg Qf €™ k1akag [ mf/ dfvl/ dxy A}, (6.104)

where the first term in the square brackets is now the WZ contribution and the second the
usual goldstone contribution, as in the SM case. Notice that the factor ¥ QQQ% is in fact
proportional to the total chiral asymmetry of the Z vertex, which is mass independent and

appears as a factor in front of the WZ counterterm. In the chiral limit the anomalous STT is
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represented in Fig. At this point we are ready to proceed with a more general analysis of
the trilinear gauge interactions to derive the expressions of all the anomalous vertices of a given
theory in the mass eigenstate basis and away from the chiral limit. The reason for stressing this
aspect has to do with the way the chiral symmetry breaking effects appear in the SM and in the
anomalous models. In particular, we will start by extending the analysis presented in [I7] for the
derivation of the Z~~ vertex, which is here presented in far more detail. Compared to [17] we
show some unobvious features of the derivation which are essential in order to formulate general
rules for the computation of these vertices. We rotate the fields from the interaction eigenstate
basis to the physical basis and the CS counterterms are partly absorbed and the anomaly is
moved from the anomaly-free gauge boson vertices to the anomalous ones. This analysis is then
extended to other trilinear vertices and we finally provide general rules to handle these types of
interactions for a generic number of U(1)’s.

Before we come to the analysis of this vertex, we recall that the neutral current sector of the

model is defined as [17]
—Lyo = Y Fyy, (6.105)

with
F=g,WiT? + gy YA, + gpYpB, (6.106)

expressed in the interaction eigenstate basis. Equivalently it can be re-expressed as
F = 97Q22,+97QzZ,+ecQA], (6.107)

where Q = T2 + Y. The physical fields A?,Z,Z" and W3, AY, B are related by the rotation

matrix O4 to the interaction eigenstates

A7 W
z | =041 av (6.108)
A B
or equivalently
W2 = Oy A+ Oty zZy + Oy, 11 2, (6.109)
AV = O3 A+ 03,2, + 0y, 2, (6.110)
B, = OpzZy+ 03,7, (6.111)

Substituting these transformations in the expression of the bosonic operator F and reading the

coefficients of the fields Z,,, Z;L and A}, we obtain this set of relations for the coupling constants
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Y W, Y W,
Y w, Y W,
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va{z &N{z ’ % ° %
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B b B b
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Y W.

Figure 6.10: All the triangle diagrams and the possible CS and WZ counterterms present in the

model (chiral phase). Not all these diagrams project on Z — 7 in the mass eigenstate basis.

and the generators in the two basis, given here in a chiral form

92Q% = @TOf, ; + oy YO, + gpYEOR, (6.112)
92Q% = gyVRO{, + gsYH 035y, (6.113)
92Q% = @TOR 5+ oy YPOR, + gpYEOA, (6.114)
92Q% = gvY"OP, + gsYEOR, (6.115)
eQ" = @T*Of, 0+ gvY 07 = gy Y0P 4 = Q. (6.116)

6.3 General analysis of the Zvv vertex

Let’s now come to a brief analysis of this vertex, stressing on the general features of its derivation,
which has not been detailed in [I7]. In particular we highlight the general approach to follow
in order to derive these vertices and apply it to the case when several anomalous U(1)’s are
present. We will exploit the invariance of the anomalous part of the effective action under
transformations of the external classical fields. This is illustrated in Fig. More formally we
can set

Wanom(BavvaAY) = Wanom(Z, Z/aA’y)a (6117)

where we limit our analysis to the anomalous contributions.
In the chiral phase, the triangle diagrams projecting on this vertex are the following: YYY,
YW3sWs, BYY and BW3Ws3. They are represented in Fig. 610, where we have added the

corresponding counterterms.
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W, W, A

Figure 6.11: The routing of the anomaly and the absorption of the CS term into the anomalous

B gauge boson. The anomaly is distributed among the vertices with the black dot.

The first two are SM-like and hence anomaly-free by charge assignment. The diagrams
involving the B gauge boson are typical of these models, are anomalous, and require suitable
counterterms in order to cancel their anomalies. All the possible counterterms are shown in
Fig. The WZ terms of the form bY'Y or bW3W3 will project both on a Gzvyy and a
X7y interactions, the first one being relevant for the STT of the vertex. The main issue to be
addressed is that of the distribution of the anomaly among the triangular vertices. These points
have been discussed in [16] and [I7] working in the chiral limit, when the fermion masses are

removed from the diagrams.

The procedure can follow, equivalently, two directions: we can start from the BY W3 basis
and project onto the vertices Zvvy, ZZ~..., rotating the fields (not the charges) or, equivalently,
start from the Z, Z’'+y basis and rotate the charges (but not the fields) and the generators onto
the interaction eigenstate basis BY W3. We obtain two equivalent descriptions of the various
vertices. In the interaction basis the CS terms are absorbed and the anomaly is moved from the
Y or W vertices into the B vertex, where it is cancelled by the axion (see Fig. [6.11]). This is
the meaning of the STI’s shown above. Therefore it is clear that most of the CS terms do not
appear explicitly if we use this approach. On the other hand, if we work in the mass eigenstate
basis they can be kept explicit, but one has to be careful because in this case also the remaining
vertices containing the generator of the electric charge () ~ Y + T3 have partial anomalies. The
two approaches, as we are going to see, can be combined in a very economical way in some
special cases, for instance for the Z~~ vertex, where one can attach all the anomaly to the Z
gauge boson and add only the Gz~vy~v counterterm. Similarly, for other interactions such as the
Z Z~ vertex, the total anomaly has to be equally distributed between the two Z’s, since only
the B generator carries an anomaly in the chiral limit, if we choose to absorb the CS terms.
For other vertices such as ZZZ' etc, all the vertices contribute to the total anomaly and their
partial contributions can be identified by decomposing the corresponding triangle in the Y BWj3

basis with some CS terms left over.
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6.4 The (Zyy) vertex

In this section we begin our technical discussion of the method. Since the most general case
is encountered when at least 3 anomalous U(1)’s are present in the theory, we will consider
for definiteness a model with three of them, say B; = {B1, B2, B3}. We can write the field

transformation from interaction eigenstates basis to the mass eigenstates basis as

3
Ws = Ofy Ay + > Oy 2 (6.118)
=0
3
Y =04, +> 04,7 (6.119)
=0
3
Bj =0p., A+ Y 03,22, (6.120)
=0

with j = 1,2,3, where for [ = 0 we have the Zj belonging to the SM and Z;, Z5, Z3 are the
anomalous ones. As in [I7] we rotate the external field of the anomalous interactions from one
base to the other, selecting the projections over the Z;yy vertex (the ellipsis indicate additional

contributions that have no projection on the vertex that we consider)

—TT Q¥ (YYY) = 3, r QY] RYY(Ziv) + .. (6.121)
%TT [QyT5] (YWW) = %Tr Qv T3 Ry (Ziyy) + ... (6.122)
—TT [QB,Q5] (B;YY) = —Tv" [Q5,Q%) Ry (Z) + .. (6.123)
%TT [Qp, T3] (BiWW) = %Tr (@B, T3] Ry " " (Ziny) + .. (6.124)

YYY pYWW pBYY pB,WW
RZL’Y’Y’RZI’Y’Y ’RZzW ’RZL’Y"/

elements of the rotation matrix O4 are given by

where the rotation coefficients containing several products of the

Ry = 3[(0Myz(0M7.] (6.125)
Ry = [200Mwe, (0%)y 2, (0%)ys + (0Y)i,, (0%)y 2] (6.126)
RyIW = [3(0M)8,2,(0M),,] (6.127)
Ry\W = [200M)y2(0M)y1 (0N wyy + (0w, (073, (6.128)
Ry = (03,052 (6.129)
Rz = (0N, (0M)5,2] (6.130)
Rz = [200M)5,2,(0M)wn(0M)y] (6.131)
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It is important to note that in the chiral phase the YYY and YW W contributions vanish because
of the SM charge assignment. As we move to the m; # 0 phase we must include (together with
YYY and YWW) the other contributions listed below

—TT [Qiy] (WWW) = gTT (T3] RYVYW(Zyym) + ... (6.132)
Tr [QBjQYTs} (BYW) = Tr[QsQyTs] Ry, (Zn) + .. (6.133)
%TT QT3] (YYW) = %TT (QYTs]| RN Ziyy) + ... (6.134)

More details on the approach will be given below. For the moment we just mention that the
structure of the CS term can be computed by rotating the WZ counterterms into the physical
basis, having started with a symmetric distribution of the anomaly in all the triangle diagrams.

The CS terms in this case take the form

va B YY B YY B Ww B wWw v
Vog = e gy )2 § :E : [gB 07 R 4 g G20V R ]ZﬁAﬁAV,
(6.135)

and they are rotated into the physical basis together with the anomalous interactions [17]. We

have defined the following chiral asymmetries

07" = Qk, (QF))? - QR (@ ))? (6.136)
9? W QBj,f( L,f)2 . (6.137)

We can show that the equations of the vertices in the momentum space can be obtained following
a procedure similar to the case of a single U(1) [I7], that we are now going to generalize. In
particular we will try to absorb all the CS terms that we can, getting as close as possible to
the SM result. This is in general possible for diagrams that have specific Bose symmetries or
conserved electromagnetic currents, but some of the details of this construction are quite subtle

especially as we move away from the chiral limit.

6.4.1 Decomposition of the 7,7y vertex

As we have mentioned, the anomalous effective action, composed of the triangle diagrams plus
their CS counterterms can be expressed either in the base of the mass eigenstates or in that of
the interaction eigenstates.

We start by keeping all the pieces of the 1-loop effective action in the interaction basis in
the my # 0 phase and rotate the external (classical) fields on the physical basis taking all the
contribution to the (Z;yy) vertex.
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LL, RR LR, RL

Figure 6.12: Chiral decomposition of the fermionic propagator after a mass insertion.
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. R + R . R@ + R <
R L R
Figure 6.13: Chiral triangle contributions to the YYY vertex. The same decomposition holds
for the B;YY case.

A given vertex is first decomposed into its chiral contributions and then rotated into the
physical gauge boson eigenstates. For instance, let’s start with the non anomalous YYY vertex
see Figs. (G.I216.13). Actually, in this specific case the sums over each fermion generation are
actually zero in the chiral limit, but we will impose this condition at the end and prefer to follow
the general treatment as for other (anomalous) vertices. We write this vertex in terms of chiral
projectors (L/R), where L/R = 1F 5, and the diagrams contain a massive fermion of mass my-.

The structure of the vertex is

_ [ d*q Tr[(d+mp)VPr(d + K +myg)y Pr(d + ki +my)y  Pr]
(LLL) |0 = / (2m)? (¢ — m?) (g + k)2 — mﬂ [(q k) — mfc]

+ exch.

(6.138)

The vertices of the form LLR, RRL, and so on, are obtained from the expression above just by
substituting the corresponding chiral projectors. Notice that for loops of fixed chirality we have

no mass contributions from the trace in the numerator and we easily derive the identity
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W,
: L L
Y
W<[:: = L Q + R <j
L L
W3

Figure 6.14: Chiral triangle contributions to the YW W vertex. The same decomposition holds
for the B;WW case.

At this point we start decomposing each diagram in the interaction basis

VYY) g TriQd] = D (64 (QF )P (LLL™ + g3-(QFf ) (RRR)™
f

+ gy QY (QF )X (LRRY™ + g3 Q¥ ; QF ; Q¥ j(LRL)M”
+ v (Q )2 QF f(LLRYM + g3 QF ; (Q¥ ;)*(RLLYM

+ 495 QF ; Q. QF J(RLRM + g3-(QF ;)?QY: f<RRL>A“” ZPARAYRYYY +

(6.140)

where the factor of 1/8 comes from the chiral projectors and the dots indicate all the other
contributions of the type 2;2,,7, 21 ZmZ, and so on, which do not contribute to the Z;y~y vertex.
This projection contains chirality conserving and chirality flipping terms. The two combinations
which are chirally conserving are LLL and RRR while the remaining ones need to have 2 chirality

flips to be nonzero (ex. LLR or RRL) and are therefore proportional to m?c
We repeat this procedure for all the other vertices in the interaction eigenstate basis that
project on the vertex we are interested in. For instance, in the case of the (YWW) vertex the

structure is simpler because the generator associated to Wj is left-chiral (Fig. [6.14])
YWW) gy 3 TriQv (T3] = > |9y 63QF  (TF ) (LLLY
f

+gvga QU (T3 f)Q(RLLY‘W} —ZAPAYRYYY 4 (6.141)

Similarly, all the pieces B;YY and B;WW for i = 1,2, 3, give the projections

(BYY)gpg} TriQp Q) = 3 |95 g} Q,p (QF)(LLLY™
7

+gB, 9y QF, 1 (QF )X (RRRM + gp, g% QF, 7 (QF ) (LRR)M
+9B, 9% QB, ; Q3 s QY (LRLY™ + gp, 6% QB ; Qv QF f(LLR)M
+98, 95 Q% 5 (QY ) (RLLY™ + g, g5 QR ; Q¥ s QF ;(RLR)™

1 ,
98,93 QF, jQF QF J(RRLY™ | SZPALALRPYY 4 (6.142)
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and
(BWW) gy 3 TriQ (T*] = > |95,03Qk, ;(T7 ) (LLLY
f
v 1 v i
+ gBiggQgi,f(Tz’,f)%RLLy\u ] ngAAgAvRZ;ZW T

(6.143)

We obtain similar expressions for the terms WWW YYW  B;YW, etc. which appear in the
my # 0 phase.

The m; = 0 phase

To proceed with the analysis of the amplitude we start from the chirally symmetric phase
(ms = 0). The terms of mixed chirality (such as (LRR) and so on) vanish in this limit, leaving
only the chiral preserving interactions LLL and RRR. In this limit we can formally impose the

relation
(LLLY (my = 0) = —4A444(0) (6.144)

that will be used extensively throughout the chapter. This relation or other similar relations
are just the starting point of the entire construction. The final expressions of the anomalous
vertices are obtained using the generalized Ward identities of the theory. What really defines
the theories are the distributions of the partial anomalies. We will attach an equal anomaly
on each axial-vector vertex in diagrams of the form AAA and we will compensate this equal
distribution with additional CS interactions - so to bring these diagrams to the desired form
AVV or VAV or VV A - whenever a non anomalous U (1) appears at a given vertex. For models
where a single anomalous U(1) is present this does not bring-in any ambiguity. For instance,
conservation of the Y current in B;Y'Y will allow us to move the anomaly from the Y’s to the
B; vertices and this is implicitly done using a CS term. We say that this procedure is allowing
us to absorb a CS interaction. Moving to the YYY vertex, this vanishes identically in the chiral
limit since we factorize left- and right-handed modes for each generation by an anomaly-free

charge assignment

(YYY): G Tr(Q3] =0, (6.145)

(YWW): gy g3 Tr[Qy (TF)?] = 0. (6.146)

At this point we pause to show how the re-distribution of the anomaly goes in the case at hand.
We have the contribution
VEYY = dy(B;Y A Fy) (6.147)
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and the BRST conditions in the Stiickelberg phase give
. 2 2 1 2
di = _ZgBigyganDBiYY§ Dpyy = gTT[QBiQY]- (6.148)
Also these terms are projected on the vertex to give

VEYY = di(BiY A Fy) = (=i)die™ (k1o — ko) (O3, (0N B,z Z}ARAY + ..
VEWVW = ¢ (ehvro B, ;CAbHany — (i), MV (kg — kog) (0N, (0N p,2] Z)ALAY + ..

vpo

(6.149)

In general, a vertex such as B;YY is changed into an AVV, while vertices of the form Y BB
and Y B;B; which appear in the computation of the vZZ vZ,Z,, interactions are changed into
VAV + VVA. This procedure is summarized by the equations

AYYa(my =0, k1 ky) - a_;ff)\w/a(kl,a —koa) = AN (mp =0k k) (6.150)
AR (mp = 0.k, —k) — a—;e“““(kl,a +2kn) = AR (my = 0,k, —k)
— AV (myp=0,k1, ko) (6.151)
A (my =0, —k, ky) — Cf(,)_nff”’\“a(—%l,a —kan) = AR (mp=0,—k, k)
=AY (mp =0,k k) (6.152)

v a
AN (my =0,k ky) + Eng/\um(kl,a —koa) =

1 » y
5 (A?/MAv(mf = 0,k1, k) + Ai\/%/A(mf =0, kl,kz)] ;

2
(6.153)
where the last relation can be proved in a simple way by summing the second and the third

contributions. Defining k3 = —k*, one can combine together the AAA plus the counterterms

into a unique expression for each case

"% Y% i 2 Apvo
ViYy = 4Dpyy gp,gv Axaa(k1,k2) + Dpyy gBiggp 3¢ M7 (ky — kg,
A A i 2 VA
V{5y = 4Dpyy gp,9yv Aluaa (k2. ks) + Dp.yy gBigigp 3 " (kg — k3)
A VA i 2 AU
Vy#Bi = 4DBZ~YY 93291% AAKA(kSa k1) + DBiYY 93291%; 3 /M (ks — k1),
Apy Apy i1 Apuvo
YB;B; 4DYBiBj 9y 9B;9B; ANanlky,ky) — DYBiBj ngBigBjﬁ 3 € (kg = k2),s

(6.154)
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where we have rotated them onto the Z;yy vertex. For the non abelian case (W B;W and
WW B;), the calculation is similar, so we omit the details.

Finally the anomalous contributions plus the CS interactions are given by

(BiYY)|mp=0 + (BiWW)|m;—0 =

1w BiYY
‘|'QBZ~9%/ Z [Qéivf(Q{%f)2 o Qgi,f(ng)z] §AA%A(0)RZWV Zl)\Alﬂ;A;
f

1 U B y
+98.95 ) Qéi,f(Tg,f)QiAAAA(O)AM Ry z) AL AY
f

. 4 BiYY 4 L) nB;WW
—i [gBig%ganDBinyZ;w + 95,93 gan D Ry W | M (ko — ko) 20 AR AL,

(6.155)

which allows to move the anomaly on the axial current and we simply get
Lo o BiYY
(2 lmg=0 =D _amab D (@B, (@Y ) — QF, (QF )°] AN (ORZYY 70 AL AL
i f
Lo B,WW
+ 98,95 ) Qp f(TL 1) S AN () Ry Z) AL AY, (6.156)
i f

where we transfer all the anomaly on the vertex labelled by the A index, obtaining that the
Ward identities on the photons are satisfied.

At this point, it is convenient to introduce the chiral asymmetry

Y B; B;
07 = [(Qv.0)(QB, )(QE, ) — (QF )(QF 1) (QF, 1) (6.157)
and express the coefficients in front of the CS counterterms as follows
1 B;YY
Dp,yy = ~3 Z 0 (6.158)
!
1 B,WW
Dpww = —2 > o5 (6.159)
f
1 Y B;B;
Dy p,p, :—52@ 7 (6.160)
f

After some manipulations we obtain the expression of the (Z;yy) vertex in the my = 0 phase

which is given by
Lo A BiYY pB;YY B.WW pBWW
<Zl'Y'Y>’mf:0 = _iAA}av(o)Zl AQLAE/ZZ [9&-9}2/0]0 RZZ'Y'Y + gBig%Hf RZZW ] )
i f

(6.161)
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where for A 4y (0) we write

1 /1 -z 1
Aavv (0) (k1 k2, 0) = F/o dw/o dym
{elkr, A s V) [y(y — V)ES — wyks - ko]
+elko, A, 11, V) [2(1 — 2)kF + 2yky - ko
+elk, ko, \,v] [z(z — 1)K} — zykh]
telki, ko, A, pl [zykY + (1 — y)yks]} (6.162)

A(0) = z(z — 1)kT +y(y — k3 — 2zyky - k2. (6.163)

At this stage we should keep in mind that if all the external particles are on-shell, the total
amplitude vanishes because of the Landau-Yang theorem. In other words the Z;’s can’t decay
on shell into two on-shell photons. However it is possible to have two on-shell photons if the
initial state is characterized by an anomalous process as well, such as gluon fusion. This does
not contradict the Landau-Yang theorem since the Z-pole disappears [30] in the presence of an

anomalous Z' exchange [30].

6.4.2 The m; # 0 phase

Now we move to the analysis of the vertices away from the chiral limit. Also in this case we
separate the mass-dependent from the mass-independent contributions.

Chirality preserving vertices

We start analyzing the vertices away from the chiral limit by separating the chiral preserving

contributions from the remaining ones. The general expression of LLL is given by

(LLL)|m;#0 = Arelky, A, p, v] + Aselka, A, i, v] + Askie[ky, k2, A, pu] + AskSelkr, ko, A, ]
+A5/€?€[/€1, ka, A, V] + Aﬁkgz’:“[/ﬁ, ko, A, I/] (6.164)

where we have removed, for simplicity, the dependence on the charges and the coupling constants.

The divergent structures Ay and Ay are given by

Ay = 8i[Tso(ky, k) — Too(ky, ko)) kT + 163 [T11 (K1, ko) — To1 (1, k2)] k1 - ko
+  8i[Zo1(k1, ko) — Toa(k1, ko) + Tua(ky, ka)] k3 + 40 [3D10 (K1, k2) — 2Doo (K1, k2)]
(6.165)
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where
1 11—z 4 syt
d x
Tk, ko) = / dw/ dy/ (27;;4 J .
0 0 [qQ — (1 —2)k? —y(1 — y)k3 — 2zyk; - ko + m?c]
(6.166)
1 1—x d4 sz t
Dutks ko) = [ o [y [ 5 (aa .
0 0 [qz —z(1 —2)k? —y(1 — y)k32 — 2zyky - ko + mﬂ
(6.167)

and one can verify that Ay (ki, ko) = —Aa(ke, k1). All the mass dependence is contained only in
the denominators of the propagators appearing in the Feynman parametrization.

The finite structures As ... Ag are the following
A4(k31, k2) = 162 [IQQ(kil, k2) — I()l(kil, k‘Q)] = —A5(k‘2, k‘l) (6169)

where still we need to perform the trivial finite integrals over the momentum gq.

The decomposition of (LLL)¢ into massless and massive components gives

(LLL); = (LLL(mjs # 0)) — (LLL)(0) (6.170)
(LLL)(0) = (LLL(ms=0)) (6.171)
(LLL(ms #£0)) = (LLL);+ (LLL)(0), (6.172)

where we have isolated the massless contributions. As we have seen before, the CS terms act
only on the massless part of the triangles (having used Eq. (6.144))) and reproduce the massless
contribution calculated in Eq. (6.161). Since the mass terms are proportional to the tensors
elk1, A, pu,v] and elka, A, u, v] they can be included in the singular structures A; and A, of
(LLL) 20

Ar = Ay +im(QF p)*(QF ) [-8To0 (4%, b, ko) + 24Ta0 (e o, K)]
+im3 QY. )% (QF ;) [8Too(q?, k1, k2) — 24T10(q% K1, k2)]
_8im§Q§7f(Tsz)QIlo(q2, k1, k2)

—im} Y QF, QY. Q¥ s [8Two(a® k1, k) + Aoo(a* k. )]

+im} Z QB, Q% QY s [8T10(¢%, k1, ka) + 4To0(¢%, k1, k2)]
—8im3 > QR ;(Q¥ )*Tio(q% kr, k) +8im3 > QE, Q% ;) Tro(g®, ki, ko)

—8im3 Y QR (T41)*Tio(q? k. ka). (6.173)
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At this point we have to consider also the chirality flipping terms. For simplicity we discuss only

the case of the YYY vertex, the others being similar.

Chirality flipping vertices

These contributions are extracted rather straighforwardly and contribute to the total vertex
amplitude with mass corrections that modify A; and As. We discuss this point first for the
(YYY), and then quote the result for the entire contribution to Z~~.

For YYY we obtain

Q¥ 1)*(Q¥p) [(RRL) + (LRR) + (RLR)] =
(QF 1)7(QF5) [8imFToo (k1. ko) (elka, A, pyv] = elkn, A, o, v])
+24im?c (Zlo(kh /{?2)5[/{?1, A, 1 V] —To1 (kl, /{?2)8[]{2, A, 1t V])] R (6.174)

and the analysis can be extended to the other trilinear contributions and can be simplified using

the relations
[(RRL) + (LRR) + (RLR)] = — [(LLR) + (RLL) + (LRL)]. (6.175)
The final result is given by

mass terms = im}gy- (Qy ) (Q¥ 5) 800 (k1 ko) (elk2, A, p, V] — e[k, A, 1, )
24 (Tao(kr, ko)elkr, A, g, v] — Tor (kr, ko elka, A, o, 1])]
—im} gy (QF )2 Q) [8Zoo (K1, k2) (elkz, A,y v] — ek, A, 1, v])
+24 (Z10(ky, ka)elkr, A\, p, v] — Zo1 (K1, ka)e[ka, A, p, v])]
+8im}gy g5 Q3 ¢ (T5'p)” (Zor (k1 ka)elka, A, 1, v] — Tio(ku, ka)elkr, A, p, v])
+im3 Y 98,03 QB ;QY s QY1 [(8Z01(q, k1, ko) — 4Zoo (kr, ka))elka, A, 1, /]

+(8Z10(k1, k2) + 4Zoo(k1, k2))elk1, A, p, v]]

—im3 > g9p.9vQE, j QY ;QF ; [(8T01 (ky, k2) — 4Too (k1 k2))elka, A, p1, v
+(8Z10(k1, k2) + 4Zoo (K1, k2))elk1, A, p, V]

+im3 > g9y QE, 1(QY ;)78 (Tor (ky, ko)elka, A, i, v] — Tro(ky, ko )elkr, A, i1, v])

—im3 > 98.9vQB, f(QF )*8 (Zo1 (k1 ka)elka, A, 1, v] — Tao(ky, ka)e[kr, A, g1, v])

+8im7 Z 98,95Q%, 1(T5 1) (Zor(ky, ka)elka, A, t, v] — Tao(ky, ko)elke, A, pu, v])

(6.176)
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and is finite. To conclude our derivation in this special case, we can summarize our findings as
follows.

In a triangle diagram of the form, say, AVV, if we impose a vector Ward identity on the two
V lines we redefine the divergent invariant amplitudes A; and Ay (A3 = —A;) in terms of the
remaining amplitudes As, ..., Ag, which are convergent. The chirality flip contributions such as
LLR turn out to be finite, but are proportional to A; and As, and disappear once we impose
the WI’s on the V lines. This observation clarifies why in the Zv~ vertex of the SM the mass
dependence of the numerators disappears and the traces can be computed as in the chiral limit.

Including the mass dependent contributions we obtain (see Fig. for the m; # 0 phase)

1 \ _ ,
(2N myz0 = (Z1v7) lmy=0 — Z §<LLL>fW {07 YRy + gaof W R YW
f

Y YY YY B, YW pB,YW
PR 4 agy 07TV RYEY ) g.g20v 07 Ry!

+g59v0 ¥ Zyy

B,)YY pB;YY B,WW pB,WW
S0 R + o i |z
) 7

+m3c (chirally flipped terms) (6.177)

where (LLL>?“ ” is now defined by Eqs. (EI70HG.I72). In Eq. (GIT7) we have also defined the

following chiral asymmetries

0y "W = (13 ;)° (6.178)
07" = [(Qy,)*T7 4] (6.179)
pEYW = [QBwf QLTS f} (6.180)

It is important to note that Eq. (6.I77) is still expressed as in Rosenberg (see [16] [41]), with
the usual finite cubic terms in the momenta k; and ko, the two singular invariant amplitudes

(A; and As) and the mass contributions.

At this stage, to get the physical amplitude, we must impose e.m. current conservation on

the external photons

K Zoy ) g = 0
RS (Zoy) s = 0. (6.181)

Using these conditions, again we can re-express the coefficient A, Ay in terms of As, ..., Ag
and we drop the explicit mass dependence in the numerators of the expression of the physical

amplitude.
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Thus, applying the Ward identities on the triangle (LLL)y, it reduces to the combination
A vy (mys)—A vy (0) which must be added to the first term in the curly brackets of Eq. (6.177),
thereby giving our final result for the physical amplitude

1
Felaso = —SZPAAY S [0V REY + o VR 4 gy g R
f
+ gvg20) "V RYIY +3 " gpgy 07 R
i
+ > gpgb 07 REYY + gp g0 RV | AN, (my #£0).
(6.182)
We have defined
R;};}Y/ = (OA)YZI(OA)%W’ RZ}Y/[;W (OA)W:’,Zl(OA)Wgw (6'183)
and the triangle A yv(my # 0) is given by
-z
Aavvlmng £ 0k = L [ [ L

Aelkr, A [y (y —1)k2—myk1-k2] -+e[k:2,)\,u,u] [z (1—2) ki +zyks ko]
telkr, ko, N v] [z (x — VK — 2y kL] + elkr, ko, N, p] [zy kY + (1 — y)yks ]},
(6.184)
A(my) = mfc +ax— Dk +yly— 1) ks —2zyks - ky. (6.185)

The SM limit

It is straightforward to obtain the corresponding expression in the SM from the previous result.
As usual we obtain, beside the tensor structures of the Rosenberg expansion, all the chirally
flipped terms which are proportional to a mass term times a tensor kﬁga[a, A, i, V). As we have
seen before in the previous sections all these terms can be re-absorbed once we impose the
conservation of the electromagnetic current.

Then, setting the anomalous pieces to zero by taking gp, — 0, we are left with the usual Z

boson (Z; — Z), and we have
L, R, )\ 14 v
Zlngs = =0y Q41 (Q})? - QY (@] AN tms # 0)2 a4,
= - Z A;\({}’V (my #0) {gv 07 VRV + ggv o) VIV REW

+ g%@}VWWREV,YV,YVW +gvg20; YV R,V 22 AR AL, (6.186)
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Figure 6.15: Interaction basis contributions to the Z~~ vertex. In the SM only the first two dia-

grams survive. The CS terms, in this case, are absorbed so that only the B vertex is anomalous.

In the chiral limit in the SM the first two diagrams vanish.

y
L R R L
z

- L + L s L + L
L R L R
y R L L R

. R + R + R + R
R L R L

Figure 6.16: Chiral triangle contributions to the Zvvy vertex.

where the coefficients RLYY  RVWW are defined in the previous section. It is not difficult to

Zyy 4y
recognize that in the first line we have
1 L, Rf] AX 5
(297 s 20 = —g2¢*5 Y (Qy)? [sz - Q! ] AN (my #0)Z AL AY (6.187)
f
and since
L.f Rf| _ 9.2
[ 7 — Wy ] =294 5
92
9z = P (6.188)
finally we obtain
g2 Ay
(29 lms 0 = = o e S Q)24 AN (my # 0)Z AR AY, (6.189)
f

which is exactly the SM vertex [147].

6.5 The vZZ vertex

Before coming to analyze the most general cases involving two or three anomalous Z’s, it is
more convenient to start with the vZZ interaction with two identical Z’s in the final state and

use the result in this simpler case for the general analysis.
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6.5.1 The vertex in the chiral limit

We proceed in the same manner as before. In the m; = 0 phase, the terms in the interaction

eigenstates basis we need to consider are

—Tr Q3] (YYY) =
1

T (QyT3] (YWW) =

S Tr[@v@h] (vBB) =

ST [@s@3] (BYY) =

%TT QT3] (BWW) =

We define for future reference the following expressions for the rotation matrices

YYY
R’\/ZZ

WWw
R'yZZ

WYy
R’yZZ

YWW
R’yZZ

BYY
R'\/ZZ

BBY
R'\/ZZ

BBW
R'yZZ

BWW
R'yZZ

BYW
R’yZZ

—Tr [QF] [3(0¢2)°0¢,] (v2Z) +
1
21

%TT [QvQ%] [04,(052)*] (WZ2Z) + ...

1
aTr (QBQY] 205,05 ,0¢,] (WZZ) + ...

1
21

[3(0¢2) OYw]

[3(0i1,2)* Ot

[20W3ZOY'yOYZ + (Owﬂ)(Oyz) ]

[2OW320W370YZ + (OW3Z) OY'y]
= [2OBZOYZOYy]

[04,(052)*]

[0, (052)7]

[QOBZO sZOsty]

[OBZOW3ZOY7 + OBZOW;WOYZ]

=Tr [QyTs] [QOévzoévyO{/‘Z + (O%Z)ZO{}V] WZZ)+

=Tr [QpT%] [QOg‘Zog‘VZo;‘V,Y] (NZZ) +

(6.190)

(6.191)
(6.192)

(6.193)

(6.194)

The chiral decomposition proceeds similarly to the case of Zv~v (see Fig. [6.16]). Also in this

situation the tensor <LLL>;“ Y is characterized by the two independent momenta k1, and ko, of

the two outgoing Z’s. Since the LLL triangle is still ill-defined, we must distribute the anomaly

in a certain way. This is driven by the symmetry of the theory, and in this case the STI’s play

a crucial role even in the (m; = 0) unbroken chiral phase of the theory. In order to define the

(LLLY¥|,, ;=0 diagram we choose a symmetric assignment of the anomaly

Qn
R (LD |mo = ek k2, A, 7]

ko (LLL

kx(LLLYM™ |y —o

Qn
W im0 = —?ﬁ[kl, ko, A, ]

—nz’f[/ﬁ, /{?Q,M, I/] .

(6.204)
(6.205)

(6.206)



6.5 The vZZ vertex 159

These conditions together with the Bose symmetry on the two Z’s
<LLL>>““’]mf:0(k, ki, ko) = (LLL>)"'“\mf:0(/<:, ka, k1) (6.207)

allow us to remove the singular coefficients proportional to the two linear tensor structures of
the amplitude. The complete tensor structure of the vZZ vertex in this case can be written in

terms of the usual invariant amplitudes Ay, ...Ag

A3 = —16 (Ilo(kil, k‘Q) — Igo(kil, k‘g)) (6208)
Ay = —{-16111(](51, k‘Q) (6209)
As = —16Ty(ky, ks) (6.210)
A6 = —16 (I(]l(kil,k‘Q) —I()Q(kil,k‘g)) (6211)
Ay = —ky - koAs — k3Ag + ‘;—" (6.212)
Ay = —ky-koAy — k2 A3 — ‘é—” (6.213)
We have the constraints
A (LLLYM |1 o = %"a [y, kg, g1, 1] = Ay — Ay = ‘;_" (6.214)

and the relation written in Eq. (6.I44]). In this case the CS terms coming from the Lagrangian

in the interaction eigenstates basis are defined as follows

1 a VA
Vos = 3 {—omt 507 Y Ry 2 b~ o)
1 a 1 a
—93912/§91¥YBR§}/ZB gnﬁywa(ks,a —kia) + ngjzgga}fBBRngf gngmm(km — kaa)

1 an 1 an
gm0 P R S s — ) — gm0 VORI PN e )|

(6.215)

Then, collecting all the terms, the expression in the my = 0 phase for the vZZ process can

be written as
1 1% 17 a vV
(V2 Z) im0 = —5 0212”3 {apab 0 P BEY | N34 (0) = et (ko — K|
!

+9ngv0) PRF | ANA(0) = TN (ks — k)|
oy B0} PERYED [ AN, (0) + T2N (b — Boa)]
+apg30y PV Ry 2 [A%XA 0) — %nﬁwm(k‘za - ks,a)}
+opga) PRSP [AZ\)KA 0) — %nﬁmw(k‘:s,a - kl,a)} } ;

(6.216)
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and after some manipulations, we obtain

1 Apv Apv v
2Dy = —5 [ DY) + AW, 0)] 4320273 {gngt 0 RPYY

f
_|_gyg%9}/BBRYBB + ng%H‘?WWRBWW} ’
(6.217)
where we have used
07 PP = Q% (QBs)? - QF Q) (6.218)
_ 1
REPY = ngffg . (6.219)
If we define
v Apv Apv
TV (0) = | AV (0) + AN, (0)] (6.220)
we can write an explicit expression for T which is given by
T (0) = 1 /1 dx /1_36 dyL {50‘)"‘”141 (1 — 2)2ki +y(y — 1)k3)
72 Jo 0 A(0) “ ! ?
—i—ao‘/\’“jkg,a [(1 —x)zki +yly — l)kg]
+6[k1, k:25 )‘? V] [2(‘T - 1)37]617“ - Qxka,/J]
telkr, ko, A, p] [2(1 — y)ykow + 22k ]} (6.221)

and it is straightforward to observe that the electromagnetic current conservation is satisfied on

the photon line

1
ki, TN = 53¢ [k1, ko, A, V]

1
kQ,VT)\MV = _ﬁg [kh k27 )‘7 M]
(k1 + ko n) T = 0. (6.222)

6.5.2 ~ZZ: The my # 0 phase

In the my # 0 phase we must add to the previous chirally conserved contributions all the chirally
flipped interactions of the type (LLR) and similar, which are proportional to m?c As we have
already seen in the Z~~ case, all the mass terms have a tensor structure of the type m%eawykm,a
and we can always define the coefficients A; and Ay so that they include all the mass terms.
Again, they are expressed in terms of the finite quantities As, ..., Ag by imposing the physical

restriction, i.e. the e.m. current conservation on the photon line, and the anomalous Ward
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identities on the two Z’s lines. Since the CS interactions act only on the massless part of the

triangles, they are absorbed by splitting the tensor (LLLV‘“” as
(LLIYW|j = (LLLYM |, —o + (LLLYM (my):
(LLL(mg) = (LI 20 — (LLLY |, —o.
(6.223)

Then, the structure of the amplitude will be
1

§<7ZZ>|mf;£0 = 12116[]{31, >‘HUJ> V] + A26[k2’ >‘HUJ> V] + A3k¥€[kla k?, )‘a V]
+A4k§€[k1, ko, A, I/] + A5/€f€[/€1, ko, A, ,u] + Aﬁkgff[kl, ko, A, V] (6.224)

and using the explicit expressions of the coefficients we obtain

V22 lmpro == (0¥ 05 Ryz2 + 9307 " RN,
!

GYWWR}//ZW%W + gyg GYYWR}//%/ZVV

+apgy 07V RY)) + gy gp0y PP R Y

+939207 PPRYZE + gpgs0F" Y RESY

+9v 95

+9n920v 07 WV REY V] §T)\W(mf #0)A, 217", (6.225)
where we have defined
v Apv pN%
TV (s 4 0) = [Avf;‘v(mf #0) + AW, (my £ 0)] |
07 PP = (Qp4)°TE 5,

R%}B = ERxVZ%B, (6.226)

1-z
T (my # 0) / dx/ {aw“‘”klﬂ (1 — 2)aki — y(1 — y)k3]
+6‘W”k2,a [( - )xk‘f —y(1 - y)k3]
+elki, ko, A, V] 2(x — 1)aky , — 2xyks ]
—i—z’:‘[/{?l, ko, A, ,u] [2(1 — y)ykzw + 21‘2}]{27“]} . (6.227)

with

We can immediately see that the expected broken Ward identities

by T = 2 [k ko A, ] l—rn?/ldgc/lmdyL
o w2 T 2 T Jo 0 A(my)
kgvyT)‘“”:—izs [kl,kQ,A,u]{l—mff/l dx/l_xdy 1 }
™ 2 0 0 A(my)

(k1 + ko n ) TM =0 (6.228)

are indeed satisfied.
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6.6 Trilinear interactions in multiple U(1) models

Building on the computation of the Z~~ and vZ Z presented in the sections above, we formulate
here some general prescriptions that can be used in the analysis of anomalous abelian models
when several U(1)’s are present and which help to simplify the process of building the structure
of the anomalous vertices in the mass eigenstates basis. The general case is already encountered
when the anomalous gauge structure contains three anomalous U(1)’s besides the usual gauge
group of the SM. We prefer to work with this specific choice in order to simplify the formalism,
though the discussion and the results are valid in general.

We denote respectively with W3, Ay, By, B, B3 the weak, the hypercharge gauge boson and
their 3 anomalous partners. At this point we consider the anomalous triangle diagrams of the

model and observe that we can either

1) distribute the anomaly equally among all the corresponding generators (73,Y,Yg,,Yn,, Yn,)
and compensate for the violation of the Ward identity on the non anomalous vertices with

suitable CS interactions
or

2) re-define the trilinear vertices ab initio so that some partial anomalies are removed from
the Y — W3 generators in the diagrams containing mixed anomalies. Also in this case some

CS counterterms may remain.

We recall that the anomaly-free generators are not accompanied by axions. The difference
between the first and the second method is in the treatment of the CS terms: in the first
case they all appear explicitly as separate contributions, while in the second one they can be
absorbed, at least in part, into the definition of the vertices. In one case or the other the final
result is the same. In particular one has to be careful on how to handle the distribution of
the partial anomalies (in the physical basis) especially when a certain vertex does not have any
Bose symmetry, such as for three different gauge bosons, and this is not constrained by specific
relations. In this section we will go back again to the examples that we have discussed in detail
above and illustrate how to proceed in the most general case.

Consider the Zv~ case in the chiral limit. For instance, a vertex of the form ByYY will
be projected into the Z~~ vertex with a combination of rotation matrices of the form Rlzgigy,
}Y/Y At this point,
in the B2Y'Y diagram, which is interpreted as a (LLL) ~ A a4 contribution, we move the

generating a partial contribution which is typically of the form (LLL)R??Y

anomaly on the Bg-vertex by absorbing one CS term, thereby changing the (LLL) vertex into
an AVV vertex.
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We do the same for all the trilinear contributions such as B3YY, Bi{WW and so on, sim-
ilarly to what we have discussed in the previous sections. For instance B3Y'Y, which is also
proportional to an AAA diagram, is turned into an AVV diagram by a suitable CS term. The
Z~~ is identified by adding up all the projections. This is the second approach.

The alternative procedure, which is the basic content of the first prescription mentioned
above, consists in keeping the BoY'Y vertex as an AAA vertex, while the CS counterterm,
which is needed to remove the anomaly from the Y vertex, has to be kept separate. Also in this
case the contribution of BoYY to Zv7 is of the form (LLL>R§?Y),Y/Y, with (LLL) ~ Agaa, and
the CS term that accompanies this contribution is also rotated into the same Zv~ vertex.

Using the second approach in the final construction of the Zvv vertex we add up all the
projections and obtain as a result a single AVV diagram, as one would have naively expect
using QED Ward identities on the photon lines. Instead, following the first we are forced to
describe the same vertex as a sum of two contributions: a fermionic triangle (which has partial
anomalies on the two photon lines) plus the CS counterterm, the sum of which is again of the

form AVV.

However, when possible, it is convenient to use a single diagram to describe a certain inter-

action, especially if the vertex has specific Bose symmetries, as in the case of the Z~v vertex.

For instance, we could have easily inferred the result in the Z~~ case with no difficulty at all,
since the partial anomaly on the photon lines is zero and the total anomaly, which is a constant,

has to be necessarily attached to the Z line and not to the photons.

A similar result holds for the ZZZ vertex where the anomaly has to be assigned symmetri-
cally. Notice that, in prescription 2) when several extra U(1)’s are present, the vertices in the
interaction eigenstate basis such as B1BoBsg or B1BiBs should be kept in their AAA form,
since the presence of axions (by, by, bs) is sufficient to guarantee the gauge invariance of each

anomalous gauge boson line.

A final example concerns the case when 3 different anomalous gauge bosons are present, for
instance ZZ'Z". In this case the distribution of the partial anomalies can be easily inferred by
combining all the projections of the trilinear vertices B1Y'Y, ByWW, By By B3, B1 By B3, Bo B3 Bs...
etc. into ZZ'Z". The absorption of the CS terms here is also straightforward, since vertices such
as B1YY, Y BY and YY B; are rewritten as AVV, VAV and VVA contributions respectively.
On the other hand, terms such as BsB1 By or B1ByB3 are kept in their AAA form with an
equal share of partial anomalies. Notice that in this case the final vertex, also in the second
approach where the CS terms are partially absorbed, does not result in a single diagram as in

the Zvv case, but in a combination of several contributions.
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6.6.1 Moving away from the chiral limit with several anomalous U(1)’s

Chiral symmetry breaking, as we have seen in the examples discussed before, introduces a
higher level of complications in the analysis of these vertices. Also in this case we try to find
a prescription to fix the trilinear anomalous gauge interactions away from the chiral limit. As
we have seen from the treatment of the previous sections, the presence of mass terms in any
triangle graph is confined to the denominator of their Feynman parameterization, once the Ward
identities are imposed on each vertex. This implies that all the mixed terms of the form LLR or
RRL containing quadratic mass insertions can be omitted in any diagram and the final result
for any anomalous contributions such as B1ByB3z or B1YY involves only an (LLL) fermionic
triangle where the mass from the Dirac traces is removed.

For instance, let’s consider again the derivation of the vZZ vertex in this case. We project
the trilinear gauge interactions of the effective action written in the eigenstate basis into the
vZZ vertex (see Fig. [617)) as before and, typically, we encounter vertices such as Y B1Y or
B1YY (and so on) that need to be rotated. We remove the masses from the numerator of these
vertices and reduce each of them to a standard (LLL) form, having omitted the mixing terms
LLR, RRL, etc. Also in this case a vertex such as B1Y'Y is turned into an AVV by absorbing

a corresponding CS interaction, while its broken Ward identities will be of the form

kLA (B, k k) =0
ko AMY (B,k1, k) = 0
AN (B, k1 ka) = an(B)eTRTRS + 2mp AN, (6.229)

with a broken WI on the A line and exact ones on the remaining V lines corresponding to the
two Y generators. Similarly, when we consider the projection of a term such as By BsBs into
the Z'Z" Z vertex, we impose a symmetric distribution of the anomaly and broken WI’s on the

three external lines

ke AN (ky, ko) = %ﬁkmﬁk?kg*'?mfAMa
ko AN (K k) = %Ewaﬁk‘zxkar?mfAA”’
N L L R G (6.230)

The total vertex is therefore obtained by adding up all these projections together with 3 CS
contributions to redistribute the anomalies. Next we are going to discuss the explicit way of

doing this.
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Figure 6.17: Triangle contributions to the (vZ;Z,,) vertex in the chiral phase. Notice that the

first four contributions vanish because of the SM charge assignment.

6.7 The (vZ,Z,,) vertex

At this stage we can generalize the construction of (yZZ) to a general (yZ;Z,,) vertex. The
contributions coming from the interaction eigenstates basis to the (yZ;Z,,) in the chiral limit

are given by

ST QY (YY) = ;Tr QY BY, (va) +

iTr[ yI3] (YWW) —!Tr (QvTS| R (V21 Zm) + ..
1
o T Qv T (WY W) ——'Tr (QvT3] RV P (21 Zm) + ..

1
T (Qy T3] (WWY) ——'Tr Qv T3] RV (721 Zm) + ...

1 1
TiAd (QB,T5] (WB;W) = TEAd Q5,13
1 1
5T7~ (@B, T3] (WWB;) = 2—T7° Q3,13

] WBW
iR
_Tr [QB,Q3] (YB;Y) = Tr (Qp, Q¥ R) 7 (v Zyn) +
| R

A,ZZZ (YZ1Zpm) +

WWB
N Z1 Zm 'YZlZm> +

YYB

ETT [QBjQY] (YYB;) = TT’ [QB QY VAV VZlZ )

Tr [QvQp,Qs,] (YBjBk> =Tr [QvQB,QB,] jojzic Y21 Zm) + ...
(6.231)

and they are pictured in Fig. [6.171 The rotation matrices are defined as
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Figure 6.18: Chern-Simons counterterms of the (vZ;Z,,) vertex.

Ry = [30%,0%, Oy, ]
R = [304,2,00,2, Ot,]
%/glvzvzfn [OWZl OWVOYZ + OWZ OWVOYZI + OWZZOWZmOYv]
R 7. = [(Ot1,2,0¢ 2, + Ot 2,08 2)03, + Oi, 03 5, 03 7]
szYY [OB 2 OYZ OYv + OB ZmOYZl OY’y:|
R = [ 08,2,0¢ 2, + 08,2, 08 2,) Oty + (05,2, O, 7, + OﬁjZLOxf‘vg,zm)Oév]
}Z P [ OB ZlOB Zm T OB ZmOB Zl)Ony}
IV/VZ? s [ OBiZlOB'Zm + OBiszBle)Owga,}
fzr/w [OB 20 2,0y + 05, 2,0 7, OWV]

(6.232)

while all the possible CS counterterms are listed in Fig. [6.18] and their explicit expression in the

rotated basis is given by

a ,
Vesim = {— Z 89}/ PN ke — ksa) Ry 7, AV 2 2
f
YYB a v YY B, v
Z on Au a(k&a _ kl,a)RyZl J A)‘Z“Zm

Z YB B; an Auya(kl,a _ kZ,a)Rz//ZB; iBj A)\Z/J'Zl/

W B; Wa v W B;W v
—~ Z 0, LM (g — ko) RIS s ANZI 2,

WWB; G v WWB v
—~ Z 80 e (k3o — ki) Ry p  ANZIZY, b, (6.233)
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where we have defined k3 o = —kq, with ko = (k1 + k2), the incoming momenta of the triangle.
Using Eq. (6154 it is easy to write the expression of the amplitude for the (vZ;Z,,) interaction
in the m; = 0 phase, and to separate the chiral components exactly as we have done for the

(yZZ) vertex. Again, the tensorial structure that we can factorize out is (LL L) (0)

1 Ay A v YB,’Y YB,’Y
<7ZlZm>‘mf:O - Z §<LLL> a (O)A’yZlMZm {Z g%/ngHf R’yZlZm
f i
YYB; 5,YYB; YB,B; ,YB;B;
J 0,
WB,W pWB;W WWB; ;WW B,
+ Z g%gBin B2 7, + Z g%gBj 0y " Rz,
i J
(6.234)

Also in this case we use Eq. (6.144]) and proceed from a symmetric distribution of the anomalies

and absorb the equations the CS interactions so to obtain

1 YBY A v YB;Y
_<7Z1Zm>‘mf:0 = E g%/gBi E :56]” AV@!V(O)R“/ZZZmAi\/ZlMZZL
( f

m

1 vvB, \a YY B,
+> gvas, Y 59 TAW AR, 5, ALZL' 7y,
J f

vBB; 1 [, A A Y B;B; v
+ Z 9y 9B; 9B; Z 9f ’ 9 [Avlﬁ/\/(o) + AVIL{;A(O) Ryzlz,i Aé\ZlHZm

1,] f
1
2 wWBwW L\ v WB;W 4\ v
—"_ZQQQBi Zef §AV!ZV(O)RWZIZ,R AleMZm
i f

9 wwa; 1 A WWB, (A
D dan y 0p S AN AR, A2 2, (6.235)
J f

At this point one can readily observe that a simple rearrangement of the summations over the
1,7 index leads us to factor out the structure VAV plus VVA since we have the same rotation

matrices. Finally, in the m; = 0 phase we have

1
V2 ZmYlmy=0 = = 3
f

AV (0) + AN, (0)] 43212,

B;YY pYYB; YB;B; Y B;Bj WWB; pWW B;
Z g%/gBiaf L ZngBigBj 0y "Ry 7, + gggBin Rz,

( J
(6.236)

If the CS terms are instead not absorbed we have
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1y ,
(V21 Zn) lmy=0 = Vosim — Y §AA’2”A(0)A$Zf Zin, X
7
2 B,YY pYYB; Y B;Bj ,Y B;B; 2 WWB; pWW B;
D\ o0 R g+ Y avamigs, 0y T Rogy) + gham 07 RIS
? J
(6.237)

which is equivalent to that obtained in (6.230]).

6.7.1 Amplitude in the m; # 0 phase

Once we have fixed the structure of the triangle in the my = 0 phase, its extension to the massive

case can be obtained using the relation

(LLL)(my #0) = = [Aavv(my # 0) + Avay (my # 0) + Avya(my # 0) + Agaa(mys # 0)]
(6.238)

and the expression of the vertex will be

1
Y21 Zm) |0 = 5 D (LLLYM (my £ 0) A3 21 2y, {gv 07V RY} Y,
f
FaBO Y RSN 4 v 0] R

2 WYY pWYY 2 YYB; pYYB;
+9y920F " " Rz, + E :ngBsz Rz
i

B,YW pB,YW VBiBj pY BiB;
+ D ovoagn 07 R+ avasgn0; Ry gy
i 0,J

WB;Bj ;W B;B; i i
+ 0208980 Rz + ) ghgs0p PRI
i, i

+m? [(LRL) + (RRL) + ...]. (6.239)

By imposing the following broken Ward identities on the tensor structure

4 a v v
e (@ZlZmW” I ) = DO ks + 2my A (6.240)

& <<'YZlZm>W * Véﬁ”) - _C;_%A“aﬁ’fl,akz,ﬁ —2myAM (6.241)

8 <<’YZlZm>>\W + Véﬁ”) =0 (6.242)

we arrange all the mass terms into the coefficients A; and A, of the Rosenberg parametrization

of (LLL)*" and we absorbe all the singular pieces. Since all the CS interactions act only on the
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massless part of the LLL structure, we are left with an expression which is similar to Eq. (6.235])
but with the addition of the triangle contributions coming from the Standard Model where the
mass is contained only in the denominators. Organizing all the partial contributions we arrive

at the final expression in which the structure VAV plus VVA is factorized out

Apv v
(V21 Zom) om0 = = Z : [Av*iw(mf #0)+ AW (my £ 0)] 322,
f

YYY S5YYY WWW WWW
YWW pYWW WYY pWYY
+9Y929 R'\/Z;Zm + 9592 o0y "Ry

BiYY pBYY BYW pBYW
+ Z N Z gy 929B,07" " Ry 4

YB;B; Y B;B; WBB W B;B;
+Zgygs 98,0, R, +Zgngg "R
7-]

+> gagp0 " szgfnv} (6.243)
7

6.8 The (7,7,,7Z,) vertex

Moving to the more general trilinear vertex is rather straightforward. We can easily identify all
the contributions coming from the interaction eigenstates basis to the (Z;Z,,,Z,). In the chiral

limit these are

%TT QY] (YYY) = —Tr [Q | RL Y 2 (21 Zm Zr) +

%Tr [QvTE] (YWW) = =77 [QvT3] RYWY, (%i2n ) +
ET’I“ (Qy T3] (WYW) = r[QyT] Ry W (21 Zm ) + . ..
%TT (Qy T3] (WWY) = —Tr (QvT3| Ry Y (212 Zy) + . ..
%TT [Qp, T3] (B;WW) = 21! r QT3 Ry y y AZi ZnZy) + ...
%TT [Qp, T3] (WB;W) = 21' r QB T3 Ry "y A2 ZmZy) +
%TT [Qp, T3] (WW B)) = %TT (Q5, T3] Ry .2 (% Zm Zy) +
ST (@, Q) (BYY) = S Tr [Qu,Q3) R, (%7 ) +
L1 [Qp,@2] <YBJ-Y>=1TT [QB,QY) Ry s (D12 Ze) + ..

(6.244)
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Figure 6.19: Triangle contributions to the (Z;Z,,Z,) vertex. As before, in the my = 0 phase all

the SM contributions vanish because of the charge assignment.

ST (@, QY (VY By) = STr (@i, QF ) Ry (47 +

Tr [Qv@s,@B,] (YB;By) = Tr [QyQp,Qs,] ;ka (Z1ZmZy) +
Tr [Qv@s,@B,] (B;YBy) =Tr [QyQp,Qs,] lzgl;fk <ZlZ Zyr) +
Tr [Qv@s,QB,] (BiBY) =Tr [QyQp,Qs,] ngB£§T<ZlZer> +
Tr [QpB,QB,@B,] (BiB;jBir) = Tr [QB,QB,QB,] ZZBmBi<ZlZ Zy) +

(6.245)

and are listed in Fig. 6191 The rotation matrices, in this case, are defined as

R}Z?ngT = [30{}@ O{}Zmoxézf]

R?fg;mz/r = |:3Oé/SZlOé/3ZmOé/SZT]

REMZ/,KVZT = [Oéleé/Z Oif/[l/Z + Oéz OéVZlOéVZT + OéZTOé/ZlOé/Zm]

R?g:zr = [OWSZZOYZMOYZ + Owgszézl Oézr + Oévgzroézloézm]
gfg@ = _OBJ-Zl OYZmOYZr + OBjZmOYZl O{}ZT + OngrO)éZmO)éZl]

BiYW A A A A A A A A A A
RZlZer = 108,2/(0v 2, Ow,z, + Ovz,0w,z2,) + 05,2, (0y 2, 0w, z, + Ow,z,0vz,)

+O§jzr(oézm Of%/g,zl + Oézl O€V3Zm)}

B;B,Y A A A A A A A A A A
Ry 7" 7, = (0B,2,08,2, + 08,2,08,2,)0v 7, + (0B,2,08, 2, + OB,208,2.)0v 2,

+(O§j 7 ngzm + Ogj T ngzl)oézr}

(6.246)
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Figure 6.20: Chern-Simons contributions to the (Z;Z,,Z,) vertex

BiByW _ [/ HA A A A A A A A A A
Ry 2. = 100B,2,08,2 + 08,2,08,2,)0w,z + (0B,2,08,z, + 08,208, 2,)Ow, 2,

A A A A A
+(OBJ- 2,082, + OBJ- Zm OB,CZL)OWg,Zr]

B;WW [ ~A A A A A A A A A
Ry 7. = |0B,2,0W,2,Ows 2. + OB, 2,,Ow,; 2,0w; 2, + OB, 2,0W;2,,Ow, 2,

BiBjBy _ [/HA A A A A A A A A A
Ry 7 7 = 0B,2,0B,2, + 08,2,08,2,)08,2, + (0B,2,08,2 + 08,2,08,2.)08,2,

+(O§]zl ngzm + Oéjszgkzl)Ogizr] . (6.247)

Regarding the CS interactions (see Fig. (€.20))), we observe that we have a CS term corresponding
to the anomalous vertex of the type B;B;Bj, which is non-zero, and we can formally write this
trilinear interaction as
VES tmr = 95,98, 98.0n 01t Bily, 23 20,21 [ (el A, o] = elk, A, i )
+rj (elko, A, i, v] — elks, A, i, v]) + kg (elks, A, p, V] — elkr, A, pw, V])]
(6.248)

where for brevity we have defined Rlif;fr = R?;E;lg'z, and so on.

The coefficients Hfﬁr are the charge asymmetries, and the coefficients x; ; i, are real numbers
that tell us how the anomaly will be distributed on the AAA triangles. Both are driven by
the generalized Ward identities of the theory. In this generalized case the CS interactions are
not all re-absorbed in the definition of the fermionic triangles. In fact in this case there is no
symmetry in the diagram that forces a symmetric assignment of the anomaly, and the CS terms

in the B;B; By, interaction can re-distribute the partial anomalies. In this case the expression of



172 Trilinear gauge interactions in U(1) extensions of the Standard Model

the B; B; By, vertex in the momentum space is given by

A A
VB%jBk = 4Dp, B, B, 98,98, 9By Aaalmy =0,k k)
1 | 2K,

2K 2
+ LM ke  — kz) + %8)\“”()(/{?37@ — ko)l - (6.249)

We recall that in the treatment of Y B; B}, and other similar triangles we still have two contri-
butions for each triangle, due to the two orientations of the fermion number in the loop, so that
our previous expression, obtained for the case of the Y BB vertex, still holds. Also in this case
we are allowed to absorb the CS interaction in the anomalous vertex. On the other hand, for

the B; B; By, vertex we have

v (Zi aj ak;
3AX11A(07 k1, kQ) - ?nff)\w/a(klpz - kQ,a) - gnz’:“)‘w/a(kz@ - k3,a) o ?nEAuya(kg,a — kl,a)
= 30N 4, (0,k1, ko), (6.250)

where we have used the notation A(ms = 0,k1,ks) = A(0, k1, ko) and af, = k'a,. Using these
equations we can write the (Z;7,,7,) triangle in the following way
1

<ZlZer>|mf:O = 3

AV (0) + A4 (0) + &Y (0)] 202821
Z Z 9y 9B; H?YBi R?éiizr + Z 9y 9B, 9B; inBj YRZ?,E 7 + 98,95 H}BiWWR% ZZT
f i J
£33 g, 0,07 AN L ORD LY 20278 (6:251)
ik
From this last result we can observe that the anomaly distribution on the last piece is, in general,
not of the type Aﬁ’fA(O), i.e. symmetric. If we want to factorize out a A/XXIA(O) triangle, we
should think of this amplitude as a factorized A;’Xl 4(0) contribution plus an external suitable
CS interaction which is not re-absorbed and such that it changes the partial anomalies from
the symmetric distribution Ai‘l‘z’ '4(0) to the non-symmetric one Ai‘l‘j 2], 4, (0). These two points
of view are completely equivalent and give the same result.
Finally, the analytic expression for each tensor contribution in the m; = 0 phase is given
below. The AVV vertex has been shown in Eq. (6163]) while for VAV we have
\ 1 [l -z 1
AYAy(0) = = dﬂ”/ dyxoy etk A o Vl(ke - kay(y — 1) — ayks - k2)
7 Jo 0 (0)
+elka, A, i, V] (ko - koy(y — 1) — xyky - ko)
telk, ko, \, V(K z(x — 1) — zykh)

+elkr, ko, A, p(k5y(1 — y) + 2yk?)} (6.252)
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where the denominator is defined as A(0) = k?(z — 1)z + y(y — 1)k2 + 2xyk; - ko.
Then, for the VVA contribution we obtain

AL (0) = / dgc/1 mdyA {elk1, A 1, V) (kr - Fyz(1 — ) + zyky - ko)
+elka, A, 1, v] (k1 klx(l —x) + zyky - k2)
+elky, ko, \, V] (K z(x — 1) — zykh)
+elki, ko, A, pl(k3y(1 —y) + zykY)} (6.253)

and finally the contribution for AAA is Ay44(0) = 1/3(Aavv(0) + Ay ay(0) + Ayya(0))

A’XX/A(O) 3717 dx /1 xdyAzo {5 ki, A, i, V] (2y( — 1)l<:2 —xyky - ko + (1 — x)kl)
[kg, Ao, ) (2(1 — 2)xks + zyky - ke + y(y — 1)k3)
+elky, ko, \, V] (kY z(x — 1) — zykh)
+elky, ko, A pl (kyy(1 — y) + ayky)} . (6.254)

6.9 The m; # 0 phase of the (Z7,Z,,Z,) triangle

To obtain the contribution in the m; # 0 phase we must include again all the contributions
(YYY) and (YWW) coming from the SM. Since the final tensor structure of the triangle is
driven by the STI’s, we start by assuming the following symmetric distribution of the anomalies

on the A 44 triangle

a 1
kiLAXX/A(mf 7£ 0, k1, k2) = 3n €Ayaﬁk1ak‘25 + megA)‘V
1
k:gAle/A(mf 7é 0’ kl, k2) = —C;_ncf)\uaﬁklakaB — megAAﬂ

1
AN (my # 0,k ko) = S kiahag + 2m A (6.255)

where
1 11—z 1
AW = Y cvabp g / / drdy————-. 6.256
w2 7 o Jo A(my) ( )

These relations define the AAA structure in the massive case. The explicit form of this
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Figure 6.21: STI for the Z; vertex in a trilinear anomalous vertex with several U(1)’s. The CS

counterterm is not absorbed and redistributes the anomaly according to the specific model.

triangle is given by

A;AA(mf#O / dw/ {
Amy) - f
e[k, Ay, v] | = 3 + ko - koy(y — 1) — zyky - k2
A(my) —m?e
+elka, A, 1, V] ST ki - kix(z — 1) + xyky - ko

+elk, ko, \, v](K z(z — 1) — zykb)
telki, ko, A, pl(k5y(1 — y) + 2ykY)} (6.257)

where A(my) = m?c + (y — Dyk2 + (z — 1)xk? — 2xyk; - ko.

Then, the final expression in the my # 0 phase is

(Z1ZmZa Ym0 = —ZPZIZE x> AN (mp 00> {307 Y RYY
f i

SAaWWW pWWW YWW pYWW 2 AYYW pYYW
+950 Rz 7.7, + ngzef Ry 7. 2.+ 9v920r" " Ry 7 7

YYB; pYYB; B,YW pB;YW
+9§2/QB~9 Ry 2,7, 9v9298.0;5"" " Rylz 7

B;B;Y Y B;B S
+> gvasgs,b; " Ry j Uk + Zgng 98,05

J J

B;B;W ,B; ByW

Rzl Zon Zr

BiWW pBWW B;B; By, 1,BiB;B
t9B 92‘9 Ry 2z, + ZgBigngBkaf kRZlZ z, ¢+ Vos-
gk
(6.258)

The diagrammatic structure of the STI for this general vertex is shown in Fig. [, where

an irreducible CS vertex (the second contribution in the bracket) is now present.
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6.10 Discussions

The possibility of detecting anomalous gauge interactions at the LHC remains an interesting
avenue that requires further analysis. The topic is clearly very interesting and may be a way to
shed light on physics beyond the SM in a rather simple framework, though, at a hadron collider
these studies are naturally classified as difficult ones. There are some points, however, that need
clarification when anomalous contributions are taken into account. The first concerns the real
mechanism of cancellation of the anomalies, if it is not realized by a charge assignment, and in
particular whether it is of GS or of WZ type. In the two cases the high energy behaviour of a cer-
tain class of processes is rather different, and the WZ theory, which induces an axion-like particle
in the spectrum, is in practice an effective theory with a unitarity bound, which has now been
quantified [30]. The second point concerns the size of these anomalous interactions compared
against the QCD background, which needs to be determined to next-to-next-to-leading-order
(NNLO) in the strong coupling, at least for those processes involving anomalous gluon interac-
tions with the extra Z’. These points are under investigations and we hope to return with some

quantitative predictions in the near future.

6.11 Conclusions

In this chapter we have analyzed those trilinear gauge interactions that appear in the context
of anomalous abelian extensions of the SM with several extra U(1)’s. We have discussed the
defining conditions on the effective action, starting from the Stiickelberg phase of this model,
down to the electroweak phase, where Higgs-axion mixing takes place. In particular, we have
shown that it is possible to simplify the study of the model in a suitable gauge, where the Higgs-
axion mixing is removed from the effective action. The theory is conveniently defined, after
electroweak symmetry breaking, by a set of generalized Ward identities and the counterterms
can be fixed in any of the two phases. We have also derived the expressions of these vertices
using the equivalence of the effective action in the interaction and in the mass eigenstate basis,
and used this result to formulate general rules for the computation of the vertices which allow
to simplify this construction. Using the various anomalous models that have been constructed
in the previous literature in the last decade or so, it is now possible to explicitly proceed with
a more direct phenomenological analysis of these theories, which remain an interesting avenue

for future experimental searches of anomalous gauge interactions at the LHC.






Chapter 7
Conclusions and perspectives

We have presented in this thesis several analysis of anomalous correlators involving chiral and
trace anomalies, with the intent of providing a more complete theoretical description of the

corresponding effective actions in which they appear.

One of the main results of our analysis has been the discovery of anomaly poles in perturba-
tion theory in the trace anomaly diagrams for QCD and in illustrating their similarity to those
already known in the chiral anomaly. Our work has extended previous analysis by Giannotti
and Mottola in QED [51] and has shown that anomaly poles are the common signatures of these
types of anomalies. The poles, in both cases, can be coupled or decoupled in the IR, as we have
shown in our technical discussions. Obviously, this result raises important questions concerning
the significance and the implications of massless scalar degrees of freedom in gravity. In fact,
the possible significance of these effective degrees of freedom widely discussed in this work is
still open with implications that involve both particle physics and cosmology.

Other possible extensions of this line of research concerns the case of anomaly mediation in super-
symmetric theories. Our results strongly suggest that the anomaly supermultiplet in super-Yang
Mills theory is completely characterized by its anomaly poles. In turn, this suggests that a pole
should be present also in the gamma-trace of the supersymmetric current.

This raises compelling issues in regards to the consistency of the gauging of these multiplets to
supergravities, as we have discussed at length in Chapter 5.

Coming to the mechanism of anomaly cancellation using a pole subtraction, our interpretation
of the pole contributions also as an ultraviolet component, which is inferred from the light-cone
dominance of the correlators at high energy, seems to indicate that this version of the mecha-
nism of cancellation should be viewed as an ultraviolet procedure. On the other hand, the use
of an asymptotic axion for anomaly cancellation is most likely to be consistent in the infrared,

given the presence of a unitarity bound in the formulation of anomalous theories corrected by

177



178 Conclusions and perspectives

Wess-Zumino terms [30].

As we have discussed in chaper 6, one of the most direct way to test experimentally in
the infrared the appearance of anomalous gauge symmetries is in the study of trilinear gauge
interactions, which should be viable at the LHC. For this reason, we have investigated the
general structure of these contributions in the neutral currents sector, analysis which should be
combined with those of anomalous extra Z’ gauge bosons, in channels such as Drell-Yan and in
the production of direct photons. Some of these issues have been studied in a related work of

us, and we refer to [6] for more details on this point.
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Appendix

A.1 Poles and residui for massive gauge bosons

We are interested in the limit

c) 81 = 89 = M? s#0 m = 0.

In this case only few simplifications occur in the complete expressions of the amplitudes A; since

the only surviving symmetry is the one between s; and s and no momentum is set to zero. The

expansion of the three point function is the most general one and the invariant amplitudes are

given by
A1(85M25M2) = _4—22 (Al)
T
24 M4
As(s, M*, M?) = — s (s — M?
3l ) w252 (5—4M2)2 M )
i 2 2 2 M? 2 4
- 5 |s°—6sM —|—2(2M +s)log — | M~ +8M
2725 (s — 4M?2) s
(A.2)
Ay(s, M?, M?) i @y (5% — 3sM? 4+ 2M*)
T 7252 (s — 4M?2)?
i M? A
+ 5 [23M2 + (32 — 4M*) log <—> —8M ] , (A.3)
2725 (s — 4M?2) s
with the functions ®(x,y) and A(z,y) defined in this specific case by
M? M? 1 2M? 2M? 2
by=d(—,—) = — |log? AL T
u =0 =) AM[Og (s(AM+1)—2M2>+ 12<—5(AM+1)+2M2>+3}’
(A.4)
2
My = AM?/s,M?/s) =1/1— 4]\84 : (A.5)
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as in Eqs. (L20/L21), with © =y = M?/s.

As usual, a symmetric configuration of this type yields

Ag(s, M?, M?) = —A(s,M?* M?), (A.6)
As(s, M?, M?) = —Ay(s, M?* M?), (A7)
Ag(s, M?, M?) = —As(s, M? M?) (A.8)

and in the total amplitude only few simplifications occur
AAMV(S’ MQ’ MQ) = A3(S’ MQ’ MQ) ng\wj(kla k2) + A4(5’ Mz’ Mz) 771\“”(’6‘1, k2)
+As(s, M2, M2) 2™ (ky, ko) + Ag(s, M2, M2) gt (ky, ko). (A.9)

The analysis of the spurious pole at s = 0 requires the analytic continuation in the euclidean
region (s < 0) according to the in prescription: s — s +in, M? — M? + in. In this case the
only trascendental functions requiring the analytic regularizations are the logarithmic ones, the
dilogarithm being well-definite since
2M?
“sOwr +1) +2h2 ©

1 fors < 0. (A.10)

Then we substitute

M? M?
log [T — 1'77} — log [_T] —T fors <0 (A.11)
2M? 2M?
| —1 | — —1 f A.12
og [—2M2+5+5)\ “7} — og[ —2M2+s+s)\] iT ors <0 ( )

into the expressions of As(s, M2, M?) and A4(s, M?, M?) and perform the limit for s — 0. We

obtain

lim s Ai(s, M?*, M?) =0 i=3,...,6 (A.13)
S—>
and also
lim 5 AMY (s, M? M?) =0, (A.14)
S§—

showing that in the presence of external massive gauge lines the triangle amplitude AM* exhibits
no poles. This can be confirmed by a parallel analysis based on the L/T parameterization whose

coefficients are
44

wr, (s, M?, M?) = — (A.15)
4 M2]  2M2(s — M?)
w§w+)(S,M2,M2) = m |:(S—|—2M2)10g |:T:| +fq)M
49
_ Al
* s —4M?’ (A-16)

w (s, M2 M?) = @l (s, M2, M?) = 0. (A.17)
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Combining the previous results, the whole amplitude becomes

1 + +
W (5, M2, M) = — [wp (s, M2 M?) kK elp, v,k k] — wt; )(s,M2,M2)t§M)V(k1,k2)} .
(A.18)
At this point we perform the same analytic continuations discussed above, shown in Eqs. (A1)
and ([(A.12) and take the limits

lim swr(s, M?, M?) = —4i (A.19)
. + + .
lim swy (s, M2, M22)t51) (ki ko) = — 4i (A.20)

which, in combination, give a vanishing residue also in this parameterization

lim s W (s, M?, M?) = 0. (A.21)

s—0

When the mass of the fermion in the loop is non vanishing, m # 0, we consider cases d), e) and

f). We take the appropriate limits starting from the expressions in Eq. (L32HL34]) obtaining

d) k¥ =0 k3 #0 k2 #£0 m # 0

Ar(5,0, 59, m2) o p M (A.22)
S So, M = — — .
1\s, Y, 92, A2 At (S — 82) 2 orh 0
- 2
) S9 me ~
A 0 H = —4+—"2 D — C A.23
2(5,0, 52,m7) 42 + At (s —s9) 2 * ot Y ( )
A3(5705525m2) - _AG(SaO, S2am2) -
- 2
¢ 52 m _
— — D Co, A.24
27 (5 - 52) 24 (S — 82)2 2 4 (S — 82) 0 ( )
1
A 0 Y = ——— D A.25
4(5, y $2, MM ) ord (8—82) 2,5 ( )
59 N A (8 + 82) —
As(5,0,50,m?) = ———— (s —2m?) Cp— D
5(5, 52, M ) 7T4(S+82)2 (S m ) 0 271'4(8 — 82)2 1
(25 + s2)s2 189
Dy — ——— A.26
T(sg—s)3 2 w2(s— s59)2 ( )

where Dy is defined in Eq. (L38), while D; and Cy are the two s; — 0 limits of D; and

Co(s1, 52,8, m?) respectively, that is

_ 1
D, = lim D(s,s;,m?) = in? [2 —aslog a3+ } , (A.27)
s1—0 a3 — 1
G lim Cof 2) i [z 21 208 t] (A.28)
= lim Cy(s, s1,82,m*) = — o —log® —— .
0 Poparn) ol$, S1, 82, 2(s — s9) g 4y — 1 g az — 1
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The coefficients of the w’s in the L/T formulation, in this case, are

wi(s,0,52,m%) = —% - i—i Co, (A.29)
warJr)(S, 0,s2,m?) = m [42’7725 +2(s+s2) Dy +4s (2 m? + s2) Co
+2 (32 + 4595 + S%) D2:| , (A.30)
5 — 89
w(Ti)(S,Oa 52am2) = —m [4i7T25 +2(s + 59) D1 + 459 (2 m? + s) Co
+2 (5% — 6s2s — 53) D2:| , (A.31)
5 — 89
w(T_)(s, 0,s9,m%) = m [42’77232 +2(s+s2) D1 +4s2 (2m* +5) Cp
S 3_6‘:5 * ) DQ]. (A.32)

Furthermore, in the case in which the massive amplitude has both external vector lines on-shell
e) k2 =0 k3 =0 k2 #£0 m # 0

one obtains

) m? az+ 1
A 2y = —— (14 —log? == A.33
1(0,0, s,m*) 4712< + S log a3—1>’ ( )
: 2
+1
A3(0,0,5,m%) = —Ag(0,0,8,m?) = ——=— 1+ " log2 BT~ A.34
3( ) 787m) 6( ’ 787m) 27T2S + A og (13—1 ) ( )
A4(0,0,8,m%) = ~5-5, <a310ga — —2>. (A.35)

These simple results are obtained with a limiting procedure, starting from the scalar triangle
diagram with off-shell external lines and involves the function ®(x,y) [148] already encoun-
tered in the explicit expression of the Rosenberg parameterization [41]. Instead, for the L/T

parameterization we obtain

44 2 1
wr(0,0,s,m?) = _;Z [1 + m?logQ (Zz—:ﬂ , (A.36)
- 2
+) 9 41 m 9 fas+1 asg+1
0,0 = —[3+—1 —— | —asgl A.37
W (0,0,s,m%) s [ + S og <a3_1 as 10g as —1 ) ( )
wi(0,0,5,m?) = @} (0,0,5,m2) = 0. (A.38)

Finally, the particles can be on-shell and both of mass M and in this case we obtain

f) k% = M? k3 = M? k2 #£0 m # 0
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) m

MMM sm%) = =5 = 575G, (A.39)
A(M? M?,s,m*) = m [? (2M2_8)—% M

+ (% —m?(s — 2M2)> Co] ; (A.40)
Aa(MP?, MP,5,m%) = m [%ZMQ + %DM

+ <M2(2M84:f]\]\;[225 + 5?) n 2m2M2> Co] - (A41)

In the previous expressions we have denoted by Cy the complete expression Cq(s1, 52,5, m?) in

Eq. (L39) computed at s; = so = M?2. In addition to this we have defined

ay + 1 az+ 1
_1—a310g

D M2 2
M( ’S7m) aM a3_1

)

(A.42)
[ 4m? [ 4m?
apnr = 1—W7 az — 1—7 (A43)

Similarly, the expressions of the w’s invariant amplitudes in the L/T parameterization for the

By(k?,m?) — By(M?,m?) = ir? |:(IM log

massive triangle amplitude are given by

4i  8m?
wL(SamQ) = _; - %C(]a (A44)
2 2 2
(+) 2 /2 — 1 Ai 4(5+2M)D o 8M=(s — M?7)
wy (s, m*, M=) (s — 400%) 1+ s A2 M+ | 8m” + Ve Col ,
(A.45)
wi ) (s,m?, M?) = @l (s,m?, M?) = 0. (A.46)

A.2 Definitions and conventions for the scalar integrals

We collect in this appendix all the scalar integrals involved in this computation. To set all our

conventions, we start with the definition of the one-point function, or massive tadpole Ag(m?),
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the massive bubble By(s,m?) and the massive three-point function Cq(s, s1, 52, m?)

1 1 1 m?
2 m 2
- = Z4+1-1 — A4
Ao(m’) ol PRl L+ Og<u2>]’ (447
1 1
k‘2 2 - = d"l
Bolk®m™) = 73 [ Ml = )
1 2 1
= =—+2-log (m_2> —azlog <a3 + ) , (A.48)
€ W a3 —1
1 1
2 m
= — [ d"
Co(s, 51,82, m") in2 / (12—m2) (I —q)2 —m2) (I +p)%2 —m?)
3
1 bi —1 C—bi—1 bi + bi+1
= —— L L L —L
U;[ ZQGZ b; "2 a; — b; * 20,2‘ i 22az+bz ’
(A.49)
with
4 2 _q. .
a; = /1 - 22 b= —Si TS TSk (A.50)
8 Vo

where s3 = s and in the last equation ¢ = 1,2,3 and j, k # .
The one-point and two-point functions written before in n = 4 — 2 € are divergent in dimensional

regularization with the singular parts given by

. 1 ’ 1
Ao(m2)smg. — = m27 Bo(s,m2)smg' — =, (A.51)
€ €
with
1 1
—=—-——~v—Innw (A.52)
€ €
We use two finite combinations of scalar functions given by
1
Bo(s,m?)m? — Ag(m?) = m? [1 — aszlog a3 + 1] ) (A.53)
asz —
1 1
D; = Di(s, 51, m?) = Bo(s,m?) — Bo(s;, m?) = { log 22— aglog 225 i=1,2
a; — az — 1
(A.54)

The scalar integrals Co(s,0,0,m?) and D(s,0,0,m?) are the {s; — 0, so — 0} limits of the

generic functions Co(s, s1, s2,m?) and D (s, s1, m?)

1 az +1
Co(5,0,0,m?) = —log? A.55
O(Sa ) ,’I’I’L) 2 og a3—1’ ( )
2 2 2 az +1
D(s,0,0,m*) = Di(s,0,m*) =Dy(s,0,m*) = |2 — aglog (A.56)
asg —
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The master integrals denoted by By(s,0), D;(s, si,0) (i = 1,2) and Cy(s, s1, s2,0) are consistently
redefined for m = 0 (and s < 0) as

1 s
By(s,0) = [E — log <_E> + 2}, (A.57)
D;(s,s;,0) = By(s,0) — By(s;,0) = log <%) ) i=1,2 (A.58)
1
Co(s, s1,82,0) = gfb(x,y), (A.59)

where p is the renormalization scale and the function ®(z,y) is defined as [67]

1 . . y. 1+ py w2
d = —<2[Liy(— Lio(— In=1 1 | — A.
@) = 3{2iatem + Lo+ T i) + 5 | (o0
with
Mz, y) = VA, A=(1-z- y)2 —day, p(x,y) =2(1—z—y+ )\)*1, (A.61)
x:S—l, yzﬁ. (A.62)
s S

The singularities in 1/€ and the dependence on the renormalization scale p cancel out when
taking into account the difference of two functions By, so that the D;’s are well-defined; the

three-point master integral is convergent.

A.3 Alternative conditions on the correlator in the massless case

As we have mentioned, one can follow an entirely different approach in order to fix the expression
of the correlator. This is based on the requirement that the trace anomaly satisfies a well known
operatorial relation which is imposed on the matrix elements at nonzero momentum. Specifically
we proceed as follows, and illustrate this point in the massless limit. We impose the value of
the trace anomaly as a defining condition on the whole amplitude, so that the (new) request ¢’)
will be

') the non-zero anomaly trace in the massless limit.

As the first two conditions a) and b), respectively the {u < v} symmetry and the vector current
conservation, remain the same as before, we continue illustrating the modifications due to this

approach from this point on. The third condition is given by

9w TP (p,q) = cu (p, q), (A.63)
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where c is related to the usual QED (-function as ¢ = —%. The resulting system is

4% —A7—|—2A9—A12:0,
Eq.mj C+4A37+4A42+A4p-p—2A6p-p

+2A11p-q+2A1uq-q+Aisq-q=0,

(A.64)

whose solutions for A4 and Az read as
Ay = 2% (A7 =2 A9 + Ay2) (A.65)
A7 + Ay = i[—c—A4p-p+2A6p-p—2A11p-q— 2A14q-9—Aisq-q)]. (A.66)

As seen from the last equation, the second solution returns the sum of two UV divergent am-
plitudes, As7 and A4o. However, an explicit computation shows that in the explicit mapping
between the two sets of A; and F; these two amplitudes appear in such a way that their diver-
gences cancel. Therefore, reinserting the expressions of A4y and As; extracted from Eq. (A66)
into the expression of "5 (p, q) one finds another mapping between the form factors A; and

F;, as previously done in Eqgs. (2.72H2.84])

C

F = — A.
A4 C
B = T -mrw (A.69)
A7
F, = , A.70
1 I (A.70)
o A16 C
s = e (A.71)
Aia
Fy = , A72
6 Ta-q (A.72)
c A (Agp-p+Aup-q)a-q  p-p(Asp-q+Agq-q)
no_ An A73
7 6]<:-kz+ 2 + 2p - q> + 2p - q> » )
Ag
Fy = — , A.74
8 T (A.74)
A .
Py = = 44,12 (A.75)
p-q p-q
. A
Fio = Ag2L 214 (A.76)
p-¢® p-q
Aia As
Fy = _ , ATT
A A
Fp = 3 4 7 (A.78)

2p-q  2p-p’



A.4 Comparison with the parametric approach and numerical checks 187

1
Py = g [2411p-¢® +cp-q+4App-q+Asp-pp-q+2A6p-pp-q

+2A14q-qp-q+Asq-qp-q+4A9p-pq-ql; (A.79)

This new mapping leaves the invariant amplitudes from Fy to Fio the same as before, so the
condition ¢), i.e. the WI derived from Eq. (2.36) and ') are perfectly equivalent in determining

these 4 form factors.

A.4 Comparison with the parametric approach and numerical
checks

The parametric approach of [51] allows, by combining the denominators of the various tensor
amplitudes, to give parametric expressions for the form factors F; starting from a set scalar
parametric integrals. Our results correspond to an explicit computation of these integrals. We
will not give each integral separately, since they are rather lengthy. The mapping between the
F;’s in the parametric form and our expressions allow to perform numerical checks of our result.
We have perfect agreement between the parametric forms derived in [51], computed numerically,
and our explicit expressions in all the euclidean regions of the external momenta. We briefly
clarify this point.

Explicit formulae for all twelve finite coefficient functions may be given in the Feynman

parameterized form,

Ci(k*p* q°) = 6—2/1 dz /H dy ¢(,y) . (A80)
4m? Jo 0 pr(l—z)+¢?y(l —y) +2zyp-q+m?

where the polynomials ¢;(z,y) for i = 1,...,12 are listed in Table [A-1l

= GEOEO % (~C1 + Cs + Cs — Cy) + % (~Cr + Cs + Cig — Ciz) , (A81)
= 2C7 _1028 - Cy n 112); (Cy — Cy — C + Co) + %22 (C7 — Cg — Cho + C12), (A.82)
Fy = _C7_g8+209 + 1]2922 (Cl—03—CS+CQ)+%]2€2(C7—08_010+012)7
(A.83)
Fy = _C7+2608_09 +g%(01—03—Cg+09)+6q%(07—08—010+012)
T O A S ao (A8

p-q? ° 2(p-q)
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j C; = coeflicient of cj(z,y)
1 php¥ p*pP —42%(1 — z)(1 — 22)
2 | (p"q” + q¢"'p")p°p” —z(1 —)(1 — 4z + 8xy) + xy
3 ¢"q"p°p° 2(1 = 2y)(1 —x — y + 2xy)
4 prp p*q° —2z(1 — z)(1 - 22)(1 - 2y)
51 (p"¢” + q"p")p*q” z(1—2)(1 —2y)? +y(1 —y)(1 — 22)
6 ¢"q"p*q” —2y(1 —y)(1 — 22)(1 — 2y)
7 pHpYqp? 22y (1 — 2x)°
8| ("¢ +¢"p")q*p’ —2zy(1 - 22)(1 - 2y)
9 ¢"q"q¢“p° 2xy(1 — 2y)?
10 phpY q@qP 2y(1 —22)(1 —z — y + 2zy)
1| ("¢ +q"p")q*¢° —y(1 —y)(1 — 4y + 8zy) + ay
12 ¢"q"q¢*q" —4y? (1 —2y)(1 — y)

Appendix

Table A.1: The twelve tensors with four free indices (uvaf) on p,q used in ref. [51] for the

construction of the form factors F;. At each coefficient functions C;(k%;p?,¢*) correspond a

polynomial ¢; in the Feynman parameterized form, as given in Eq. (A.80).

Fy

Fy

Fg

C,  Cip —C1+20C; —2C5+2C1 —Cia

R 3k2 ’
q p

B C1 | 3C10—Ci2  C1 =203+ 2C5 — 201 + Ch2
T 122 12p2 12k2 ’
. —C1 + 3C5 C1a Ch —2C5 +2C5 — 2C11 + Cha
- 122 12p? 12k2 ’
B Cs C1 Cip Oy =20y +2C5 —2C1 + Cy2
T 2pq 62 Gp? 6k '
Oy 7> Cs

p-q (pa)?
_ p’Cs  Cu

(p-a)?* pq’
G5 Oy
b
_ Cip Oy
= 27 2

(A.85)
(A.86)
(A.87)
(A.88)

(A.89)

(A.90)
(A.91)

(A.92)
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Finally, numerical checks on Fi3 are performed on the UV convergent amplitude

e (p2) 4+ Ia (a2 2 2 s, A0 )
Fy = @) +e(e) | P o pCitaCe p 9 (90, + Cs + Cro + 2C0)
2 P-q dp - q 4
2 2
+ %(202+C4—|—205+Clo)+qz(03+205+06+2011) (A.93)

where the scalar two-point functions have been renormalized by the subtraction of the UV 1/e

pole.

A.5 The massive invariant amplitudes

The off-shell massive form factors F;, with

e s#0 51 #0 59 #0 m# 0

2

and with v = s — 81 — 82, 0 = 52 — 2(s1 + 82) 5 + (51 — 82)? are given by

9 e?ym? e2 Dy (s, 52, m?) 59 [52 + 4515 — 2595 — 55% + 5% + 45182] m?
Fi(s; s1, s2, m*) =

3n2s0 3n2s02
B e? B e? Di(s,s1,m?) s1 [— (s — s1) 2 + 553 — 4 (s + s1) 53] m?
18725 3n2s02
2 Cy(s. 51, 59.m2) m?y [(s —s1)® — s3 + (3s + 51) 53 + (—3s* — 10515 + 57) 52] B 2mty
01 21, =2 672502 3n2so
(A.94)
Fa(s: s1, s m2) _ _262m2 B 2 e2 Do (s, 82,m2) [(5 — 51) 2 _ 25% + (s + 1) 52] m2
25 2 22 3n2s0 32502
2e2 Dy (s, s1,m?) m?
— 15))71_28102 ) [82 + (81— 2s9) s — 25% + S% + 5152]
2 2 4m* m? 3 2 2 2
—e” Co(s, 81,82, m") 3 5es T 3 7.0 [s° — (51 + 52) s — (5] — 6s2s1 + 83) s
+ (s1—s2) % (s1+ s2)] | (A.95)

'"We use boldfaced notation to facilitate their identification in the lengthier expressions
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62

14472503

+2 (58% — 695957 + 1175351 + 235%’) s3-3 (55‘11 — 625955 + 725357 + 505351 + 78%) s

F3(S; S1, S2, m2) = F5(S; S2, S1, m2) = |:S6 — 3(81 — 452) 85 + 6(381 — 782) 8254

+3(s1 — 52) % (357 — 245957 — 335351 + 253) s — 2(s1 — $2) 6}

62 m2
_GWZSUQ [52 —2(s1 —3s2) s+ (51 — 52) 2]
62'7 2 9 ) ) ,
— 53z |5 (552 = 251) 5+ (51— 52) * | [Bo(s, m?)m? — Ao(m?)]
€2m2 9 . ) ,
_WDI(S’Sl’m) (2s+5s1)(s—s1)" —12(s+s1) 85 (s — s1)

+51 (415 + 251) 82 (s — 51) 2 — (65 + 5s1) 55 + (165 — 41515 + 14s7) sg]

62 S1

T D (s, 51, m?) {(s —51)%4+2(14s 4+ 1151) 52 (s — 51) *
- (2352 — 214515+ 195%) 52 (s —51)2+2— 2185 + (5s) — 25) 55

+ (107s* — 318515 + T1s7) s3 + 8 (—11s® + 18s15% + 17s]s — 8s}) sg}

e? sy m?

1272503
— (s —51) (13s* — 49515 + 1457) 82 + (s — 51) * (175 + 581)}

Dy(s, s2,m?) [s% + (195 + 2s1) 53 — 2 (1232 — 92355 + 63%) s

62 S9

4872t
—4 (s® + 49515 — 69s7s + 1357) 55 + (s — 1) (115® — 69515 + 309s]s — 83s}) 53

—2(s—s1)° (5s* —49s1s — 4s7) s2+3 (s — 51)° (s + 551)]
4

— €% Co(s, 51,50, m?) [3;;?02 [32 + (7sg — 2s1) s + (s1 — s2) 2]

Dy(s, s2, mz) [Sg —2(s—14s7) sg + (52 + 120515 — 375%) s%

m2

2472 s 03
+2 (135 — 54s15% + 55s7s — 25‘;’) s3 — (s — s1) (455> — 1335157 + 15s7s + s‘rf’) 52

[—s5 + (251 = 95) 55 + (125” — 65515+ 51) 53

+ (s —51)% (155> + 47s1s — 257) s2 + (s — 51) ° (25 + 1)
8182
8r2at

+2 (—531{’ — 19323% + 293%31 + s%) $3 +12s9 (43? — 4828% — 33%31 + s%) S

_l’_

[25° 4+ 3 (s2 — 3s1) 8° + (1557 + 65951 — 1353) s
2

+ (81— 52)? (35} — 158257 — 31s3s1 — 55%) s — (51— 52) % (s1 + 52) 2] ,

(A.96)
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Fy4(s; s1, s2, m?) = Feg(s; sg, 51, m?) =

62m2
67TT0251 [353 — 2(2s1 + 3s2) s2 4 (—s% + 65951 + 35%) s+ 2s1 (51— s2) 2}
2
e
Torzsgzy [Bols,m?)m® = Ag(m®)] 3% — 2 (251 + 3s2) s +

(—s% + 45951 + 35%) s+ 2s1(s1 — s2) 2}
2
—i—m [ — 554 (65 + 11s7) s% — (1452 + 515 + 58%) 55+ (1633 — 355152 + 46535 — 153515) 53
1
— (5 —51)2 (952 — 11515 — 65%) s9+2(s—s1)t(s+ 251)}
2

— 2Dy(s, 59, m?) [#50351 < —2(25+51) (s —s1) " + (35 — 43515+ 257) 59 (s — 51) °

+ (9s + 4s1) 53+ (—2332 + 29515 — 108%) s+ (1533 + 2515% 4 Bsts + 63?) s%)

1
4872045

<3 (s+s1)(s—51)%—4 (452 — 14515 — 55%) s9(s—51)%
+ (3553 — 119515 + 169s7s — 135}) 53 (s — 51) 2 + (s — 3s51) 8§ — 8 (52 + 9515 + 7s3) 55

+ (255% + 159s1 5> — 197s7s + 157s}) s3 + 4 (—10s* + 21s7s* + 28ss — 27s7) s§>]

2
+ 2Dy (s, 51, m?) [12% <285 + (1551 — 8s9) s* + (—535% — bsgsy + 12s3) s°
280381

+ (495‘;’ + 465957 — 335551 — 85%) s2 — (51 — s9) (95? + 528957 + 235351 + 253) s
1
—2s1 (51— 89) > (21 + 82)) t 1821 <Sg +4(6s + 11s1) 85 + (—87s% + 106515 — 91s7) 53
2o
+4(225% — 69515” + 40875 + 57) 55 + (s — 51) (35° — 20515” + 209575 — 79s7) 53

—8(s —s1)? (65> — 13515 — 4s7) 52+ (s — 51) ° (19s + 5s1) >]

4 2 2
9 9 m o (3s+2s1) m o 9
+e CO(S, 51,S89,M ) {67‘(‘20'2 |: 51 + 1882 — W — 3_31 (95 + (5981 + 352) S

+251 (81 + s2)) + 12 (382 —3(22s1 + Ts2) s+ s1 (351 — 1752)) o

1
2 6
+720s51 (s —s1)° —2(s+ s1) 32)} ~ 167 [— 25 (s —s1)

—2 (32 + 7515 + 28%) s9 (s —s1) 149 (733 + 6515% + 113%3 — 43:{’) s%
+12 (233 — 3s515% — 2525 + si{’) s2(s—s1)2—4(s+51)s5+6 (32 — 5518 + 28%) 5

—4 (934 — 25515 + 33s25% — 15555 + 23‘11) s%} },
(A.97)
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2,2
e“m
Fr(s; s1, s3, m?) 5 [ (82 + 12898 — s%) 51+ 85 — (25 4+ 53) 52 + (s — s9) 282:|

3n2so
e2 [8403 (2 (s+s1)s2—(s—s1) 2) s N 6 (—1332 + 166515 — 1352 4+ 39 (s + 51) 82) s1
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where as previously done the master integrals are collected in Appendix[A.2l These expressions
have been analyzed in the text in various kinematical limits to show the appearance of anomaly
poles and of all the other poles in the off-shell formulation.

Notice that Fi3 contains two vacuum polarization diagrams with different momenta on the

external lines and has been renormalized by a subtraction at zero momentum

2 2 2
2\ 2 2y € 6m az +1 12m
HR(s7m):H(Sam)_H(Oam)_367T2|:<3+T>a310ga3_1 — B — 5],
(A.103)
where II(s,m?) is defined in Eq. (Z41]), ag = /1 — 4m?/s and
e? e [1 m?

I(0,m?) = — %) =— = —log [ — A.104
(0.2) =~ 5= Bo0.m%) = 5 | =~ 1ox ()| (A 104

with 1/€ defined in (A.52]).

A.6 The massless invariant amplitudes

We present here the expressions of the invariant amplitudes in the massless limit. We obtain
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as already noticed above for the case of the massive form factors the last one, i.e. Fi3 gr(s; s1, s2, 0),

has been affected by the renormalization procedure for which the one-loop transverse photon
propagator with a virtual pair of massless fermions is given by

2

Ta(s,0) =~ [g “log <-%)] , (A.114)

where the dependence on the renormalization scale p remains explicit.
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A.7 The asymptotic behavior of the off-shell massless (T'J.J) cor-

relator

We present here the asymptotic expression of the form factor in the high energy limit. The lead-
ing contributions to the expansion in each expression come from the pole singularities (conformal
or anomalous) except for Fi3 which has a constant asymptotic term.
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1155 21 525 2472595 24725952 s
1
+ log ( ) (831 + 9s9 + 652 log < >> ] + 0 <—3> , (A.121)
s
1 e? 5)
Fis(s,51,5,0) = =3 [lr(s1,0) + (s, 0)] + 5 [log (=) +1log (2) + 2
o2
+12 3 [31+32+23110g( ) +23210g< >]
i 2(52—|— (3+7T2)S s +82) + s9 (1351 + 6s2) log (2)
2472 52 ! R 2 ! 2 s

+51log ( ) (651 + 1385 + 652 log ( )) } +0 (%) . (A.122)
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A.8 The asymptotic behavior of the on-shell massive (7'.J.J) cor-

relator

This appendix contains the asymptotic expansion of the relevant on-shell massive form factors,
that is their dominant contributions as s — oo with s > 0 after taking into account the suitable

analytic continuation. They result

2 2 2 2 2
9 e e‘m 9 (M . m 9 1
E“QQm>::—mﬂs+mﬂ§P‘bg<?>‘”ﬂ%<?9+”}+0@ﬁ’
(A.123)
2 2.2 2
2 2) _ Fi(s.0.0.m2) — — e _em Coe? m
3(5,0,0,m") 5(5,0,0,m%) 14472s 247252 o8 s

. m? 9 ) 1
—(6 + 2i7) log - + 7% —6ir — 14| + O 3 , (A.124)

Fy(5,0,0,m?) = —4F5(s,0,0,m?), (A.125)
62 m2 €2m2 m2
F 0,0,m%) = —— [12log | — | +35+ 124 log? [ —
13,r(s,0,0,m") 1447T2[ og<8>+ + 177}+87T25[0g<5>
2 2,,4 2
+m—ﬂ+%w+m+%wmgGl>y“i?%—b§<ﬁ>
s 474 s s
m? 9 1
+(2 — 2im) log <—> + 7 4 247 — 3] +0 <3_3> (A.126)
S

A.9 Form factors for the off-shell (T'J4.J4) correlator

This appendix contains the form factors involved in the decomposition of the (T'J4.J4) correlator,

as in Eq. (8.103]), expressed in terms of scalar integrals after the tensorial reduction

2,2
Ri(s, 51,52, m?) = % 72% {Dl(s,sl,mQ) + Dy(s, 59, m?) — 2By (5%, m?) — 2
m2s
+ (5 — 4m?*)Co(s, 51, 52, mQ)} (A.127)
g2 m?
Rs(s, s1, 32,m2) = s [2(5 — 51 — $92)D1 (s, sl,mz) + 4s9D5 (s, 32,m2)

+ ((s — 51)% — 53)Co(s, s1, sQ,mQ)} (A.128)
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2,2
R3(s, 51,52, m?) = Z ;n |:451D1(8, s1,m?) 4 2(s — s1 — 52)Ds(s, 52, m?)
2o

+ ((s — 82)* = 53)Co(s, 51, 52, m2)} (A.129)
Ry(s, 51,52, m%) = Ro(s, s1, 59, m>) (A.130)
Rs(s, 51,52, m%) = R3(s, s1, 59, m?) (A.131)

g?m?
Rg(s, 51,80, m?) = 2By(s,m?) — Dy (s, s1,m?) — Da(s, 52, m?) (A.132)
272(s — 81 — $2)
2 g*m® 2 2 2 2 2

R7(s,81,82,m") = SYRC [QBo(s,m )+ ?CQ(S, s1,82,m°) ((s — s1) % + 53 + 4559 — 25152) X

(2m? (s* = 2(s1+ s2) s+ (51— 82) ?) + 5 (s — 2 (51 + 52) s + 57 + 55 + 45152))

Dl(S, S1, m2)
0-2

<554 —2(7s1 +592)8° +4 (35% + 55251 — 35%) 5

—2(s1 — 82) (87 + 125951 + 553) 5 — (51 — 82) 4)

DQ(Sa 52, m2)

2

<—2(952—|—8815+35%)S%—(S—51)4+4(7S—|—51)82(8—81)2
o

(A.133)

2((s—s1)2+ s2+ 4ss9 — 25189
—5§+4(51—25)s§>+ (« ) 20 )
2 260(8531552,m2)

2

_g'm
T 24725

(2m2 (s> —2(s1+82)s+ (51— 52)%) +5 (52— 2(s1+ 52) 5+ 5] + 55 + 4s152))

Rg(s, 51,52, m?) [QBo(s,mQ) + (s +4s1s + 87+ 55 — 2(s+ 1) 52) X

2

D 2
_ M <54 — 4(Ts1 + s2) s° + 2 (9s] + 265051 + 35%) s*
g

+4(s1 — s2) (257 + 65281 + 53) 5+ (51— 82) 4)

DQ(Sa 52, m2)

5 <5S4 —2(s1 4+ Ts9) s> + 4 (—35% + 55251 + 35%) 52— (51— s9)4

o
2(32—1—4318—1—3%—1—3%—2(s+31)82)
o

+2(s1 — s2) (58% + 125951 + s%) s> +

(A.134)



A.10 Form factors for the A?/ﬁz/ amplitude 203

g2m2

= 12725

3 2 2
Ry (s, 51, 52,m?) S] ~ 2Co(s, 81, 82, m?)

|:280(S,m2) [1 + 7 = (252 — (814 s2) s — (81 — s2) 2) .

(2m2 (32 —2(s1+52) s+ (51— s2) 2) + s (32 —2(s1+s2)s+ s% + s% —1—43132))

Dl(S, Slme)

- ( —10s” + (23s1 + 41s3) s* — 2 (57 + 2Tsas1 + 32s3) s°
Yo

—2(s1 + s2) (487 + 5sas1 — 238%) s% +2(s1 — s2) (255 + 195257 + 8s381 + 7s3) s

+ (51— 89) 4 (51 + 32)>

Do(s, 59, m?
% <2 (—4s® + 17515+ s7) 85 + (s — 51) 2 (2332 — 8515 — 3s7) 52

— 2 (55 + 9s18% + 11s7s — s7) 85 + 55 + (45 — 3s1) 55 — (s — s1) * (105 — 31)>

L 2(228 4 (1t s2) s+ (51— 50) 2)} 7 (A.135)

o
where s = k2 = (p+q)%, s1 = p?, s = ¢%, 7y = 5—51— 52, 0 = 52 —2(51+52) 5+ (51— 52)? and the
scalar integrals Bo(s?,m?), Di(s,s1,m?), Da(s,s1,m?), Co(s,s1,52, m?) for generic virtualities

and masses are defined in Appendix[A.2]

A.10 Form factors for the A“% amplitude

We write in this appendix the form factors G; and G2 appearing in eq. [B.127] as contributions

to the classical trace obtained for the (T'Jy Jy ) correlator

2,2 2 2 2
m Do (s, 89, M%) S9mM
G1(s, s1, s2, m2) = 97?20 + o Dol 77302 )5 [82 + 4515 — 2598 — 55% + s% + 45152]

_g2 Dy (s, 51, m?) sym?

3,2 - (3—31)2+5s%—4(s+31)32]

2 4
m 2m
—g%Co(s, 51, 59, m?) [2772 (s —s1)® — s34+ (35 + 51) 53 + (—3s® — 10s15 + 57) 82| — 5 7
20 2o
(A.136)
2¢°m?  2¢® Da(s, so, m?)m?
G2(87 S1, 827m2) = - ‘79_‘_20_ - g 2(71'20'22 ) [(S - 81) 2 _ 28% + (3 + 31) 82]
2¢°Di (s, 51, m?) m?
~ 29 1(W2012 ) (8% + (51— 252) s — 257 + 85 + 5159
4m? m?
—gQCO(S, 51, 52,m2) [% - [53 — (81 + s2) s? — (s% — 68951 + s%) s
+ (51 — 52) 2 (51 + 82)] , (A137)

where v = 5 — 51 — 59, 0 = 5% — 2(s1 + 52) s + (51 — $2)? and the scalar integrals D (s, s1,m?),

Dy (s, s1,m?) and Co(s, 51, 52, m?) have been already defined in Appendix [A2
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A.11 Feynman rules

The Feynman rules used throughout the paper are collected here

e Graviton - fermion - fermion vertex

k f
h 1/ K
g = - §V (K1, k2)
/-c 1
= —ig { V(b1 + ka2)y + v (k1 + k)] — §g;w[’yk(/<71 +k2)x — QW]}
B g

(A.138)

= =i 0w V53 (k. ko)

K 1
= 1 5 6ab {kl : k2 C,uz/po + D/J,l/po'(k17 k2) + EE,ul/po(kla kZ)}

(A.139)
e Graviton - ghost - ghost vertex
k =b
2/‘,/
Py et
ANAAK K

. = —zgaabcwgklpk%

A
(A.140)

e Graviton - fermion - fermion - gauge boson vertex

ga
N A Ko 1
= 19 5 T W;wa [ 5 T _5(7u Gva + W g,ua) + 9w Vo

(A.141)
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e Graviton - gluon - gluon - gluon vertex

gP kil kg gg'

43 K
G
= —9§fabcvu,,f,i%\(/€1, ko, k3)
K
= _g§fabc {Cuupa(kl - kZ))\ + C/J,l/p)\(k3 - kl)a
h Jk\s o + Chvor(ka — k3)p + Fuvpor(ki, k2, k3)}
0z
(A.142)
e Graviton - ghost - ghost - gauge boson vertex
95 ko el
;(I
N K
\\K — 5 gfabc C,ul/pc kQ
Ca
h,u,u
(A.143)
C,uz/po = Gup o + Guo Gvp — Guv 9po (A'144)
D,uz/po(kl, k2) = Guv k15 k2p - g‘wkfkg + Gup k1o kay — 9po klp kay + (:u A V):|
(A.145)

Euupa(klakZ):guu(klpkla+k2pk20+k1pk20)_ guakluk1p+gupk2uk20+(ﬂHV):| )
(A.146)

Fuvpox(k1,k2,k3) = gup gox (k2 — k3)u + Guo 9px (k3 — k1)v + gux gpo (k1 — k2)y + (10 = v)

(A.147)
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