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Sommario

In questa tesi vengono presentati risultati originali derivanti dallo studio delle anomalie di gauge

e dell’anomalia di traccia in teorie realistiche come un’estensione abeliana del Modello Standard

(MS) o in una teoria effettiva in cui l’interazione gravitazionale è accoppiata al MS. Per questa

ragione abbiamo effettuato numerosi studi perturbativi dell’azione effettiva ad un loop e, in

particolare, di interazioni di gauge trilineari in presenza di simmetrie di gauge U(1) anomale

addizionali. L’anomalia di traccia è studiata al primo ordine perturbativo attraverso il correla-

tore TJJ (T indica il tensore energia-impulso e J una corrente di gauge generica). In questo

secondo caso la nostra analisi è concentrata sullo studio delle azioni effettive di QED e QCD.

Mostriamo nella prima parte di questa tesi che per entrambi i tipi di anomalie l’azione

effettiva è caratterizzata dalla comparsa di gradi di libertà privi di massa che sono pseudoscalari

nel caso dell’anomalia chirale e scalari per l’anomalia di traccia o conforme. Nell’analisi di

QED e QCD questi poli anomali possono anche essere estratti dallo studio dell’azione indotta

dall’anomalia, ottenuta a sua volta come soluzione variazionale dell’equazione per l’anomalia,

come mostrato in analisi precedenti. Nel caso dell’anomalia chirale, e del correlatore triangolare

che ne è all’origine, è dimostrata l’equivalenza di due diverse parametrizzazioni: quella dovuta

a Rosenberg e quella denominata Longitudinale/Trasversa. Uno dei risultati originali riguarda

l’estensione di entrambe le parametrizzazioni a condizioni cinematiche generali. Si discute in

dettaglio inoltre l’accoppiamento infrarosso dei poli sia nel caso del correlatore AVV (denotiamo

con A e V rispettivamente una corrente di gauge assiale-vettoriale e una puramente vettoriale)

che nel caso del correlatore TJJ , analizzando tutte le possibili regioni cinematiche in cui i poli

appaiono. I risultati ottenuti recentemente da Mottola e Giannotti per il correlatore TJJ in

QED nel caso conforme sono estesi al caso non conforme (sempre in QED) e sono stati riottenuti

anche in QCD.

Nella seconda parte di questo lavoro di tesi sono discusse alcune caratteristiche fenomenolo-

giche di teorie che estendono il MS con simmetrie U(1) anomale e le loro nuove interazioni di

gauge trilineari. Nel modello studiato la cancellazione delle anomalie è realizzata con un assione

asintotico che generalizza il tradizionale assione di Peccei-Quinn (sotto forma di uno pseudosca-

lare di Stückelberg) e può avere una componente fisica in determinate condizioni. Esso pertanto

fornisce un contesto teorico consistente per la descrizione di generiche particelle simili all’assio-

ne. Questo approccio alla cancellazione delle anomalie è alternativo al metodo di sottrazione del

polo anomalo, introdotto in passato per riprisitinare l’invarianza di gauge di una teoria anomala.

Un’analisi critica di questi due approcci è inclusa nella seconda parte della tesi.





vii

Abstract

In this thesis some original results coming from the study of gauge and trace anomalies are

presented, both analyzed in realistic theories such as an abelian extension of the Standard

Model (SM) or in an effective field theory in which gravity is coupled to the SM. For this reason

we perform several perturbative studies of the one loop effective action and, in particular, of

the trilinear gauge interactions with the addition of extra anomalous U(1) gauge symmetries.

On the other hand, the trace anomaly is investigated at leading order via the TJJ correlator,

where T denotes the energy momentum tensor and J a generic gauge current. In this second

case our analysis is focused on the QED and QCD effective actions.

We show that in both cases the 1-particle irreducible effective action is characterized by the

appearance of massless effective degrees of freedom. These are pseudoscalars in the case of the

chiral anomaly and scalars for the trace/conformal anomaly and are dubbed “anomaly poles”.

In the QED and QCD cases these poles can also be extracted from the anomaly-induced action,

which is obtained from the variational solution of the anomaly equation, as shown in previous

analysis.

In the chiral case we discuss the equivalence between the Rosenberg and the Longitudi-

nal/Transverse representations of the anomaly amplitude, showing the explicit mapping between

the two in the most general external kinematical conditions. The infrared coupling of the poles

is discussed both in the AV V (the correlator of Axial-Vector/Vector/Vector currents) and TJJ

cases in great detail, analyzing all the possible kinematical regions where they appear. For

the anomalous TJJ correlator we present its explicit form both in the conformal and in the

non-conformal limits, generalizing results by Giannotti and Mottola derived in QED.

In the second part of the thesis we discuss some phenomenological features of anomalous

extensions of the Standard Model and of its trilinear gauge interactions using an asymptotic

axion for anomaly cancellation. This axion generalizes the traditional Peccei-Quinn axion (in

the form of a Stückelberg pseudoscalar) and may develop a physical component under certain

conditions, thereby providing a consistent theoretical framework for the description of axion-like

particles.

This second approach to anomaly cancellation is alternative to the mechanism of pole subtrac-

tion for the restoration of the Ward identities of an anomalous theory. A critical investigation

of these points is included.
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“Anomaly Poles as Common Signatures of Chiral and Conformal Anomalies,”

Phys. Lett. B682, 322-327 (2009) - arXiv:0909.4522 [hep-ph].

• R. Armillis, C. Corianò and L. Delle Rose,
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“Trilinear Gauge Interactions in Extensions of the Standard Model and Unitarity,”

Nuovo Cim. C32N3-4, :261-264 (2009) - arXiv:0905.4410 [hep-ph].
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Introduction

The search for the identification of possible extensions of the Standard Model (SM) is a chal-

lenging research area both from the theoretical and the experimental point of view.

It is even more so with the early data distributed by the four experiments at the LHC, for which

the hopes are that at least some among the many phenomenological scenarios that have been

formulated in the last three decades can finally be tested.

The presence of so many wide and different possibilities render these studies very challenging.

Surely, among these, the choice of simple abelian U(1) extensions of the basic gauge structure

SU(3)C × SU(2)L × U(1)Y of the SM is one of the simplest to take into consideration (see [1]

for a review). These extensions of the Standard Model (SM) represent an economical but yet

profound modification of the gauge structure of the electroweak sector, which has been tested

first at Tevatron [2] and can be still tested at the LHC [3, 4, 5, 6]. They are also quite numerous.

In fact U(1) interactions abound in effective theories derived from string theory [5, 7, 8, 9] or

from Grand Unified Theories (GUTs), with [10, 11, 12, 13, 14] or without [6, 15, 16, 17, 18] the

introduction of supersymmetry. One of the common features of these models is the absence of

an anomaly-free fermion spectrum, as for the SM.

In the SM case indeed all the trilinear correlators that can potentially generate gauge anomalies

are set to zero by a suitable charge assignment for each SM particle under the corresponding

gauge group. This mechanism for removing the anomaly is called anomaly cancellation by charge

assignment and its realization is verified experimentally.

Nevertheless several compactifications of string theory predict the existence of anomalous

U(1) symmetries [7, 19, 20] and in these cases the mechanism of anomaly cancellation that Nature

selects may not just be based on an anomaly-free spectrum, but may require a more complex

pattern. This case is similar to the Green-Schwarz (GS) anomaly cancellation mechanism of

string theory [21] and invokes an axion [16, 17, 22, 23, 24, 25, 26]. Interestingly enough, the

same pattern appears if, for a completely different and purely dynamical reason, part of the

fermion spectrum of an anomaly free theory is integrated out [27, 28], together with part of the

Higgs sector [29].

xvii



xviii Introduction

The interest on the quantization of anomalous models and their proper field theoretical

description has been a key topic for a long period, in an attempt to clarify under which conditions

an anomalous gauge theory may be improved by the introduction of suitable interactions, so to

become unitary and renormalizable [15, 16, 17, 23, 30].

One of the characteristic features of anomalous effective actions, both in the case of the chiral

and of the conformal anomalies, is the presence of dynamical degrees of freedom generated by

trilinear vertices. One of the open issues related to this point will be addressed in Chapter 5.

There we will be discussing the difference between the cancellation of gauge anomalies obtained

by the introduction of an asymptotic axion, and the same cancellation obtained by the subtrac-

tion of an anomaly pole. We will show that an anomaly pole can be described in terms of two

local degrees of freedom which are kinetically mixed. A similar description emerges for the trace

anomaly, with two extra scalars instead of two pseudoscalars, as in the chiral case.

It should be mentioned that the trace anomaly is part of the effective gravitational action

and is not the result of any model-dependent construction. For this reason one can ask several

questions regarding the true phenomenological impact of the breaking of scale invariance in the

early universe.

It is also worth noticing that there are recent claims [31, 32] of the possible presence of full

conformal invariance in the correlation functions of the CMB and, given the quantum origin

of the CMB anisotropies, this raises significant questions in regard to the role of these scale-

breaking quantum effects. The presence of new effective degrees of freedom as a signature of

the trace anomaly is, for this reason, a significant feature of the quantum gravitational effective

action. We will comment on these points in our conclusions.

General structure of the document

This thesis collects the results obtained throughout our investigation that try to clarify the study

of the effective actions of massless pseudoscalars and scalars degrees of freedom when chiral and

conformal anomalies are present in gauge theories.

Therefore the whole work has been divided into two parts, the first part covering the first four

chapters and the second part the last two chapters.

The first part is focused on the identification and the fundamental properties of the anoma-

lous trilinear correlators for chiral and conformally anomalous theories. The aim of these studies

has been to show the emergence of anomaly poles for both theories in the effective actions and to

describe their formulation in terms of local degrees of freedom. All the results have been obtained

starting from analytical computations of the corresponding one-loop Feynman diagrams.
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The second part is of phenomenological character and tries to apply, at least in part, the

results of the formal studies of the first part to realistic extensions of the SM. The final chapter,

which is dedicated to the study of trilinear gauge interactions in a specific extension of the

SM, dubbed the MLSOM (Minimal Low Scale Orientifold Model) [15], is preceded by a more

formal analysis of the relation between the different mechanisms of anomaly cancellations. In

particular we will compare (Chapter 5) those invoking the subtraction of the anomaly pole for

the restoration of the Ward identities in chiral gauge theories with those requiring an asymptotic

Stückelberg axion. In this context, the connection between the chiral and the trace anomaly

will appear to its fullest extent, since the framework in which these issues are addressed at the

same time requires a supersymmetric formulation.

For this reason, we recall that in a supersymmetric theory the anomaly supermultiplet con-

tains as its components both the trace anomaly and the chiral anomaly of a global U(1)R

current, besides the gamma-trace of the supersymmetric current. In the context of supergravity

the anomalous current is gauged, and the issues that we have (separately) uncovered in the

first part of the thesis, for the chiral and conformal anomaly cases, will be unified. In partic-

ular we will show that the mechanism of anomaly cancellation introduced long ago by Ovrut,

Cardoso [33, 34] and others as a field theory realization of the GS mechanism of string theory,

performed in a supergravity context, amounts to the subtraction of specific anomaly poles in

the effective action induced by the anomaly supermultiplet. This construction, as we are going

to explain, induces at the level of trilinear gauge interactions some vertices whose features are

unique and at variance respect to any interaction present in the SM. The current limitations of

these approaches and the context in which they find justification is discussed in detail. These

conclusions are reached after a careful analysis of the infrared and ultraviolet properties of the

trilinear anomalous interactions, showing that the subtraction of an anomaly pole should be

viewed as an ultraviolet correction and not as an exact mechanism.

Approaches to anomaly cancellation

Before entering into the detailed description of the first part of this work a comment is in order.

Our attention will be mainly focused on two different approaches to anomaly cancellation: the

first one involves a polar counterterm - as we have just mentioned - and is referred to as a

generalization of the GS mechanism [21] in a four dimensional field theory, while the second one

involves a Wess-Zumino term [35]. These two ways of realizing the cancellation of the anomaly

are not equivalent at the level of the one-Particle-Irreducible (1PI) effective action and the issue

of their completeness [24, 36], from a field theory point of view, is still open, as we are going to

show with a detailed perturbative analysis.
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Obviously, the investigation of the phenomenological implications of the chosen mechanism

should be preceded by a complete study of those vertices which are responsible for the generation

of an anomaly in perturbation theory. This motivates our studies of the anomaly vertices and

of their kinematical limits, which are contained in the first 4 chapters.

The first chapter of this thesis is therefore devoted to the study of the trilinear correlator of an

axial-vector and two vector currents in which the chiral anomaly appears[37, 38, 39]. The nature

of these anomalous poles, in the most general kinematical case, is elucidated by performing a

complete analysis of the kinematical properties of the anomaly vertex at perturbative level [40].

The computation is presented in the first chapter by the use of two independent (but

equivalent) representations: the well-known Rosenberg representation [41] and the Longitudi-

nal/Transverse (L/T) parameterization [42], used in recent studies of g−2 of the muon [24, 43, 44]

and in the proof of non-renormalization theorems [45] of the anomaly vertex.

A dispersive analysis of this diagram had shown that this is identical to its pole counterterm

only in a special situation, that is when the two external vector lines are on shell [37]. These

points have been addressed in great detail in [24].

This special kinematic situation (dubbed the “collinear fermion/antifermion limit”) is the

only one in which the cancellation of the anomaly diagram with its counterterm is identical.

In the opposite case (“the non-collinear limit”), when the vector lines have both nonzero virtu-

alities, the counterterm is not part of the vertex and its introduction may look rather artificial.

Stated differently, the anomaly diagram appears to be pole-dominated only in certain configu-

rations [37, 40] which affect both the infrared and the ultraviolet region of the corresponding

correlator. Since these points are crucial in order to understand the origin of these singularities

in perturbation theory, we will proceed from the ground up.

The first chapter then will contain the study of the two parameterizations of the anomaly

diagram, the one due to Rosenberg [41] and the one that we identify as the “L/T parameter-

ization” [42]. This second parameterization corresponds to a solution of the anomalous Ward

identities used in recent studies of g − 2 of the muon (see also [24]).

The mapping between the two, performed in order to prove their equivalence and the isolation

of the pole in both the collinear and the non-collinear limits has been analyzed in [40].

From the second chapter on we discuss the structure of the TJJ vertex, presenting its

expression for QED (Quantum Electrodynamics), moving then to more complex cases.

The computation of similar diagrams, for the on-shell photon case, appears in older con-

tributions by Berends and Gastmans [46] using dimensional regularization, in their study of

the gravitational scattering of photons and by Milton using Schwinger’s methods [47]. The

presence of an anomaly pole in the amplitude has not been investigated nor noticed in any of
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these previous analysis, nor the 1/m expansion of the three form factors of the on-shell vertex,

contained in [46], allows their identification in the S-matrix elements of the theory. Two related

studies by Drummond and Hathrell, in their investigation of the gravitational contribution to

the self-energy of the photon [48] and the renormalization of the trace anomaly [49] included the

same on-shell vertex. Later, this same vertex has provided the ground for several elaborations

concerning a possible superluminal behaviour of the photon in the presence of an external grav-

itational field [50]. The goal of our analysis has been to investigate the structure of this vertex,

to determine its explicit off-shell expression at 1-loop order, which had not been given before,

and to show that the polar contributions discovered in [51], due to the conformal anomaly, are

indeed reproduced by the explicit analytical result [52].

In our approach we stress on the similarities between the case of the chiral and of the

conformal anomalies, presenting the structure of the off-shell anomalous effective action for the

chiral case and critically analyzing the role of the anomaly poles in this theory, building on

previous investigations [6, 30, 40].

The different off-shell anomalous effective actions - in the presence of different types of

external gauge currents - have been considered separately. We have investigated two vector

gauge currents JV (in the second chapter), two axial-vector gauge current JA; the mixed case

JV − JA (in the third chapter), to conclude with the case of two non-abelian gluonic gauge

currents (in the fourth chapter).

As we move in the analysis from simpler to more complex correlators, we expand substantially

our technical tools. A key role in the test of our explicit perturbative results is the derivation

of appropriate anomalous Ward identities which have been derived from first principles and

checked on the final expressions. They allow to define consistently the anomaly vertices for a

generic TJJ ′ correlator and are obatained by a procedure which can be easily generalized to

even more complex correlators.

In the second chapter we compute in linearized gravity all the contributions to the gravita-

tional effective action due to a virtual Dirac fermion in the presence of the trace anomaly.

The perturbative analysis deals with a trilinear correlator, called TJJ, having an energy-

momentum insertion T and two vector currents J on the external lines (when axial currents

are not considered, J ≡ JV ), all with generic virtualities. This correlator is responsible for the

appearance of gauge contributions to the conformal anomaly in the effective action of gravity.

The obtained results consist in the presentation of the complete anomalous off-shell effective

action describing the interaction of gravity with the photons in the limit of a weak gravitational

field and in the proof that this correlator exhibits an anomaly pole as well as the chiral one.

So we put in evidence that the effective action describing the interaction of gauge fields with
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gravity is characterized by anomaly poles that give the same intriguing pattern of pole dominance

in the UV and of decoupling in the IR (for massive or off-shell correlators), in complete analogy

with the chiral case studied in the first chapter.

We conclude the chapter by noticing that anomaly poles are the most interesting feature of the

anomalous diagrams, being them of chiral or of conformal type.

The third [53] and the fourth [54] chapter are two extensions of the second one: they both

deal with the gravitational effective action in the presence of conformal anomaly, respectively

showing the computation of the TJJ correlator in the case of mixed axial-vector and vector

currents (third chapter) and within a non-abelian gauge theory (fourth chapter). They are both

an important step of our investigation aiming at the computation of the exact effective action

describing the coupling of the Standard Model to gravity via the conformal anomaly [55, 56].

The correlators that we study in the third chapter are two: the one with one vector and

one axial-vector gauge currents called TJV JA and the one with two axial-vector gauge currents

denoted by TJAJA.

The spectrum of the theory includes a single fermion of mass m and the investigation of the

gravitational vertices has been carried out both in the massless and in the massive case [53].

This study is performed as the one previously done for the vector-like case, the difference con-

sisting in the expansion of the trilinear correlator and in the suitable Ward identities allowing

to unambiguously define it.

It turns out that the pure vector-like correlator TJJ and the corresponding chiral one (with

an insertion of energy-momentum tensor and two axial-vector gauge currents) TJAJA start dif-

fering, away from the chiral limit, by contributions proportional to explicit mass breaking terms.

Furthermore we conclude that the effective action obtained by coupling gravity to abelian

vector/axial-vector gauge theories is characterized by effective massless degrees of freedom as

well as in the pure vector case and that the anomalous poles emerge also in this case.

Understanding the physical significance of these effective actions in which a nonlocal polar

counterterm can be described in terms of two auxiliary fields [30, 51, 52], one of them having a

negative kinetic term, is still challenging.

The non-abelian case presented in last chapter is far more involved because the corresponding

effective action is affected by the gauge choice and by ghost terms. This study confirms the

general trend of the appearance of an anomaly pole which contributes to the trace part of the

TJJ correlator, both in the quark and gluon sectors [54, 57]. Pole contributions, in this case,

appear in each gauge-invariant subsector of the perturbative expansion.

Notwithstanding the similarities between the chiral and the conformal anomalies and the

emergence of anomaly poles in both types of correlators that completely account for them, it is
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worth to remind that while in the case of chiral gauge theories the disappearance of the pole

is necessary for ensuring the unitarization of the effective theory at high energy, in the case

of conformal anomalies the corresponding poles [51, 52] play a different role. In fact gravity

breaks unitarity in the UV already at Born level, and there is no compelling need to impose

the cancellation of these contributions in order to preserve unitarity theory. As we have already

pointed out, the local formulation of these types of theories requires two additional scalar (for

conformal) or two pseudoscalar (for gauge anomalies) degrees of freedom - one of them being a

ghost in both cases [30] - in order to rewrite these polar interactions in a local form.

Pole subtractions, asymptotic axions and phenomenology

We collect here few more comments concerning chapters 5 and 6. The fifth chapter presents a

critical overview of the two different approaches to anomaly cancellation, the local one, based

on the introduction of a Wess-Zumino term, and the non-local one, defined by a subtraction of

the anomaly pole. The non-local subtraction has been proposed in the context of anomaly-free

supergravities long ago. The goal of this investigation is to point out some of the issues which

are still open concerning these types of effective Lagrangians. In particular we offer simple but

plausible arguments to show that a mechanism of pole subtraction should be interpreted as an

ultraviolet procedure which can not be extended to the far infrared. For the moment we just

mention that the most successful mechanism to cancel the anomaly - beside the obvious strategy

of an anomaly-free charge assignment - remains the introduction of an asymptotic axion (the

local mechanism). With the term “asymptotic” we refer to a state which is part of the S matrix

and is not necessarily formulated only as an intermediate effective interaction.

The mechanism of anomaly cancellation by a Wess-Zumino counterterm brings us to the

final chapter of this thesis where we discuss the structure of the trilinear gauge interactions and

their consistent definition in the case of anomalous abelian models. These models involve a kind

of axion with different properties respect to the original axion introduced by Peccei and Quinn

[58, 59] to solve the strong CP problem [60, 61]. Due to the anomaly, the shift symmetry of the

axion is gauged under the anomalous U(1) which extends the SM gauge group. This state is

expected to play a role in the cosmology of the early Universe [26].

These extensions can be generically thought to be the result of a gauging, when the global U(1)

symmetry (as for the Peccei-Quinn case) is promoted to a local one, which brings in rather tight

constraints coming from the requirement of cancellation of the new gauge anomalies. As we

said before, string models based on intersecting branes are one of the possible ways to generate

abelian anomalous gauge interactions and axions whose interactions naturally follow into this
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pattern.

The studied anomalous model contains two Higgs doublets, as in all the supersymmetric

extensions of the SM, a new neutral current with its corresponding gauge boson Z ′ (it repre-

sents one of the phenomenological signatures of the model), together with a physical axion-like

particle, called axi-Higgs. This particle can be (almost) massless, with its mass generated

non-perturbatively in the QCD (Quantum Chromodynamics) vacuum as for an ordinary Peccei-

Quinn axion, but can also mix with the scalars of the Higgs sector, becoming a heavy axion.

The model is also characterized by the presence of two different phases, the Stückelberg phase

([62, 63] for the original papers and [64] for a review) at high energy (∼ TeV ) and the usual

electroweak phase, called the Higgs-Stückelberg phase [16, 17]. In the first phase the additional

gauge boson Z ′ is already massive with a mass M directly related to the Stückelberg mass

scale, while the shifting axion is still a massless Nambu-Goldstone boson at this level. After the

electroweak symmetry breaking the mass of the gauge boson Z ′ gets corrections proportional

to the Higgs vacuum expectation value and, more interestingly, one linear combination of the

shifting axion and a CP-odd component of the Higgs sector becomes physical: this is the so-

called axi-Higgs. Its presence is the main distinctive feature of anomalous U(1) models with this

kind of anomaly cancellation mechanism.

The sixth chapter contains the details relative to the construction of the effective action

at one-loop for this kind of models and an in-depth analysis of the trilinear gauge interactions

appearing in this context [4, 18]. The study is carried out by means of generalized Ward identities

that allow to define unambigously the necessary counterterms in each of the two phases. Our

conclusions are contained in Chapter 7.



Chapter 1

The emergence of anomaly poles in

the chiral anomaly

1.1 Introduction and Summary

The first chapter presents the study of the relationship between anomalies and massless degrees

of freedom. The case of the axial anomaly in QED is well known, but the general behaviour of

the triangle amplitude in generic kinematic conditions (i.e. when the photons are off the mass

shell), its infrared aspect and above all the appearance of a massless pseudoscalar pole has not

been studied in detail until recently [51]. We present a complete analysis of the 3-point function

connecting three gauge currents, one of them being axial-vector and the other two of vector

nature, denoted in the following as an AV V correlator. It is well-known that this diagram is the

source of axial anomaly in a four dimensional gauge field theory ad that the correlator involving

three axial currents, the AAA correlator can be decomposed as a sum of AV V ones.

An anomaly is in general the violation of a symmetry, valid at the quantum level, by means

of quantum corrections. In the presence of a gauge anomaly, the gauge invariance of the classical

Lagrangian is destroyed at the quantum level and the theory ceases to be a consistent quantum

field theory.

The Dirac equation for a massive fermion ψ of mass m in QED reads as

− iγµ(∂µ − ieAµ)ψ +mψ = 0 (1.1)

and implies that the vector current Jµ = ψ̄γµψ is conserved, so

∂µJµ = 0. (1.2)

Another current, called axial current, can be defined as Jµ5 = ψ̄γµψ (and γ5 ≡ iγ0γ1γ2γ3) and

1
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obeys at the classical level

∂µ J
µ
5 = 2imψ̄γ5ψ. (1.3)

It can be seen that in the limit of vanishing fermion mass m ← 0, the classical Lagrangian

exhibits a chiral U(1) global symmetry under ψ → eiαγ
5

ψ, in addition to the U(1) local gauge

invariance. The current Jµ5 is the Noether current corresponding to this chiral symmetry. It

turns out that both symmetries cannot be maintained simultaneously at the quantum level, so

by enforcing U(1) gauge invariance in Eq. (1.2), the full quantum theory results affected by a

finite axial current anomaly

∂µ 〈Jµ5 〉A
∣∣∣∣
m=0

=
e2

16π2
ǫµνρσ Fµν Fρσ =

e2

2π2
~E · ~B, (1.4)

with the gauge field strength Fµν being Fµν = ∂µAν − ∂νAµ, ~E and ~B the electric and magnetic

fields respectively.

One of the subtle features of the axial anomaly is the presence of massless poles in the

corresponding AVV correlator, which show up in special kinematical regions and in the chiral

limit, and whose interpretation is at times rather puzzling. In fact, on several occasions the

correct interpretation of these singularities have been debated at length [38, 65]. Our interest in

the topic, which is one of our reasons and motivations for this analysis, has been the result of a

recent work in which we have suggested the subtraction of the anomaly pole in theories involving

anomalous U(1)’s to ensure anomaly cancellation, by defining a new gauge invariant vertex

[24]. The re-defined vertex is non-local, while its Ward identity is expressed in terms of local

interactions and can be interpreted diagrammatically by introducing a massless pseudoscalar -

an axion field - coupled to gauge fields via Wess-Zumino terms. This coupling is induced by the

anomaly and the subtraction of the anomaly pole is expected to represent the only consistent

way by which a completion of an anomalous theory is supposed to work in the UV region.

However, as known from several previous studies of this vertex, the presence of a longitudinal

pole in an anomaly diagram has always been established only for special kinematical configu-

rations and this raises a serious concern regarding the meaning of the subtraction, introduced

to restore the Ward identity at high energy, a subtraction which should be naturally performed

by the UV completion of the anomalous theory. The main objective of this analysis is to show

that the effective action of an anomalous gauge theory is affected by singularities which are

not necessarily detected using a dispersive analysis in the infrared (IR) [66] (see also [51] for

a recent study), and as such are IR decoupled. These additional poles, which account for the

anomaly, can be extracted by a complete computation of the effective action and have a direct

ultraviolet UV significance. For this reason, assessing the UV significance of an anomaly pole,



1.2 Anomaly poles and general kinematics: the Rosenberg case 3

whose identification, in the past, has always been linked to the infrared (IR) using a spectral

approach, certainly helps in establishing a natural link between an anomalous theory and its

completion, which should guarantee the cancellation of these contributions.

To show the existence of these singularities under the most general kinematical conditions

we proceed with a complete and comparative study of the anomaly diagram in two different

parameterizations which are both essential in order to understand the nature of the longitudinal

subtraction. In fact, only a complete and off-shell computation of the effective action for an

anomalous theory allows the identification of these terms which escape detection with the usual

spectral analysis. The nature of these additional singularities of the effective action which, in

some cases, are not evident due to the presence of Schouten relations, is resolved by studying a

special class of amplitudes in which the presence of a pole dominance can be immediately linked

to a non unitary behaviour of the theory. Having clarified these points, we proceed by discussing

the structure of the anomalous effective action of a typical anomalous theory, represented by

expansions in the fermion mass (m). This can be viewed as the generalization to the anomalous

case of the usual Euler-Heisenberg effective action, which now contains additional (anomalous)

trilinear interactions that are absent in the QED case, due to C-invariance.

1.2 Anomaly poles and general kinematics: the Rosenberg case

One of the intriguing features of the anomaly diagrams is that the poles are part of the anomaly

amplitude only under some special kinematical conditions. For instance, the π → γγ (pion

pole) amplitude interpolates between the axial vector current (JA) and two vector currents (JV )

and saturates the anomaly contribution (if we neglect the pion mass) given by the 〈JAJV JV 〉
perturbative correlator. This saturation is at the basis of ’t Hooft’s matching conditions, ac-

cording to which the anomaly of the fermions should be reproduced by a composite particle (a

pseudoscalar) in a confining theory (see also the discussion in [51]). In general, the pole appears

by solving the anomalous Ward identity for the corresponding amplitude, ∆λµν(k1, k2) (we use

momenta as in Fig. 1.1 with k = k1 + k2)

kλ∆
λµν(k1, k2) = anǫ

µναβ k1α k2β (1.5)

rather trivially, using the longitudinal tensor structure

∆λµν ≡ wL = an
kλ

k2
ǫµναβ k1α k2β, (1.6)

where an = −i/2π2 denotes the anomaly. The presence of this tensor structure with a 1/k2

behaviour is the signature of the anomaly. This result holds for an AV V graph, but can be
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Figure 1.1: Triangle diagram with an axial-vector current (λ) and two vector currents (µ, ν). The

momentum parameterization for the direct and the exchange contribution is written here in an explicit

form for future reference.

trivially generalized to more general anomaly graphs, such as AAA graphs, by adding poles in

the invariants of the remaining lines, i.e. 1/k2
1 and 1/k2

2 , by imposing an equal distribution of

the anomaly on the three axial-vector legs of the graph.

Obviously, in the chiral limit, the triangle amplitude and the pole amplitude coincide only

if the two photons are on-shell. In fact, as shown by Dolgov and Zakharov [37], the pole

dominance requires a special kinematics. For this reason, the pole has a nonvanishing residue

only for massless photons. This, in fact, sets a limit on the validity of the matching, since the

perturbative correlator and the pole amplitude are not supposed to coincide for any virtuality

of the photons.

1.2.1 UV completions and decoupled poles in the IR

Being the anomaly closely related to the presence of a pole in the correlation function, the

subtraction of the anomaly pole from the perturbative amplitude is sufficient to restore the Ward

identities of the theory. For this to occur one has to show that the correlator has always an

anomaly pole, which is not obvious. The main goal of this study is to show that the correlator

responsible for the chiral gauge anomaly is always (i.e. under any kinematical conditions)

characterized by the presence of a pole, and to provide an interpretation of this.

We recall that anomaly poles have been identified via an analysis in the IR which shows that

the anomalous correlator has indeed a pole characterized by a nonvanishing residue. In fact, the

IR coupling of the pole present in the correlator is, for a standard IR pole, rather obvious since

the limit

lim
k2→0

k2 ∆λµν = kλ an ǫ
µναβ k1α k2β (1.7)

allows to attribute to the anomaly amplitude a non-vanishing residue. Our main conclusion is

that anomaly poles should not be searched for only by the usual dispersive analysis, which is
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effective only for standard IR poles, but require a complete off-shell evaluation of the anoma-

lous effective action. We show that these additional poles are decoupled in the IR, but they

nevertheless control the UV behaviour of the theory. This last point is proved by looking at a

special class of amplitudes which are pole dominated in the UV and which allow to detect the

non unitary behaviour of an anomalous theory rather closely.

For this to happen one needs a separation of the anomaly amplitude into longitudinal and

transverse components. Our results are based on direct computations, using the two parameter-

izations of the anomaly amplitude mentioned above. We work under the most general kinematic

conditions, generalizing the L/T parameterization given in [42] away from the chiral limit and

showing its exact equivalence to that of Rosenberg [41].

We start our discussion by addressing the issue of the extraction of an anomaly pole from the

Rosenberg form of the anomaly diagram [41]. We review the identification of the independent

structures of the AVV diagram in this formulation and then move to the L/T decomposition,

illustrating the connection between the two.

1.2.2 Connecting two parameterizations

In his classic paper [41] Rosenberg provided an expression for the three-point correlator in

terms of a sum of six invariant amplitudes multiplied by different tensorial structures, denoted

by A1, . . . A6. These are given as parametric integrals and are easily computable only in few

cases, for example when the external momenta are on-shell (massless) or with symmetric off-

shell configurations of the two vector lines (k2
1 = k2

2). We will re-analyze the derivation of the

amplitude, emphasizing the features of the vertex in the most general case, by focusing our

attention on the special kinematical limits in which the pole appears. The AV V amplitude with

off-shell external lines shown in Fig.1.1 is therefore written according to [41] in the form

∆λµν
0 =

i3

(2π)4

∫
d4q

Tr
[
γλγ5(/q − /k)γν(/q − /k1)γ

µ/q
]

q2 (q − k)2 (q − k1)2
+ exch. (1.8)

with

∆λµν
0 = A1(k1, k2)ε[k1, µ, ν, λ] +A2(k1, k2)ε[k2, µ, ν, λ] +A3(k1, k2)ε[k1, k2, µ, λ]k1

ν

+ A4(k1, k2)ε[k1, k2, µ, λ]kν2 +A5(k1, k2)ε[k1, k2, ν, λ]kµ1 +A6(k1, k2)ε[k1, k2, ν, λ]kµ2 .

(1.9)

The four invariant amplitudes Ai for i ≥ 3 are finite and given by explicit parametric integrals

[41]

A3(k1, k2) = −A6(k2, k1) = −16π2I11(k1, k2), (1.10)

A4(k1, k2) = −A5(k2, k1) = 16π2 [I20(k1, k2)− I10(k1, k2)] , (1.11)
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where the general massive Ist integral is defined by

Ist(k1, k2) =

∫ 1

0
dw

∫ 1−w

0
dzwszt

[
z(1 − z)k2

1 + w(1− w)k2
2 + 2wz(k1k2)−m2

]−1
, (1.12)

whose explicit form will be worked out below. Both A1 and A2 are instead represented by

formally divergent integrals, which can be rendered finite only by imposing the Ward identities

on the two vector lines, giving

A1(k1, k2) = k1 · k2A3(k1, k2) + k2
2 A4(k1, k2), (1.13)

A2(k1, k2) = k2
1 A5(k1, k2) + k1 · k2A6(k1, k2), (1.14)

which allow to re-express the formally divergent amplitudes in terms of the convergent ones.

The Bose symmetry on the two vector vertices with indices µ and ν is fulfilled thanks to the

relations

A5(k1, k2) = −A4(k2, k1) (1.15)

A6(k1, k2) = −A3(k2, k1). (1.16)

1.2.3 Explicit expressions in the massless case

To extract the explicit form of the parametric integrals given by Rosenberg, we proceed with

a direct computation of the invariant amplitudes of the parameterization using dimensional

reduction. We perform the traces in 4 dimensions and the loop tensor integrals in D dimensions,

using the common techniques of tensor reduction. We use dimensional regularization with

minimal subtraction and find, as expected, the cancellation of the dependence of the result on the

renormalization scale. Therefore, the parametric integral I11 and the combinations I20− I10 are

trivially identified at the end of the computation. The result is expressed in terms of elementary

functions, except for the function Φ(x, y) [67], which is related to one of the two master integrals

of the decomposition, the scalar massless triangle. We obtain for generic virtualities of the
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external lines

A1(s, s1, s2) = − i

4π2
+

i

8π2σ

{
Φ(s1, s2)

s1s2 (s2 − s1)
s

+ s1 (s2 − s12) log
[s1
s

]

−s2 (s1 − s12) log
[s2
s

]}
, (1.17)

A3(s, s1, s2) =
i

8π2sσ2

{
−s1s2

[
4s212 + 3 (s1 + s2) s12 + 2s1s2

]
Φ(s1, s2)

−2ss12σ − ss1 [2s1s2 + s12 (3s2 + s12)] log
[s1
s

]

−ss2
[
s212 + s1 (2s2 + 3s12)

]
log
[s2
s

]}
, (1.18)

A4(s, s1, s2) =
i

8π2sσ2

{
s1
[
4s312 + 2 (s1 + 2s2) s

2
12 + 2s1s2s12 + s1 (s1 − s2) s2

]
Φ(s1, s2)

+2ss1σ + s (s1 + s12)
(
2s212 + s1s2

)
log
[s2
s

]

+ss1
[
4s212 − s1 (s2 − 3s12)

]
log
[s1
s

]}
, (1.19)

where s = k2, s1 = k2
1 , s2 = k2

2 , s12 = k1 · k2 with σ = s212 − s1s2 and the function Φ(x, y) is

defined as [67]

Φ(x, y) =
1

λ

{
2[Li2(−ρx) + Li2(−ρy)] + ln

y

x
ln

1 + ρy

1 + ρx
+ ln(ρx) ln(ρy) +

π2

3

}
, (1.20)

with

λ(x, y) =
√

∆, ∆ = (1− x− y)2 − 4xy, (1.21)

ρ(x, y) = 2(1− x− y + λ)−1, x =
s1
s
, y =

s2
s
. (1.22)

Φ(x, y) can be traced back to the one-loop three-point massless scalar integral C0(s, s1, s2), as

mentioned above, involved in the reduction of the tensor integrals with three denominators in

Eq. (1.8) as

C0(s, s1, s2) =
iπ2

s
Φ(x, y). (1.23)

Each term in the function Φ(x, y) and also the arguments of the logarithmic functions appearing

in the form factors Ai (i = 1, . . . , 6) are real if one of these two sets of different conditions is

simultaneously satisfied. In the spacelike region we may have

• s, s1, s2 < 0 and s < −(
√−s1 +

√−s2)2

or in the physical region with positive kinematical invariants

• s, s1, s2 > 0 and s > (
√
s1 +

√
s2)

2.
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ε[k1, λ, µ, ν] ε[k1, k2, µ, λ] kν1 ε[k1, k2, ν, λ] kµ1 ε[k1, k2, µ, ν] k
λ
1

ε[k2, λ, µ, ν] ε[k1, k2, µ, λ] kν2 ε[k1, k2, ν, λ] kµ2 ε[k1, k2, µ, ν] k
λ
2

Table 1.1: The eight pseudotensors in which a general amplitude ∆lµν(k1, k2) can be expanded.

All the other regions would require some specific analytic continuations by giving to all the

invariants a small imaginary part η (η > 0) according to the iη prescription with si → si + iη.

When discussing the presence of spurious poles for s→ 0 we need to work with amplitudes

which are well-defined around s = 0; for this reason the analytic regularizations have been

always performed before taking the s → 0 limit. There is another important observation that

is in order at this point. One may worry if the absence of the pole in s can be attributed to the

redundancy of the Rosenberg representation [41], but, as we are going to show next, this is not

the case.

1.2.4 Four amplitude decomposition in Rosenberg

In order to derive a set of a minimal number of independent invariant amplitudes we proceed

from scratch. The identification of the invariant tensor structures characterizing the amplitude

can be done exhaustively, by starting with the construction of all the possible tensors of rank

three built out of the ε-tensor and the external momenta. We follow here an approach similar

to [51] with some minor changes.

The eight tensorial structures listed in Tab.1.1 are the ones needed in the expansion of a generic

triangle correlator with three indices {λ, µ, ν} and external momenta {k1, k2}. Out of these 8

structures, only the six in the first three columns appear in the Rosenberg formulation and can

be reduced to 4 with little effort by requiring conservation of the vector currents. If we impose

the vector Ward identity on the two vector lines of the diagram and fix the divergent coefficients

A1 and A2 in terms of the remaining amplitudes, then the form factors Ai reduce to the four

ones A3, . . . , A6 and the tensor structures in front of them get automatically organized in terms

of four linear combinations indicated with ηi. These four tensor amplitudes ηi are selected from

a set of six quantities defined in Tab.1.2, which shows all the possible tensors entering into the

expansion of a generic three-currents correlator after imposing the conservation of the vector

current.

Coming back to our specific case, we obtain for the generic anomalous AV V vertex satisfying
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η1 ε[k1, k2, µ, ν] k
λ
1

η2 ε[k1, k2, µ, ν] k
λ
2

η3 k1 · k2ε[k1, λ, µ, ν] + kν1ε[k1, k2, µ, λ]

η4 k2 · k2ε[k1, λ, µ, ν] + kν2ε[k1, k2, µ, λ]

η5 k1 · k1ε[k2, λ, µ, ν] + kµ1 ε[k1, k2, ν, λ]

η6 k1 · k2ε[k2, λ, µ, ν] + kµ2 ε[k1, k2, ν, λ]

Table 1.2: The six pseudotensors needed in the expansion of an amplitude ∆lµν(k1, k2) satisfying

the vector current conservation.

the vector Ward identities the parameterization

∆λµν
WI = A3(k1 · k2ε[k1, λ, µ, ν] + kν1ε[k1, k2, µ, λ]) +A4(k2 · k2ε[k1, λ, µ, ν] + kν2ε[k1, k2, µ, λ])

+A5(k1 · k1ε[k2, λ, µ, ν] + kµ1 ε[k1, k2, ν, λ]) +A6(k1 · k2ε[k2, λ, µ, ν] + kµ2 ε[k1, k2, ν, λ])

= A3 η
λµν
3 (k1, k2) +A4 η

λµν
4 (k1, k2) +A5 η

λµν
5 (k1, k2) +A6 η

λµν
6 (k1, k2).

(1.24)

This is obtained after plugging Eqs. (1.13,1.14) into Eq. (1.9), where ηλµνi (k1, k2) can be read

from Tab.1.2. The remaining two homogeneous pseudotensors of degree 3 in k1, k2, denoted by

ηλµν1 and ηλµν2

ηλµν1 (k1, k2) = kλ1 ε[k1, k2, µ, ν], ηλµν2 (k1, k2) = kλ2 ε[k1, k2, µ, ν], (1.25)

are not present in the Rosenberg parameterization, although they appear in the L/T decompo-

sition, as we show below. The reduction of these two tensors to the four ones already used as a

basis can be achieved by the use of two Schouten relations

kλ1 ε[k1, k2, µ, ν] = kµ1 ε[k1, k2, λ, ν]− kν1ε[k1, k2, λ, µ]− k2
1ε[k2, λ, µ, ν] + k1 · k2ε[k1, λ, µ, ν],

(1.26)

kλ2 ε[k1, k2, µ, ν] = kµ2 ε[k1, k2, λ, ν]− kν2 ε[k1, k2, λ, µ]− k1 · k2ε[k2, λ, µ, ν] + k2
2ε[k1, λ, µ, ν],

(1.27)

or equivalently,

ηλµν1 (k1, k2) = ηλµν3 (k1, k2)− ηλµν5 (k1, k2), (1.28)

ηλµν2 (k1, k2) = ηλµν4 (k1, k2)− ηλµν6 (k1, k2). (1.29)

The set of the 4 amplitudes that we have chosen in the parameterization shown in Eq. (1.24) are

linearly independent and functionally independent respect to the Schouten transformations. The
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claim that one can make is that any tensor structure which is not of the form given in the 4-basis

above can be re-expressed as a combination of these 4 structures using appropriate Schouten

relations. The decomposition of the AVV diagram with respect to this basis is therefore unique.

At this point it is trivial to realize that, starting from the explicit expressions of the invariant

amplitudes Ai that we have given above, the absence of a residue at s = 0 continues to hold

(for general off-shell kinematics). The important point to observe is that there is no kinematical

singularity in this limit in each of the 4 independent tensor structures. The conclusion is that, in

general, an AVV diagram has no massless poles. The use of a set of non-redundant amplitudes

clears the ground of any doubt concerning this result. In fact, the poles appear only under

special kinematical configurations, as we are going to discuss next.

1.3 The massive off-shell case for the Rosenberg parameteriza-

tion

Before performing the relevant kinematical limits on the amplitude, we move one step forward

and generalize the results presented in the previous section to the massive case, by writing the

expression of the invariant amplitudes given by Rosenberg (and the corresponding parametric

integrals) in an explicit form.

The computation is performed as in the massless case, using dimensional reduction. The

modifications are minimal and mostly due to the new scalar integrals B0 and C0, corresponding

to the massive (scalar) self-energy and triangle diagram respectively. The three-point amplitude

with equal massive internal lines is given by

∆lµν =
i3

(2π)4

∫
d4q

Tr
[
γλγ5(/q − /k +m)γν(/q − /k1 +m)γµ(/q +m)

]

(q2 −m2) ((q − k)2 −m2) ((q − k1)2 −m2)
+ exch., (1.30)

with k = k1 + k2, and can be again cast into the form

∆λµν = A1(k1, k2,m
2) ε[k1, µ, ν, λ] +A2(k1, k2,m

2) ε[k2, µ, ν, λ]

+ A3(k1, k2,m
2) ε[k1, k2, µ, λ] k1

ν +A4(k1, k2,m
2) ε[k1, k2, µ, λ] kν2

+ A5(k1, k2,m
2) ε[k1, k2, ν, λ] kµ1 +A6(k1, k2,m

2) ε[k1, k2, ν, λ] kµ2 , (1.31)

where the tensorial structures are the same as before and the massive form factors Ai(k1, k2,m
2)

show an explicit dependence on the internal mass. They have been computed by using the tensor

reduction technique to express the tensorial one-loop integrals in terms of the scalar ones. We
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obtain

A1(k1, k2,m
2) = − i

4π2
+

1

8π4σ

{
s1 (s2 − s12)D1

(
s1, s,m

2
)
− s2 (s1 − s12)D2

(
s2, s,m

2
)

+
[
s1s2 (s2 − s1)− 4σm2

]
C0

(
s1, s2, s,m

2
)}
, (1.32)

A3(k1, k2,m
2) = − i

4π2σ
s12 +

1

8π4σ2

{
−s1 [2s1s2 + s12 (3s2 + s12)] D1

(
s1, s,m

2
)

− s2 [2s1s2 + s12 (3s1 + s12)] D2

(
s2, s,m

2
)

−
[
4s12σm

2 + s1s2
(
4s212 + 3 (s1 + s2) s12 + 2s1s2

)]
C0

(
s1, s2, s,m

2
)}
,

(1.33)

A5(k1, k2,m
2) = − i

4π2σ
s2 +

1

8π4σ2

{
− (s2 + s12)

(
2s212 + s1s2

)
D1

(
s1, s,m

2
)

− s2 [s12 (3s2 + 4s12)− s1s2] D2

(
s2, s,m

2
)

−
[
4s2σm

2 + s2
(
−s2s21 +

(
s22 + 2s12s2 + 4s212

)
s1

+2s212 (s2 + 2s12)
)]
C0

(
s1, s2, s,m

2
)}
, (1.34)

with s = k2, s1 = k2
1 , s2 = k2

2 , σ = s212 − s1s2. It is possible to check that the Bose symmetry

relative to the two vector vertices

A2(k1, k2,m
2) = −A1(k2, k1,m

2), (1.35)

A6(k1, k2,m
2) = −A3(k2, k1,m

2), (1.36)

A4(k1, k2,m
2) = −A5(k2, k1,m

2) (1.37)

is respected. As mentioned above, the difference between the massless and the massive decompo-

sition of the triangle amplitude lies in the particular set of scalar integrals involved in the tensor

reduction. Here we define D1 and D2 as a combination of two-point scalar massive integrals

(B0) of different internal momenta

Di(s, si,m
2) = B0(k

2,m2)−B0(k
2
i ,m

2) = iπ2

[
ai log

ai + 1

ai − 1
− a3 log

a3 + 1

a3 − 1

]
i = 1, 2

(1.38)

in which the dependence on the regularization scheme disappears in the difference of the two

scalar self-energies involved in (1.38). The expression of C0 can be given explicitly in various

forms [68], for instance as

C0(s, s1, s2,m
2) = −iπ2 1

2
√
σ

3∑

i=1

[
Li2

bi − 1

ai + bi
− Li2

−bi − 1

ai − bi
+ Li2

−bi + 1

ai − bi
− Li2

bi + 1

ai + bi

]

(1.39)
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with

ai =

√

1− 4m2

si
, bi =

−si + sj + sk
2σ

, (1.40)

where s3 = s and in the last equation i = 1, 2, 3 and j, k 6= i. Other expressions, suitable for

numerical implementations, are given in [69]. The region in which all these functions have real

arguments and do not need any analytic continuations are those discussed in section 1.2.3, for

the massless case. In general, the prescription for iη in the presence of a mass in the internal

loop - in the fermion propagator - is taken as m → m − iη. We have checked numerically the

agreement between the expressions presented above and those given in parametric form.

1.4 The vertex in the Longitudinal/Transverse (L/T) formula-

tion and comparisons

The second parameterization of the three-point correlator function that we are going to discuss

is the one presented in [42]. One of the features of this parameterization is the presence of

a longitudinal contribution for generic virtualities of the external momenta and not just in

the specific configuration under which it appears in Rosenberg’s formulation. Of course, the

true presence of the pole in the IR has to be checked by taking the corresponding limit, since

the Schouten relations allow the extraction of a pole in the IR region at the cost of extra

singularities in the parameterization. For this reason we start by recalling the structure of the

L/T parameterization, which separates the longitudinal from the transverse components of the

anomaly vertex, which is given by

W λµν =
1

8π2

[
WLλµν − W T λµν

]
, (1.41)

where the longitudinal component

WLλµν = wL k
λε[µ, ν, k1, k2] (1.42)

(with wL = −4i/s) describes the anomaly pole, while the transverse contributions take the form

W T
λµν(k1, k2) = w

(+)
T

(
k2, k2

1 , k
2
2

)
t
(+)
λµν(k1, k2) + w

(−)
T

(
k2, k2

1 , k
2
2

)
t
(−)
λµν(k1, k2)

+ w̃
(−)
T

(
k2, k2

1 , k
2
2

)
t̃
(−)
λµν(k1, k2), (1.43)
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with the transverse tensors given by

t
(+)
λµν(k1, k2) = k1ν ε[µ, λ, k1, k2] − k2µ ε[ν, λ, k1, k2]

− (k1 · k2) ε[µ, ν, λ, (k1 − k2)] +
k2
1 + k2

2 − k2

k2
kλ ε[µ, ν, k1, k2] ,

t
(−)
λµν(k1, k2) =

[
(k1 − k2)λ −

k2
1 − k2

2

k2
kλ

]
ε[µ, ν, k1, k2]

t̃
(−)
λµν(k1, k2) = k1ν ε[µ, λ, k1, k2] + k2µ ε[ν, λ, k1, k2] − (k1 · k2) ε[µ, ν, λ, k]. (1.44)

The form factors wT (s, s1, s2) are all defined in the following Eqs. (1.54-1.56).

Notice that in this representation the presence of massless poles is explicit for any kinematical

configuration and not just in the massless collinear limit, where the diagram takes the Dolgov-

Zakharov form. A second observation concerns the presence of other pole-like singularities in

the transverse invariant amplitude and tensor structures. It is then obvious that one has to

wonder whether the pole present in wL is balanced, away from the collinear region, by other

contributions which are also singular. Indeed, as we are going to show, this is the case. In fact,

due to the Schouten relations, we are always allowed to introduce new polar amplitudes and

balance them with additional contributions on the remaining tensor structures. In fact we are

going to show that the presence of such pole away from the collinear region becomes significant

in the UV - at least in the perturbative approach - but not in the IR, since it decouples if one

computes the residue correctly in this representation.

1.4.1 Generalization of the L/T parameterization and the anomaly pole

We can generalize the L/T formulation presented above to the case of a triangle amplitude

with a massive fermion of mass m, by simply exploiting the connection between this and the

Rosenberg representation [41]. We use the Schouten relations to show the equivalence between

the tensor structures of both representations. This requires some care since the decomposition

into L and T amplitudes requires a nonzero k, otherwise it is invalid.

At nonzero momentum, by equating the coefficients of the four invariant tensors, we obtain

a linear system of four equations whose solutions return the complete matching between the two

parameterizations in the form

A3(k1, k2) =
1

8π2

[
wL − w̃(−)

T − k2

(k1 + k2)2
w

(+)
T − 2

k1 · k2 − k2
2

k2
w

(−)
T

]
, (1.45)

A4(k1, k2) =
1

8π2

[
wL + 2

k1 · k2

k2
w

(+)
T − 2

k1 · k2 + k2
2

k2
w

(−)
T

]
, (1.46)

A5(k1, k2) = −A4(k2, k1), A6(k1, k2) = −A3(k2, k1), (1.47)
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and viceversa

wL(k2, k2
1 , k

2
2) =

8π2

k2
[A1 −A2] , (1.48)

(we omit, for simplicity, the momentum dependence) or, after the imposition of the Ward iden-

tities in Eqs. (1.13,1.14),

wL(k2, k2
1, k

2
2) =

8π2

k2

[
(A3 −A6)k1 · k2 +A4 k

2
2 −A5 k

2
1

]
, (1.49)

w
(+)
T (k2, k2

1, k
2
2) = −4π2 (A3 −A4 +A5 −A6) , (1.50)

w
(−)
T (k2, k2

1, k
2
2) = 4π2 (A4 +A5) , (1.51)

w̃
(−)
T (k2, k2

1, k
2
2) = −4π2 (A3 +A4 +A5 +A6) , (1.52)

where Ai ≡ Ai(k1, k2). This same mapping holds also in the massive fermion case if Ai ≡
Ai(k1, k2,m) and leads us to the same decomposition. In this case the L/T parameterization

can be obtained starting from the massive Ai coefficients shown in Eq. (1.32-1.34) and exploiting

the mapping in Eqs. (1.49-1.52) between the two parameterizations. We obtain

wL(s1, s2, s) = −4i

s
(1.53)

w
(+)
T (s1, s2, s) = i

s

σ
+

i

2σ2

[
(s12 + s2)(3s

2
1 + s1(6s12 + s2) + 2s212) log

s1
s

+ (s12 + s1)(3s
2
2 + s2(6s12 + s1) + 2s212) log

s2
s

+ s(2s12(s1 + s2) + s1s2(s1 + s2 + 6s12))Φ(s1, s2)] (1.54)

w
(−)
T (s1, s2, s) = i

s1 − s2
σ

+
i

2σ2

[
−(2(s2 + s12)s

2
12 − s1s12(3s1 + 4s12)

+ s1s2(s1 + s2 + s12)) log
s1
s

+ (2(s1 + s12)s
2
12 − s2s12(3s2 + 4s12)

+ s1s2(s1 + s2 + s12)) log
s2
s

+ s(s1 − s2)(s1s2 + 2s212)Φ(s1, s2)
]

(1.55)

w̃
(−)
T (s1, s2, s) = −w(−)

T (s1, s2, s) (1.56)

in the massless case, which is in complete agreement with the explicit expression given by [45],

while in the massive case the same mapping gives

wL(s, s1, s2,m
2) = −4i

s
− 8m2

π2s
C0(s, s1, s2,m

2) (1.57)

w
(+)
T (s, s1, s2,m

2) = i
s

σ
+

1

2π2σ2

[
(s12 + s2)(3s

2
1 + s1(6s12 + s2) + 2s212)D1(s, s1,m

2)

+ (s12 + s1)(3s
2
2 + s2(6s12 + s1) + 2s212)D2(s, s2,m

2)

+ (4m2sσ + s(2s12(s1 + s2) + s1s2(s1 + s2 + 6s12)))C0(s, s1, s2,m
2)
]

(1.58)
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w
(−)
T (s, s1, s2,m

2) = i
s1 − s2
σ

+
1

2π2σ2

[
−(2(s2 + s12)s

2
12 − s1s12(3s1 + 4s12)

+ s1s2(s1 + s2 + s12))D1(s, s1,m
2) + (2(s1 + s12)s

2
12 − s2s12(3s2 + 4s12)

+ s1s2(s1 + s2 + s12))D2(s, s2,m
2)

+ (4m2σ(s1 − s2) + s(s1 − s2)(s1s2 + 2s212))C0(s, s1, s2,m
2)
]

(1.59)

w̃
(−)
T (s, s1, s2,m

2) = −w(−)
T (s, s1, s2,m

2), (1.60)

with si = k2
i (i = 1, 2, 3, k3 = k), s12 = k1 · k2, σ = s212− s1s2. The functions Di and C0, defined

in Eq. (1.38) and (1.39), are respectively a combination of two scalar bubbles and the scalar one-

loop triangle. The Bose symmetry on the vector vertices is fulfilled in both representations by

taking into account the way in which the Ai and the wL, wT , . . . transform under the exchange

of k1, k2 and µ, ν. For the L/T invariant amplitudes we have

w
(+)
T (k2, k2

1 , k
2
2) = w

(+)
T (k2, k2

1 , k
2
2), (1.61)

w
(−)
T (k2, k2

1 , k
2
2) = −w(−)

T (k2, k2
1, k

2
2), (1.62)

w̃
(−)
T (k2, k2

1 , k
2
2) = −w̃(−)

T (k2, k2
1, k

2
2). (1.63)

It is then obvious that there is complete equivalence between the two parameterizations, al-

though there are some puzzling features that need to be investigated more closely. As we have

already mentioned, the L/T parameterization appears to have a pole at s = (k1 + k2)
2 = 0,

which contributes to the anomaly. In fact, the non-vanishing Ward identity on the axial-vector

line is due to the invariant amplitude wL and to its corresponding tensor structure. Then, one

obvious question to ask is if this pole is compatible with the pole structure of the Rosenberg

representation [41]. The answer is affirmative as far as the computation of the residue is per-

formed on the entire amplitude and not just on the invariant amplitudes alone. In fact, the L/T

decomposition introduces kinematical singularities both in the longitudinal and in the transverse

components as a price for the appearance of a longitudinal pole. This can be shown explicitly.

In fact, a direct evaluation of the limit (for off shell photons) gives

lim
s→0

swL(k2
1 , k

2
2 , k

2)(k1 + k2)λε[µ, ν, k1, k2] = −4i(k1 + k2)λε[µ, ν, k1, k2], (1.64)

lim
s→0

sw
(+)
T (k2

1 , k
2
2 , k

2) t
(+)
µνλ(k1, k2) = −

2i(s1 + s2) log[s1s2 ]

s1 − s2
(k1 + k2)λε[µ, ν, k1, k2], (1.65)

lim
s→0

sw
(−)
T (k2

1 , k
2
2 , k

2) t
(−)
µνλ(k1, k2) =

[
−4i+

2i(s1 + s2) log(s1s2 )

s1 − s2

]
(k1 + k2)λε[µ, ν, k1, k2],

(1.66)

lim
s→0

s w̃
(−)
T (k2

1 , k
2
2 , k

2) t̃
(−)
µνλ(k1, k2) = 0 (1.67)

for the several singular terms present at s = 0. These results have been obtained after performing

the analytic continuation around s = 0 of the explicit expressions for wL and wT given above.
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Combining these partial contributions we obtain the total result for the residue of the entire

amplitude

lim
s→0

sWµνλ = 0, (1.68)

which proves its vanishing at s = 0 for off-shell photon lines. This result, in agreement with what

we had anticipated, shows that in the IR also the L/T parameterization has no pole. This is

expected, being the L/T and the Rosenberg parameterizations [41] equivalent descriptions of the

same diagram (modulo some Schouten relations), hence it is obvious that the decoupling of the

anomaly pole for off-shell external momenta has to take place in both parameterizations. Per-

forming cautiously the limits, we can similarly proof that the pole reappears in correspondence

of specific configurations of the external lines (on-shell photons), as we are going to show next.

An equivalent analysis, of course, can be performed by analyzing the various cuts of the ampli-

tudes in the L/T parameterization using a dispersive approach and looking for discontinuities

proportional to δ(k2) in the spectral density of the diagram.

1.5 Special kinematical limits in the massless case

We summarize in this section all the results concerning some specific kinematical conditions in

the infrared and chiral limits of the anomaly amplitude, taken directly on the amplitude given

in the previous sections.

The first analysis carried out involves the massless Ai written in Eq. (1.17, 1.19) for which

we take three limits. We use the notation Ai(s, s1, s2) to denote each invariant amplitude in the

Rosenberg form for massless internal fermions. We distinguish the following cases

a) s1 = 0 s2 6= 0 s 6= 0 m = 0

b) s1 = 0 s2 = 0 s 6= 0 m = 0

c) s1 = M2 s2 = M2 s 6= 0 m = 0.

While cases a) and b) will be treated here, case c) will be left to the appendix A.1, together

with the same three kinematical configurations for a massive fermion. In case a) we find

A1(s, 0, s2) =
i

4π2

[
s2

s− s2
log

s2
s
− 1

]
, (1.69)

A2(s, 0, s2) =
i

4π2

[
s2

s− s2
log

s2
s

+ 1

]
, (1.70)

A3(s, 0, s2) = −A6(0, s2, s, 0) = − i

2π2(s− s2)

[
s2

s− s2
log

s2
s

+ 1

]
, (1.71)

A4(s, 0, s2) =
i

2π2(s − s2)
log

s2
s

(1.72)
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and a divergent A5(s, 0, s2) which does not contribute to the physical value of the amplitude.

Indeed ∆λµν , in a physical amplitude, is contracted with the polarization vector relative to the

on-shell photon with momentum k1, giving ǫµ(k1)k
µ
1 = 0, so that the contribution coming from

A5 disappears.

Notice that this amplitude satisfies the Ward identities in Eqs. (1.13,1.14) and can be written

as

∆λµν(s, 0, s2) = A3(s, 0, s2) η
λµν
3 (k1, k2) +A4(s, 0, s2) η

λµν
4 (k1, k2) +A6(s, 0, s2) η

λµν
6 (k1, k2),

(1.73)

with the tensors ηi(k1, k2) written in Tab.1.2. Notice that the poles are located at the various

thresholds of the amplitude, describing the production of a photon of invariant mass s2, having

set the first photon on-shell, and that all the residues are vanishing

lim
s→0

sA3(s, 0, s2) = lim
s→0

sA4(s, 0, s2) = lim
s→0

sA6(s, 0, s2) = 0, (1.74)

including the one of the whole amplitude

lim
s→0

s∆λµν(s, 0, s2) = 0. (1.75)

In the L/T parameterization we find

wL(s, 0, s2) = −4i

s
, (1.76)

w
(+)
T (s, 0, s2) =

2i

s− s2

[
s+ s2
s− s2

log
s2
s

+ 2

]
, (1.77)

w
(−)
T (s, 0, s2) = −w̃(−)

T (s, 0, s2) =
2i

s− s2
log

s2
s

(1.78)

which also show the presence of the same threshold singularity, but, in addition, also of an

anomaly pole in wL which is absent in Rosenberg’s parameterization. As we have commented

above, the pole is spurious, since the tensor structures are also singular in the same (s → 0)

limit, and there is a trivial cancellation of this contribution. Indeed we find

lim
s→0

swL(s, 0, s2) kλε[µ, ν, k1, k2] = −4i kλ ε[µ, ν, k1, k2], (1.79)

lim
s→0

s
[
w

(+)
T (s, 0, s2) t

(+)
λµν(k1, k2) + w

(−)
T (k2

1 , k
2
2 , k

2) t
(−)
λµν(k1, k2)

]
= −4i kλ ε[µ, ν, k1, k2],

(1.80)

lim
s→0

s w̃
(−)
T (s, 0, s2) t̃

(−)
λµν(k1, k2) = 0 (1.81)

which gives

lim
s→0

sWλµν(s, 0, s2) =
1

8π2
lim
s→0

s
[
WLλµν − W T λµν

]
= 0 (1.82)
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in agreement with Eq. (1.68).

Therefore, in this case, with only one leg on-shell, the kinematics does not allow a polar structure

for the entire amplitude; in the Rosenberg parameterization this result can be derived in a

straightforward way since each amplitude has a vanishing residue and the tensor structures are

regular in the IR (i.e. s→ 0) limit. On the contrary, in this limit the L/T formulation involves

both the longitudinal and the transverse components, as the tensorial structures multiplying the

coefficients w(s, 0, s2) are not independent as s → 0. Obviously the final result, obtained with

the correct limiting procedure, is the same in both cases.

Let’s take in exam another kinematical configuration, more specific than the previous one,

i.e. the case in which the two photons are both on-shell and massless or

b) s1 = s2 = 0 s 6= 0 m = 0.

In this case it is well known that the AV V vertex exhibits a polar structure, as Dolgov and

Zakharov showed in [37], therefore we expect to recover this amplitude in the s→ 0 limit. The

computed form factors are extremely simple. We obtain

A1(s, 0, 0) = −A2(s, 0, 0) = − i

4π2
, (1.83)

A3(s, 0, 0) = −A6(s, 0, 0) = − i

2π2s
(1.84)

which clearly exhibit the Bose symmetry for the two vector vertices, since s1 = s2. Notice that

A4, A5 are physically nonessential, as before; indeed they are multiplied, respectively, by kν2

and kµ1 in the total amplitude ∆λµν(k1, k2), and vanish after their contraction with the physical

polarization vectors of the photons.

The amplitude ∆λµν(k1, k2) satisfies the Ward identities written in Eq. 1.13, since s12 → s/2

when both photons are on-shell

A1(s, 0, 0) =
s

2
A3(s, 0, 0), A2(s, 0, 0) =

s

2
A6(s, 0, 0). (1.85)

In this case the entire correlator is obtained from only two form factors Ai (A3 and A6), giving

∆λµν(s, 0, 0) = A3(s, 0, 0) η
λµν
3 (k1, k2) +A6(s, 0, 0) η

λµν
6 (k1, k2)

=
i

2π2s

[
kµ2 ε[k1, k2, ν, λ ] − kν1ε[k1, k2, µ, λ]

]
− i

4π2
ε[(k1 − k2), λ, µ, ν].

(1.86)

This expression can be reduced to its polar Dolgov-Zakharov form after using the Schouten

identities in Eqs. (1.26,1.27)

∆λµν(s, 0, 0) = − i

2π2

kλ

s
ε[k1, k2, µ, ν] (1.87)
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as s1 = s2 = 0.

In the L/T parameterization we expect a similar polar result, after summing over the contri-

butions coming both from the longitudinal and transverse tensors. In this case, the only two

non-vanishing coefficients are wL and w
(+)
T

wL(s, 0, 0) = w
(+)
T (s, 0, 0) = −4i

s
, (1.88)

w
(−)
T (s, 0, 0) = w̃

(−)
T (s, 0, 0) = 0 (1.89)

and the residues must be computed combining them with the corresponding tensor structures.

It is worth noticing that t
(+)
λµν(k1, k2) = 0 for s1 = s2 = 0. This can be immediately checked

starting from its definition given in Eq. (1.43) and with the aid of the two Schouten identities

shown in Eqs. (1.26,1.27), which in this case become

kλ1 ε[k1, k2, µ, ν] = −kν1ε[k1, k2, λ, µ] +
s

2
ε[k1, λ, µ, ν], (1.90)

kλ2 ε[k1, k2, µ, ν] = kµ2 ε[k1, k2, λ, ν]−
s

2
ε[k2, λ, µ, ν], (1.91)

so that the unique contribution to the residue for s→ 0 comes from the longitudinal part

lim
s→0

sWµνλ(s, 0, 0) =
1

8π2
lim
s→0

s WLλµν

=
1

8π2
lim
s→0

swL(s, 0, 0) kλε[µ, ν, k1, k2]

= − i

2π2
kλ ε[k1, k2, µ, ν]. (1.92)

We conclude that the pole is indeed present in the L/T amplitude if the conditions s1 = s2 = 0

with s 6= 0 are simultaneously satisfied

∆λµν(s, 0, 0) = Wµνλ(s, 0, 0) = − i

2π2

kλ

s
ε[k1, k2, µ, ν]. (1.93)

Another interesting case is represented by a symmetric kinematical configurations in which

the external particles are massive gauge bosons of mass M . This will turn useful in the next

sections, when we will discuss the behaviour of a BIM amplitude with massive external lines

at high energy, showing, also in this case, its pole dominance. There are some conclusions

that we can draw from this study which are important for the analysis of the next sections.

Notice that in all the cases that we have discussed it is possible to isolate a 1/s contribution

in wL for any kinematical configurations other than the massless (s → 0) one, where the L/T

formulation requires a limiting procedure. This is clearly suggestive of the fact that a longitudinal

component is intrinsically part of the vertex and not just of its collinear and chiral limit. This

contributions is paralleled, in the Rosenberg amplitude(s) by a constant behaviour of A1 and A2
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(A1 = i/(4π2) + ...). Massive external gauge lines or mass corrections due to the fermion mass

in the loop do not shift this 1/s pole.

As we have mentioned, under the general configurations contemplated in these last cases,

these poles are not coupled in the IR, although this does not necessarily exclude a possible role

played by these contributions in the IR region. However, the complete absence of a scale in

their definition makes them suitable also of a completely different interpretation, as longitudinal

contributions that survive in the asymptotic s → ∞ limit of these amplitudes. In fact, we

are going to show that any UV completion of these theories has necessarily to deal with the

cancellation of these terms.

1.6 Effective actions and the gauge anomaly

In this section we are going to discuss the formulation of the effective action in the presence

of anomaly poles, generalizing the Euler-Heisenberg (EH) result to an anomalous theory. We

will focus our attention exclusively on the trilinear gauge terms, coming from the anomalous

structure, which are new compared to the EH formulation.

The simplest example that we can consider is a theory describing a single anomalous gauge

boson B with a Lagrangian

LB = ψ (i /∂ + e/Bγ5)ψ −
1

4
F 2
B . (1.94)

The effective action of the model suffers from a trilinear gauge interaction which is anomalous

(BBB). In this case the anomalous vertex is obtained by a simple symmetrization of (1.9) which

generates a ∆AAA vertex

∆AAA =
1

3
(∆AV V + ∆V AV + ∆V V A) . (1.95)

The anomalous gauge variation (δBµ = ∂µθB)

δΓB =
i e3 an

24

∫
d4x θB(x)FB ∧ FB (1.96)

can be reproduced by the nonlocal action

Γpole =
e3

48π2
〈∂B(x)�−1(x− y)FB(y) ∧ FB(y)〉, (1.97)

which is the variational solution of (1.96). To derive a 1/m expansion of the effective action, we
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perform an expansion of the Rosenberg form factors, obtaining

A1(s, 0, 0,m
2) = −A2(s, 0, 0,m

2) =
i

48π2

s

m2
+

i

360π2

s2

m4
+O

(
1

m6

)
, (1.98)

A3(s, 0, 0,m
2) = −A6(s, 0, 0,m

2) =
i

24π2

1

m2
+

i

180π2

s

m4
+O

(
1

m6

)
, (1.99)

A4(s, 0, 0,m
2) = −A5(s, 0, 0,m

2) =
i

12π2

1

m2
+

i

120π2

s

m4
+O

(
1

m6

)
, (1.100)

where s ≡ k2. We will also use the notation s1 and s2 to denote the virtuality of the two

external photons (s1 ≡ k2
1, s2 ≡ k2

2). Due to the chiral gauge anomaly, the effective action

is gauge-variant. For our choice of momenta (incoming k on the axial-vector of index λ and

outgoing k1 and k2 on the two vector currents of indices µ and ν) we obtain

T λµνAV V (x, y, z) =

∫
d4k d4k1 d

4k2

(2π)8
δ4(k − k1 − k2) e

ik·z−ik1·x−ik2·y ∆λµν
AV V (k, k1, k2) (1.101)

with the contribution of the anomalous vertex being given by

Γ(3) = − i
6

∫
d4x d4y d4z T λµν(x, y, z)Bλ(z)Bµ(x)Bν(y), (1.102)

where T λµν(x, y, z) is the symmetrized correlator given by

T λµν(x, y, z) =
1

3

[
T λµνAV V (x, y, z) + T λµνV AV (x, y, z) + T λµνV V A(x, y, z)

]
. (1.103)

The explicit form of the new anomalous contributions (the symbols 〈 〉 denote spacetime inte-

gration) can be obtained by plugging in the expression of the various form factors expanded in

1/m written in Eqs. (1.98-1.100). We obtain

Γ(3) = − i
6

[
1

48π2m2
ǫαµνλ (〈�Bλ∂αBµBν〉 − 〈�BλBµ∂αBν〉)

− 1

360π2m4
ǫαµνλ

(
〈�2Bλ∂αBµBν〉 − 〈�2BλBµ∂αBν〉

)

+
1

24π2m2

(
ǫαβµλ〈∂α∂νBµBλ∂βBν〉 − ǫαβνλ〈∂αBµBλ∂β∂µBν〉

)

− 1

180π2m4

(
ǫαβµλ〈∂α∂νBµ�Bλ∂βBν〉 − ǫαβνλ〈∂αBµ�Bλ∂β∂µBν〉

)

+
1

12π2m2

(
ǫαβµλ〈∂αBµ∂β∂νBνBλ〉 − ǫαβνλ〈∂α∂µBµBλ∂βBν〉

)

− 1

120π2m4

(
ǫαβµλ〈∂αBµ∂β∂ν�Bλ〉 − ǫαβνλ〈∂α∂µBµ

�Bλ∂βBν〉
)]
. (1.104)

Naturally, the p/m expansion hides the nonlocal contributions which are present in the

effective action. These can be identified from the off-shell expression of the anomaly vertex,

which in the L/T parameterization takes a close form only in momentum space. For this reason
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we rewrite this parameterization as a pole (wL = −4i/s) plus mass corrections in the equivalent

form

WLλµν = (wL −F(k, k1, k2,m)) kλε[µ, ν, k1, k2] (1.105)

F(m, s, s1, s2) =
8m2

π2s
C0(s, s1, s2,m

2), (1.106)

where C0 has been given in Eq. (1.39). Obviously, the anomaly is completely given by wL. The

complete action is instead given by

Γ(3) = Γ
(3)
pole + Γ̃(3) (1.107)

with the pole part given by

Γ
(3)
pole = − 1

8π2

∫
d4x d4y ∂ ·B(x)�−1

x,yF (y) ∧ F (y) (1.108)

and the rest (Γ̃(3)) given by a complicated nonlocal expression which contributes homogeneously

to the Ward identify of the anomaly graph

Γ̃(3) = − e3

48π2

∫
d4x d4y d4z ∂ ·B(z)FB(x) ∧ FB(y)

∫
d4k1 d

4k2

(2π)8
e−ik1·(x−z)−ik2·(y−z)F(k, k1, k2,m)

− e3

48π2

∫
d4x d4y d4zBλ(z)Bµ(x)Bν(y)

∫
d4k1 d

4k2

(2π)8
e−ik1·(x−z)−ik2·(y−z)W λµν

T (k, k1, k2,m),

(1.109)

where k = k1 + k2. A second form of the effective action is obtained by expanding around

m = 0, i.e. for a small mass. A simple, but very instructive case, is the one with two on-shell

photons (s1 = s2 = 0) and a nonzero fermion mass. We obtain, for instance, in the AV V case

the following expressions for the form factors after the series expansion around m = 0

wL = −4 i

s
− 4 im2

s2
log
(
− s

m2

)
+O(m3), (1.110)

w
(+)
T (s, 0, 0,m2) =

12 i

s
− 4 i

s
log
(
− s

m2

)
+

4 im2

s2

[
2 + log

(
s2

m4

)
− log2

(
− s

m2

)]
+O(m3).

(1.111)

It is clear that this second expansion allows to isolate the pole term from the mass corrections,

and is probably a more faithful description of the anomalous content of the theory, identified by

the anomaly pole.
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1.7 Conclusions

The presence of anomaly poles in the perturbative expansion of the effective action, appears to be

an essential property of anomalous theories, even in the most general kinematical configurations

of the anomalous correlators. We have shown in this chapter that only a complete computation

of the effective action allows to identify such contributions, which affect the UV behaviour of a

correlator even if they are decoupled in the IR. The goal of this investigation has been to show

that more general anomaly poles are present in the perturbative description of the anomaly.

Previously, the appearance of these terms was considered a pure IR phenomenon, while their

isolation in the L/T parameterization was probably considered an artificial result due to the

presence of Schouten relations in the anomaly graph. We have also shown how the Schouten

relations can “dissolve” a pole, by allowing its rewriting in terms of additional form factors

which are not of polar form.

In this chapter we have performed a complete and very detailed analysis of all the relevant

regions of the anomaly graph, identifying all the relevant sources of singularities in the correlator

and generalized the L/T parameterization to the massive case. This result has been used to

derive an effective action which generalizes the Euler-Heisenberg result to anomalous theories.

In the next chapter we are going to investigate the significance of anomaly poles in the case of

conformal anomaly, showing the perfect (and striking) analogy with the patterns of anomaly

poles discussed in this chapter.





Chapter 2

Conformal Anomalies and the

Gravitational Effective Action: The

TJJ Correlator for a Chiral Fermion

2.1 Introduction

From now on we begin investigating the trilinear correlators involving an insertion of energy-

momentum tensor T . In this chapter we focus on the correlator responsible for the appearance

of the trace anomaly at leading order, and denoted by TJJ , where J are vector gauge currents.

In the previous chapter we showed how the 1-particle irreducible effective action is characterized

by the presence of massless effective degrees of freedom of pseudoscalar type when dealing with

chiral anomalies. Our aim here is to discuss in detail the case of the conformal anomaly, starting

from a detailed perturbative analysis of the TJJ correlator.

Investigations of conformal anomalies in gravity (see [70] for an historical overview and

references) [71] and in gauge theories [72, 73, 74] as well as in string theory, have been of

remarkable significance along the years. In cosmology, for instance, [75] (see also [76] for an

overview) the study of the gravitational trace anomaly has been performed in an attempt to

solve the problem of the “graceful exit” (see for instance [77, 78, 79, 80]). In other analysis it

has been pointed out that the conformal anomaly may prevent the future singularity occurrence

in various dark energy models [81, 82].

In the past the analysis of the formal structure of the effective action for gravity in four

dimensions, obtained by integration of the trace anomaly [83, 84], has received a special atten-

tion, showing that the variational solution of the anomaly equation, which is non-local, can be

made local by the introduction of extra scalar fields. The gauge contributions to these anomalies

25
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are identified at 1-loop level from a set of diagrams - involving fermion loops with two external

gauge lines and one graviton line - and are characterized, as shown recently by Giannotti and

Mottola in [51], by the presence of anomaly poles. Anomaly poles are familiar from the study

of the chiral anomaly in gauge theories and describe the non-local structure of the effective

action. In the case of global anomalies, as in QCD chiral dynamics, they signal the presence of

a non-perturbative phase of the fundamental theory, with composite degrees of freedom (pions)

which offer an equivalent description of the fundamental Lagrangian, matching the anomaly, in

agreement with ’t Hooft’s principle. Previous studies of the role of the conformal anomaly in

cosmology concerning the production of massless gauge particles and the identification of the

infrared anomaly pole are those of Dolgov [37, 85], while a discussion of the infrared pole from

a dispersive derivation is contained in [86].

In the first chapter and in [40] we have shown that anomaly poles are typical of the per-

turbative description of the chiral anomaly not just in some special kinematical conditions, for

instance in the collinear region, where the coupling of the anomalous gauge current to two (on-

shell) vector currents (for the AVV diagram) involves a pseudoscalar intermediate state (with

a collinear and massless fermion-antifermion pair) but under any kinematical conditions. They

are the most direct - and probably also the most significant - manifestation of the anomaly in

the perturbative diagrammatic expansion of the effective action. On a more speculative side,

the interpretation of the pole in terms of composite degrees of freedom could probably have

direct physical implications, including the condensation of the composite fields, very much like

Bose Einstein (BE) condensation of the pion field, under the action of gravity. Interestingly, in

a recent paper, Sikivie and Yang have pointed out that Peccei-Quinn axions ([58, 59]) may form

BE condensates [87]. With these motivations in mind, in this chapter, which parallels a previ-

ous investigation of the chiral gauge anomaly [40], we study the perturbative structure of the

off-shell effective action showing the appearance of similar singularities under general kinematic

conditions. Our investigation is a first step towards the computation of the exact effective action

describing the coupling of the Standard Model to gravity via the conformal anomaly, that we

hope to discuss in the future.

In our study we follow closely the work of [51]. There the authors have presented a complete

off-shell classification of the invariant amplitudes of the relevant correlator responsible for the

conformal anomaly, which involves the energy momentum tensor (T) and two vector currents

(J), TJJ , and have thoroughly investigated it in the QED case, drawing on the analogy with

the case of the chiral anomaly. The analysis of [51] is based on the use of dispersion relations,

which are sufficient to identify the anomaly poles of the amplitude from the spectral density of

this correlator, but not to characterize completely the off-shell effective action of the theory and
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the remaining non-conformal contributions, which will be discussed in this paper. The poles

that we extract from the complete effective action include both the usual poles derived from the

spectral analysis of the diagrams, which are coupled in the infrared (IR) and other extra poles

which account for the anomaly but are decoupled in the same limit. These extra poles appear

under general kinematic configurations and are typical of the off-shell as well as of the on-shell

effective action, both for massive and massless fermions.

We also show, in agreement with those analysis, that the pole terms which contribute to the

conformal anomaly are indeed only obtained in the on-shell limit of the external gauge lines, and

identify all the mass corrections to the correlator in the general case. This analysis is obtained

by working out all the relevant kinematical limits of the perturbative corrections. We present

the complete anomalous off-shell effective action describing the interaction of gravity with the

photons, written in a form in which we separate the non-local contribution due to the anomaly

pole from the rest of the action (those which are conformally invariant in the massless fermion

limit). Away from the conformal limit of the theory we present a 1/m expansion of the effective

action as in the Euler-Heisenberg approach. This expansion, naturally, does not convey the

presence of non-localities in the effective action due to the appearance of massless poles.

The computation of similar diagrams, for the on-shell photon case, appears in older contri-

butions by Berends and Gastmans [46] using dimensional regularization, in their study of the

gravitational scattering of photons and by Milton using Schwinger’s methods [47]. The presence

of an anomaly pole in the amplitude has not been investigated nor noticed in these previous

analysis, since they do not appear explicitly in their results, nor the 1/m expansion of the three

form factors of the on-shell vertex, contained in [46], allows their identification in the S-matrix

elements of the theory. Two related analysis by Drummond and Hathrell in their investigation

of the gravitational contribution to the self-energy of the photon [48] and the renormalization of

the trace anomaly [49] included the same on-shell vertex. Later, this same vertex has provided

the ground for several elaborations concerning a possible superluminal behaviour of the photon

in the presence of an external gravitational field [50].

2.2 The conformal anomaly and gravity

In this section we briefly summarize some basic and well known aspects of the trace anomaly

in quantum gravity and, in particular, the identification of the non-local action whose variation

generates a given trace anomaly.

We recall that the gravitational trace anomaly in 4 spacetime dimensions generated by

quantum effects in a classical gravitational and electromagnetic background is given by the
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expression

T µµ = −1

8

[
2bC2 + 2b′

(
E − 2

3
�R

)
+ 2cF 2

]
(2.1)

where b, b′ and c are parameters that for a single fermion in the theory result b = 1/320π2,

b′ = −11/5760π2 , and c = −e2/24π2; furthermore C2 denotes the Weyl tensor squared and E

is the Euler density given by

C2 = CλµνρC
λµνρ = RλµνρR

λµνρ − 2RµνR
µν +

R2

3
(2.2)

E = ∗Rλµνρ
∗Rλµνρ = RλµνρR

λµνρ − 4RµνR
µν +R2. (2.3)

The effective action is identified by solving the following variational equation by inspection

− 2√
g
gµν

δΓ

δgµν
= T µµ . (2.4)

Its solution is well known and is given by the non-local expression

Sanom[g,A] = (2.5)

1

8

∫
d4x
√−g

∫
d4x′

√
−g′

(
E − 2

3
�R

)

x

G4(x, x
′)

[
2bC2 + b′

(
E − 2

3
�R

)
+ 2cFµνF

µν

]

x′
.

Notice that we are omitting
√
gR2 terms which are not necessary at one loop level. The notation

G4(x, x
′) denotes the Green’s function of the differential operator defined by

∆4 ≡ ∇µ
(
∇µ∇ν + 2Rµν − 2

3
Rgµν

)
∇ν = �

2 + 2Rµν∇µ∇ν +
1

3
(∇µR)∇µ −

2

3
R� (2.6)

and requires some boundary conditions to be specified. This operator is conformally covariant,

in fact under a rescaling of the metric one can show that

gµν = eσ ḡµν → ∆4 = e−2σ∆̄4. (2.7)

Notice that the general solution of (2.4) involves, in principle, also a conformally invariant part

that is not identified by this method. As in ref. [51], we concentrate on the contribution

proportional to F 2 and perform an expansion of this term for a weak gravitational field and

drop from this action all the terms which are at least quadratic in the deviation of the metric

from flat space

gµν = ηµν + κhµν κ2 = 16π G, (2.8)

with G the gravitational constant. The non-local action reduces to

Sanom[g,A] = − c
6

∫
d4x
√−g

∫
d4x′

√
−g′R(1)

x �
−1
x,x′ [FαβF

αβ]x′ , (2.9)
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valid for a weak gravitational field. In this case

R(1)
x ≡ ∂xµ ∂xν hµν −�h, h = ηµν h

µν . (2.10)

The presence of the Green’s function of the � operator in Eq. (2.9) is the clear indication that

the solution of the anomaly equation is characterized by an anomaly pole. In the next sections

we are going to perform a direct diagrammatic computation of this action and reobtain from

it the pole contribution identified in the dispersive analysis of [51] and the conformal invariant

extra terms which are not present in Eq. (2.9). We start with an analysis of the correlator

following an approach which is close to that followed in ref. [51]. The crucial point of the

derivation presented in that work is the imposition of the Ward identity for the TJJ correlator

(see Eq. (2.42) below) which allows to eliminate all the Schwinger (gradients) terms which

otherwise plague any derivation based on the canonical formalism and are generated by the

equal-time commutator of the energy momentum tensor with the vector currents. In reality,

this approach can be bypassed by just imposing at a diagrammatic level the validity of an

operatorial relation for the trace anomaly, evaluated at a nonzero momentum transfer, together

with the conservation of the vector currents on the other two vector vertices of the correlator.

2.3 The construction of the full amplitude Γµναβ(p, q)

We consider the standard QED Lagrangian

L = −1

4
FµνF

µν + i ψ̄γµ(∂µ − i eAµ)ψ −mψ̄ψ, (2.11)

with the energy momentum tensor split into the free fermionic part Tf , the interacting fermion-

photon part Tfp and the photon contribution Tph which are given by

T µνf = −iψ̄γ(µ
↔

∂
ν)ψ + gµν(iψ̄γλ

↔

∂λψ −mψ̄ψ), (2.12)

T µνfp = − eJ (µAν) + egµνJλAλ , (2.13)

and

T µνph = FµλF ν λ −
1

4
gµνF λρFλρ, (2.14)

where the current is defined as

Jµ(x) = ψ̄(x)γµψ(x) . (2.15)

In the coupling to gravity of the total energy momentum tensor

T µν ≡ T µνf + T µνfp + T µνph (2.16)
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we keep terms linear in the gravitational field, of the form hµνT
µν , and we have introduced

some standard notation for the symmetrization of the tensor indices and left-right derivatives

H(µν) ≡ (Hµν + Hνµ)/2 and
↔

∂ µ ≡ (
→

∂ µ−
←

∂ µ)/2. It is also convenient to introduce a partial

energy momentum tensor Tp, corresponding to the sum of the Dirac and interaction terms

T µνp ≡ T µνf + T µνfp (2.17)

which satisfies the inhomogeneous equation

∂νT
µν
p = −∂νT µνph . (2.18)

Using the equations of motion for the e.m. field ∂νF
µν = Jµ, the inhomogeneous equation

becomes

∂νT
µν
p = FµλJλ. (2.19)

There are two ways to identify the contributions of T µν and T µνp in the perturbative expansion

of the effective action. In the formalism of the background fields, the TpJJ correlator can be

extracted from the defining functional integral

〈T µνp (z)〉A ≡
∫
DψDψ̄ T µνp (z) ei

R

d4xL+
R

J ·A(x)d4x

= 〈T µνp ei
R

d4xJ ·A(x)〉 (2.20)

expanded through second order in the external field A. The relevant terms in this expansion are

explicitly given by

〈T µνp (z)〉A =
1

2!
〈T µνf (z)(J ·A)(J ·A)〉+ 〈T µνfp (J · A)〉+ ... , (2.21)

with (J · A) ≡
∫
d4xJ · A(x). The corresponding diagrams are extracted via two functional

derivatives respect to the background field Aµ and are given by

Γµναβ(z;x, y) ≡ δ2 〈T µνp (z)〉A
δAα(x)δAβ(y)

∣∣∣∣
A=0

= V µναβ +W µναβ (2.22)

V µναβ = (i e)2
〈
T µνf (z)Jα(x)Jβ(y)

〉
A=0

(2.23)

W µναβ =
δ2
〈
T µνfp (z) (J ·A)

〉

δAα(x) δAβ(y)

∣∣∣∣
A=0

= δ4(x− z) gα(µΠν)β(z, y) + δ4(y − z) gβ(µΠν)α(z, x)

−gµν [δ4(x− z)− δ4(y − z)]Παβ(x, y)

(2.24)
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These two contributions are of O(e2). Alternatively, one can directly compute the matrix element

Mµν = 〈0|T µνp (z)

∫
d4wd4w′J · A(w)J ·A(w′)|γγ〉, (2.25)

which generates the diagrams (b) and (c) shown in Fig.2.1, respectively called the “triangle” and

the “t-p-bubble” (“t-” stays for tensor), together with the two ones obtained for the exchange

of p with q and α with β.

The conformal anomaly appears in the perturbative expansion of Tp and involves these

four diagrams. The electromagnetic contribution is responsible for other two diagrams whose

invariant amplitudes are well-defined and will be used to fix the ill-defined amplitudes present

in the tensor expansion of T µνp by using a Ward identity.

The lowest order contribution is obtained, in the background field formalism, from Maxwell’s

e.m. tensor, and is given by

Sµναβ =
δ2
〈
T µνph (z)

〉

δAα(x)δAβ(y)

∣∣∣∣
A=0

. (2.26)

Equivalently, it can be obtained from the matrix element

〈0|T µνph |γγ〉 (2.27)

which allows to identify the vertex in momentum space. Using (2.26) we easily obtain

Sµναβ(z, x, y) = 2gαβ∂(µδxz∂ν )δyz − 2gβ(µ∂ν )δxz∂αδyz − 2gα(ν ∂µ)δyz∂βδxz

+gαµgβν∂λδyz∂
λδxz + gανgβµ∂λδyz∂

λδxz + gµν∂βδxz∂αδyz − ∂ρδyz∂ρδxzgαβgµν
(2.28)

where ∂µδxz ≡ ∂/∂xµδ(x − z) and so on. In momentum space this lowest order vertex is given

by

Sµναβ =
(
pµqν + pνqµ

)
gαβ + p · q

(
gανgβµ + gαµgβν

)
− gµν (p · q gαβ − qαpβ)

−
(
gβνpµ + gβµpν

)
qα −

(
gανqµ + gαµqν

)
pβ. (2.29)

The corresponding vertices which appear respectively in the triangle diagram and on the

t-bubble at O(e2) are given by

V ′µν(k1, k2) =
1

4
[γµ(k1 + k2)

ν + γν(k1 + k2)
µ]− 1

2
gµν [γλ(k1 + k2)λ − 2m] , (2.30)

W ′µνα = −1

2
(γµgνα + γνgµα) + gµνγα, (2.31)

where k1(k2) is outcoming (incoming). Using the two vertices V ′µν(k1, k2) and W ′µνα we obtain
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=

(a)

k

p

q

(b)

p + l

l − q

l

q

p

k

+ exch.

(c)

l l − q

 

k p

q

+ + exch.

Figure 2.1: The complete one-loop vertex (a) given by the sum of the 1PI contributions called V µναβ(p, q)

(b) and Wµναβ(p, q) (c).

for the diagrams (b) and (c) of Fig.2.1

V µναβ(p, q) = −(−ie)2i3
∫

d4l

(2π)4
tr
{
V ′µν(l + p, l − q)(l/− q/+m)γβ (l/+m) γα(l/+ p/+m)

}

[l2 −m2] [(l − q)2 −m2] [(l + p)2 −m2]
,

(2.32)

and

W µναβ(p, q) = −(ie2)i2
∫

d4l

(2π)4
tr
{
W ′µνα (l/+m)γβ(l/− q/+m)

}

[l2 −m2][(l − q)2 −m2]
, (2.33)

so that the one-loop amplitude in Fig. 2.1 results

Γµναβ(p, q) = V µναβ(p, q) + V µνβα(q, p) +W µναβ(p, q) + W µνβα(q, p). (2.34)

The bare Ward identity which allows to define the divergent amplitudes that contribute to the

anomaly in Γ in terms of the remaining finite ones is obtained by re-expressing the classical

equation

∂νT
µν
ph = −FµνJν (2.35)

as an equation of generating functionals in the background electromagnetic field

∂ν〈T µνph 〉A = −Fµν〈Jν〉A, (2.36)

which can be expanded perturbatively as

∂ν〈T µνph 〉A = −Fµν〈Jν
∫
d4w(ie)J ·A(w)〉+ ... . (2.37)

Notice that we have omitted the first term in the Dyson’s series of 〈Jν〉A, shown on the r.h.s of

(2.37) since 〈Jν〉 = 0. The bare Ward identity then takes the form

∂νΓ
µναβ =

δ2
(
Fµλ(z) 〈Jλ(z)〉A

)

δAα(x)δAβ(y)

∣∣∣∣
A=0

(2.38)
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pµpνpαpβ

qµqνqαqβ

pµpνpαqβ

pµpνqαpβ

pµqνpαpβ

qµpνpαpβ

pµpνqαqβ

pµqνpαqβ

qµpνpαqβ

pµqνqαpβ

qµpνqαpβ

qµqνpαpβ

pµqνqαqβ

qµpνqαqβ

qµqνpαqβ

qµqνqαpβ

gµνgαβ

gαµgβν

gανgβµ

pµpνgαβ

pµqνgαβ

qµpνgαβ

qµqνgαβ

pβpνgαµ

pβqνgαµ

qβpνgαµ

qβqνgαµ

pβpµgαν

pβqµgαν

qβpµgαν

qβqµgαν

pαpνgβµ

pαqνgβµ

qαpνgβµ

qαqνgβµ

pµpαgβν

pµqαgβν

qµpαgβν

qµqαgβν

pαpβgµν

pαqβgµν

qαpβgµν

qαqβgµν

Table 2.1: The 43 tensor monomials built up from the metric tensor and the two independent momenta

p and q into which a general fourth rank tensor can be expanded.

which takes contribution only from the first term on the r.h.s of Eq. (2.37). This relation can

be written in momentum space. For this we use the definition of the vacuum polarization

Παβ(x, y) ≡ −ie2〈Jα(x)Jβ(y)〉, (2.39)

or

Παβ(p) = −i2 (−ie)2
∫

d4l

(2π)4
tr
{
γα (l/ +m)γβ(l/ + p/+m)

}

[l2 −m2] [(l + p)2 −m2]

= (p2gαβ − pαpβ)Π(p2,m2) (2.40)

with

Π(p2,m2) =
e2

36π2 p2

[
6A0(m

2) + p2 − 6m2 − 3B0(p
2,m2)

(
2m2 + p2

)]
, (2.41)

which obviously satisfies the Ward identity pαΠαβ(p) = 0. The expressions of the A0 and B0

contributions are given in Appendix A.2.

Using these definitions, the unrenormalized Ward identity which allows to completely char-

acterize the form of the correlator in momentum space becomes

kν Γµναβ(p, q) =
(
qµpαpβ − qµgαβp2 + gµβqαp2 − gµβpαp · q

)
Π(p2)

+
(
pµqαqβ − pµgαβq2 + gµαpβq2 − gµαqβp · q

)
Π(q2) . (2.42)
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2.3.1 Tensor expansion and invariant amplitudes of Γ

The full one-loop amplitude Γ can be expanded on the basis provided by the 43 monomial tensors

listed in Tab.2.1

Γµναβ(p, q) =

43∑

i=1

Ai(k
2, p2, q2) lµναβi (p, q). (2.43)

Since the amplitude Γµναβ(p, q) has total mass dimension equal to 2 it is obvious that not all

the coefficients Ai are convergent. They can be divided into 3 groups:

a) A1 ≤ Ai ≤ A16 - multiplied by a product of four momenta, they have mass dimension −2

and therefore are UV finite;

b) A17 ≤ Ai ≤ A19 - these have mass dimension 2 since the four Lorentz indices of the

amplitude are carried by two metric tensors

c) A20 ≤ Ai ≤ A43 - they appear next to a metric tensor and two momenta, have mass

dimension 0 and are divergent.

The way in which the 43 invariant amplitudes will be managed in order to reduce them to the 13

named Fi(k
2, p2, q2) is the subject of this section. The reduction is accomplished in 4 different

steps and has as a guiding principle the elimination of the divergent amplitudes Ai in terms of

the convergent ones after imposing some conditions on the whole amplitude. We require

a) the symmetry in the two indices µ and ν of the symmetric energy-momentum tensor T µν ;

b) the conservation of the two vector currents on pα and qβ;

c) the Ward identity on the vertex with the incoming momentum k defined above in Eq. (2.3.1).

Condition a) becomes

Γµναβ(p, q) = Γνµαβ(p, q), (2.44)

giving a linear system of 43 equations; 15 of them being identically satisfied because the tensorial

structures are already symmetric in the exchange of µ and ν, while the remaining 14 conditions

are

A5 = A6, A8 = A9, A10 = A11, A13 = A14, A18 = A19,

A21 = A22, A24 = A28, A25 = A29, A26 = A30, A27 = A31,

A32 = A36, A34 = A37, A33 = A38, A35 = A39, (2.45)
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where all Ai are thought as functions of the invariants k2, p2, q2. After substituting (2.45) into

Γµναβ(p, q) the 43 invariant tensors of the decomposition are multiplied by only 29 invariant

amplitudes. Condition b), which is vector current conservation on the two vertices with indices

α and β, allows to re-express some divergent Ai in terms of other finite ones

pα Γµναβ(p, q) = qβ Γµναβ(p, q) = 0. (2.46)

This constraint generates two sets of 14 independent tensor structures each, so that in order to

fulfill (2.46) each coefficient is separately set to vanish. The first Ward identity leads to a linear

system composed of 10 equations

pα Γµναβ(p, q) = 0⇒





A19 +A36 p · p+A37 p · q = 0,

A38 p · p+A39 p · q = 0,

A17 +A40 p · p+A42 p · q = 0,

A41 p · p+A43 p · q = 0,

A20 + 2A28 +A1 p · p+A4 p · q = 0,

2A30 +A3 p · p+A7 p · q = 0,

A22 +A29 +A6 p · p+A11 p · q = 0,

A31 +A9 p · p+A14 p · q = 0,

A23 +A12 p · p+A16 p · q = 0,

A15 p · p+A2 p · q = 0;

(2.47)

we choose to solve it for the set {A15, A17, A19, A23, A28, A29, A30, A31, A39, A43} in which only

the first one is convergent and the others are UV divergent. The set would not include all the

divergent Ai since in the last equations appear two convergent coefficients, A15 and A2.

Following our choice the result is

A15 = −A2
p · q
p · p, A17 = −A40 p · p−A42 p · q, (2.48)

A19 = −A36 p · p−A37 p · q, A23 = −A12 p · p−A16 p · q, (2.49)

A28 =
1

2

[
−A20 −A1 p · p−A4 p · q

]
, A29 = −A22 −A6 p · p−A11 p · q, (2.50)

A30 = −1

2

[
A3p · p+A7 p · q

]
, A31 = −A9 p · p−A14 p · q, (2.51)

A39 = −A38
p · p
p · q , A43 = −A41

p · p
p · q . (2.52)

In an analogous way we go on with the second Ward identity (WI) after replacing the solution

of the previous system in the original amplitude. The new one is indicated by Γµναβb (p, q), where



36 The TJJ Correlator for a Chiral Fermion

the subscript b is there to indicate that we have applied condition b) on Γ. The constraint gives

qβ Γµναβb (p, q) = 0⇒





A40 p · q +A41 q · q = 0,

A1 p · q +A3 q · q = 0,

A20 +A4 p · q +A7 q · q = 0,

A36 +A6 p · q +A9 q · q = 0,

A22 +A37 +A11 p · q +A14 q · q = 0,

2A38 +A12 p · q −A2
p·q q·q
p·p = 0.

(2.53)

We solve these equations determining the amplitudes in the set {A1, A20, A22, A36, A38, A40} in

terms of the remaining ones, obtaining

A38 = −A12 p · p p · q −A2 p · q q · q
2 p · p , A40 = −A41 q · q

p · q , (2.54)

A1 = −A3 q · q
p · q , A20 = −A4 p · q −A7 q · q , (2.55)

A22 = −A37 −A11 p · q −A14 q · q , A36 = −A6 p · q −A9 q · q. (2.56)

The manipulations above have allowed a reduction of the number of invariant amplitudes from

the initial 43 to 13 using the {µ, ν} symmetry (14 equations), the first WI on pα (10 equations)

and the second WI on qβ (6 equations).

The surviving invariant amplitudes in which the amplitude Γµναβc (p, q) can be expanded using the

form factors are {A2, A3, A4, A6, A7, A9, A11, A12, A14, A16, A37, A41, A42}. This set still contains

3 divergent amplitudes, (A37, A41, A42). The amplitude Γµναβc (p, q) is indeed ill-defined until we

impose on it condition c), that is Eq. (2.42). This condition gives

Eq.(2.42)⇒





−A3

[
1 + p·p

2 p·q

]
+A6 + 1

2 A7 −A9 − A41

p·q = 0,

A37 +A42 +A4 [p · p + p · q] + A11 p · q + 1
2 A7 q · q+

+A11 q · q + 1
2 A3

p·p q·q
p·q = 0,

1
2A2

p·q q·q
p·p −A41

p·p+ q·q
p·q − 1

2A3 p · p+A7( p · p+ 1
2 p · q) +A6 p · q

+A12(
1
2 p · q + q · q) +A14( p · q + 2 q · q) + 2A37 −Π(p2)−Π(q2) = 0
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From this condition we obtain

A37 = −A2

4

p · q q · q
p · p +

1

4
A3 p · p−

1

4
A7 (2 p · p+ p · q) +

1

2
A41

(
p · p+ q · q

p · q

)

−1

2
A6 p · q −

1

4
A12 (p · q + 2 q · q)− 1

2
A14 (p · q + 2q · q) +

1

2

[
Π(p2) + Π(q2)

]

(2.57)

A41 = −A3

2
p · p− (A3 −A6 −A7 +A9) p · q (2.58)

A42 =
A3

2
p · p

(
p · p
p · q + 1− q · q

p · q

)
+

1

2
A7 (p · p+ p · q − q · q)−A4 (p · p+ p · q)

−(A6 −A9) p · p+ (A14 −A11)(q · q + p · q). (2.59)

After these steps we end up with an expression for Γ written in terms of only 10 invariant ampli-

tudes, that are X ≡ {A2, A3, A4, A6, A7, A9, A11, A12, A14, A16}, significantly reduced respect to

the original 43. Further reductions are possible (down to 8 independent invariant amplitudes),

however, since these reductions just add to the complexity of the related tensor structures, it is

convenient to select an appropriate set of reducible (but finite) components characterized by a

simpler tensor structure and present the result in that form. The 13 amplitudes introduced in the

final decomposition are, in this respect, a good choice since the corresponding tensor structures

are rather simple. These tensors are combinations of the 43 monomials listed in Tab.2.1.

The set X is very useful for the actual computation of the tensor integrals and for the study

of their reduction to scalar form. To compare with the previous study of Giannotti and Mottola

[51] we have mapped the computation of the components of the set X into their structures Fi

(i = 1, 2, .., 13). Also in this case, the truly independent amplitudes are 8. One can extract, out

of the 13 reducible amplitudes, a consistent subset of 8 invariant amplitudes. The remaining

amplitudes in the 13 tensor structures are, in principle, obtainable from this subset.

2.3.2 Reorganization of the amplitude

Before obtaining the mapping between the amplitudes in X and the structures Fi, we briefly

describe the tensor decomposition introduced in [51] which defines these 13 structures. We define

the rank-2 tensors

uαβ(p, q) ≡ (p · q) gαβ − qα pβ , (2.60)

wαβ(p, q) ≡ p2 q2 gαβ + (p · q) pα qβ − q2 pα pβ − p2 qα qβ , (2.61)

which are Bose symmetric,

uαβ(p, q) = uβα(q, p) , (2.62)

wαβ(p, q) = wβα(q, p) , (2.63)
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and conserve vector current,

pα u
αβ(p, q) = qβ u

αβ(p, q) = 0 , (2.64)

pα w
αβ(p, q) = qβ w

αβ(p, q) = 0 . (2.65)

These two tensors are used to build the set of 13 tensors catalogued in Table 2.2. They are

linearly independent for generic k2, p2, q2 different from zero. Five of the 13 tensors are Bose

symmetric, namely,

tµναβi (p, q) = tµνβαi (q, p) , i = 1, 2, 7, 8, 13 , (2.66)

while the remaining eight tensors form four pairs which are overall related by Bose symmetry

tµναβ3 (p, q) = tµνβα5 (q, p) , (2.67)

tµναβ4 (p, q) = tµνβα6 (q, p) , (2.68)

tµναβ9 (p, q) = tµνβα10 (q, p) , (2.69)

tµναβ11 (p, q) = tµνβα12 (q, p) . (2.70)

The amplitude in (2.34) can be expanded in this basis composed as

Γµναβ(p, q) =

13∑

i=1

Fi(s; s1, s2,m
2) tµναβi (p, q) , (2.71)

where the invariant amplitudes Fi are functions of the kinematical invariants s = k2 = (p +

q)2, s1 = p2, s2 = q2 and of the internal mass m. In [51] the authors use the Feynman

parameterization and momentum shifts in order to identify the expressions of these amplitudes

in terms of parametric integrals, which was the approach followed also by Rosenberg in his

original identification of the 6 invariant amplitudes of the AVV anomaly diagram. If we choose

to reorganize all the monomials into the simpler set of 13 tensor groups shown in Tab.2.2, then

we need to map the Ai in χ and the Fi’s. The mapping is given by

F1 =
1

3 k2

[
A4(4 p · q + 3 p · p) + 2A11( p · q + 2 q · q) + 2A6 p · p

+ 2A7 q · q − 2A14 q · q −A16 q · q + 2A3
p · p q · q
p · q

]
, (2.72)

F2 =
1

3 k2

[
−2A3

(
p · p
p · q + 2

)
+ 4A6 +A7 − 2A9 −A12

]
, (2.73)
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i tµναβi (p, q)

1
(
k2gµν − kµkν

)
uαβ(p.q)

2
(
k2gµν − kµkν

)
wαβ(p.q)

3
(
p2gµν − 4pµpν

)
uαβ(p.q)

4
(
p2gµν − 4pµpν

)
wαβ(p.q)

5
(
q2gµν − 4qµqν

)
uαβ(p.q)

6
(
q2gµν − 4qµqν

)
wαβ(p.q)

7 [p · q gµν − 2(qµpν + pµqν)] uαβ(p.q)

8 [p · q gµν − 2(qµpν + pµqν)]wαβ(p.q)

9
(
p · q pα − p2qα

) [
pβ (qµpν + pµqν)− p · q (gβνpµ + gβµpν)

]

10
(
p · q qβ − q2pβ

) [
qα (qµpν + pµqν)− p · q (gανqµ + gαµqν)

]

11
(
p · q pα − p2qα

) [
2 qβqµqν − q2(gβνqµ + gβµqν)

]

12
(
p · q qβ − q2pβ

) [
2 pαpµpν − p2(gανpµ + gαµpν)

]

13
(
pµqν + pνqµ

)
gαβ + p · q

(
gανgβµ + gαµgβν

)
− gµνuαβ

−
(
gβνpµ + gβµpν

)
qα −

(
gανqµ + gαµqν

)
pβ

Table 2.2: Basis of 13 fourth rank tensors satisfying the vector current conservation on the

external lines with momenta p and q.

F3 =
1

12 k2
[A4(2 p · q + 3 q · q )− 2A11( p · q + 2 q · q )− 2A6 p · p

−2A7 q · q + 2A14 q · q +A16 q · q − 2A3
p · p q · q
p · q

]
(2.74)

F4 =
A7

4 p · p +
1

12 k2

[
2A3

(
p · p
p · q + 2

)
− 4A6 −A7 + 2A9 +A12

]
(2.75)

F5 =
A16

4
+

1

12 k2

[
−2A6 p · p − 2A3

q · q p · p
p · q +A4 (−3 p · p − 4 p · q )

−2A11 (p · q + 2q · q )− 2A7 q · q + 2A14 q · q +A16 q · q ] , (2.76)

F6 =
A12

4 q · q +
1

12 k2

[
−4A6 −A7 + 2A9 +A12 + 2A3

(
p · p
p · q + 2

)]
, (2.77)

F7 =
A11

2
+

1

p · q 2

(
A9 q · q p · p +

A6

2
p · p p · q +

A14

2
q · q p · q

)

+
1

6 k2

[
A4(−4 p · q − 3 p · p )− 2A11( p · q + 2 q · q )− 2A6 p · p − 2A7 q · q

+ 2A14 q · q + A16 q · q − 2A3
p · p q · q
p · q

]
,

(2.78)
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F8 =
1

6 k2

[
2A3

(
p · p
p · q + 2

)
− 3

A9

p · q ( p · p+ q · q)− 4A6 − A7 − 4A9 + A12

]
(2.79)

F9 =
A6

p · q + A9
q · q
p · q 2

, (2.80)

F10 = A9
p · p
p · q 2

+
A14

p · q , (2.81)

F11 =
A12

2 q · q −
A2

2 p · p , (2.82)

F12 =
A3

2 p · q +
A7

2 p · p , (2.83)

F13 =
1

2
A6 (p · p + p · q − q · q ) +

1

4
A7 (p · p + p · q − q · q ) +

A2 p · q q · q
4 p · p

+A14

(p · q
2

+ q · q
)

+
1

4
A12 (p · q + 2 q · q )

+
A3

4 p · q
(
p · p 2 + (p · q + q · q ) p · p + 2p · q q · q

)

+
1

2
A9

[
q · q + p · p

(
2q · q
p · q + 1

)]
− 1

2
[Π(p) + Π(q)]. (2.84)

We have shown how to obtain the 13 Fi’ s, starting from our derivation of the one-loop full

amplitude Γµναβ(p, q) leading to the ten invariant amplitudes of the set X . Since we know the

analytical expression of the Ai involved, we can go one step further and give all the Fi’ s in their

analytical form in the most general kinematical configuration.

2.4 Trace condition in the non-conformal case

Similarly to the chiral case, we can fix the correlator by requiring the validity of a trace condition

on the amplitude, besides the two Ward identities on the conserved vector currents and the Bose

symmetry in their indices. This approach is alternative to the imposition of the Ward identity

(2.42) but nevertheless equivalent to it. At a diagrammatic level we obtain

gµνΓ
µναβ(p, q) = Λαβ(p, q)− e2

6π2
uαβ(p, q). (2.85)

We comment below on this equation, in relation to the scales present in the perturbative

expansion of the correlator, which are, besides the fermion mass m, the energy at which we

probe the correlator (s) and the subtraction point after renormalization (µ or M). We have also

defined

Λαβ(p, q) = −m (ie)2
∫
d4x d4y eip·x+iq·y

〈
ψ̄ψJα(x)Jβ(y)

〉

(2.86)
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A direct computation gives

Λαβ(p, q) = G1(s, s1, s2,m
2)uαβ(p, q) +G2(s, s1, s2,m

2)wαβ(p, q), (2.87)

where

3 s F1(s, s1, s2,m
2) = G1(s, s1, s2,m

2)− e2

6π2
(2.88)

3 s F2(s, s1, s2,m
2) = G2(s, s1, s2,m

2) (2.89)

and

G1(s, s1, s2,m
2) =

e2γm2

π2σ
+
e2D2(s, s2,m

2) s2m
2

π2σ2

[
s2 + 4s1s− 2s2s− 5s21 + s22 + 4s1s2

]

− e2D1(s, s1,m
2) s1m

2

π2σ2

[
− (s− s1) 2 + 5s22 − 4 (s+ s1) s2

]

− e2 C0(s, s1, s2,m2)

{
m2γ

2π2σ2

[
(s− s1) 3 − s32 + (3s + s1) s

2
2

+
(
−3s2 − 10s1s+ s21

)
s2
]
− 2m4γ

π2σ

}
,

(2.90)

G2(s, s1, s2,m
2) = −2e2m2

π2σ
− 2e2D2(s, s2,m

2)m2

π2σ2

[
(s− s1) 2 − 2s22 + (s+ s1) s2

]

− 2 e2D1(s, s1,m
2)m2

π2σ2

[
s2 + (s1 − 2s2) s− 2s21 + s22 + s1s2

]

− e2C0(s, s1, s2,m2)

[
4m4

π2σ
+

m2

π2σ2

[
s3 − (s1 + s2) s

2 −
(
s21 − 6s2s1 + s22

)
s

+ (s1 − s2) 2 (s1 + s2)
]]
, (2.91)

where γ ≡ s − s1 − s2, σ ≡ s2 − 2(s1 + s2) s + (s1 − s2)2 and the scalar integrals D1(s, s1,m
2),

D2(s, s1,m
2), C0(s, s1, s2,m2) for generic virtualities and masses are defined in Appendix A.2.

We have checked that the final expressions of the form factors in the most general case, obtained

either by imposing this condition on the energy momentum tensor or the Ward identity in the

form given by Eq. (2.36) exactly coincide. In Appendix A.3 we discuss this relation in the

simpler case of a massless fermion in the loop.

2.5 The off-shell massive 〈TJJ〉 correlator

To obtain the explicit expression of the parametric integrals which describe the form factors,

we follow an approach similar to that of [40], for the case of the chiral gauge anomaly. These

have been obtained by re-computing the anomaly diagrams by dimensional reduction together

with the tensor-to-scalar decomposition of the Feynman amplitudes. For instance, in [40] we
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have given the explicit expressions of the parametric integrals of Rosenberg using this trick. The

correctness of the result can be checked numerically by comparing the parametric forms to the

explicit computation. In this case the procedure is identical, though the computations are very

involved. By comparing the two approaches we extract, indirectly, an explicit expression of the

parametric forms of these integrals, introduced in [51]. We have checked that indeed there is

perfect numerical agreement between our computation and the parametric result, as discussed

in Appendix A.4.

We introduce in this section the main results of our computation which will be used in the

next sections for further analysis. The complete expressions of the form factors Fi (i = 1, . . . , 13)

in the massive and then in the massless case are contained in Appendix A.5 and A.6 respectively,

whereas the master integrals are collected in Appendix A.2. In both cases the virtualities of the

external lines are generic and denoted by s1, s2. After presenting the complete expressions, we

discuss several kinematical limits of the result, in particular the on-shell limit for the two vector

lines (s1 → 0, s2 → 0) in order to better understand the structure of the whole correlator. The

appearance of generalized anomaly poles in the correlator and their IR decoupling under the

most general conditions will be discussed thoroughly.

Notice that F13 contains two vacuum polarization diagrams with the two photon momenta

which are divergent and we are bond to define a suitable renormalization of the 2-point function

which will affect the running of the coupling. In the next section we will address the explicit

relation between renormalization schemes and running of the coupling in the context of the

renormalization of the correlator.

2.5.1 Anomaly poles and their UV/IR significance

There are close similarities between the effective action in the case of the chiral gauge anomaly

and the conformal case, due to the presence of massless poles. In [40] we have analyzed the

fact that in the chiral case the anomaly is entirely generated by the longitudinal component

wL, which is indeed isolated for any configuration of the photon momenta. This is somehow

unexpected since the dispersive analysis shows that the pole in wL is coupled only under a

specific kinematic condition, and is usually interpreted as an infrared effect. Nevertheless there

is a complete equivalence between the representation of the anomaly diagram in the Rosenberg

representation [41] - where the pole is not extracted as an independent component - and the

L/T representation in which the pole is isolated under any kinematical configuration (and even

in the massive case). This is apparent from the broken anomalous Ward identities satisfied by

the AVV diagram where the mass corrections and the anomaly term can be separately identified

[40].
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To illustrate the emergence of a similar behaviour in the case of the conformal anomaly, it

is sufficient to notice in the expression of F1 given in Eq. (A.94) the presence of the isolated

contribution (F1 pole ≡ −e2/(18π2s)) which survives in the massless limit but is present also

in the massive case. This component, indeed, is responsible for the trace anomaly also in the

massive case, even though there appear extra corrections with mass-dependent terms. Obviously

also in this case, which is generic from the kinematical point of view, one can clearly show that

the pole does not couple in the infrared if we compute the residue of the entire amplitude. The

anomaly pole, in fact, appears in the spectral function only in a special kinematic configuration

when the fermion-antifermion pair of the anomaly diagram is collinear. However both in the

case of the AVV diagram and in the conformal case, as evident from the expression of F1, it

reappears as an extra contribution and is responsible for the trace anomaly. It is rather easy

to show the pole dominance of the anomaly away from the conformal point (massive case) at

high energy, since the non anomalous terms present in F1 and F2 are subleading at large s. We

are entitled to separate the pole contribution, which describes the non-local contribution to the

trace anomaly, from the rest, and rewrite the F1 form factor and effective action, respectively,

as

F1 = F1 pole + F̃1 (2.92)

and

S = Spole + S̃. (2.93)

The reminder (S̃) includes all the remaining contributions coming from the several form factors

of the expansion, while the pole part gives

Spole = − e2

36π2

∫
d4xd4y (�h(x)− ∂µ∂νhµν(x)) �

−1
x yFαβ(x)F

αβ(y). (2.94)

As we have just mentioned, it is not difficult to show that the anomaly pole in F1, in the general

kinematical case (e.g. for off-shell photons and a massive fermion in the loop) decouples in the

infrared (i.e. its residue vanishes) while it remains coupled in the massless on-shell limit. In

other configurations (for any of the two photons off-shell) is also decoupled. This behaviour is

in perfect analogy with the chiral case [40].

2.5.2 Massive and massless contributions to anomalous Ward identities and

the trace anomaly

Anomalous effects are associated with massless fermions, and for this reason, when we analyze

the contribution to the anomaly for a massive correlator, we need to justify the distinction

between massless and massive contributions. The latter contribute to the anomalous Ward
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identity, in our approach, via terms of O(m2/s2), where s = k2 is the virtuality of the graviton

vertex. At nonzero momentum transfer (k 6= 0) the second term on the right-hand side of

Eq. (2.85) is interpreted as an anomalous contribution, proportional to an asymptotic β function

(βas) of the theory, coming from the residue of the anomaly pole which appears in the form factor

F1. While the appearance of the asymptotic β function of the theory (which coincides with the

β function of the MS scheme) is expected at large s, where all the remaining scales of the

theory (s1, s2,m) can be dropped, corrections to the asymptotic description in the ultraviolet

(UV) are expected. At the same time, in the far infrared (IR) region, below the fermion mass,

the anomalous contribution should approach zero in a certain fashion, which will be specified

below.

A complete quantitative understanding of this point for a general kinematics (e.g. for s 6= 0)

remains, in a way, an open issue, but much more can be said for the simpler case of zero

momentum transfer, where a consistent pattern of separation between massless and massive

contributions to the correlator emerge in the UV region. In this case the virtuality of the two

photons and the fermion mass m (plus a renormalization scale µ or M) are the scales which

appear in the renormalized perturbative expansion. Related analysis have been presented in [88]

and [51] and our conclusions do not differ from these previous investigations. We summarize the

main points.

Respect to the case of the chiral anomaly, the trace anomaly is connected with the regular-

ization procedure involved in the computation of the diagrams. In our analysis we have used

dimensional regularization (DR) and we have imposed conservation of the vector currents, the

symmetry requirements on the correlator and the conservation of the energy momentum tensor.

As we move from 4 to d spacetime dimensions (before that we renormalize the theory), the

anomaly pole term appears quite naturally in the expression of the correlator. This is not sur-

prising, since QED in d 6= 4 dimensions is not even classically conformal invariant and the trace

of the energy momentum tensor in the classical theory involves both a F 2 term (∼ (d−4)F 2) be-

side, for a massive correlator, a ψ̄ψ contribution. Let’s summarize the basic features concerning

the renormalization property of the correlator as they emerge from our direct computation.

1) The anomalous Ward identity obtained by tracing the correlator (Γµναβ) with gµν involves

only the F1 and F2 form factors in the massive case; in the massless case the scale breaking

appears uniquely due to F1 via the term e3/(12π2)uαβ(p, q), as pointed out before. The finiteness

of the two form factors involved in the trace of the correlator is indeed evident. 2) The residue

of the pole term (e3/(12π2)) in F1 is affected by the renormalization of the entire correlator (the

form factor F13 is the only one requiring renormalization) only by the re-definition of the bare

coupling (e2) in terms of the renormalized coupling (e2R) through the renormalization factor Z3.
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At this point, the interpretation of the residue at the pole as a contribution proportional to the

β function of the theory is, in a way, ambiguous [89], since the β function is related to a given

renormalization scheme. We stress once more that Eq. (2.85) does not involve a renormalization

scheme - which at this point has not yet been defined - but just a regularization. We have

regulated the infinities of the theory but we have not specified a subtraction of the infinities.

For this reason, the substitution

(e3/(12π2))→ 2βas(e)/e (2.95)

which attributes the mass-independent term in F1 to a specific β function, the asymptotic one

(βas), as we are going to elaborate below, requires some clarification.

To fully appreciate this point, it is convenient to go back to the unrenormalized Ward identity

(2.42) and differentiate it with respect to the momentum q and then set p = −q (k = 0) by

going to zero momentum transfer. One obtains the derivative Ward identity

gµνΓ
µναβ(p,−p) = 2p2 dΠ

dp2
(p2)(p2gαβ − pαpβ). (2.96)

The appearance of the derivative of the scalar self-energy of the photon on the right-had side

of the previous equation is particularly illuminating, since it allows to relate this expression to

a particular β function of the theory, which is not the asymptotic βas considered in Eq. (2.95).

This β function is useful for describing the IR running of the coupling.

To illustrate this point we start from the expression of the scalar amplitude appearing in the

photon self-energy in DR

Π(p2,m) =
e2

2π2

(
1

6ǫ
− γ

6
−
∫ 1

0
dxx(1− x) log

m2 − p2x(1− x)
4πµ2

)
(2.97)

whose renormalization at zero momentum gives

ΠR(p2,m) = Π(p2,m)−Π(0,m) = − e2

2π2

∫ 1

0
x(1− x) log

m2 − p2x(1− x)
m2

. (2.98)

Using this expression, we can easily compute

2p2 dΠ

dp2
= 2p2dΠR

dp2
= − e2

6π2
+
e2 m2

π2

∫ 1

0
dx

x(1− x)
m2 − p2x(1− x) . (2.99)

Notice that this result does not depend on the renormalization scheme due to the presence of

the derivative respect to p2. Notice also that the β function of the theory evaluated in the zero

momentum subtraction scheme is exactly given by the right-hand side of the previous expression

2p2dΠR

dp2
= −β(e2, p2)

e2
, (2.100)
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(where β(e2, p2) = 2eβ(e, p2)), but this result does not hold, generically, in any scheme. The

identification of anomalous (massless) effects in the theory, as exemplified by these simpler Ward

identity, should then be obtained by extracting the appropriate β function of the theory, whose

running should be driven by the effective massless degrees of freedoms (fermions, in our case)

at the relevant observation scale (p2).

Clearly, in the case of Eq. (2.100) all the mass contributions have been absorbed into the

very definition of the β function. Notice that if p2 ≪ m2 this β function, after a rearrangement

gives

−β(e2, p2)

e2
=
e2

π2

∫ 1

0
dx

p2x2(1− x)2
m2 − p2x(1− x) (2.101)

and therefore it vanishes as β ∼ O(p2/m2) for p2 → 0. Equivalently, by taking the m → ∞
limit we recover the expected decoupling of the fermion (due to a vanishing β) since we are

probing the correlator at a scale (p2) which is not sufficient to resolve the contribution of the

fermion loop. On the contrary, as p2 → ∞, with m fixed, the running of the β function is the

usual asymptotic one βas(e
2) ∼ e4/(6π2) modified by corrections O(m2/p2). The UV limit is

characterized by the same running typical of the massless case, as expected.

Notice that the right-hand side of Eq. (2.96), as we have already remarked, does not depend

on the renormalization scheme, while the β function does and Eq. (2.100) should be understood

as a definition. For this reason, β(e2, p2) correctly describes the IR running of the coupling as

p2 ≪ m2, and in this case it is obvious that massless anomalous effects of scale breaking are not

present in this specific limit.

In the case of regularization scheme different from zero momentum subtraction, there are

some differences which should be taken into consideration. For instance, in a mass-dependent

scheme one subtracts the value of the graph at a Euclidean momentum point p2 = −M2,

redefining the scalar self-energy as

ΠR(p2,m,M) = Π(p2,m)−Π(p2 = −M2,m) =
e3

2π2

[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)
m2 +M2x(1− x)

]

(2.102)

which gives, respect to the previous (M = 0) scheme, a β function now of the form

β(e) = −e
2
M

d

dM

e2

2π2

∫ 1

0
dxx(1− x) log

m2 − p2x(1− x)
m2 +M2x(1− x)

=
e3

2π2

∫ 1

0
dxx(1− x) M2x(1− x)

m2 +M2x(1− x) . (2.103)

For large values of M , this β function describes the usual UV running since

β(e) ∼ e3

2π2

∫ 1

0
dxx(1− x) = β(e)as =

e3

12π2
. (2.104)
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In this second scheme, the (regularization independent) right-hand side of Eq. (2.96) can be

interpreted as due to an anomalous contribution coming from the pole plus some explicit mass

corrections, as obvious from the first and second term of (2.99). We conclude with some consid-

erations on a third (mass-independent) scheme.

In the MS scheme, the renormalization of the photon self-energy is performed via the sub-

traction

ΠR(p2,m, µ) = Π(p2,m, µ)− e2

12π2

(
1

ǫ
+ γ − log 4π

)
(2.105)

which gives directly an asymptotic β function since

β(e) =
e

2
µ
d

dµ
ΠR(p2,m, µ)

=
e3

2π2

∫ 1

0
dxx(1− x) =

e3

12π2
. (2.106)

It is clear, from these considerations, that a judicious definition of the β function allows a correct

interpretation of the right-hand side of (2.96) and (2.99). In the MS scheme, the breaking of

scale invariance can be attributed to a UV running of the coupling (for p2 ≫ m2) plus mass

corrections which are suppressed as O(m2/p2). Notice that in this case the renormalization

scale (µ2) should be O(p2), since we should not allow large logarithms to be present in the

perturbative expansion. In this sense, the extrapolation of the MS result to p2 ∼ µ2 ≪ m2

should be forbidden by the same criterion, since large logs of the relevant scales (log(m/µ))

would otherwise be generated. In the far infrared region p2 ≪ m2 the use of the same β function

is indeed not appropriate, since the same scheme does not correctly describe the decoupling of

the anomaly, which instead should occur, since there is no massless fermion in the theory.

To conclude this discussion we just mention that the MS scheme can be used, obviously,

both to describe the far IR and the far UV regions of the theory, with the condition that we are

bound to choose a vanishing β function at p2 ≪ m2 and an asymptotic one for p2 ≫ m2 and

assuring continuity of the gauge coupling across the fermion mass scale though the β-function

is discontinuous. This is the standard procedure followed in the MS scheme as, for instance, in

QCD factorization, improved with the inclusion of threshold effects at the crossing scales (see

for instance [90, 91]) where the number of massless flavours change.

2.5.3 The off-shell massless 〈TJJ〉 correlator

Clearly, as we perform the massless limit on the amplitude, the residue of the same anomaly

pole - identified above in the contribution F1 pole - is still present, but will now be decoupled in

the infrared.
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In the massless case the scalar functions Fi depend only on the kinematic invariants s, s1, s2

but we still retain the last entry of these functions and set it equal to 0 for clarity, using the

notation Fi ≡ Fi(s; s1, s2, 0). These new functions are computed starting from the massive ones

and letting m→ 0 and A0(m
2)→ 0, i.e. eliminating all the massless tadpoles generated in the

zero fermion mass limit.

The off-shell massless invariant amplitudes Fi(s; s1, s2, 0) are here given in terms of a new set

of master integrals listed in Appendix A.2. We give here only the simplest invariant amplitudes,

leaving the remaining ones to the appendix A.6. The anomaly pole is clearly present in F1,

which is given by

F1(s; s1, s2, 0) = − e2

18π2s
, (2.107)

while

F2(s; s1, s2, 0) = 0. (2.108)

The complete 〈TJJ〉 correlator is very complicated in this case as the long expressions of the

form factors show, but a deeper analysis of its poles by computing the residue in s = 0 can be

useful to draw some conclusions. The single pieces of Γµναβ(s; s1, s2, 0) indeed contribute as

lim
s→0

sF1(s; s1, s2, 0) tµναβ1 = − e2

18π2
tµναβ1

∣∣
s=0

, (2.109)

lim
s→0

sF3(s; s1, s2, 0) tµναβ3 =
e2

72π2
tµναβ3

∣∣
s=0

, (2.110)

lim
s→0

sF5(s; s1, s2, 0) tµναβ5 =
e2

72π2
tµναβ5

∣∣
s=0

, (2.111)

lim
s→0

sF7(s; s1, s2, 0) tµναβ7 =
e2

36π2
tµναβ7

∣∣
s=0

, (2.112)

while F2 is absent in the massless case. The residues of the Fi(s; s1, s2, 0) not included in the

equation above are all vanishing. Combining the results given above one can easily check that

the entire correlator is completely free from anomaly poles as

lim
s→0

sΓµναβ(s; s1, s2, 0) = 0 (2.113)

in this rather general configuration. A similar result holds for the correlator responsible for the

chiral anomaly and shows the decoupling of polar contributions in the infrared.

2.5.4 The on-shell massive 〈TJJ〉 correlator

A particular case of the 〈TJJ〉 correlator is represented by its on-shell version with a massive

fermion in the loop. If we contract uαβ(p, q) and wαβ(p, q) with the polarization tensors ǫα(p) and
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ǫβ(q) requiring ǫα(p) p
α = 0, ǫβ(p) p

β = 0 , the first tensor remains unchanged while wαβ(p, q)

becomes w̃αβ(p, q) = s1 s2 g
αβ . This will be carefully taken into account when computing the

s1 → 0, s2 → 0 limit of the product of the invariant amplitudes Fi with their corresponding

tensors tµναβi (i = 1, . . . , 13).

The invariant amplitudes reported below describe Fi(s; 0, 0,m
2) whose tensors tµναβi are also

finite and non-vanishing. They are

F1(s; 0, 0, m2) = − e2

18π2s
+

e2m2

3π2s2
− e2m2

3π2s
C0(s, 0, 0,m2)

[
1

2
− 2m2

s

]
,

F3(s; 0, 0, m2) = − e2

144π2s
− e2m2

12π2s2
− e2m2

4π2s2
D(s, 0, 0,m2)

− e
2m2

6π2s
C0(s, 0, 0,m2)

[
1

2
+
m2

s

]
,

F5(s; 0, 0, m2) = F3(s; 0, 0, m2),

F7(s; 0, 0, m2) = −4F3(s; 0, 0, m2)

F13R(s; 0, 0, m2) =
11e2

144π2
+
e2m2

4π2s
+ e2C0(s, 0, 0,m2)

[
m4

2π2s
+
m2

4π2

]

+ e2D(s, 0, 0,m2)

[
5m2

12π2s
+

1

12

]
, (2.114)

where the on-shell scalar integrals D(s, 0, 0,m2) and C0(s, 0, 0,m2) are computed in Appendix

A.2; here F13R denotes the renormalized amplitude, obtained by first removing the UV pole

present in the photon self-energy by the usual renormalization of the photon wavefunction and

then taking the on-shell limit. The remaining invariant amplitudes Fi(s, 0, 0,m
2) are zero or

multiply vanishing tensors in this kinematical configuration so they do not contribute to the

correlator.

The limit from the massive on-shell form factors to the massless ones is clearer by looking at

the series expansion of the scalar integrals around m = 0

C0(s, 0, 0,m
2) =

1

2 s

[
log
(
− s

m2

)]2
− 2m2

s2
log
(
− s

m2

)
+O(m3) (2.115)

and from this we obtain for F ′1

F ′1(s, 0, 0,m
2) =

e2m2

3π2 s2

{
1− 1

4

[
log
(
− s

m2

)]2}
, (2.116)

where the notation F ′1 denotes the first form factor after the subtraction of the pole in 1/s.

Using the results given above, the full massive on-shell amplitude is given by

Γµναβ(s; 0, 0,m2) = F1 (s; 0, 0,m2) t̃µναβ1 + F3 (s; 0, 0,m2) (t̃µναβ3 + t̃µναβ5 − 4 t̃µναβ7 )

+F 13, R (s; 0, 0,m2) t̃µναβ13 , (2.117)
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so that the invariant amplitudes reduce from 13 to 3 and the three linear combinations of the

tensors can be taken as a new basis

t̃µναβ1 = lim
s1,s2→0

tµναβ1 = (s gµν − kµkν)uαβ(p, q) (2.118)

t̃µναβ3 + t̃µναβ5 − 4 t̃µναβ7 = lim
s1,s2→0

(tµναβ3 + tµναβ5 − 4 tµναβ7 ) =

−2uαβ(p, q) (s gµν + 2(pµ pν + qµ qν)− 4 (pµ qν + qµ pν)) (2.119)

t̃µναβ13 = lim
s1,s2→0

tµναβ13 =
(
pµqν + pνqµ

)
gαβ +

s

2

(
gανgβµ + gαµgβν

)

−gµν(s
2
gαβ − qαpβ)−

(
gβνpµ + gβµpν

)
qα −

(
gανqµ + gαµqν

)
pβ,

(2.120)

as previously done in the literature [46]. If we extract the residue of the full amplitude we realize

that even though some functions Fi(s, 0, 0,m
2) have kinematical singularities in 1/s this polar

structure is no longer present in the complete massive correlator

lim
s→0

sΓµναβ = 0 (2.121)

showing that in the massive case the 〈TJJ〉 correlator exhibits no poles. In a following section

we will comment on the interpretation of these massless poles exploiting the analogy with a

similar situation encountered in the case of the gauge anomaly.

2.6 The general effective action and its various limits

In this section we present results for the correlator in various kinematical limits. We start from

its expression in the on-shell massive case and then perform its expansion in 1/m which will be

used in a next section to extract the corresponding effective action. As a final step we show the

on-shell structure of the invariant amplitudes in the conformal limit.

It is possible to identify from them the structure of the effective action in its most general

form. If we denote by Si the contribution to the effective action due to each form factor Fi, then

we can write it in the form

Si =

∫
d4x d4y d4z t̂µναβi (z, x, y)hµν (z)Aα(x)Aβ(y)

∫
d4p d4q

(2π)8
e−ip·(x−z)−iq·(y−z)Fi(k, p, q)

(2.122)

where k ≡ p + q. We have introduced the operatorial version of the tensor structures tµναβi ,

denoted by t̂i that will be characterized below. Defining

p̂αx ≡ i
∂

∂xα
, q̂αy ≡ i

∂

∂yα
, k̂αz ≡ −i

∂

∂zα
(2.123)
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and using the identity

F̂i(k̂z , p̂x, q̂y)δ
4(x− z)δ4(y − z) =

∫
d4p d4q

(2π)8
e−ip·(x−z)−iq·(y−z)Fi(k, p, q) (2.124)

where formally F̂i is the operatorial version of Fi, we can arrange the anomalous effective action

also in the form

Si =

∫
d4xd4yd4zF̂i(k̂z, p̂x, q̂y)

[
δ4(x− z)δ4(y − z)

]
t̂µναβi (z, x, y)hµνAα(x)Aβ(y). (2.125)

For instance we get

t̂µναβ1 (z, x, y)hµνAα(x)Aβ(y) =
1

2

(
�zh(z) − ∂zµ∂zνhµν(z)

)
Fαβ(x)F

αβ(y), (2.126)

t̂µναβ2 (z, x, y)hµνAα(x)Aβ(y) =
(
�zh(z)− ∂zµ∂zνhµν(z)

)
∂µF

µ
λ (x)∂νF

νλ(y), (2.127)

t̂µναβ3 (z, x, y)hµνAα(x)Aβ(y) =
1

2
hµν(z)

(
�xgµν − 4∂xµ∂

x
ν

)
Fαβ(x)F

αβ(y), (2.128)

t̂µναβ4 (z, x, y)hµνAα(x)Aβ(y) = hµν(z)
(
�xgµν − 4∂xµ∂

x
ν

)
∂µF

µ
λ (x)∂νF

νλ(y), (2.129)

t̂µναβ5 (z, x, y)hµνAα(x)Aβ(y) =
1

2
hµν(z)

(
�ygµν − 4∂yµ∂

y
ν

)
Fαβ(x)F

αβ(y), (2.130)

t̂µναβ6 (z, x, y)hµνAα(x)Aβ(y) = hµν(z)
(
�ygµν − 4∂yµ∂

y
ν

)
∂µF

µ
λ (x)∂νF

νλ(y), (2.131)

t̂µναβ7 (z, x, y)hµνAα(x)Aβ(y) =
1

2
hµν(z)

(
∂x λ∂yλgµν − 2(∂yµ∂

x
ν + ∂yν∂

x
µ)
)
Fαβ(x)F

αβ(y),

(2.132)

t̂µναβ8 (z, x, y)hµνAα(x)Aβ(y) = hµν(z)
(
∂x λ∂yλgµν − 2(∂yµ∂

x
ν + ∂yν∂

x
µ)
)
∂µF

µ
λ (x)∂νF

νλ(y)

(2.133)

and similar expressions for the remaining tensor structures. However, the most useful forms

of the effective action involve an expansion in the fermions mass, as in the 1/m formulation

(the Euler-Heisenberg form) or for small m. In this second case the non-local contributions

obtained from the anomaly poles appear separated from the massive terms, showing the full-

fledged implications of the anomaly. This second formulation allows a smooth massless limit,

where the breaking of the conformal anomaly is entirely due to the massless fermion loops.

In the 1/m case, for on-shell gauge bosons, the result turns out to be particularly simple.

We obtain

F1(s, 0, 0,m
2) =

7e2

2160π2

1

m2
+

e2s

3024π2

1

m4
+O

(
1

m6

)
, (2.134)

F3(s, 0, 0,m
2) = F5(s, 0, 0,m

2) =
e2

4320π2

1

m2
+

e2s

60480π2

1

m4
+O

(
1

m6

)
, (2.135)

F7(s, 0, 0,m
2) = −4F3(s, 0, 0,m

2) (2.136)

F13,R(s, 0, 0,m2) =
11e2s

1440π2

1

m2
+

11e2s2

20160π2

1

m4
+O

(
1

m6

)
, (2.137)
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which can be rearranged in terms of three independent tensor structures. Going to configuration

space, the linearized expression of the contribution to the gravitational effective action due to

the TJJ vertex, in this case, can be easily obtained in the form

STJJ =

∫
d4xd4yd4z Γµναβ(x, y, z)Aα(x)Aβ(y)hµν(z)

=
7 e2

4320π2 m2

∫
d4x (�h− ∂µ∂νhµν)F 2

− e2

4320π2 m2

∫
d4x

(
�hF 2 − 8∂µFαβ∂νFαβhµν + 4(∂µ∂νFαβ)F

αβhµν

)

+
11 e2

1440π2 m2

∫
d4xT µνph �hµν . (2.138)

which shows three independent contributions linear in the (weak) gravitational field.

2.7 The massless (on-shell) 〈TJJ〉 correlator

The non-local structure of the effective action, as we have pointed out in the previous sections,

is not apparent within an expansion in 1/m, nor this expansion has a smooth match with the

massless case.

The computation of the correlator Γµναβ(s; 0, 0, 0) hides some subtleties in the massless

fermion limit (with on-shell external photons), as the form factors Fi and the tensorial structures

ti both contain the kinematical invariants s1, s2. For this reason the limit of both factors (form

factor and corresponding tensor structure) Fi t
µναβ
i has to be taken carefully, starting from the

expression of the massless Fi(s; s1, s2, 0) listed in Appendix A.6 and from the tensors tµναβi

contracted with the physical polarization tensors. In this case only few form factors survive and

in particular

F1(s, 0, 0, 0) = − e2

18π2s
, (2.139)

F3(s, 0, 0, 0) = F5(s, 0, 0, 0) = − e2

144π2 s
, (2.140)

F7(s, 0, 0, 0) = −4F3(s, 0, 0, 0), (2.141)

F13,R(s, 0, 0, 0) = − e2

144π2

[
12 log

(
− s

µ2

)
− 35

]
, (2.142)

and hence the whole correlator with two onshell photons on the external lines is

Γµναβ(s; 0, 0, 0) = F1(s, 0, 0, 0) t̃
µναβ
1 + F3(s, 0, 0, 0)

(
t̃µναβ3 + t̃µναβ5 − 4 t̃µναβ7

)
+ F13,R t̃

µναβ
13

= − e2

48π2 s

[(
2 pβ qα − s gαβ

)
(2 pµ pν + 2 qµ qν − s gµν)

]
+ F13,R t̃

µναβ
13 ,

(2.143)
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where t̃µναβi are the tensors defined in Eqs. (2.118-2.120).

The study of the singularities in 1/s for this correlator requires a different analysis for F1

and the remaining form factors, as explicitly shown in eq. 2.143, where F1 has been kept aside

from the others, even if it is proportional to F3. Indeed F1 is the only form factor multiplying

a non zero trace tensor, t̃µναβ1 , and responsible for the trace anomaly. If we take the residue of

the onshell correlator for physical polarizations of the photons in the final state we see how the

4 form factors and their tensors combine in such a way that the result is different from zero as

lim
s→0

sΓµναβ(s; 0, 0, 0) = − e2

12π2
pβ qα(pµ pν + qµ qν), (2.144)

where clearly each singular part in 1/s present in F1, F3, F5, F7 added up and the logarithmic

behaviour in s of F13 has been regulated by the factor s in front when taking the limit. The

result shows that the pole, in this case, is coupled in the IR, as shown by the dispersive analysis.

2.8 Conclusions

We have presented in this chapter a computation of the TJJ correlator, responsible for the

appearance of gauge contributions to the conformal anomaly in the effective action of gravity.

We have used our results to present the general form of the gauge contributions to this action, in

the limit of a weak gravitational field. One interesting feature of this correlator is the presence

of an anomaly pole [51].

Usually anomaly poles are interpreted as affecting the infrared region of the correlator and

appear only in one special kinematical configuration, which requires massless fermions in the

loop and on-shell conditions for the external gauge lines. In general, however, the anomaly pole

affects the UV region even if it is not coupled in the infrared. This surprising feature of the

anomaly is present both in the case of the chiral anomaly [40] and in the conformal anomaly.

Here we have extracted explicitly this behaviour by a general analysis of the correlator, extending

our previous study of the chiral gauge anomaly.

As we noticed at the end of the previous chapter, anomaly poles are the most interesting

feature, at perturbative level, of the anomaly, being it conformal or chiral, and are described by

mixed diagrams involving either a scalar (gravitational case) [51] or a pseudoscalar (chiral case)

[30, 40]. The connection between the infrared and the ultraviolet, signalled by the presence

of these contributions, should not be too surprising in an anomalous context. The pole-like

behaviour of an anomalous correlator is usually “captured” by a variational solution of a given

anomaly equation, which implicitly assumes the presence of a pole term in the integrated func-

tional [92]. By rediscovering the pole in perturbation theory, obviously, one can clearly conclude
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that variational solutions of the anomaly equations are indeed correct, although they miss homo-

geneous solutions to the Ward identity, that indeed must necessarily be identified by an off-shell

perturbative analysis of the correlators. This is the approach followed here and in [40].

We have also seen that the identification of the massless anomaly pole allows to provide

a “mixed” formulation of the effective action in which the pole is isolated from the remaining

mass terms, extracted in the S̃pole part of the anomalous action, which could be used for further

studies. We have also emphasized that a typical 1/m expansion of the anomalous effective action

fails to convey fully the presence of scaleless contributions.



Chapter 3

The Trace Anomaly and the

Gravitational Coupling of an

Anomalous U(1)

3.1 Introduction

In the previous chapter we have presented a complete computation of the off-shell graviton-

photon-photon vertex for an abelian gauge theory, which is derived from the correlator of the

energy-momentum tensor (T ) with two vector currents (J) (the TJJ correlator) [51, 52]. Pre-

vious studies of this correlator, included those of [46, 48, 49, 85], were limited to the QED case,

while, surprisingly, there has not been any previous attempt to discuss the structure of more

general vertices, such the TJAJA or TJV JA correlators, carrying one insertion of the energy

momentum tensor and of one or more chiral currents. They become the object of investigation

of this third chapter.

These correlators appear indeed in the expression of the 1 particle irreducible (1PI) effective

action which describes the interaction of gravity with the fields of a chiral theory, such as

the Standard Model, and contribute, to leading order in the gauge coupling expansion, to the

radiative breaking of scale invariance. In turn, this is the prominent perturbative feature of

the trace anomaly, which appears to be generated by specific pole terms, as we are going to

elaborate in the following of this chapter.

Correlators of this type can potentially carry mixed anomalies. Specifically, this can be a

trace anomaly, due to the insertion of an energy momentum tensor, in combination with a chiral

anomaly, due to the presence of axial-vector currents. This anomaly mixing, in principle, is

expected to be present both in the case that we investigate - involving one or two axial-vector

55
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currents - and in higher point functions. In the latter case they may involve a larger number of

axial-vector gauge currents, such as the TJAJAJA vertex and many others, which are divergent

by power-counting, as one can easily figure out, and contribute to higher perturbative orders.

As in the case of the AV V diagram (with Axial-vector/Vector/Vector currents), responsible

for the chiral anomaly and discussed in the first chapter, also in the case under analysis one of

the crucial points relies on the derivation of the correct Ward identities which allow to define

this trilinear vertex consistently. This point requires some care, due to the formal manipulations

involved in the handling of the functional integral and to the presence of mass corrections. In

the massless case, instead, the computation of this correlator can be formally related to the

vector case (the TJJ case) of [51, 52] by a naive manipulation of the chiral projectors in the

loops. Our investigation addresses all these points in some detail, offering a general approach

that can be applied to the realistic case of the Standard Model. In this respect, the study of

the gravitational coupling of a chiral abelian theory (with one anomalous U(1)) contains all the

issues that appear in of the fermion sector of the non-abelian case.

3.1.1 The anomalous effective action

As we have mentioned above, one of the key features of the trace anomaly is the appearance in

the 1PI effective action of dynamical massless poles which mediate the anomalous interaction

[51, 52]. The story of massless poles in anomaly-mediated interactions, obviously, is not new,

and goes back to Dolgov and Zakharov [37], in their analysis of the chiral anomaly. The nonlocal

“1/�” structure of the effective anomalous interaction, due to the pole term in the correlator,

is, in fact, a distinctive feature of the diagrammatic expansion of these effective theories. These

can be made local at the cost of introducing two pseudoscar (auxiliary) fields [30]. In the

case of conformal anomalies, the identification of similar massless poles and their interpretation

has been addressed recently in [51], and in [52], by direct computations. These singularities,

as discussed throughout this thesis, affect both the infrared and the ultraviolet region of the

anomaly diagrams, as we will illustrate in the next sections. These features, present in the QED

and QCD cases, are naturally shared by an anomalous abelian theory when it gets coupled to

gravity.

The possible physical implications of this behaviour of the effective action have been discussed

in [93], and for this reason similar analysis in the complete Standard Model and for other

correlators (such as the TTT vertex ) are underway.
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3.1.2 Aspects of the computation

Coming to other features of our computation, it should be remarked that a direct derivation from

first principles of correlators with axial-vector/vector currents and energy momentum insertions,

in general, runs into difficulties. This is due to the appearance of commutators of the energy

momentum tensor with the chiral current, situation that we will try to avoid.

As in the vector-like case, we will provide explicit expressions of all the form factors appearing

in the correlator, for a simple theory. We have selected an abelian model with two vector/axial-

vector currents and a single massive fermion. One important point that we intend to stress is

that the local (gauge) or global nature of the two currents, in the example that we provide,

is not relevant for the conclusions and the goals of this analysis, being the two gauge fields to

which the two currents couple just classical background fields. For this reason, our investigation

is essentially the search of the correct conditions for defining anomalous correlators of the form

TJV JA and TJAJA (with a single insertion of Tµν). The approach is the exact analogous of the

one followed in the investigation of the AVV graph of the chiral anomaly, and in principle could

be generalized to more complex correlators. Unfortunately, however, the explicit test of the

Ward identities containing higher point functions becomes increasingly difficult in perturbation

theory.

Another remark concerns the use of Dimensional Reduction (DRED) with a 4-dimensional

γ5 [94] in our analysis. Typically, in these types of studies, it is necessary at each step to check

the consistency of the perturbative result against the constraints posed by the anomalous Ward

identities. Our results, which are more complex than in a previous analysis of the TJJ vertex,

indeed satisfy these conditions. It has also been checked that Dimensional Regularization (DR)

and DRED give the same expression for the TJAJA vertex, while they differ in the case of the

TJV JA vertex by infinite contributions. In this second case, as we are going to show, both the

condition of charge conjugation invariance (C-invariance) and the Ward identity extracted from

the functional integral imply that this specific vertex is required to vanish identically for any

fermion mass.

3.2 The Lagrangian and the off-shell effective action

To establish notations, here we will briefly summarize our conventions. The diagrammatic

contributions will be presented both in the usual V/A (vector/axial-vector) form, with Dirac

spinors, and in the L/R (Left-Right) form, using chiral fermions. We will include mass effects in

the fermion loops and we will keep all the external lines off their mass-shell in order to establish

the most general form of the corresponding effective action.
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We consider a theory with a Dirac fermion ψ and two abelian gauge bosons, namely V and

A, described by the Lagrangian

L0 = −1

4
FV µνF

µν
V −

1

4
FAµνF

µν
A + ψ̄γµ(i∂µ + gVµ + gγ5Aµ)ψ −mψ̄ψ, (3.1)

where the fermion couples to the two gauge bosons with, respectively, a vector and an axial-

vector interaction. In our conventions, the axial-vector gauge boson is denoted by A, while the

vector one is denoted by V . The axial current will be denoted JµA = ψ̄γµγ5ψ, and sometimes we

will be using a suffix “5” to emphasize its axial-vector character. For instance Π55 will denote the

axial-axial two-point function while Π ≡ ΠV V will denote the corresponding two-point function

of the vector case. In the derivation of the Ward identities which will be discussed below, the

gauge fields will be considered as external background fields both in the V/A and in the L/R

formulation. This theory couples to gravity in the weak gravitational field limit via the energy

momentum tensor of (3.1).

In particular, the corresponding effective action will be formally defined as the sum of

1) the tree-level action given by (3.1)

S0 =

∫
d4xL0 (3.2)

and 2) the trilinear interactions TJAJV , TJV JV and TJAJA. These extra graphs appear as

leading corrections to the effective action, which is defined as

Sanom ≡ 〈ΓAAhAA〉 + 〈ΓV AhV A〉+ 〈ΓV V hV A〉 (3.3)

with

〈ΓhAA〉 ≡
∫
d4z d4x d4y ΓµναβAA hµν(z)Aα(x)Aβ(y) (3.4)

and similarly for all the other terms. The field hµν denotes the linearized fluctuations of the

metric around a flat background

gµν = ηµν + κhµν , κ =
√

16πGN (3.5)

with GN being the 4-dimensional Newton’s constant.

One of the principal goals of our investigation is to provide a correct definition of Sanom by

deriving the essential Ward identities of the anomalous correlators. At the same time we will

show, as in a previous case study for QED, that the effective action is characterized by massless

anomaly poles. The extraction of these singularities, in our case, is not based on dispersion

theory as in [51] but the results are obviously equivalent to the dispersive treatment [52] in the

massless case, with a generalization for massive fermions.
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3.2.1 Symmetries and the energy momentum tensor

The Lagrangian in (3.1) remains invariant under the local vector gauge transformation U(1)V

ψ → eig α(x)ψ, (3.6)

ψ̄ → ψ̄e−ig α(x), (3.7)

V µ → V µ + ∂µα(x), (3.8)

which implies the conservation of the vector current JµV ≡ Jµ = ψ̄γµψ. If the fermion mass is

zero the Lagrangian is also invariant under a local axial-vector gauge transformation U(1)A

ψ → eig β(x)γ5ψ, (3.9)

ψ̄ → ψ̄eig β(x)γ5 , (3.10)

Aµ → Aµ + ∂µβ(x), (3.11)

implying the conservation of the axial-vector current JA. Obviously, this is explicitly broken by

the contributions of massive fermions

∂µJ
µ
A = 2im ψ̄γ5ψ. (3.12)

The energy-momentum tensor consists of four contributions: the free fermion part Tf , the

fermion-boson interaction parts TiV and TiA , due to the interactions of the axial and vector

gauge fields with the fermions, and the gauge term Tg which are given by

T µνf = −iψ̄γ(µ
↔

∂
ν)ψ + gµν(iψ̄γλ

↔

∂λψ −mψ̄ψ), (3.13)

T µνiV = − gJ (µV ν) + ggµνJλVλ , (3.14)

T µνiA = − gJ (µ
A A

ν) + ggµνJλAAλ , (3.15)

and

T µνg = FµλV F νV λ −
1

4
gµνF λρV FV λρ + FµλA F νAλ −

1

4
gµνF λρA FAλρ. (3.16)

The complete energy-momentum tensor is

T µν = T µνf + T µνiV + T µνiA + T µνg , (3.17)

which couples to gravity with a linearized term of the form hµνT
µν . The Lagrangian (3.1)

can be rewritten in the chiral basis decomposing the fields in terms of their left-handed and

right-handed components by using the chirality projectors

PL =
1− γ5

2
, PR =

1 + γ5

2
. (3.18)
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We define the chiral fermion fields as

ψL = PLψ, ψR = PRψ (3.19)

and the left and right gauge fields, AL and AR, as

AµL = V µ −Aµ, (3.20)

AµR = V µ +Aµ, (3.21)

so that the Lagrangian takes the form

L = −1

4
FLµν F

µν
L −

1

4
FRµν F

µν
R + ψ̄Lγµ(i ∂

µ + gAµL)ψL + ψ̄Rγµ(i ∂
µ + gAµR)ψR (3.22)

when the mass term has been set to vanish. The energy momentum is separated into the various

chiral contributions

T µνf,L = −iψ̄γ(µ
↔

∂
ν) PLψ + gµνiψ̄γλ

↔

∂λ PLψ, (3.23)

T µνf,R = −iψ̄γ(µ
↔

∂
ν) PRψ + gµνiψ̄γλ

↔

∂λ PRψ, (3.24)

T µνi,L = − g (J
(µ
L A

ν)
L − gµνJλLALλ) , (3.25)

T µνi,R = − g (J
(µ
R A

ν)
R − gµνJλRARλ) , (3.26)

with

JµL(x) = ψ̄(x)γµPLψ(x), (3.27)

JµR(x) = ψ̄(x)γµPRψ(x). (3.28)

Notice that the Lagrangian in (3.22) is invariant under the chiral transformation U(1)L×U(1)R.

3.2.2 Perturbative expansion of the axial-vector contributions

The analysis of the vector-like contributions, i.e. of the 〈TJJ〉 correlator, has been performed in

great detail in [52]. For this reason we will consider, at this point, a vanishing vector contribution

(V → 0) in the defining Lagrangian (3.1) and we will focus our discussion at the moment on its

axial part. A relation between the vector and axial contributions will be worked out in the later

sections, where we will show that mixed vector-axial vector correlators vanish for any nonzerom.

We will also show how to relate pure vector like to axial vector like contributions, as indicated

below in Eq. 3.93.

To extract the one-loop contributions to the 〈TJAJA〉 correlator in the perturbative expan-

sion and identify those due to the conformal anomaly, it is sufficient to consider only the partial
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energy-momentum tensor Tp given by the Dirac and the interaction term in Eqs. (3.13) and

(3.15)

T µνp = T µνf + T µνiA , (3.29)

while the gauge term in Eq. (3.16) is only responsible, to second order (g2), of two non-amputated

diagrams removed from the perturbative expansion of the effective action. We also recall that

the conservation of the energy momentum tensor can be reformulated as a partial conservation

equation

∂νT
µν
p = −∂νT µνAg , (3.30)

with

T µνAg ≡ F
µλ
A F νAλ −

1

4
gµνF λρA FAλρ. (3.31)

Using diffeomorphism invariance one can derive formally a quantum relation similar to (3.30),

which takes the form

∂ν〈T µνp 〉A = g FµλA 〈JAλ〉A. (3.32)

This relation is the analogue - for the axial case - of the relation identified in [51], which allows to

extract the momentum conservation Ward identity in the case of the TJJ (for vector currents).

In (3.32) the functional average of T µνp is now defined as

〈T µνp (z)〉A ≡
∫
DψDψ̄ T µνp (z) ei

R

d4xLk(ψ)+ig
R

d4x JA·A(x) (3.33)

with

Lk(ψ) ≡ ψ̄iγµ∂µψ (3.34)

being the kinetic fermion Lagrangian in flat spacetime, and we will denote by Sk(ψ) the corre-

sponding action. Notice that equation (3.32) can be naively thought as the quantum counterpart

of the non-homogeneous equation

∂νT
µν
p = g FµλA JAλ (3.35)

satisfied by T µνp . Here the axial vector field A is taken as a background. A rigorous derivation

of this relation requires the use of invariance under diffeomorphism of the generating functional

of the full theory (expressed in terms of gµν and a Aµ) and an expansion around flat space, as

can be checked.

The conservation equation (3.32) is relevant for the extraction of one of the Ward identities

necessary to define the correlator. Notice that the expectation value of Tp in the background of

the gauge field A is the generating functional of the correlation functions that we need. These
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are obtained by an expansion through second order in the external field A. The relevant terms

in this expansion are explicitly given by

〈T µνp (z)〉A =
(ig)2

2!
〈T µνf (z) (JA · A) (JA · A)〉+ ig 〈T µνiA (z) (JA ·A)〉+ ... , (3.36)

with (JA · A) ≡
∫
d4xJA ·A(x).

The corresponding diagrams are extracted via two functional derivatives respect to the back-

ground field A and are given by

ΓµναβAA (z;x, y) ≡ δ2 〈T µνp (z)〉A
δAα(x)δAβ(y)

∣∣∣∣
A=0

= V µναβ
55 (z;x, y) +W µναβ

55 (z;x, y), (3.37)

where

V µναβ
55 (z;x, y) = (i g)2

〈
T µνf (z)JαA(x)JβA(y)

〉
A=0

, (3.38)

and

W µναβ
55 (z;x, y) = (i g)

δ2
〈
T µνiA (z) (JA ·A)

〉

δAα(x) δAβ(y)

∣∣∣∣
A=0

= δ4(x− z) gα(µΠ
ν)β
AA(z, y) + δ4(y − z) gβ(µΠ

ν)α
AA(z, x)

− gµν [δ4(x− z) + δ4(y − z)]Παβ
AA(x, y),

(3.39)

is a second term expressed in terms of the correlator of two axial currents

Παβ
AA(x, y) = −ig2〈JαA(x)JβA(y)〉

∣∣∣∣
A=0

. (3.40)

3.3 Ward identities

The consistent definition of the 〈TJAJA〉 correlator requires the imposition of some Ward iden-

tities on it, that we are going to derive below. We start from the Ward identity to be satisfied by

the axial vector current and then move to the conservation equation of the energy momentum

tensor.

3.3.1 Axial vector Ward identities

The axial vector Ward identity is given by

∂xα ΓµναβAA (z;x, y) = ∂xα

[
V µναβ

55 (z;x, y) +W µναβ
55 (z;x, y)

]
. (3.41)
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The two terms in the previous equation take the form

∂xα V
µναβ
55 (z;x, y) = (i g)2 ∂xα

〈
T µνf (z)JαA(x)JβA(y)

〉
, (3.42)

∂xαW
µναβ
55 (z;x, y) = gα(µΠ

ν)β
AA(z, y) ∂xαδ

4(x− z) + 2mi δ4(y − z)gβ(µΠ
ν)
AP (z, x)

− gµνΠαβ
AA(x, y)∂xαδ

4(x− z)− 2migµν [δ4(x− z) + δ4(y − z)]Πβ
AP (x, y),

(3.43)

while Πα
AP (x, y) is defined by

Πα
AP (x, y) = −ig2〈Jα5 (x)P (y)〉

∣∣∣∣
A=0

, (3.44)

Here, P denotes the pseudoscalar current P ≡ ψ̄γ5ψ, and Πα
AP ,Π

αβ
AA are related by the PCAC

condition

2imΠβ
AP (x, y) = ∂xα Παβ

AA(x, y). (3.45)

The derivative of the correlator with the insertion of the free energy momentum tensor (Tf ) can

be calculated using functional techniques. For this purpose we consider the generating functional

with the fermionic sources η and η̄ and the classical background sources V µ and Aµ coupled

respectively to the current operators JµV = ψ̄γµψ and JµA = ψ̄γµγ5ψ

〈T µνf (z)〉V,A,η,η̄ =

∫
DψDψ̄ T µνf (z) eiSk(ψ)+i

R

d4x (g JV ·V+g JA·A+ψ̄η+η̄ψ) (3.46)

and exploit the consequence of a chiral transformation on the corresponding Green’s functions.

The functional integral must be invariant under a reparameterization of the integration variables,

giving the identity
∫
DψDψ̄ T µνf (z) ei Sk(ψ)+i

R

d4x (g JV ·V+g JA·A+ψ̄ η+η̄ ψ) =
∫
Dψ′Dψ̄′ T µνf (z)′ eiSk(ψ′)+i

R

d4x (g J ′

V ·V+g J ′

A·A+ψ̄′ η+η̄ ψ′). (3.47)

For a local infinitesimal chiral transformation of the fermion fields defined by

ψ → ψ′ = ψ + i g ǫ(x) γ5 ψ, (3.48)

ψ̄ → ψ̄′ = ψ̄ + i g ǫ(x) ψ̄ γ5, (3.49)

we can compute the variation of the action S and of T µνp appearing on the right hand side (r.h.s.)

of Eq. (3.47). The action changes as

Sk(ψ′)′ = Sk(ψ) +

∫
d4x ǫ(x)(∂αJ

α
A(x)− 2imP (x)), (3.50)
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whereas the vector and the axial-vector currents are obviously invariant

J ′µV = JµV , J ′µA = JµA. (3.51)

The variation of the free energy-momentum tensor is instead given by

δT µνf (z) =
1

2

[
JµA(z)∂νǫ(z) + JνA(z)∂µǫ(z)

]
− gµν

[
JλA(z)∂λǫ(z)− 2miǫ(z)P (z)

]
. (3.52)

We note that this change of variables is not a gauge transformation; V and A are therefore

invariant. For this reason, using also the invariance of the two currents, the interaction terms

Ti,A and Ti,V of the energy momentum tensor remain invariant as well. It follows that the

variation of T µνp (z) is due only to the free contribution shown above.

If we rewrite the infinitesimal parameter ǫ(z) as ǫ(z) =
∫
d4x ǫ(x)δ4(z−x), the energy momentum

variation can be recast in the following form

δT µνf (z) =

∫
d4x ǫ(x)Hµν(x, z), (3.53)

where this definition of Hµν(x, z)

Hµν(x, z) =
1

2
JµA(z) ∂νz δ

4(z − x) +
1

2
JνA(z) ∂µz δ

4(z − x)

−gµν
(
JλA(z) ∂zλ δ

4(z − x)− 2imP (z) δ4(z − x)
)

(3.54)

will turn useful in the following. Given the chiral nature of the transformation, we include also

the anomalous variation of the measure

Dψ′Dψ̄′ = DψDψ̄ exp

{
i

∫
d4x ǫ(x)an

[
1

3
ǫαβµνFAαβF

A
µν + ǫαβµνF VαβF

V
µν

]}
(3.55)

where an = g2

16π2 is the anomaly coefficient. Expanding the r.h.s. of Eq. (3.47) to the first

order in ǫ and taking into account the variation of the measure we obtain the Schwinger-Dyson

equation

0 =

∫
d4x ǫ(x)

∫
DψDψ̄

{
i T µνf (z)

[
∂αJ

α
A(x)− 2miP (x) + igψ̄(x)γ5η(x) + igη̄(x)γ5ψ(x)

+ an

(
1

3
FA(x)F̃A(x) + F V (x)F̃ V (x)

)]
+Hµν(x, z)

}
eiSk(ψ)+i

R

d4x (g JV ·V+g JA·A+ψ̄η+η̄ψ)

(with FF̃ ≡ ǫαβµνFαβFµν). The expression takes a simplified form if we set the sources η, V

and η̄ to zero, and hence we obtain the anomalous Ward identity

i〈T µνf (z)∂ ·JA(x)〉A = −2m〈T µν(z)P (x)〉A−ian
1

3
FA(x)F̃A(x)〈T µνf (z)〉A−〈Hµν(x, z)〉A. (3.56)
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From Eq. (3.56) we can extract Ward identities on correlation functions which contain one

insertion of the energy-momentum tensor and several gauge currents just by functional differen-

tiation respect to the external sources. For example, taking a derivative of (3.56) with respect

to background field Aµ we obtain the constraint

∂xα
δ

δAβ(y)
〈T µνf (z)JαA(x)〉V,A,η,η̄

∣∣∣∣
V,A,η,η̄=0

=

δ

δAβ(y)

{
2mi〈T µνf (z)P (x)〉V,A,η,η̄ + i 〈Hµν(x, z)〉V,A,η,η̄

}∣∣∣∣
V,A,η,η̄=0

,

(3.57)

and performing explicitly the functional derivative we obtain the axial Ward identity

∂xα 〈T µνf (z)JαA(x)JβA(y)〉 = 2mi〈T µνf (z)P (x)JβA(y)〉+ i〈Hµν(x, z)JβA(y)〉 (3.58)

where the last term is given by

〈Hµν(x, z)JβA(y)〉V,A,η,η̄
∣∣∣∣
V,A,η,η̄=0

= (−ig2)−1

{
1

2
Πµβ
AA(z, y)∂νz δ

4(z − x)

+
1

2
Πνβ
AA(z, y) ∂µz δ

4(z − x)

− gµν
[
Πλβ
AA(z, y)∂zλδ

4(z − x)− 2miΠβ
AP (z, y)δ4(z − x)

]}
.

(3.59)

Notice that Eq. (3.58) allows to derive indirectly the vacuum expectation value of the commu-

tator of Tf with JA by comparison with the canonical expression

∂xα 〈T µνf (z)JαA(x)JβA(y)〉 = 2mi〈T µνf (z)P (x)JβA(y)〉+ 〈
[
T µν(z), JαA(x)

]
gα,0δ(x0 − z0)JβA(y)〉

(3.60)

or

〈
[
T µν(z), JαA(x)

]
gα,0δ(x0 − z0)JβA(y)〉 = i〈Hµν(x, z)JβA(y)〉. (3.61)

Proceeding with the functional differentiation one can derive further unrenormalized Ward iden-

tities for correlators of the form TJAJAJA

(ig)2 ∂xλ 〈T µνf (z)JλA(x)JαA(y)JβA(w)〉 = (ig)2 〈T µνf (z) 2miP (x)JαA(y)JβA(w)〉

+
8

3
an ǫ

αβρσ ∂ρ δ
4(x− y) ∂σ δ4(x− w)〈T µνf (z)〉

+ i (ig)2 〈Hµν(x, z)JαA(y)JβA(w)〉,

(3.62)

which can be analyzed and checked in perturbation theory in a specific regularization scheme.
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3.3.2 The axial Ward identity in momentum space

The Ward identity on the 〈TJAJA〉 vertex is extracted combining Eqs. (3.58) and (3.59) with

Eqs. (3.42) and (3.43) and it is explicitly given by

∂xα ΓµναβAA (z;x, y) = 2mi (i g)2
〈
T µνf (z)P (x)JβA(y)

〉
+

{
1

2
Πµβ
AA(z, y) ∂νz δ

4(z − x)

+
1

2
Πνβ
AA(z, y) ∂µz δ

4(z − x)

− gµν
[
Πλβ
AA(z, y) ∂zλ δ

4(z − x)− 2miΠβ
AP (z, y) δ4(z − x)

]}

+ gα(µ Π
ν)β
AA(z, y) ∂xα δ

4(x− z) + 2mi δ4(y − z)gβ(µΠ
ν)
AP (z, x)

− gµν Παβ
AA(x, y)∂xαδ

4(x− z)− 2migµν [δ4(x− z) + δ4(y − z)]Πβ
AP (x, y).

(3.63)

By defining

(2π)4 δ4(k − p− q) ΓµναβAA (k, p, q) =

∫
d4x d4y d4z e−i k·z+i p·x+i q·y ΓµναβAA (z;x, y) (3.64)

and

(2π)4 δ4(k − p− q)∆µνβ
AP (k, p, q) =

∫
d4x d4y d4z e−i k·z+i p·x+i q·y

〈
T µνf (z)P (x)JβA(y)

〉
, (3.65)

we obtain its form in momentum space

− ipα ΓµναβAA (k, p, q) = 2mi(i g)2 ∆µνβ
AP (k, p, q) +

{
1

2
ipνΠµβ

AA(q)

+
1

2
ipµΠνβ

AA(q)− gµν
[
ipλΠ

λβ
AA(q)− 2miΠβ

AP (q)

]}

− ipαg
α(µΠ

ν)β
AA(q) + 2migβ(µΠ

ν)
AP (p)

+ gµν ipαΠ
αβ
AA(q)− 2migµν

[
Πβ
AP (q) + Πβ

AP (p)

]
. (3.66)

We will be using this identity in the definition of the correlator with two axial-vector currents.

3.3.3 Ward identity for the conservation of Tµν

Moving to the conservation equation of the energy momentum tensor, the derivation of the

corresponding Ward identity involves the functional relation (3.32) which is given by

∂

∂zν
ΓµναβAA (z;x, y) = − ∂

∂zµ
δ4(z − x)Παβ

AA(z, y) + gαµ
∂

∂zλ
δ4(z − x)Πλβ

AA(z, y)

− ∂

∂zµ
δ4(z − y)Παβ

AA(x, z) + gβµ
∂

∂zλ
δ4(z − y)Πλα

AA(z, x), (3.67)
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Figure 3.1: The complete one-loop vertex (a) given by the sum of the 1PI contributions called V µναβ
55

(p, q)

(b) and Wµναβ
55

(p, q) (c) with a graviton hµν in the initial state and two gauge bosons with axial-vector

couplings Aα, Aβ in the final state.

which can be simplified using the PCAC relation (3.45). In momentum space it gives

kνΓ
µναβ
AA (p, q) = (gαµ kν − gαν pµ)Πβν

AA(q) + (gβµ kν − gβν qµ)Παν
AA(p). (3.68)

The complete set of defining conditions of each vertex, beside the two Ward identities derived

above, is the request of a symmetry on its µ, ν indices, i.e. ΓµναβAA = ΓνµαβAA . We will be using

these conditions in order to fix the entire structure of the correlator and check the consistency

of a given regularization scheme.

3.4 Diagrammatic expansion

The relevant diagrams responsible for the conformal anomaly are shown in Fig. 3.1 and take

the form of Eqs. (3.38) and (3.39). They consist of an amplitude with triangular topology (see

Fig. 3.1b) and of a bubble-like diagram (called a “t-bubble”, see Fig. 3.1c). This has the topology

of a self-energy loop inserted on each of the gauge lines and attached from one side to the T

vertex. These contributions are all of O(g2). At this point, we recall that the tree-level vertex

with a graviton and a Dirac fermion, namely V ′µν , and the trilinear graviton-gauge boson-

fermion coupling, i.e. W ′µνα5 , induced by the two contributions Tf and TiA are respectively

given by

V ′µν(k1, k2) =
1

4
[γµ(k1 + k2)

ν + γν(k1 + k2)
µ]− 1

2
gµν [γλ(k1 + k2)λ − 2m] (3.69)

W ′µνα5 = −1

2
(γµγ5g

να + γνγ5g
µα) + gµνγαγ5 (3.70)

where k1 and k2 are generic momenta, incoming and outgoing, respectively. Notice that the

first contribution is vector-like, derived from (3.13) and, naturally, is the same appearing in the
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previous analysis of the 〈TJJ〉 correlator in [52]. The second one, W ′µνα5 , due to (3.15), differs

from the analogous vertex W ′µνα appearing in the case of the 〈TJJ〉 correlator because of the

presence of the γ5 matrix.

If we denote with k the incoming momentum of the graviton and with p and q the two outgoing

momenta of the A gauge bosons we obtain

(2π)4 δ4(k − p− q)V µναβ
55 (p, q) ≡

∫
d4x d4y d4z e−ik·z+ip·x+iq·y 〈T µνf (z)JαA(x)JβA(y)〉 (3.71)

(2π)4 δ4(k − p− q)W µναβ
5 5 (p, q) ≡

∫
d4x d4y d4z e−ik·z+ip·x+iq·y 〈T µνiA (z)JαA(x)JβA(y)〉. (3.72)

Explicitly

V µναβ
5 5 (p, q) = −ig2

∫
d4l

(2π)4
tr
{
V ′µν(l + p, l − q)(l/− q/+m)γβγ5 (l/ +m) γαγ5(l/ + p/+m)

}

[l2 −m2] [(l − q)2 −m2] [(l + p)2 −m2]
,

(3.73)

W µναβ
5 5 (p, q) = −ig2

∫
d4l

(2π)4
tr
{
W ′µνα5 (l/ +m) γβγ5(l/+ q/+m)

}

[l2 −m2] [(l + q)2 −m2]
, (3.74)

so that the complete one-loop amplitude (see Fig. 3.1) is built up by symmetrizing on the

external boson lines as

ΓµναβAA (p, q) = V µναβ
5 5 (p, q) + V µνβα

5 5 (q, p) +W µναβ
5 5 (p, q) +W µνβα

5 5 (q, p). (3.75)

3.5 Tensor decomposition and naive manipulations

As we have mentioned, the correlator is completely defined by a set of Ward identities, which

amount to renormalization conditions which should be imposed in such a way 1) to respect

its Bose symmetry and 2) the conservation of the fundamental currents of the theory. This

is the case for all the anomalous correlators, both for chiral and conformal anomalies. At

the same time, one needs a good regularization scheme in order to proceed with the actual

implementation of these conditions, which could be obviously violated. This may require a

(final) finite renormalization of the result in order to force the result to satisfy the original

Ward identities. In this respect, various regularization schemes are available for chiral vertices,

from a partially [95] to a totally anticommuting γ5. As we have already mentioned, in the

computation of the correlator we have used DRED [94], with loop momenta computed in D

spacetime dimensions and traces performed in 4 dimensions, and we have verified all the Ward

identities formally derived in this chapter.
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3.5.1 Vanishing of the TJV JA correlator

We start our analysis by studying the TJV JA correlator.

For this reason we just recall that this specific correlation function can be extracted by the

generating functional

〈T µνp (z)〉V,A ≡
∫
DψDψ̄ T µνp (z) ei

R

d4x(Lk(ψ)+g JV ·V (x)+g JA·A(x))

= 〈T µνp ei
R

d4x g ( JV ·V (x)+JA·A(x))〉. (3.76)

Here we have introduced two independent sources JV and JA. The corresponding correlators

are obtained via functional variations respect to the background fields V and A, namely

ΓµναβV A (z;x, y) ≡
δ2 〈T µνp (z)〉V,A
δVα(x)δAβ(y)

∣∣∣∣
V,A=0

= V µναβ
5 (z;x, y) +W µναβ

5 (z;x, y). (3.77)

whose expressions in momentum space are (for the direct and the exchange contributions)

V µναβ
5 dir (p, q) = −(−ig)2i3

∫
d4l

(2π)4
1

[l2 −m2] [(l − q)2 −m2] [(l + p)2 −m2]
·

·
[
tr
{
V ′µν(l + p, l − q)(l/ − q/+m)γβ (l/+m) γαγ5(l/+ p/+m)

}]
,

(3.78)

V µναβ
5 ex (p, q) = −(−ig)2i3

∫
d4l

(2π)4
1

[l2 −m2] [(l + q)2 −m2] [(l − p)2 −m2]
·

·
[
tr
{
V ′µν(l − p, l + q)(l/ − p/+m)γαγ5 (l/+m) γβ(l/+ q/+m)

}]
,

(3.79)

W µναβ
5 dir (p, q) = −(−ig)2i3

∫
d4l

(2π)4
tr
{
W ′µναγ5(l/+m)γβ (l/+ q/+m)

}

[l2 −m2] [(l + q)2 −m2]
, (3.80)

W µναβ
5 ex (p, q) = −(−ig)2i3

∫
d4l

(2π)4
tr
{
W ′µνβ(l/+m)γαγ5 (l/+ p/+m)

}

[l2 −m2] [(l + p)2 −m2]
, (3.81)

and where the vertices V ′µν and W ′µνα are defined as

V ′µν(k1, k2) =
1

4
[γµ(k1 + k2)

ν + γν(k1 + k2)
µ]− 1

2
gµν [γλ(k1 + k2)λ − 2m], (3.82)

W ′µνα = −1

2
(γµgνα + γνgµα) + gµνγα. (3.83)

We will use the same trick used for the proof of Furry’s theorem to show the vanishing of this

correlator, which is formally divergent and therefore ill-defined. For this reason one needs some

external Ward identities in order to resolve its structure. For the TJV JA vertex the situation

is quite peculiar since one can show, using DRED and by allowing momentum shifts, that the

three Ward identities are indeed homogeneous

kµΓ
µναβ
V A = pαΓ

µναβ
V A = qβΓ

µναβ
V A = 0, (3.84)
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while the properties of symmetry of the correlator are respected. Obviously, this indicates that

there is a regularization scheme in which the anomaly of the axial-vector current JA does not

appear. A closer inspection shows that this result is caused by a cancellation between the

direct and the exchange contribution, since the ǫ-tensor is present in each of the two (direct

and exchange) diagrams contributing to the vertex, but not in their sum. Indeed, this clearly

seems to indicate that this correlator may be vanishing identically. A second argument, based

on charge conjugation invariance brings to identical conclusions.

For this reason, we take the expression of the triangle diagram and insert the identity

C−1C = 1 - involving the charge conjugation matrix C between every γ matrix - together

with the relations

C γµC−1 = −(γµ)T , C γ5 C
−1 = γ5, (3.85)

so that the trace in Eq. (3.78) becomes

T = tr
{
Ṽ ′µν(l + p, l − q)T (l/− q/−m)T (γβ)T (l/−m)T (γα)T γ5(l/ + p/−m)T

}

= −tr
{
Ṽ ′µν(l + p, l − q)(l/ + p/−m)γαγ5 (l/ −m) γβ (l/ − q/−m)

}
(3.86)

where Ṽ ′µν differs from V ′µν only for the sign of the mass term

Ṽ ′µν(k1, k2) =
1

4
[γµ(k1 + k2)

ν + γν(k1 + k2)
µ]− 1

2
gµν [γλ(k1 + k2)λ + 2m]. (3.87)

Changing the integration variable l→ −l in Eq. (3.86) we get

T = −tr
{
V ′µν(l − p, l + q)(l/− p/+m)γαγ5 (l/+m) γβ (l/+ q/+m)

}
, (3.88)

while the three denominators in Eq. (3.78) change according to

1

[l2 −m2] [(l − q)2 −m2] [(l + p)2 −m2]
→ 1

[l2 −m2] [(l + q)2 −m2] [(l − p)2 −m2]
. (3.89)

Combining Eq. (3.88) and (3.89) it is easy to recognize that

V µναβ
5 dir (p, q) = −V µναβ

5 ex (p, q) (3.90)

so that the sum of the two triangles vanishes.

The last point to check in order to be sure of the vanishing of the vertex concerns the contribu-

tions from the t-bubble diagrams. These have been defined in Eq. (3.80) and (3.81) and their

topology is the one showed in Fig. 3.1c. These are both separately equal to zero because they

consists of a combination of 2-point functions of the form Παβ
V A(p) given by

Παβ
V A(p) = −g2

∫
d4l

(2π)4
tr
{
γαγ5 (l/+m)γβ (l/+ p/+m)

}

[l2 −m2] [(l + p)2 −m2]
(3.91)

which are also identically vanishing.
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pµpνpαpβ

qµqνqαqβ

pµpνpαqβ

pµpνqαpβ

pµqνpαpβ

qµpνpαpβ

pµpνqαqβ

pµqνpαqβ

qµpνpαqβ

pµqνqαpβ

qµpνqαpβ

qµqνpαpβ

pµqνqαqβ

qµpνqαqβ

qµqνpαqβ

qµqνqαpβ

gµνgαβ

gαµgβν

gανgβµ

pµpνgαβ

pµqνgαβ

qµpνgαβ

qµqνgαβ

pβpνgαµ

pβqνgαµ

qβpνgαµ

qβqνgαµ

pβpµgαν

pβqµgαν

qβpµgαν

qβqµgαν

pαpνgβµ

pαqνgβµ

qαpνgβµ

qαqνgβµ

pµpαgβν

pµqαgβν

qµpαgβν

qµqαgβν

pαpβgµν

pαqβgµν

qαpβgµν

qαqβgµν

Table 3.1: The 43 tensor monomials called lµναβ
i (p, q) built up from the metric tensor and the two

independent momenta p and q into which a general fourth rank tensor can be expanded.

3.5.2 The computation of the 〈TJAJA〉 correlator

We now going to address the computation of the TJAJA vertex, but prior to that we briefly

review the vector/vector case. As discussed in [51] and in [52] the full one-loop amplitude with

the energy momentum tensor coupled to two vector currents, ΓµναβV V , can be expanded on the

basis provided by the 43 monomial tensors lµναβi (p, q) listed in Tab. 3.1

ΓµναβV V (p, q) =

43∑

i=1

Ai(k
2, p2, q2) lµναβi (p, q), (3.92)

whose form factors Ai(k
2, p2, q2) are not all convergent, since the amplitude has total mass

dimension equal to 2. It has been shown in [52] that they can be divided into 3 groups:

a) A1 ≤ Ai ≤ A16 - multiplied by a product of four momenta, they have mass dimension −2

and therefore are UV finite;

b) A17 ≤ Ai ≤ A19 - these have mass dimension 2 since the four Lorentz indices of the

amplitude are carried by two metric tensors

c) A20 ≤ Ai ≤ A43 - they appear next to a metric tensor and two momenta, have mass

dimension 0 and are divergent.

In [51] the 43 invariant amplitudes Ai(k
2, p2, q2) have been cleverly reduced to the 13 named

Fi(k
2, p2, q2). A similar result is obtained in [52] using a different intermediate basis. This

reorganization of the amplitude shows conclusively that the effective action of theories with

conformal anomalies is affected by anomaly poles which contain the entire signature of the

anomaly [92].
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i tµναβi (p, q)

1
(
k2gµν − kµkν

)
uαβ(p.q)

2
(
k2gµν − kµkν

)
wαβ(p.q)

3
(
p2gµν − 4pµpν

)
uαβ(p.q)

4
(
p2gµν − 4pµpν

)
wαβ(p.q)

5
(
q2gµν − 4qµqν

)
uαβ(p.q)

6
(
q2gµν − 4qµqν

)
wαβ(p.q)

7 [p · q gµν − 2(qµpν + pµqν)]uαβ(p.q)

8 [p · q gµν − 2(qµpν + pµqν)]wαβ(p.q)

9
(
p · q pα − p2qα

) [
pβ (qµpν + pµqν)− p · q (gβνpµ + gβµpν)

]

10
(
p · q qβ − q2pβ

) [
qα (qµpν + pµqν)− p · q (gανqµ + gαµqν)

]

11
(
p · q pα − p2qα

) [
2 qβqµqν − q2(gβνqµ + gβµqν)

]

12
(
p · q qβ − q2pβ

) [
2 pαpµpν − p2(gανpµ + gαµpν)

]

13
(
pµqν + pνqµ

)
gαβ + p · q

(
gανgβµ + gαµgβν

)
− gµνuαβ

−
(
gβνpµ + gβµpν

)
qα −

(
gανqµ + gαµqν

)
pβ

Table 3.2: The 13 fourth rank tensors tµναβi (p, q) satisfying the vector current conservation on

the external lines with momenta p and q.

As we are going to show, a similar result holds also for the 〈TJAJA〉 vertex. At the same

time, we are going to demonstrate the appearance only of conformal anomalies, since the mixed

anomalies cancel, and present the complete expression of this vertex.

To illustrate this point, we observe that the insertion of the non-chiral component of T µν

(represented by T µνf ) in the correlator V55, defines one of the two subamplitudes which may

potentially generate mixed anomalies. On the other hand, it is however obvious - by a glance

at the structure of the correlator - that we could remove symmetrically the chiral matrix all

together. Therefore, the 〈TJAJA〉 correlator can be split in two terms, the first being the

correlator with two vector currents called TJV JV , while the second is an extra contribution,

proportional to the fermion mass m, denoted by Ω

ΓµναβAA (p, q) = ΓµναβV V (p, q) + Ωµναβ(p, q). (3.93)

The explicit computation of the correlator with two vector currents ΓµναβV V can be borrowed from

[52], but the computation of the extra terms is very involved, due to the need to select a specific

number of tensor structures in its expansion. Notice that the decomposition in Eq. (3.93) is

particularly useful because shows that the vector and axial-vector cases coincide in the chiral
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limit, i.e. for Ωµναβ = 0.

As we have just mentioned above, the amplitude ΓµναβV V can be expanded in the reduced basis

given in Tab. 3.2

ΓµναβV V (p, q) =

13∑

i=1

Fi(s; s1, s2,m
2) tµναβi (p, q) , (3.94)

where the invariant amplitudes Fi(s; s1, s2,m
2) are functions of the kinematical invariants s =

k2 = (p+ q)2, s1 = p2, s2 = q2. Their explicit expressions in the general case have been given in

[52]. In the simplest case, i.e. for an internal zero mass fermion (m = 0) and on-shell photons

on the external lines (s1 = s2 = 0), the only non-vanishing Fi(s; s1, s2,m
2) are given by

F1(s, 0, 0, 0) = − g2

18π2s
, (3.95)

F3(s, 0, 0, 0) = F5(s, 0, 0, 0) = − g2

144π2 s
, (3.96)

F7(s, 0, 0, 0) = −4F3(s, 0, 0, 0), (3.97)

F13,R(s, 0, 0, 0) = − g2

144π2

[
12 log

(
− s

µ2

)
− 35

]
, (3.98)

(with s < 0) where F13 is affected by charge renormalization (with a scale µ). As we are going to

discuss next, F1 is the only form factor contributing to the trace anomaly in the massless case,

and contains an anomaly pole. In this sense we can say that the pole saturates the anomaly

and completely accounts for it. In [51] this 1/s terms is identified by a spectral analysis of the

correlator, while the same structure emerges form the complete expressions of the form factors

derived in [52] and presented above.

Coming instead to the new contribution Ωµναβ appearing in Eq. (3.93), this can be written

as

Ωµναβ(p, q) = Ωµναβ
V (p, q) + Ωµνβα

V (q, p) + Ωµναβ
W (p, q) + Ωµνβα

W (q, p), (3.99)

where the amplitudes Ωµναβ
V and Ωµναβ

W are given by

Ωµναβ
V (p, q) = −2m(−ig2)

∫
d4l

(2π)4
tr
{
V ′µν(l + p, l − q)(l/ − q/+m)γβγα(l/+ p/+m)

}

[l2 −m2] [(l − q)2 −m2] [(l + p)2 −m2]
,

(3.100)

Ωµναβ
W (p, q) = −2m(−ig2)

∫
d4l

(2π)4
tr
{
W ′µνα γβ(l/+ q/+m)

}

[l2 −m2] [(l + q)2 −m2]
, (3.101)

with the V ′µν and W ′µνα defined in eqs (3.82) and (3.83). The remaining two terms in Eq. (3.99)

are simply the Bose symmetric amplitudes obtained exchanging the indices α and β and the
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momenta p and q of (3.100) and (3.101). The extra term Ωµναβ can be expanded on the basis

provided by the 43 monomial tensors lµναβi (p, q) listed in Tab. 3.1

Ωµναβ(p, q) =
43∑

i=1

Ei(k
2, p2, q2,m2) lµναβi (p, q), (3.102)

where the form factors Ei(k
2, p2, q2,m2) are some functions of the kinematical variables and of

the mass of the fermion in the loop. This needs to be identified by a direct inspection. The

explicit computation shows that not all the 43 invariant amplitudes Ei(k
2, p2, q2,m2) are really

present in this expansion and therefore the surviving ones can be appropriately combined in a

lower number of composite tensor structures. This result can be organized in a more compact

form after introducing a new tensor basis whose elements fµναβi (p, q) (i = 1, . . . , 9) are listed in

Tab.3.3. We obtain

Ωµναβ(p, q) =
9∑

i=1

Ri(s, s1, s2,m
2) fµναβi (p, q), (3.103)

where the invariant amplitudes Ri(s, s1, s2,m
2) depend on the kinematical variables s = k2 =

(p+ q)2, s1 = p2, s2 = q2 besides the fermion mass m.

Three of the nine tensors are Bose symmetric, namely,

fµναβi (p, q) = fµνβαi (q, p) , i = 1, 6, 9 , (3.104)

while the remaining ones form three pairs related by Bose symmetry

fµναβ2 (p, q) = fµνβα3 (q, p) , (3.105)

fµναβ4 (p, q) = fµνβα5 (q, p) , (3.106)

fµναβ7 (p, q) = fµνβα8 (q, p) . (3.107)

This basis is particularly useful because only the first three of the nine tensors have a non-zero

trace

gµνf
µναβ
1 (p, q) = 3k2gαβ , (3.108)

gµνf
µναβ
2 (p, q) = gµνf

µναβ
3 (p, q) = 2(pαqβ − pβqα) , (3.109)

while the remaining six tensors are traceless

gµνf
µναβ
i (p, q) = 0 , i = 4, 5, 6, 7, 8, 9 . (3.110)

At this point, the goal is to express the amplitude Ωµναβ(p, q) in an analytical form. We start

from the evaluation of the integrals in Eqs. (3.100) and (3.101), obtaining the form factors Ei. At
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i fµναβi (p, q)

1
(
k2gµν − kµkν

)
gαβ

2 pνqβgαµ + pµqβgαν − pνqαgβµ − pµqαgβν

3 pαqνgβµ + pαqµgβν − pβqνgαµ − pβqµgαν

4 pνpβgαµ + pµpβgαν − pνpαgβµ − pµpαgβν

5 qαqνgβµ + qαqµgβν − qβqνgαµ − qβqµgαν

6 (pµqν + qµpν)gαβ + p · q (gανgβµ + gαµgβν − gαβgµν)
7

(
p2gµν − 4pµpν

)
gαβ

8
(
q2gµν − 4qµqν

)
gαβ

9 (p · qgµν − 2(qµpν + pµqν)) gαβ

Table 3.3: Basis of 9 fourth rank tensors called fµναβi (p, q).

a second stage we map them into the new parameterization defined in eq. (3.103), determining

in this way the coefficients Ri. The relations between the two sets {Ei}i=1,...,43 and {Ri}i=1,...,9,

for the most general external momenta are

R1 =
1

3k2

(
E20 p

2 + 2E21 p · q + E23 q
2 + 4E17 + 2E18

)
, (3.111)

R2 = E26, (3.112)

R3 = E33, (3.113)

R4 = E26, (3.114)

R5 = E33, (3.115)

R6 =
E18

p · q , (3.116)

R7 = − 1

12k2

(
E20 p

2 + 2E21 p · q + E23 q
2 + 4E17 + 2E18

)
− E20

4
, (3.117)

R8 = − 1

12k2

(
E20 p

2 + 2E21 p · q + E23 q
2 + 4E17 + 2E18

)
− E23

4
, (3.118)

R9 = − 1

6k2

(
E20 p

2 + 2E21 p · q + E23 q
2 + 4E17 + 2E18

)
+

E18

2p · q −
E21

2
, (3.119)

where all the dependence on the kinematical invariants k2, p2, q2 and m2 appearing in the sets

Ri and Ei has been omitted. The explicit expressions in DRED of the form factors Ri have been

collected in Appendix A.9 and represent an important step in the computation of the 〈TJAJA〉
correlator. These form factors are affected by the usual ultraviolet singularities, which in a

renormalizable theory would be removed by standard renormalization counterterms. In our case

they turn out to be proportional to 2-point functions.
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Figure 3.2: Chiral decomposition of the correlator.

Except for these possible counterterms, the main techniques and methods used in this anal-

ysis remain invariant and are of an easy application also in the case of the Standard Model.

Notice, in particular, that the main equation (3.93) implies that the non-renormalizable con-

tributions are proportional to mass corrections contributing to Ω, and the non-renormalizable

terms indeed involve correlators of two axial-vector currents, as just mentioned above. The

renormalization of the first contribution ΓV V is canonical, and is attributed to the form factor

F13 of Eq. (3.98), which is induced by a renormalization of 2-point functions of vector currents.

Before coming to the analysis of the other vertices, in closing this section we just remark

that our analysis in the V/A basis can be rewritten completely in terms of chiral L/R currents,

since the following relations hold for nonzero m

〈TJV JV 〉 = 〈TJLJL〉+ 〈TJRJR〉+ 〈TJLJR〉+ 〈TJRJL〉, (3.120)

〈TJAJA〉 = 〈TJLJL〉+ 〈TJRJR〉 − 〈TJLJR〉 − 〈TJRJL〉, (3.121)

〈TJAJA〉 = 〈TJV JV 〉 − 2 (〈TJLJR〉+ 〈TJRJL〉) . (3.122)

〈TJLJL〉 = 〈TJRJR〉 =
1

4
(〈TJJ〉+ 〈TJAJA〉) , (3.123)

while

〈TLJLJL〉 = 〈TRJRJR〉 =
1

2
〈TJJ〉 (3.124)

is valid for a vanishing fermion mass m. The formulation in terms of L/R currents is the most

convenient for the study of vertices containing trace anomalies, in the case of realistic theories

such as the Standard Model.



3.6 Trace anomaly of the 〈TJAJA〉 correlator 77

3.6 Trace anomaly of the 〈TJAJA〉 correlator

We now move to analyze the trace of the 〈TJAJA〉 correlator. We consider generic virtualities

of the external lines and a massive fermion.

In the absence of anomalies, the naive trace of the ΓµναβAA amplitude is simply obtained by

replacing the partial energy-momentum tensor T µνp in the 〈TJAJA〉 correlator with its classical

trace T µpµ = −mψ̄ψ and it is given by

ΛαβAA(p, q) = −m (ig)2
∫
d4x d4y eip·x+iq·y〈ψ̄ψJαA(x)JβA(y)〉

= −mg2

∫
d4l

(2π)4
tr

{
i

l/− q/−mγβγ5
i

l/ −mγαγ5
i

l/+ p/−m

}
+ exch.

(3.125)

As in Eq. (3.93) we can split the ΛαβAA into two terms: the first, ΛαβV V , being the classical trace

obtained from the 〈TJV JV 〉 correlator, whereas the second, ΛαβΩ , takes into account the axial

contribution to the amplitude as

ΛαβAA(p, q) = ΛαβV V (p, q) + ΛαβΩ (p, q). (3.126)

The ΛαβV V amplitude refers to the 〈TJV JV 〉 correlator. It can be written in the form

ΛαβV V (p, q) = G1(s, s1, s2,m
2)uαβ(p, q) +G2(s, s1, s2,m

2)wαβ(p, q), (3.127)

where the rank-2 tensors are defined by

uαβ(p, q) ≡ (p · q) gαβ − qα pβ , (3.128)

wαβ(p, q) ≡ p2 q2 gαβ + (p · q) pα qβ − q2 pα pβ − p2 qα qβ, (3.129)

with coefficients Gi(s, s1, s2,m
2) which are left to an Appendix (Appendix A.10).

The second term ΛαβΩ in Eq. (3.126) can be decomposed into two tensorial structures as

ΛαβΩ (p, q) = H1(s, s1, s2,m
2)gαβ +H2(s, s1, s2,m

2)(pαqβ − qαpβ) (3.130)

where the functions Hi are related to the invariant amplitudes Ri listed in Appendix A.9 by the

relations

3sR1(s, s1, s2,m
2) = H1(s, s1, s2,m

2)− g2m2

π2
, (3.131)

2R2(s, s1, s2,m
2) + 2R3(s, s1, s2,m

2) = H2(s, s1, s2,m
2) . (3.132)
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The analytical expressions of the off-shell Hi(s, s1, s2,m
2) form factors are given by

H1(s, s1, s2,m
2) =

g2m2

2π2

[
D1(s, s1,m

2) +D2(s, s2,m
2)− 2B0(s

2,m2)

+ (s− 4m2) C0(s, s1, s2,m2)

]
, (3.133)

H2(s, s1, s2,m
2) =

g2m2

π2 σ

[
(s + s1 − s2)D1(s, s1,m

2) + (s − s1 + s2)D2(s, s2,m
2)

+ s (s− s1 − s2) C0(s, s1, s2,m2)

]
, (3.134)

where σ ≡ s2 − 2(s1 + s2) s + (s1 − s2)
2 and the scalar integrals B0(s

2,m2), D1(s, s1,m
2),

D2(s, s1,m
2), C0(s, s1, s2,m2) for generic virtualities and masses are defined in Appendix A.2.

Tracing the ΓµναβAA correlator we obtain the relation

gµνΓ
µναβ
AA (p, q) = ΛαβAA(p, q)− g2

6π2
uαβ(p, q)− g2m2

π2
gαβ , (3.135)

where the first term on the right-hand-sice is the trace anomaly appearing already in the

〈TJV JV 〉 correlator. The second term, proportional to m2, comes from the axial extra term

Ωµναβ and denotes an additional explicit breaking related to the fermion mass. In particular,

the anomaly − g2

6π2u
αβ is carried by the form factor F1, whose expression is given in [52], whereas

the mass correction −g2m2/π2gαβ is induced by R1. This additional contribution is gauge vari-

ant and its origin can be traced back to the breaking of the U(1)A gauge symmetry due to the

fermion mass term.

In the conformal limit the anomalous trace equation (3.135) takes a simpler form because, as we

have already discussed in the previous sections, the 〈TJAJA〉 correlator reduces to the 〈TJV JV 〉
and we obtain

gµνΓ
µναβ
AA (p, q)

∣∣∣∣
m=0

= gµνΓ
µναβ
V V (p, q)

∣∣∣∣
m=0

= − g2

6π2
uαβ(p, q). (3.136)

We give in Appendix A.9 the general expression of the form factors Ri (i = 1, . . . , 9), which,

combined with the results of the 13 form factors Fj, characterize completely the contributions to

the effective action of a vector/axial-vector abelian theory mediated by the conformal anomaly.

Concerning the connection between the anomalous contribution and the β function of the

theory, also in this case remain valid our previous conclusions, given in [51, 52]. Specifically, we

just recall, at this point, that in the (mass independent) regularization scheme MS scheme, the

e2 term in the trace is directly related to the β function in this scheme since β(g) = g3/(12π2).

In particular, the form factor F13 is affected by renormalization via the electric charge [51]

[52]. We close this section with few remarks concerning the structure of the effective action for
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(a) (b)

Figure 3.3: Polar form of the correlator for external on-shell lines: (a) the contribution to the spectral

density from the collinear on-shell region of the anomaly loop; (b) the pole as virtual exchange in Γanom.

these types of theories, which can be identified from the variational integration of the anomaly

equation [83]. This approach is, in a way, complementary to the strategy that we follow, based

on a direct computation. As shown in [51] there is perfect agreement between the operatorial

structure of variational solution, which also exhibits a 1/� effective interaction, and the anomaly

pole found in our analysis. In the variational solution of [83], the 1/s massless exchange appears

after a linearization of the same solution around the flat spacetime limit, as pointed out in [51].

In fact, one obtains in the weak gravitational field limit

Sanom[g,A] = − c
6

∫
d4x
√−g

∫
d4x′

√
−g′R(1)

x �
−1
x,x′ [FαβF

αβ ]x′ , (3.137)

(c = −g2/(24π2)). In this case

R(1)
x ≡ ∂xµ ∂xν hµν −�h, h = ηµν h

µν (3.138)

is the linearized scalar curvature. As in the case of the TJJ correlator [51] the anomalous

contribution to the trace is all contained in the (conformal) anomaly pole (Fig. 3.3 b)

Γµναβanom(p, q) =

∫
d4x

∫
d4y eip·x+iq·y

δ2T µνanom(0)

δAα(x)δAβ(y)
=

g2

18π2

1

k2

(
gµνk2 − kµkν

)
uαβ(p, q) ,

(3.139)

where [51]

T µνanom(z) =
c

3
(gµν�− ∂µ∂ν)z

∫
d4x′�−1

z,x′

[
FαβF

αβ
]

x′
. (3.140)

This effective action is trivially obtained from the tensor structure F1t
µναβ
1 , present in the

expansion of Γµναβ and accounts for the full trace of the correlator in the massless fermion limit,

as shown in Eq. (3.136).

3.6.1 Infrared couplings of the anomaly poles and UV behaviour

Before coming to conclusions, we pause here in order to comment on these results and on their

meaning on a wider perspective.
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We recall that a similar analysis in the QED case [51, 52] also manifests such pole singu-

larities, which appear to be rather generic in anomaly amplitudes. They can be attributed,

diagrammatically, to specific configurations of the loop momenta, as illustrated in Fig. (3.3).

The diagram in this figure describes a massive external line decaying into two massless interme-

diate fermions, in turn decaying into two on-shell axial (or vector) lines (the equivalence between

the axial and the vector case in the massless limit is the content of Eq. 3.93 (Ω→ 0)).

The pole is detected by a computation of the spectral density (ρ(s)), which turns out to be

proportional to a delta-function (ρ(s) ∼ δ(s)). ρ(s) can be found just by evaluating the s-channel

cut of the anomalous graph using Cutkovsky rules. This approach, as discussed before [51, 52],

allows to identify the anomaly poles which are of infrared origin (s ∼ 0). Other contributions,

also characterized by form factors of the form 1/s, as we have shown, appear in the anomalous

amplitude when one performs an off-shell computation of the anomalous correlator. These

contributions describe the UV behaviour of an anomalous amplitude (s→∞) and as such they

are usually referred to as “ultraviolet poles”, although the name is slightly misleading, being

only generated after an asymptotic expansion of the massive correlator. In fact, the residue of

the correlator as s → 0 is indeed vanishing in the massive fermion case [52], showing that no

pole is coupled in this limit. Apart from this important detail, it is however correct to retain

their appearance in a perturbative computation - even in the UV region - as a manifestation of

the same phenomenon of the trace anomaly. In the case of the chiral anomaly the situation is

identical.

These computations [52] show that the asymptotic expansion - at large energy - of the

regulated graphs responsible for the trace anomaly can be accompanied by corrections which

are suppressed as m2/s2 (as s ≫ m2) in the high energy limit, where m is the mass of the

fermion in the virtual loop. This organization of the effective action in the UV region allows to

recover the ordinary radiative breaking of scale invariance at high energy, being mass corrections

negligible in this regime. The use of a mass-independent regularization scheme, such as DRED

or DR, is perfectly well taylored in this case, since the separation between pole term and mass

corrections involves an asymptotic expansion (at high energy). In particular the β function

computed in such schemes consistently accounts for the UV running of the coupling [52].

We have described this point at length in the case of the gauge anomaly in [40], to which

we refer for more details. This implies that the anomaly is saturated by a pole in very different

kinematical regions, in agreement with previous analysis performed in chiral theories [40, 42].

These conclusions show that the description of the effective action in terms of two auxiliary

fields - which are introduced in order to recover the local form of the Lagrangian - is significant

both in massless theories [51, 96] (for instance on null surfaces, i.e. s = 0), but also in the high
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energy domain, for large values of s. We refer to [51, 96] for a discussion of the auxiliary field

formulation. Similar arguments have been presented in [30, 40, 24] for the axion pole in the

chiral coupling of anomalous U(1)’s (in the AV V vertex), proving that these auxiliary degrees

of freedom are the most significant signature of chiral and conformal anomalies.

3.7 Conclusions

We have presented in this chapter an off-shell computation of the correlator of the energy

momentum tensor and two vector/axial-vector currents in a chiral theory with an anomalous

fermion spectrum, useful for the study of the coupling of anomalous U(1)’s to gravity. These

interactions are mediated by the trace anomaly. Starting directly from the functional integral,

we have derived the Ward identities for the corresponding vertices. These apply, in general, to

any correlator of similar type. All the computations have been performed using DRED, and we

have shown the cancellation of mixed chiral/conformal anomalies for these types of vertices.

Our computation can be viewed as the generalization of the classical analysis of the AV V

diagram to these new vertices and as the extension of the studies contained in the first and

second chapter. We have allowed explicit mass breaking terms to investigate the most general

form of the Ward identities for these correlators, that are of crucial importance for the more

general analysis in the Standard Model case.

Obviously, the inclusion of this study into a theory with spontaneous symmetry breaking

and Yukawa couplings, such as the Standard Model, would allow to relate the explicit chiral

symmetry breaking terms (mass terms) to the extra interactions of the theory, in particular to

the Higgs sector.

We have also shown that, similarly to the case of a vector-like theory studied in the second

chapter, also in the case of a mixed vector/axial-vector theory, the effective action obtained by

coupling gravity to the gauge currents is characterized by effective massless degrees of freedom.

An extension of these analyses to the QCD case and then to the coupling of gravity to non-

abelian gauge currents will be presented in next chapter.





Chapter 4

Trace Anomaly, Massless Scalars and

the Gravitational Coupling of QCD

4.1 Introduction

The study of the effective action describing the coupling of a gauge theory to gravity via the

trace anomaly [97] is an important aspect of quantum field theory, which is not deprived also of

direct phenomenological implications. This coupling is mediated by the correlator involving the

energy momentum tensor together with two vector currents (or TJJ vertex), which describes the

interaction of a graviton with two photons or two gluons in QED and QCD, respectively. At the

same time, the vertex has been at the center of an interesting case study of the renormalization

properties of composite operators in Yang Mills theories [98], in the context of an explicit check

of the violation of the Joglekar-Lee theorem [99] on the vanishing of S-matrix elements of BRST

exact operators. In this second case it was computed on-shell, but only at zero momentum

transfer. In this chapter we are going to extend this computation and investigate the presence

of massless singularities in its expression. These contribute to the trace anomaly and play a

leading role in fixing the structure of the effective action that couples QCD to gravity. The

analysis of [98], which predates our study, unfortunately does not resolve the issue about the

presence or the absence of the anomaly pole in the anomalous effective action of QCD because

of the restricted kinematics involved in that analysis of the TJJ vertex, and for this reason we

have to proceed with a complete re-computation.

As we have already stressed, anomaly poles characterize quite universally (gravitational

and chiral) anomalous effective actions, in the sense that account for their anomalies. They

have been identified and discussed in the abelian case both by a dispersive analysis [51] and

by a direct explicit computation of the related anomalous Feynman amplitudes quite recently

83
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[52, 92]. Extensive analysis in the case of chiral gauge theory for anomalous U(1) models have

shown the close parallel between solutions of the Ward identities, the coupling of the poles in

the ultraviolet and in the infrared region and the gravity case [24, 40].

It is therefore important to check whether similar contributions appear also in non-abelian

gauge theories coupled to gravity. We recall that the same pole structure is found in the vari-

ational solution of the expression of the trace anomaly, where one tries to identify an action

whose energy momentum tensor reproduces the trace anomaly. This action, found by Riegert

long ago [83], is nonlocal and involves the Green’s function of a quartic (conformally covariant)

operator. The action describes the structure of the singularities of anomalous correlators with

any number of insertions of the energy momentum tensor and two photons (T nJJ), which are

expected to correspond both to single and to higher order poles, for a sufficiently high n. For

obvious reasons, explicit checks of this effective action using perturbation theory - as the number

of external graviton lines grows - becomes increasingly difficult to handle. The TJJ correlator

is the first (leading) contribution to this infinite sum of correlators in which the anomalous

gravitational effective action is expanded.

Given the presence of a quartic operator in Riegert’s nonlocal action, the proof that this

action contains a single pole to lowest order (in the TJJ vertex), once expanded around flat

space, has been given in [51] by Giannotti and Mottola, and provides the basis for the discussion

of the anomalous effective action in terms of massless auxiliary fields contained in their work.

The auxiliary fields are introduced in order to rewrite the action in a local form. We show by an

explicit computation of the lowest order vertex that Riegert’s action is indeed consistent in the

non-abelian case as well, since its pole structure is recovered in perturbation theory, similarly to

the abelian case. Therefore, one can reasonably conjecture the presence of anomaly poles in each

gauge invariant subsets of the diagrammatic expansion, as the computation for the non-abelian

TJJ shows (here for the case of the single pole). In particular, this is in agreement with the

result of [51], where it is shown that, after expanding around flat spacetime, the quartic operator

in Riegert’s action becomes a simple 1/� nonlocal interaction (for the TJJ contribution), i.e.

a pole term. We remark that the identification of a pole term in this and in others similar

correlators, as we are going to emphasize in the following sections (at least in the case of QED

and for the sector of QCD mediated by quark loops), requires an extrapolation to the massless

fermion limit, and for this reason its interpretation as a long-range dynamical effect in the

gravitational effective action requires some caution. In QCD, however, there is an extra sector

that contributes to the same correlator, entirely due to virtual loops of gluons in the anomaly

graphs, which remains unaffected by the massless fermion limit. The appearance of such a

singularity in the effective action, however, does not necessarily imply that its contribution
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survives in the physical S-matrix. We will also establish the appearance of other singularities in

the trace-free form factors which, obviously, are not part of Riegert’s action.

We will comment at the end of this chapter on the possible implications of these results

and on some recent proposals to link this type of behaviour [100, 101] to cosmology and to

the dark energy problem. We also remark that, in general, the coefficient in front of the trace

anomaly, for a given theory, can be computed in terms of its massless fields content, and as such

it is well known. However, the structure of the effective action and the characterization of its

fundamental form factors at nonzero momentum transfer and its complete analytical structure

is a novel result. In this respect, the classification of all the relevant tensor structures which

appear in the computation of this correlator is rather involved and has been performed in the

completely off-shell case. We remark that the complexity of the final expression, in the off-

shell case, prevents us from presenting its form. For this reason we will give only the on-shell

version of the complete vertex, which is expressed, as we have mentioned, only in terms of three

fundamental form factors.

Concerning the phenomenological relevance of this vertex, we just mention that it plays an

essential role in the study of NLO corrections to processes involving a graviton exchange. In

fact, in theories with extra dimension, where a low-gravity scale and the presence of Kaluza-

Klein excitations may enhance the rates for processes mediated by gluons and gravitons, the

vertex appears in the hard scattering of the corresponding factorization formula [102] and has

been computed in dimensional regularization. However, to our knowledge, in all cases, there

has been no separate discussion of the general structure of the vertex (i.e. as an amplitude) nor

of its Ward identities, which, in principle, would require a more careful investigation because

of the trace anomaly. Anomalous amplitudes, in fact, are defined by the fundamental Ward

identities imposed on them, that we are going to derive from general principles. We cover this

gap and show, that both dimensional regularization and dimensional reduction reproduce the

correct Ward identity satisfied by this vertex, showing at the same time that the use of these

regularizations is indeed appropriate. Results for this vertex will be given only in the on-shell

case, since in this case the result can be expressed in terms of just three form factors. We have

computed also the off-shell effective action, but its expression is rather lengthy and will not

be discussed here, since it is gauge dependent and of less significance compared to the on-shell

result. Most of our work is concerned with a technical derivation of the leading contribution

to the anomalous effective action of QCD coupled to gravity. We have summarized in our

conclusions a brief discussion of the relevance of this study in the ongoing attempt to link the

trace anomaly and QCD to a possible alternative solution of the problem of dark energy, using

this effective action as an intermediate step [100, 101].
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4.2 Anomalous effective actions and their variational solutions

In this section we briefly review the topic of the variational solutions of anomalous effective

actions, and on the local formulations of these using auxiliary fields.

One well known result of quantum gravity is that the effective action of the trace anomaly

is given by a nonlocal form when expressed in terms of the spacetime metric gµν . This was

obtained [83] from a variational solution of the equation for the trace anomaly [97]

T µµ = b F + b′
(
E − 2

3
�R

)
+ b′′�R+ cF a µνF aµν , (4.1)

(see also [103, 104] for an analysis of the gravitational sector) which takes in D = 4 spacetime

dimensions the form

Sanom[g,A] = (4.2)

1

8

∫
d4x
√−g

∫
d4x′

√
−g′

(
E − 2

3
�R

)

x

∆−1
4 (x, x′)

[
2b F + b′

(
E − 2

3
�R

)
+ 2 cFµνF

µν

]

x′
.

Here, the parameters b and b′ are the coefficients of the Weyl tensor squared,

F = CλµνρC
λµνρ = RλµνρR

λµνρ − 2RµνR
µν +

R2

3
(4.3)

and the Euler density

E =∗Rλµνρ
∗Rλµνρ = RλµνρR

λµνρ − 4RµνR
µν +R2 (4.4)

respectively of the trace anomaly in a general background curved spacetime. Notice that the

last term in (4.2) is the contribution generated in the presence of a background gauge field, with

coefficient c. For a Dirac fermion in a classical gravitational (gµν) and abelian (Aα) background,

the values of the coefficients are b = 1/(320π2), and b′ = −11/(5760π2), and c = −e2/(24π2),

with e being the electric charge of the fermion. One crucial feature of this solution is its origin,

which is purely variational. Obtained by Riegert long ago, the action was derived by solving the

variational equation satisfied by the trace of the energy momentum tensor. ∆−1
4 (x, x′) denotes

the Green’s function inverse of the conformally covariant differential operator of fourth order,

defined by

∆4 ≡ ∇µ
(
∇µ∇ν + 2Rµν − 2

3
Rgµν

)
∇ν = �

2 + 2Rµν∇µ∇ν +
1

3
(∇µR)∇µ −

2

3
R� . (4.5)

Given a solution of a variational equation, it is mandatory to check whether the solution is

indeed justified by a perturbative computation. One specific feature of these solutions is the

presence of anomaly poles. In the previous chapters we have elaborated on the significance of
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(a) (b)

Figure 4.1: The diagrams describing the anomaly pole in the dispersive approach. Fig. (a) depicts the

singularity of the spectral density ρ(s) as a spacetime process. Fig. (b) describes the anomalous pole

part of the interaction via the exchange of a pole.

these interactions, extracted from a direct perturbative computation, by a painstaking analysis

of anomaly graphs under general kinematical conditions, and not just by a dispersive approach.

The dispersive approach allows to connect this behaviour of the spectral density to a very specific

infrared configuration.

4.2.1 The kinematics of an anomaly pole

In our conventions we will denote with p and q the outgoing momenta of the two photons/gluons

and with k the incoming momentum of the graviton. s ≡ (p + q)2 denotes the invariant mass

of the external graviton line. A computation of the spectral density ρ(s) of the TJJ amplitude

in QED shows that this takes the form ρ(s) ∼ δ(s). The configuration responsible for the

appearance of a pole is illustrated in Fig. 4.1 (a). It describes the decay of a graviton line into

two on-shell photons. The decay is mediated by a collinear and on-shell fermion-antifermion pair

and can be interpreted as a spacetime process. The corresponding interaction vertex, described

as the exchange of a pole, is instead shown in Fig. 4.1 (b). The actual process depicted in

Fig. 4.1 (a) is obtained at diagrammatic level by setting on-shell the fermion/antifermion pair

attached to the graviton line. This configuration, present in the spectral density of the diagram

only for on-shell photons, generates a pole contribution which can be shown to be coupled in

the infrared. This means that if we compute the residue of the amplitude for s→ 0 we find that

it is non-vanishing. In the general expression of the vertex, a similar configuration is extracted

in the high energy limit, not by a dispersive analysis, but by an explicit (off-shell) computation

of the diagrams. Clearly, the pole, in this second case, has a vanishing residue as s→ 0, but is

nevertheless a signature of the anomaly at high energy. Either for virtual or for real photons,

a direct computation of the vertex allows to extract the pole term, without having to rely on a

dispersive analysis. This point has been illustrated in our previous computations of the chiral

anomaly vertex [40] and in the computation of the TJJ vertex for QED [52]. The identification
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of this singularity in the case of QCD is in perfect agreement with those previous results.

4.2.2 The single pole from ∆4

In the case of the gravitational effective action, the appearance of the inverse of ∆4 operator

seems to be hard to reconcile with the simpler 1/� interaction which is predicted by the pertur-

bative analysis of the TJJ correlator, which manifests a single anomaly pole. In [51], Giannotti

and Mottola show step by step how a single pole emerges from this quartic operator, by using the

auxiliary field formulation of the same effective action. Clearly, more computations are needed

in order to show that the nonlocal effective action consistently does justice of all the poles (of

second order and higher) which should be present in the perturbative expansion. Obviously, the

perturbative computations - being either based on dispersion theory or on complete evaluations

of the vertices, as in our case - become rather hard as we increase the number of external lines of

the corresponding perturbative correlator. For instance, this check becomes almost impossible

for correlators of the form TTTT or higher, due to the appearance of a very large number of

tensor structure in the reduction to scalar form of the tensor Feynman integrals. In the case of

TJJ the computation is still manageable, since it does not require Feynman integrals beyond

rank-4.

Expanding around flat space, the local formulation of Riegert’s action, as shown in [51, 96],

can be rewritten in the form

Sanom[g,A]→ − c
6

∫
d4x
√−g

∫
d4x′

√
−g′Rx �

−1
x,x′ [FαβF

αβ ]x′ , (4.6)

which is valid to first order in the fluctuation of the metric around a flat background, denoted

as hµν

gµν = ηµν + κhµν , κ =
√

16πGN (4.7)

with GN being the 4-dimensional Newton’s constant. The formulation in terms of auxiliary

fields of this axion gives

Sanom[g,A;ϕ,ψ′ ] =

∫
d4x
√−g

[
−ψ′�ϕ− R

3
ψ′ +

c

2
FαβF

αβϕ

]
, (4.8)

where φ and ψ are the auxiliary scalar fields. They satisfy the equations

ψ′ ≡ b�ψ , (4.9)

�ψ′ =
c

2
FαβF

αβ , (4.10)

�ϕ = −R
3
. (4.11)
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In order to make contact with the TJJ amplitude, one needs the expression of the energy

momentum extracted from (4.8) to leading order in hµν , or, equivalently, from (4.6) that can be

shown to take the form

T µνanom(z) =
c

3
(gµν�− ∂µ∂ν)z

∫
d4x′�−1

z,x′

[
FαβF

αβ
]
x′
. (4.12)

Notice that T µνanom is the expression of the energy momentum tensor of the theory in the back-

ground of the gravitational and gauge fields. We recall, in fact, that in the QED case, for

instance, the energy momentum tensor of the theory is split into the free fermionic part Tf , the

interacting fermion-photon part Tfp and the photon contribution Tph which are given by

T µνf = −iψ̄γ(µ
↔

∂
ν)ψ + gµν(iψ̄γλ

↔

∂λψ −mψ̄ψ), (4.13)

T µνfp = − eJ (µAν) + egµνJλAλ , (4.14)

and

T µνph = FµλF ν λ −
1

4
gµνF λρFλρ, (4.15)

where the current is defined as

Jµ(x) = ψ̄(x)γµψ(x) . (4.16)

The connected components of TJJ can be obtained directly from the quantum average of

Tp, defined as the sum of the fermion contribution and its interaction part with the photon field,

T µνp ≡ T µνf + T µνfp . (4.17)

In the formalism of the background fields, the TJJ correlator then can be extracted from

the defining functional integral

〈T µνp (z)〉A ≡
∫
DψDψ̄ T µνp (z) ei

R

d4xL+
R

J ·A(x)d4x

= 〈T µνp ei
R

d4x J ·A(x)〉 (4.18)

via two functional derivatives respect to the background field Aµ and generates the effective

action

Γµναβ(z;x, y) ≡ δ2 〈T µνp (z)〉A
δAα(x)δAβ(y)

∣∣∣∣
A=0

= Γµναβanom + Γ̃µναβ. (4.19)

We have separated in (4.19) the pole contribution Γanom from the rest of the amplitude (Γ̃),

which does not contribute to the trace part. Notice that Γanom, derived from either the classical

generating functional (4.12) given by Riegert’s action or from the direct perturbative expansion
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of (4.19), should nevertheless coincide, for the pole term not to be a spurious artifact of the

variational solution. In particular, a computation performed in QED shows that the pole term

extracted from Tanom via functional differentiation

Γµναβanom(p, q) =

∫
d4x

∫
d4y eip·x+iq·y

δ2T µνanom(0)

δAα(x)Aβ(y)
=

e2

18π2

1

k2

(
gµνk2 − kµkν

)
uαβ(p, q)

(4.20)

with

uαβ(p, q) ≡ (p · q) gαβ − qα pβ , (4.21)

indeed coincides with the result of the perturbative expansion, as defined from the first term on

the rhs of (4.19). Thus, the entire contribution to the anomaly is extracted form Tanom as

gµνT
µν
anom = cFαβF

αβ = − e2

24π2
FαβF

αβ. (4.22)

As we have already mentioned, the full action (4.2), varied several times with respect to the

background metric gµν and/or the background gauge fields Aα gives those parts of the correlators

of higher order, such as 〈TTT...JJ〉 and 〈TTT...〉, which contribute to the trace anomaly. In

particular, the anomalous contributions of the T nJJ ’s vertices are obtained by varying the local

action both respect to the metric and to the gauge fields.

4.3 The energy momentum tensor and the Ward identities

Moving to the QCD case, we introduce the definition of the QCD energy-momentum tensor,

which is given by

Tµν = −gµνLQCD − F aµρF aρν −
1

ξ
gµν∂

ρ(Aaρ∂
σAaσ) +

1

ξ
(Aaν∂µ(∂

σAaσ) +Aaµ∂ν(∂
σAaσ))

+
i

4

[
ψγµ(

−→
∂ ν − igT aAaν)ψ − ψ(

←−
∂ ν + igT aAaν)γµψ + ψγν(

−→
∂ µ − igT aAaµ)ψ

− ψ(
←−
∂ µ + igT aAaµ)γνψ

]
+ ∂µω

a(∂νω
a − gfabcAcνωb) + ∂νω

a(∂µω
a − gfabcAcµωb),

(4.23)

where F aµν is the non-abelian field strength of the gauge field A

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (4.24)

and we have denoted with ωa the Faddeev-Popov ghosts and with ωa the antighosts, while ξ is the

gauge-fixing parameter. The T a’s are the gauge group generators in the fermion representation
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and fabc are the antisymmetric structure constants. For later use, it is convenient to isolate the

gauge-fixing and ghost dependent contributions from the entire tensor

T g.f.µν =
1

ξ

[
Aaν∂µ(∂ ·Aa) +Aaµ∂ν(∂ ·Aa)

]
− 1

ξ
gµν

[
−1

2
(∂ ·A)2 + ∂ρ(Aaρ∂ ·Aa)

]
, (4.25)

T ghµν = ∂µω̄
aDab

ν ω
b + ∂νω̄

aDab
µ ω

b − gµν∂ρω̄aDab
ρ ω

b. (4.26)

The coupling of QCD to gravity in the weak gravitational field limit is given by the interaction

Lagrangian

Lint = −1

2
κhµνTµν . (4.27)

Notice that Tµν as defined in Eq. (4.23) is symmetric, while traceless for a massless theory. The

symmetric expression can be easily found as suggested in [105], by coupling the theory to gravity

and then defining it via a functional derivative with respect to the metric, recovering (4.23) in

the flat spacetime case.

The conservation equation of the energy-momentum tensor takes the following form off-shell

[106, 107]

∂µTµν = −δS
δψ
∂νψ − ∂ν ψ̄

δS

δψ̄
+

1

2
∂µ
(
δS

δψ
σµνψ − ψ̄σµν

δS

δψ̄

)
− ∂νAaµ

δS

δAaµ

+ ∂µ

(
Aaν

δS

δAaµ

)
− δS

δωa
∂νω

a − ∂ν ω̄a
δS

δω̄a
(4.28)

where σµν = 1
4 [γµ, γν ]. It is indeed conserved by using the equations of motion of the ghost,

antighost and fermion/antifermion fields. The off-shell relation is particularly useful, since it can

be inserted into the functional integral in order to derive some of the Ward identities satisfied

by the correlator. In fact, the implications of the conservation of the energy-momentum tensor

on the Green’s functions can be exploited through the generating functional, obviously defined

as

Z[J, η, η̄, χ, χ̄, h] =

∫
DADψDψ̄DωDω̄ exp

{
i

∫
d4x (L+ JµA

µ

+η̄ψ + ψ̄η + χ̄ω + ω̄χ+ hµνT
µν
)}

, (4.29)

where L is the standard QCD action and we have added the coupling of the energy-momentum

tensor of the theory to the background gravitational field hµν , which is the typical expression

needed in the study of QCD coupled to gravity with a linear deviation from the flat metric. We

have denoted with J, η, η̄, χ, χ̄ the sources of the gauge field A (J), the source of the fermion and

antifermion fields (η̄, η) and of the ghost and antighost fields (χ̄, χ) respectively. The generating
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functional W of the connected Green’s functions is, as usual, denoted by

exp iW [J, η, η̄, χ, χ̄, h] =
Z[J, η, η̄, χ, χ̄, h]

Z[0, 0, 0, 0, 0, 0]
(4.30)

(normalized to the vacuum functional) and the effective action, defined as the generating func-

tional Γ of the 1-particle irreducible and truncated amplitudes. This is obviously obtained from

W by a Legendre transformation respect to all the sources, except, in our case, hµν , which is

taken as a background external field

Γ[Ac, ψ̄c, ψc, ω̄c, ωc, h] = W [J, η, η̄, χ, χ̄, h] −
∫
d4x

(
JµA

µ
c + η̄ψc + ψ̄cη + χ̄ωc + ω̄cχ

)
. (4.31)

The source fields are eliminated from the right hand side of Eq. (4.31) inverting the relations

Aµc =
δW

δJµ
, ψc =

δW

δη̄
, ψ̄c =

δW

δη
, ωc =

δW

δχ̄
, ω̄c =

δW

δχ
(4.32)

so that the functional derivatives of the effective action Γ with respect to its independent vari-

ables are

δΓ

δAµc
= −Jµ,

δΓ

δψc
= −η̄, δΓ

δψ̄c
= −η, δΓ

δωc
= −χ̄, δΓ

δω̄c
= −χ, (4.33)

and for the source hµν we have instead

δΓ

δhµν
=

δW

δhµν
. (4.34)

The conservation of the energy-momentum tensor summarized in Eq. (4.28) in terms of classical

fields, can be re-expressed in a functional form by a differentiation of W with respect to hµν and

the use of Eq. (4.28) under the functional integral. We obtain

∂µ
δW

δhµν
= η̄ ∂ν

δW

δη̄
+ ∂ν

δW

δη
η − 1

2
∂µ
(
η̄σµν

δW

δη̄
− δW

δη
σµνη

)

+ ∂ν
δW

δJµ
Jµ − ∂µ

(
δW

δJµ
Jν

)
+ χ̄∂ν

δW

δχ̄
+ ∂ν

δW

δχ
χ , (4.35)

and finally, for the one particle irreducible generating functional, this gives

∂µ
δΓ

δhµν
= − δΓ

δψc
∂νψc − ∂νψ̄c

δΓ

δψ̄c
+

1

2
∂µ

(
δΓ

δψc
σµνψc − ψ̄cσµν

δΓ

δψ̄c

)

− ∂νAµc
δΓ

δAµc
+ ∂µ

(
Aνc

δΓ

δAµc

)
− δΓ

δωc
∂νωc − ∂νω̄c

δΓ

δω̄c
, (4.36)

obtained from Eq. (4.35) with the help of Eqs. (4.32 - 4.34). We summarize below the relevant

Ward identities that can be used in order to fix the expression of the correlator.
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• Single derivative general Ward identity

The Ward identities describing the conservation of the energy-momentum tensor for the

one-particle irreducible Green’s functions with an insertion of Tµν can be obtained from

the functional equation (4.36) by taking functional derivatives with respect to the classical

fields. For example, the Ward identity for the graviton - gluon gluon vertex is obtained

by differentiating Eq. (4.36) with respect to Aacα(x1) and Abc β(x2) and then setting all the

external fields to zero

∂µ〈Tµν(x)Aaα(x1)A
b
β(x2)〉trunc = −∂ν δ4(x1 − x)D−1

αβ (x2, x)− ∂ν δ4(x2 − x)D−1
αβ (x1, x)

+ ∂µ
(
gαν δ

4(x1 − x)D−1
βµ (x2, x) + gβν δ

4(x2 − x)D−1
αµ(x1, x)

)

(4.37)

where D−1
αβ (x1, x2) is the inverse gluon propagator defined as

D−1
αβ (x1, x2) = 〈Aα(x1)Aβ(x2)〉trunc =

δ2Γ

δAαc (x1)δA
β
c (x2)

(4.38)

and where we have omitted, for simplicity, both the colour indices and the symbol of the

T -product. The first Ward identity (4.37) becomes

kµ〈Tµν(k)Aα(p)Aβ(q)〉trunc = qµD
−1
αµ(p)gβν + pµD

−1
βµ (q)gαν − qνD−1

αβ (p)− pνD−1
αβ (q) .

(4.39)

• Trace Ward identity at zero momentum transfer

It is possible to extract a Ward identity for the trace of the energy-momentum tensor for

the same correlation function using just Eq. (4.39). In fact, differentiating it with respect

to pµ (or qµ) and then evaluating the resulting expression at zero momentum transfer

(p = −q) we obtain the Ward identity in d spacetime dimensions

〈T µµ (0)Aα(p)Aβ(−p)〉trunc =

(
2− d+ p · ∂

∂p

)
D−1
αβ (p) (4.40)

where the number 2 counts the number of external gluon lines. For d = 4 and using the

transversality of the one-particle irreducible self-energy, namely

D−1
αβ (p) = (p2gαβ − pαqβ)Π(p2), (4.41)

the Ward identity in Eq. (4.40) simplifies to

〈T µµ (0)Aα(p)Aβ(−p)〉trunc = 2p2(p2gαβ − pαqβ)
dΠ

dp2
(p2). (4.42)
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The trace Ward identity in Eq. (4.40) at zero momentum transfer can also be explicitly

related to the β function and the anomalous dimensions of the renormalized theory. These

enter through the renormalization group equation for the two-point function of the gluon.

Defining the beta function and the anomalous dimensions as

β(g) = µ
∂g

∂µ
, γ(g) = µ

∂

∂µ
log
√
ZA, m γm(g) = µ

∂m

∂µ
(4.43)

and denoting with ZA the wave function renormalization constant of the gluon field, with

g the renormalized coupling, and with m the renormalized mass, the trace Ward identity

can be related to these functions by the relation

〈T µµ (0)Aα(p)Aβ(−p)〉trunc =

[
β(g)

∂

∂g
− 2γ(g) +m(γm(g)− 1)

∂

∂m

]
D−1
αβ (p). (4.44)

• Two-derivatives Ward identity via BRST symmetry

We can exploit the BRST symmetry of the gauge-fixed lagrangian in order to derive some

generalized Ward (Slavnov-Taylor) identities. We start by computing the BRST variation of the

energy-momentum tensor, which is given by

δAaµ = λDab
µ ω

b, (4.45)

δωa = −1

2
gλfabcωbωc, (4.46)

δω̄a = −1

ξ
(∂µAaµ)λ, (4.47)

δψ = igλωataψ, (4.48)

δψ̄ = −igψ̄taλωa, (4.49)

where λ is an infinitesimal Grassmann parameter.

A careful analysis of the energy-momentum tensor presented in Eq. (4.23) shows that the

fermionic and the gauge part are gauge invariant and therefore invariant also under BRST.

Instead the gauge-fixing and the ghost contributions must be studied in more detail. Using the

transformation equations (4.45) and (4.47) in (4.26) one can prove the two identities

λT g.f.µν = −Aaν∂µδω̄a −Aaµ∂νδω̄a + gµν

[
1

2
∂ ·Aaδω̄a +Aaρ∂

ρδω̄a
]
, (4.50)

λT ghµν = −∂µω̄aδAaν − ∂ν ω̄aδAaµ + gµν∂
ρω̄aδAaρ, (4.51)

which show that the ghost and the gauge-fixing parts of the energy-momentum tensor (times the

anticommuting factor λ) can be written as an appropriate BRST variation of ghost/antighost
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and gauge contributions. Their sum, instead, can be expressed as the BRST variation of a

certain operator plus an extra term which vanishes when using the ghost equations of motion

λ
(
T g.f.µν + T ghµν

)
= δ

[
−∂µω̄aAaν − ∂νω̄aAaµ + gµν

(
Aaρ∂ρω̄

a +
1

2
∂ ·Aaωa

)]

+ gµν
1

2
λω̄a∂ρDab

ρ ω
b, (4.52)

which shows explicitly the structure of the gauge-variant terms in the energy-momentum tensor.

Using the nilpotency of the BRST operator (δ2 = 0), the BRST variation of Tµν is given by

δTµν = δ(T g.f.µν + T ghµν ) =
λ

ξ

[
Aaµ∂ν∂

ρDab
ρ ω

b +Aaν∂µ∂
ρDab

ρ ω
b − gµν∂σ(Aaσ∂ρDab

ρ ω
b)
]
, (4.53)

where it is straightforward to recognize the equation of motion of the ghost field on its right-hand

side. Using this last relation, we are able to derive some constraints on the Green’s functions

involving insertions of the energy-momentum tensor. In particular, we are interested in some

identities satisfied by the correlator 〈TµνAaαAbβ〉 in order to define it unambiguously. For this

purpose, it is convenient to choose an appropriate Green’s function, in our case this is given by

〈Tµν∂αAaαω̄b〉, and then exploit its BRST invariance to obtain

δ〈Tµν∂αAaαω̄b〉 = 〈δTµν∂αAaαω̄b〉+ λ〈Tµν∂αDac
α ω

cω̄b〉 − λ

ξ
〈Tµν∂αAaα∂βAbβ〉 = 0, (4.54)

where the first two correlators, built with operators proportional to the equations of motion,

contribute only with disconnected amplitudes, that are not part of the one-particle irreducible

vertex function. From Eq. (4.54) we obtain the identity

∂αx1
∂βx2
〈Tµν(x)Aaα(x1)A

b
β(x2)〉trunc = 0, (4.55)

which in momentum space becomes

pαqβ〈Tµν(k)Aaα(p)Abβ(q)〉trunc = 0. (4.56)

A subtlety in these types of derivations concerns the role played by the commutators, which are

generated because of the T-product and can be ignored only if they vanish. In general, in fact,

the derivatives are naively taken out of the correlator, in order to arrive at Eq. (4.56) and this

can generate an error. In this case, due to the presence of an energy momentum tensor, the

evaluation of these terms is rather involved. For this reason one needs to perform an explicit

check of Eq. (4.56) to ensure the consistency of the formal result in a suitable regularization

scheme. As we are going to show in the next sections, these three Ward identities turn out to

be satisfied in dimensional regularization.
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Figure 4.2: The fermionic contributions with a graviton hµν in the initial state and two gluons Aa
α, A

b
β

in the final state.

4.4 The perturbative expansion

The perturbative expansion is obtained by taking into account all the diagrams depicted in

Figs. 4.2, 4.3, 4.4, where an incoming graviton appears in the initial state and two gluons with

momenta p and q characterize the final state. The different contributions to the total amplitude

are identified by the nature of the internal lines and are computed with the aid of the Feynman

rules defined in Appendix A.11. Each amplitude is denoted by Γ, with a superscript in square

brackets indicating the figure of the corresponding diagram.

The contributions with a massive fermion running in the loop are depicted in Fig. 4.2; for

the triangle in Fig. 4.2a we obtain

− iκ
2

Γ
[2a]ab
µναβ (p, q) = −κ

2
g2 tr(T bT a)

∫
d4l

(2π)4
·

·tr
{
V ′µν(l − q, l + p)

1

l/ − q/−mγβ
1

l/ −mγα
1

l/+ p/−m

}

(4.57)

where the color factor is given by tr(T bT a) = 1
2δ
ab; the diagram in Fig. 4.2c contributes as

− iκ
2

Γ
[2c]ab
µναβ (p, q) = −κ

2
g2 tr(T aT b)

∫
d4l

(2π)4
tr

{
W ′µνα

1

l/− q/−mγβ
1

l/−m

}
, (4.58)

with the vertices V ′µν(l− q, l+p) and W ′µνα defined in Appendix A.11, Eqs. (A.138) and (A.141)

respectively. The remaining diagrams in Fig. 4.2 are obtained by exchanging α↔ β and p↔ q

− i κ
2

Γ
[2b] ab
µναβ (p, q) = −i κ

2
Γ

[2a]ab
µναβ (p, q)

∣∣∣∣α↔ β
p↔ q

, (4.59)

−i κ
2

Γ
[2d] ab
µναβ (p, q) = −i κ

2
Γ

[2c]ab
µναβ (p, q)

∣∣∣∣α↔ β
p↔ q

. (4.60)

Moving to the gauge sector we find the four contributions in Fig. 4.3: the first one with a
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Figure 4.3: The gauge contributions with a graviton hµν in the initial state and two gluons Aa
α, A

b
β in

the final state.

triangular topology is given by

− iκ
2

Γ
[3a]ab
µναβ (p, q) = −κ

2
g2fadef bde

∫
d4l

(2π)4
1

l2 (l + p)2 (l − q)2
[
V Ggg
µνρσ(l − q,−l − p) ×

V 3
τσα(−l, l + p,−p) V 3

ρτβ(−l + q, l,−q)
]
, (4.61)

where the color factor is fadef bde = CA δ
ab. Those in Figs. 4.3b and 4.3c, containing gluon loops

attached to the graviton vertex, are called “t-bubbles” and can be obtained one from the other

by the exchange of α↔ β and p↔ q. The first “t-bubble” is given by

− iκ
2

Γ
[3b] ab
µναβ (p, q) = −1

2

κ

2
g2fadef bde

∫
d4l

(2π)4

V Gggg
µνρσβ(−l, l − p,−q)V 3

ρασ(k,−p,−l + p)

l2 (l − p)2 (4.62)

which is multiplied by an additional symmetry factor 1
2 . There is another similar contribution

obtained from the previous one after exchanging α↔ β and p↔ q

− iκ
2

Γ
[3c] ab
µναβ (p, q) = −iκ

2
Γ

[3b] ab
µναβ (p, q)

∣∣∣∣α↔ β
p↔ q

. (4.63)

The last diagram with gluons running in the loop is the one in Fig. 4.3d which is given by

− iκ
2

Γ
[3d]ab
µναβ (p, q) =

1

2

κ

2
g2

∫
d4l

(2π)4
V Ggg
µνρσ(−l, l − p− q) δdf V 4 abcd

ρασβ

l2 (l − p− q)2 , (4.64)

where V 4 is the four gluon vertex defined as

− ig2V 4 abcd
µνρσ = −ig2

[
fabef cde(gµρgνσ − gµσgνρ) + facef bde(gµνgρσ − gµσgνρ)

+ fadef bce(gµνgρσ − gµρgνσ)
]

(4.65)

and therefore

δdf V 4 abcd
ρασβ = −CAδabṼ 4

ρασβ = −CAδab (gασgβρ + gαρgβσ − 2gαβgσρ) , (4.66)
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Figure 4.4: The ghost contributions with a graviton hµν in the initial state and two gluons Aa
α, A

b
β in

the final state.

so that the amplitude in Eq. (4.64) becomes

− iκ
2

Γ
[3d] ab
µναβ (p, q) = −1

2

κ

2
g2CAδ

ab

∫
d4l

(2π)4
V Ggg
µνρσ(−l, l − p− q) Ṽ 4

ρασβ

l2 (l − p− q)2 . (4.67)

In the expression above we have explicitly isolated the color factor CAδ
ab and the symmetry

factor 1
2 .

Finally, the ghost contributions shown in Fig. 4.4 are given by the sum of

− iκ
2

Γ
[4a]ab
µναβ (p, q) = −κ

2
g2fadef bde

∫
d4l

(2π)4
Cµνρσ(l − q)ρ(l + p)σlα(l − q)β

l2 (l + p)2 (l − q)2 (4.68)

for the triangle diagram in Fig. 4.4a and

− iκ
2

Γ
[4b]ab
µναβ (p, q) =

κ

2
g2fadef bde

∫
d4l

(2π)4
Cµνασl

σ(l − q)β
l2 (l − q)2 (4.69)

for the “T-bubble” diagram shown in Fig. 4.4c. The two exchanged diagrams are obtained from

those in Eqs. (4.68) and (4.69) with the usual replacement α↔ β and p↔ q.

− i κ
2

Γ
[4b] ab
µναβ (p, q) = −i κ

2
Γ

[4a]ab
µναβ (p, q)

∣∣∣∣α↔ β
p↔ q

, (4.70)

−i κ
2

Γ
[4d] ab
µναβ (p, q) = −i κ

2
Γ

[4c]ab
µναβ (p, q)

∣∣∣∣α↔ β
p↔ q

. (4.71)

Having identified the different sectors we obtain the total amplitude for quarks, denoted by a

“q” subscript

Γabq, µναβ(p, q) = Γ
[2a]ab
µναβ (p, q) + Γ

[2b]ab
µναβ (p, q) + Γ

[2c] ab
µναβ (p, q) + Γ

[2d] ab
µναβ (p, q) (4.72)

and the one for gluons and ghosts as

Γabg, µναβ(p, q) =
∑

j=3,4

[
Γ

[ja] ab
µναβ (p, q) + Γ

[jb] ab
µναβ (p, q) + Γ

[jc]ab
µναβ (p, q) + Γ

[jd] ab
µναβ (p, q)

]
. (4.73)
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4.5 The on-shell 〈TAA〉 correlator, pole terms and form factors

We proceed with a classification of all the diagrams contributing to the on-shell vertex, starting

from the gauge invariant subset of diagrams that involve fermion loops and then moving to

the second set, the one relative to gluons and ghosts. The analysis follows rather closely the

method presented in the case of QED in previous works [51, 52], with a classification of all the

relevant tensor structures which can be generated using the 43 monomials built out of the 2 of

the 3 external momenta of the triangle diagram and the metric tensor gµν . In general, one can

proceed with the identification of a subset of these tensor structure which allow to formulate the

final expression in a manageable form. The fermionic triangle diagrams, which define one of the

two gauge invariant subsets of the entire correlator, can be given in a simplified form also for

off mass-shell external momenta, in terms of 13 form factors as in [51, 52] while the structure

of the gluon contributions are more involved. Some drastic semplifications take place in the

on-shell case, where only 3 form factors - both in the quark and fermion sectors - are necessary

to describe the final result.

We write the whole amplitude Γµναβ(p, q) as

Γµναβ(p, q) = Γµναβq (p, q) + Γµναβg (p, q), (4.74)

referring respectively to the contributions with quarks (Γq) and with gluons/ghosts (Γg) in

Eqs. (4.72) and (4.73). We have omitted the color indices for simplicity. The amplitude Γ is

expressed in terms of 3 tensor structures and 3 form factors renormalized in the MS scheme

Γµναβq/g (p, q) =

3∑

i=1

Φi q/g(s, 0, 0,m
2) δab φµναβi (p, q) . (4.75)

One comment concerning the choice of this basis is in order. The 3 form factors are more easily

identified in the fermion sector after performing the on-shell limit of the off-shell amplitude,

where the 13 form factors introduced in [51, 52] for QED simplify into the 3 tensor structures

that will be given below. It is then observed that the tensor structure of the gluon sector,

originally expressed in terms of the 43 monomials of [51, 52], can be arranged consistently in

terms of these 3 reduced structures.

The tensor basis on which we expand the on-shell vertex is given by

φµναβ1 (p, q) = (s gµν − kµkν)uαβ(p, q), (4.76)

φµναβ2 (p, q) = −2uαβ(p, q) [s gµν + 2(pµ pν + qµ qν)− 4 (pµ qν + qµ pν)] , (4.77)

φµναβ3 (p, q) =
(
pµqν + pνqµ

)
gαβ +

s

2

(
gανgβµ + gαµgβν

)

−gµν
(s

2
gαβ − qαpβ

)
−
(
gβνpµ + gβµpν

)
qα −

(
gανqµ + gαµqν

)
pβ,

(4.78)
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Figure 4.5: Higher order contributions to the anomaly pole involved in the covariantization of the

graviton/2-gluons amplitude.

where uαβ(p, q) has been defined in Eq. (4.21). The form factors Φi(s, s1, s2,m
2) have as entry

variables, beside s = (p+ q)2, the virtualities of the two gluons s1 = p2 and s2 = q2.

In the on-shell case only 3 invariant amplitudes contribute, which for the quark loop amplitude

are given by

Φ1 q(s, 0, 0, m2) = − g2

36π2s
+

g2m2

6π2s2
− g2m2

6π2s
C0(s, 0, 0,m2)

[
1

2
− 2m2

s

]
, (4.79)

Φ2 q(s, 0, 0, m2) = − g2

288π2s
− g2m2

24π2s2
− g2m2

8π2s2
D(s, 0, 0,m2)

− g2m2

12π2s
C0(s, 0, 0,m2)

[
1

2
+
m2

s

]
, (4.80)

Φ3 q(s, 0, 0, m2) =
11g2

288π2
+
g2m2

8π2s
+ g2C0(s, 0, 0,m2)

[
m4

4π2s
+
m2

8π2

]

+
5 g2m2

24π2s
D(s, 0, 0,m2) +

g2

24π2
BMS

0 (s,m2), (4.81)

where the on-shell scalar integrals D(s, 0, 0,m2), C0(s, 0, 0,m2) and BMS
0 (s,m2) are computed

in Appendix A.2. In the massless limit the amplitude Γµναβq (p, q) takes a simpler expression and

the previous form factors become

Φ1 q(s, 0, 0, 0) = − g2

36π2s
, (4.82)

Φ2 q(s, 0, 0, 0) = − g2

288π2 s
, (4.83)

Φ3 q(s, 0, 0, 0) = − g2

288π2
[12Ls − 35] , (4.84)

where

Ls ≡ log

(
− s

µ2

)
s < 0. (4.85)

In the gluon sector the computation of Γµναβg (p, q) is performed analogously by using dimensional
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regularization with modified minimal subtraction (MS) and we obtain for on-shell gluons

Γµναβg (p, q) =
3∑

i=1

Φi g(s, 0, 0) δ
ab φµναβi (p, q) , (4.86)

where the form factors obtained from the explicit computation are

Φ1 g(s, 0, 0) =
11 g2

72π2 s
CA, (4.87)

Φ2 g(s, 0, 0) =
g2

288π2 s
CA, (4.88)

Φ3 g(s, 0, 0) = −g2 CA

[
65

288π2
+

11

48π2
BMS

0 (s, 0)− 1

8π2
BMS

0 (0, 0) +
s

8π2
C0(s, 0, 0, 0)

]
.

(4.89)

The renormalized scalar integrals can be found in Appendix A.2.

The full on-shell vertex, which is the sum of the quark and pure gauge contributions, can

be decomposed by using the same three tensor structures φµναβi appearing in the expansion of

Γµναβq (p, q) and Γµναβg (p, q)

Γµναβ(p, q) = Γµναβg (p, q) + Γµναβq (p, q) =

3∑

i=1

Φi(s, 0, 0) δ
ab φµναβi (p, q) , (4.90)

with form factors defined as

Φi(s, 0, 0) = Φi, g(s, 0, 0) +

nf∑

j=1

Φi, q(s, 0, 0,m
2
j ), (4.91)

where the sum runs over the nf quark flavors. In particular we have

Φ1(s, 0, 0) = − g2

72π2 s
(2nf − 11CA) +

g2

6π2

nf∑

i=1

m2
i

{
1

s2
− 1

2s
C0(s, 0, 0,m2

i )

[
1− 4m2

i

s

]}
,

(4.92)

Φ2(s, 0, 0) = − g2

288π2 s
(nf − CA)

− g2

24π2

nf∑

i=1

m2
i

{
1

s2
+

3

s2
D(s, 0, 0,m2

i ) +
1

s
C0(s, 0, 0,m2

i )

[
1 +

2m2
i

s

]}
, (4.93)

Φ3(s, 0, 0) =
g2

288π2
(11nf − 65CA)− g2 CA

8π2

[
11

6
BMS

0 (s, 0)− BMS
0 (0, 0) + s C0(s, 0, 0, 0)

]

+
g2

8π2

nf∑

i=1

{
1

3
BMS

0 (s,m2
i ) +m2

i

[
1

s
+

5

3s
D(s, 0, 0,m2

i )

+ C0(s, 0, 0,m2
i )

[
1 +

2m2
i

s

] ]}
,

(4.94)
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with CA = NC and the scalar integrals defined in Appendix A.2. Notice the appearance in

the total amplitude of the 1/s pole in Φ1, which is present both in the quark and in the gluon

sectors, and which saturates the contribution to the trace anomaly in the massless limit. In this

case the entire trace anomaly is just proportional to this component, which becomes

Φ1(s, 0, 0) = − g2

72π2 s
(2nf − 11CA) . (4.95)

The correlator Γµναβ(p, q), computed using dimensional regularization, satisfies all the Ward

identities defined in the previous sections. Notice that the two-derivatives Ward identity intro-

duced in Eq. (4.56)

pαqβ Γµναβ(p, q) = 0, (4.96)

derived from the BRST symmetry of the QCD Lagrangian, is straightforwardly satisfied by the

on-shell amplitude. This is easily seen from the tensor decomposition introduced in Eq. (4.75)

because all the tensors fulfill the condition

pαqβ φ
µναβ
1 (p, q) = 0. (4.97)

Furthermore, we have checked at one-loop order the validity of the single derivative Ward identity

given in Eq. (4.39) and describing the conservation of the energy-momentum tensor. Using the

transversality of the two-point gluon function Eq. (4.39) this gives

kµ Γµναβ(p, q) =
(
qν pα pβ − qν gαβ p2 + gνβ qα p2 − gνβ pα p · q

)
Π(p2)

+
(
pν qα qβ − pν gαβ q2 + gνα pβ q2 − gνα qβ p · q

)
Π(q2), (4.98)

where the renormalized gluon self energies are defined as

Π(p2) =
g2 CA δ

ab

144π2

(
15BMS

0 (p2, 0)− 2
)

+
g2 δab

72π2p2

nf∑

i=1

[
6AMS

0 (m2
i ) + p2 − 6m2

i − 3BMS
0 (p2,m2

i )
(
2m2

i + p2
)]
. (4.99)

The QCD β function can be related to the residue of the pole and can be easily computed

starting from the amplitude Γµναβ(p, q) for on-shell external lines and in the conformal limit

gµν Γµναβ(p, q) = 3 sΦ1(s; 0, 0, 0)u
αβ (p, q) = −2

β(g)

g
uαβ(p, q), (4.100)

with the QCD β function given by

β(g) =
g3

16π2

(
−11

3
CA +

2

3
nf

)
. (4.101)
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As we have already mentioned, after contracting the metric tensor gµν with the whole amplitude

Γ, only the tensor structure φµναβ1 (p, q) contributes to the anomaly, being the remaining ones

traceless, with a contribution entirely given by Φ1|m=0 in Eq. (4.92), i.e. Eq. (4.95). In the

massive fermion case, the anomalous contribution are corrected by terms proportional to the

fermion massm and represent an explicit breaking of scale invariance. From a direct computation

we can also extract quite straightforwardly the effective action, which is given by

Spole = − c
6

∫
d4x d4y R(1)(x)�

−1(x, y)F aαβ F
a αβ

=
1

3

g3

16π2

(
−11

3
CA +

2

3
nf

) ∫
d4x d4y R(1)(x)�

−1(x, y)FαβF
αβ (4.102)

and is in agreement with Eq. (4.6), derived from the nonlocal gravitational action. Here R(1)

denotes the linearized expression of the Ricci scalar

R(1)
x ≡ ∂xµ ∂xν hµν −�h, h = ηµν h

µν (4.103)

and the constant c is related to the non-abelian β function as

c = −2
β(g)

g
. (4.104)

Notice that the contribution coming from TJJ generates the abelian part of the non-abelian

field strength, while extra contributions (proportional to extra factors of g and g2) are expected

from the TJJJ and TJJJJ diagrams (see Fig. 4.5). This situation is analogous to that of

the gauge anomaly, where one needs to render gauge covariant the anomalous amplitude given

by the triangle diagram. In that case the gauge covariant expression is obtained by adding to

the AV V vertex also the AV V V and AV V V V diagrams, with 3 and 4 external gauge lines,

respectively.

4.6 Comments

The appearance of massless degrees of freedom in the effective action describing the coupling of

gravity to the gauge fields is rather intriguing, and is an aspect that will require further analysis.

The nonlocal structure of the action that contributes to the trace anomaly, which is entirely

reproduced, within the local description, by two auxiliary scalar fields, seems to indicate that

the effective dynamics of the coupling between gravity and matter might be controlled, at least

in part, by these degrees of freedom. As we have just mentioned, however, this point requires a

dedicated study and for this specific reason our conclusions remain open ended.
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Our computation, however, being general, allows also the identification of other massless

contributions to the effective action which are surely bound to play a role in the physical S-

matrix. They appear in form factors such as Φ2 (Eq. 4.93) and Φ3 (Eq. 4.94) which do not

contribute to the trace, but are nevertheless part of the 1-loop effective action mediated by the

triangle graph.

There are also some other comments, at this point, which are in order. Notice that while the

isolation of the pole in the fermion sector indeed requires a massless fermion limit, as obvious

from the structure of Γq, the other gauge invariant sector, described by Γg, is obviously not

affected by this limit, being the corresponding form factors mass independent. This obviously

does not imply necessarily that the gluon pole, which survives the extrapolation to the massless

limit, is coupled in the physical S-matrix.

Building on considerations of this nature, in particular on the possible significance of massless

effective degrees of freedom, the role of the trace anomaly in establishing the effective interaction

of gravity with matter has been reconsidered [100, 101]. The explicit goal of this approach has

been to trying to bypass the existing hierarchy problem between the value of the expected

vacuum energy density (ρ ∼ (10−3eV)4), well-described by a cosmological constant, and the

Planck mass (ρ ∼ M4
P ), which is a fundamental issue in contemporary cosmology that has not

found yet a convincing explanation. In fact, it has been known for a long time that free massless

particles contribute to the anomaly by an insignificant amount (T µµ ∼ H4
0 ), proportional to the

fourth power of the current Hubble rate, which is far too small as a value to solve the dark energy

problem, due to the fact that we are living in a flat universe. However, it has been suggested that

this small value for the vacuum energy density, originally attributed to the anomaly, could be

raised to the expected one if the gravitational effective action is characterized by some effective

nonlocality. In this case the contribution due to the trace anomaly could be modified as [108]

T µµ ∼ H0 Λ3
QCD ∼ (10−3eV)4, (4.105)

where ΛQCD is the QCD scale, which is tantalizingly close to the estimated value. While this

proposal and similar others are clearly not the only possible solutions of the dark energy problem

(similar values of the vacuum energy can be obtained, for instance, using axions misaligned at

the electroweak scale [109] and in several other ways) they share the positive feature of being

characterized by few minimal assumptions. If so, one could envision a solution of the problem

of the origin of dark energy without the need to enlarge the Standard Model spectrum with yet

unknown particles and symmetries. Crucial, in these types of approaches, appears to be the role

played by the effective scalar fields in the anomalous effective action, which are present in the

local formulation of Riegert’s action, together with their possible boundary conditions.
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4.7 Conclusions

One of the standing issues of the anomalous effective action describing the interaction of a non-

abelian theory to gravity is a test of its consistency with the standard perturbative approach.

Thus, variational solutions of the effective action controlled by the trace anomaly should be

reproduced by the perturbative expansion. Building on previous analysis in QED and contained

in the previous chapters, here we have shown that also in the non-abelian case there is a perfect

match between the two approaches. This implies that the interaction of gravity with a non-

abelian gauge theory, mediated by the trace anomaly, indeed can be reformulated in terms of

auxiliary scalar degrees of freedom, in analogy to the abelian case. We have proven this result by

an explicit computation. Our findings indicate that this feature is typical of each gauge invariant

subsector of the non-abelian TJJ amplitude, a result which is likely to hold also for singularities

of higher order. These are expected to be present in correlators with a larger number of energy

momentum insertions.





Chapter 5

Anomaly cancellation by pole

subtraction and ghost instabilities

5.1 Introduction

The goal of this chapter is to stress on some (and unique) features of this subtraction from a

perturbative perspective, in particular on the issues left open - at field theory level - and which

have not yet found a satisfactory answer. Two different approaches appear in the description

of the mechanism of anomaly cancellation, involving either a counterterm in the form of a pole

subtraction [33, 34], or a Wess-Zumino term (see for instance [35]). This goes under the name -

rather generically - of the Green-Schwarz mechanism (GS) in four dimensional field theory.

These two forms of the mechanism at the level of the 1-particle irreducible (1PI) effective action

are, obviously, not equivalent, and the issue of their completeness, from a field theory point of

view, is still open. For instance, axionic shift symmetries, which are present in some formulations

of gauged supergravities, have been investigated using a Wess-Zumino approach [110, 111]. On

the other hand, the subtraction of the anomaly pole in superspace - which is the one that we

will mostly address in this note - has also been introduced as a possible way to give consistency

to the effective action, in the presence of quantum anomalies. At the same time, a large amount

of work along the years has addressed the problem of anomaly cancellation in matter-coupled

supergravities using, at least in some cases, the subtraction mechanism. These studies have

been and are focused on the role of Kähler and sigma model anomalies [34, 112, 113, 114] and

on their implications in anomaly-mediated supersymmetry breaking [115].

107
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5.1.1 Open issues

We point out that there are two challenges to the understanding of the subtraction mechanism in

field theory. They are related 1) to the presence of ghosts in the spectrum of anomalous theories

after the subtraction and 2) to the question whether a simple pole subtraction can actually

erase the trace anomaly, in case also this needs to be cancelled. This second point is rather

subtle since in supergravities the gauging combines several different symmetries, by requiring

the invariance of the complete action under a combination of scaling symmetries (super-Weyl)

together with ordinary Kähler transformations in addition to a U(1)R gauge symmetry.

A third issue concerns the relation between anomaly induced actions, which are derived by a

solution of the anomaly equation, and the complete perturbative action obtained from a direct

(and complete) diagrammatic approach. Both methods determine effective actions which are

characterized by anomaly poles, the second approach being, obviously, more complete. Explicit

computations, in fact, allow to understand the significance of the anomaly poles also as specific

ultraviolet (UV) contributions, emerging from the perturbative expansion in the large energy

limit. This point, as we are going to explain below, allows to put into the right context the

meaning of the subtraction mechanism, which should be part of a UV completion.

All these issues have some implications for supersymmetric Yang Mills theories when these

are coupled to conformal supergravity or to the various (old and new) multiplets of Poincare

supergravities, due to the emergence of an infrared instability at perturbative level, induced by

the mechanism. This can be identified by a direct analysis of the Coleman-Weinberg potential

of the corrected theory, which shows the presence at 1-loop level of a ghost condensate.

Therefore, a true understanding of the mechanism of anomaly mediation and/or cancellation,

to be significant at phenomenological level, has to address the role of the axion-ghost system and

of the scalar-ghost system which, as we are going to explain, are introduced by these subtractions.

Our simplified analysis has the role to stress the essential features of the pole subtraction, using

very simple examples, but coming to conclusions which are, in fact, quite general. As we are

going to show, much of the problem arises due to the nature of these pole counterterms in

perturbation theory. The lifting of this approach to superspace, while necessary, complicates

considerably the matter, especially since chiral gauge anomalies and trace anomalies may be

jointly involved in the cancellation. This may happen if the Kähler symmetry has physical

significance and needs to be preserved [112].
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5.2 Removing the chiral gauge anomaly by an axion or by a pole

subtraction

The simplest Lagrangians that in field theory realize the Wess-Zumino version of the mechanism

can be written down quite straightforwardly, starting, for instance, with a single anomalous

U(1)B model. It is defined as

L = ψ̄(i∂ + gBγ5)ψ −
1

4
F 2
B + 〈∆BBBBBB〉+ c1

b

M
FB ∧ FB (5.1)

and contains one chiral fermion, which indeed introduces an anomaly at quantum level. A

discussion of this action is given in [22]. We have included in its structure the 〈∆BBBBBB〉
interaction, which represents the contribution from the triangle diagram [16]. We can fix the

counterterm c1 from the requirement of gauge invariance, balancing the anomalous variation of

the anomaly diagram with the variation of the axion counterterm. The axion undergoes a local

shift under a gauge transformation

δb = MθB(x) δBµ = ∂µθB(x) (5.2)

where θB(x) parameterizes a gauge transformation. The Lagrangian implements in a simple form

the GS mechanism (via an asymptotic axion b) and is obviously generalizable to supersymmetry

via a shifting supermultiplet (see for instance [35] and [116] for a theoretical and phenomeno-

logical discussions in the supersymmetric case). As we have already mentioned, there is no

equivalence between the pole subtraction mechanism and the Wess-Zumino counterterm, and

these approaches are sometime not clearly distinguished in the literature. This difference, at the

level of the 1-particle irreducible effective action, is indeed substantial.

The model Lagrangian introduced in (5.1) has some pitfalls, the first of them being the

absence of a kinetic term for the axion. We can try to avoid the problem by introducing a

kinetic term in a gauge invariant form. There is only one possibility, the Stückelberg mass term,

obtaining the modified action

L = ψ̄(i∂ + gBγ5)ψ −
1

4
F 2
B + 〈∆BBBBBB〉+ c1

b

M
FB ∧ FB +

1

2
(∂µb−MBµ)

2 .

(5.3)

This Lagrangian has a typical Mb∂B interaction that one could try to remove via a gauge

fixing. In fact, one can do so and investigate the behaviour of the perturbative expansion in

such a gauge (of Rξ type). These studies have been performed in [16]. The theory describes

consistently the mechanism of anomaly cancellation up to a certain scale, which is essentially

the Stückelberg Mass M , since there is, indeed, a unitarity bound. There is a second limitation
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of this type of action, coming directly from gauge invariance. In fact one could choose a gauge in

which b is set to vanish, and the theory would turn out to be equivalent to a massive Yang Mills

theory coupled to a chiral fermion. For this reason, this action should necessarily be viewed

as an approximate description of a more general one. This could be deduced starting from an

anomaly free theory and decoupling even a single chiral fermion from the functional integral

[29]. It has been shown that the effective action obtained by this decoupling is indeed corrected

by an infinite number of higher dimensional operators. In this respect, the Lagrangian given in

(5.3) has a unitary completion, at least in a field theory sense. Notice that b can be thought

of as the phase of an extra Higgs field (complex scalar) having decoupled its modulus. For this

reason, Lagrangians of this type are sufficient to describe the leading behaviour of the effective

action in a 1/M expansion.

A second version of the mechanism is described instead by the second (nonlocal) Lagrangian

L = ψ̄(i∂ + gBγ5)ψ −
1

4
F 2
B + 〈∆BBBBBB〉+ c2∂B

1

�
FBF̃B (5.4)

where the term ∂B 1
�
FBF̃B is the anomaly pole. It does not take much to realize that the

cancellations corresponding to (5.3) and (5.4) allow to restore gauge invariance of the effective

action. In general, extra counterterms can also be added to these types of actions in the presence

of at least two gauge simmetries, in the form of Chern-Simons (CS) interactions. In the case

that we consider the only possible anomaly is the consistent one, given the symmetry. For all

practical purposes, CS interactions simply allow to re-distribute the partial anomalies (ai) on

a given leg of a diagram, keeping their sum fixed (a1 + a2 + a3 = an). In the case of a theory

with two U(1)’s (e.g. U(1)A × U(1)B) with A vector-like and B axial-vector-like, terms such as

(AB ∧FB, AB ∧FA) allow to move from the consistent to the covariant form of the anomaly. In

any case, the discussion of CS interactions is not relevant for our goals and it will be omitted.

This second version of the mechanism, realized via (5.4), introduces one additional degree of

freedom compared to (5.3). As we are going to show, this extra degree of freedom is an anomaly

ghost. In fact, the Lagrangian (5.4) admits a different (local) formulation, now in terms of two

extra pseudoscalars of the form

L = ψ (i 6 ∂ + e 6 Bγ5)ψ −
1

4
F 2
B + 〈∆BBBBBB〉+ c3FB ∧ FB(a+ b)

+
1

2
(∂µb−M1Bµ)

2 − 1

2
(∂µa−M1Bµ)

2 , (5.5)

where both a and b shift as in (5.2). The equivalence between (5.4) and (5.5) can be proven

directly from the functional integral, integrating out both a and b, which gives two gaussian

integrations. Notice that b has a positive kinetic term and a is ghost-like.
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There is a third equivalent formulation of the same action (5.5) which can be defined with

the inclusion of a kinetic mixing between the two pseudoscalars. This has been given for QED

(with a single fermion) coupled to an external axial-vector field Bµ [51] and takes the form

L = ∂µη ∂
µχ− χ∂B +

e2

8π2
η F F̃ , (5.6)

where F is the field strength of the photon Aµ while Bµ takes the role of a source. An anomaly

pole is indeed induced by the BAA anomaly vertex. It is quite straightforward to relate (5.5)

and (5.6). This can be obtained by the field redefinitions

η =
(a+ b)

M
, (5.7)

χ = M(a+ b), (5.8)

showing that indeed a mixing term is equivalent to the presence of either an anomaly pole or to

two pseudoscalars in the spectrum of the theory, one of them being a ghost. It is obvious that

the pole subtraction in superspace does exactly the same thing, in a rather unobvious way.

5.2.1 The anomaly pole and the trace anomaly

The appearance of an anomaly pole in the perturbative expansion is not limited to the chiral

anomaly. To clarify this point, let’s denote with k the incoming momentum of the anomalous

gauge current or of the graviton and with p and q the outgoing momenta of the two vector gauge

bosons.

Similar singularities appear in explicit computations of the correlation functions for the trace

anomaly in the absence of any second scale in the loop, involving one insertion of the energy

momentum tensor (T ) on 2-point functions of gauge fields (V V ′), the TV V ′ correlator. By a

second scale we refer either to a fermion mass term m in the anomaly loop, or to any of the two

virtualities s1 and s2 (s1 ≡ p2, s2 ≡ q2) of the two gauge currents. With the term “first scale”

in the loop we refer to the virtuality of the graviton s (s ≡ k2), or, in the case of the chiral

anomaly, the virtuality of the axial-vector current. This is the scale that as s goes to zero (with

kµ → 0, soft infrared (IR) limit) or as s goes to infinity (i.e. kµ goes to infinity with a large

invariant mass) controls the effects of the anomaly on the trilinear vertex. In fact the TV V ′

correlator takes a role quite similar to that of the corresponding AV V diagram of the chiral

gauge anomaly. Surprisingly, this correlator has never been computed explicitly until recently

in QED, QCD and the Standard Model. In the case of QED, for instance, the effective action

takes the form [51] [52, 54]

Sanom[g,A]→ − c
6

∫
d4x
√−g

∫
d4x′

√
−g′Rx �

−1
x,x′ [FαβF

αβ]x′ , (5.9)
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(c = −e2/(24π2)) which is valid to first order in the fluctuation of the metric around a flat

background, denoted as hµν

gµν = ηµν + κhµν , κ =
√

16πGN , (5.10)

with GN being the 4-dimensional Newton’s constant. The pole emerges from a single form factor

evaluated in momentum space. If we denote with Γµναβ ≡ 〈TµνVαVβ〉 the correlation function

responsible for the trace anomaly, this takes the form

Γµναβ ∼ 1

k2
(gµνk2 − kµkν)uαβ(p, q) + ... (5.11)

where uαβ(p, q) is a tensor structure obtained by functional differentiation of the FF term of

the trace anomaly Fourier transformed to momentum space,

uαβ(p, q) = −1

4

∫
d4xd4yeip·x+iq·y

δ2FµνF
µν

δVα(x)δVβ(y)
. (5.12)

The ellypsis refer to terms which are traceless. This relation is the analogous of the anomaly

pole expression

∆λµν
AV V = an

kλ

k2
ǫµναβpαqβ + ... (5.13)

for the chiral anomaly, with an being the anomaly. The pole structure above is usually called

a Dolgov-Zakharov pole (DZ), which is IR coupled only in the absence of any second scale in

an anomaly diagram. It is important to remark that only in this case (i.e. for two on shell

vector lines and massless particles in the loop) the cancellation between an anomaly diagram

and the subtraction countertem is identical. There is no identical cancellation under any other

circumstance. For this obvious reason, in the presence of any second scale in the anomaly loop,

the anomaly cancellation mechanism amounts to an “oversubtraction”.

The meaning of this last term can be clarified quite simply. In fact we just recall that in

the case of the chiral anomaly, the pole subtraction can be absorbed into a redefiniton of the

anomaly vertex - this is not the case for the Wess-Zumino cancellation with a single axion (b)

[24] - which now satisfies regular Ward identities (i.e. non anomalous) on each of its three

external legs. This redefined vertex, however, now has a pole which is infrared coupled for any

virtuality of the external vector lines, a feature which is unique among all the known vertices in

local quantum field theory and, in particular, in the Standard Model. We will come back to this

point in the next sections, trying to address the issue in the case of the chiral anomaly vertex.

As in the case of the chiral anomaly pole, also for the trace anomaly two auxiliary fields

allow to re-express in a local form the corresponding nonlocal action (5.9) which takes the form

[51]

Sanom[g,A;ϕ,ψ′ ] =

∫
d4x
√−g

[
−ψ′�ϕ− R

3
ψ′ +

c

2
FαβF

αβϕ

]
, (5.14)
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where φ and ψ′ are auxiliary scalar fields. Also in this case one can perform the same changes of

variables as in Eqs. (5.7,5.8) and remove the kinetic mixing from this Lagrangian. Notice that

the two auxiliary fields, in this case, are scalars. One of the two degrees of freedom is indeed

a ghost. It is then clear that the subtraction of a anomaly pole induces into the theory some

ghosts which are supposed to cancel those present in the trilinear anomalous vertices. As we are

going to show, simple arguments in perturbation theory show that as soon as eq. 5.4 is used in

the computation of quantum corrections, one discovers the presence of an infrared instability.

For this we need to use the local version of (5.4), but before moving to that discussion we briefly

comment on some of the main features of a pole subtraction in superspace.

5.2.2 The superconformal case and the gauging to gravity

Several puzzles emerge as soon as we put together the pieces of our previous discussion and

frame it into a supersymmetric context (see [117, 118] for an overview).

When we come to analyze a super Yang-Mills theory, the trace anomaly, the gamma-trace

of the supersymmetric current and the anomaly of the U(1)R current are part of the same

anomaly supermultiplet (T µµ , γ · s, ∂J5) [119]. In this case the supermultiplet describes the

radiative breaking of the superconformal symmetry. In particular, the presence of an anomaly

pole for the axial-vector U(1)R global current indeed implies that a similar pole should appear

in the correlation functions involving the insertion of either an energy-momentum tensor - or of

the supersymmetric current - on two vector currents. This result is necessary for a consistent

formulation of the anomaly-free effective action in superspace. Indeed, explicit computations

support this picture to lowest order in the case of the trace anomaly, being obviously true (and

to all orders) for the U(1)R anomaly.

The gauging of such an anomaly multiplet to gravity, for instance via a conformal mul-

tiplet (gµν , ψµ, Bµ) containing a graviton, a gravitino and an axial-vector gauge field, indeed

produces an anomaly. In this case the energy momentum tensor couples to gravity (gµν), the

supersymmetric current couples to the gravitino background (ψµ) and the anomalous U(1)R cur-

rent couples to the axial-vector gauge boson Bµ. Diffeomorphism invariance gives the standard

conservation conditions for T µν and the spinor current sµ (∇µT µν = 0,∇µsµ = 0), but the super-

Weyl and U(1)R symmetry of the theory ((T µµ = 0, γ ·s = 0, ∂J5 = 0) are radiatively broken (see

also [120, 121, 122] for related studies). It is obvious that the cancellation of the superconformal

anomaly can’t be obtained by using a single pole in superspace, given the different nature of the

chiral and trace anomalies.

Anomaly induced actions [115] for N = 1 matter coupled supergravities carry both the

signature of the breaking of scale invariance and of gauge invariance under Super-Weyl-Kähler
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transformations of the effective action, as shown by the presence both of the 1) R�
−1FF and

of the 2) ∂B�
−1FF̃ terms in the effective action, with R being the scalar curvature [115] [33].

While the appearance of the second term is, in a way, obvious, since it is generated by the

Dolgov-Zakharov (DZ) anomaly pole present in the AV V diagram in superspace[37], the first

one is far from being obvious since its identification requires a rather involved computation of

the full correlator, not carried out until recently [51, 52, 54]. Similar poles emerge in the same

vertices of the Standard Model, so far computed in the case of the neutral currents [53, 55]. It

is then amusing that the lifting to superspace of the DZ pole of the U(1)R current, induces a

similar pole in the correlator responsible for the trace anomaly.

It is however clear that the R�
−1FF result is just valid to lowest order (O(GN g

2)) in

Newton’s constant GN and gauge coupling g. Indeed, in general, the structure of the anomaly-

induced effective action for the trace anomaly is expected to be far more involved compared to

the simple pole result. For instance, this action should describe the structure of the singularities

of anomalous correlators with any number of insertions of the energy momentum tensor and two

photons (T nV V ).

For obvious reasons, explicit checks of the corresponding effective action using perturbation

theory - as the number of external graviton lines grows - becomes increasingly difficult to handle.

The TV V correlator is the first (leading) contribution to this infinite sum of correlators in which

the anomalous gravitational effective action is expanded. One proposal for the effective action

is due to Riegert [83], which has been successfully tested, so far only for the TV V case, by two

independent groups [51, 52, 54].

Given the presence of a quartic operator in Riegert’s nonlocal action, the proof that this

action contains a single pole to lowest order (in the TVV vertex), once expanded around flat

space, has been given in [51] and provides the basis for the discussion of the anomalous effective

action (5.14) in terms of massless auxiliary fields.

This shows that the ghost appearing in the trace anomaly is a genuine result which is

extracted in two ways: 1) by integration of the anomaly and 2) by a direct perturbative com-

putation using dispersion theory [51] or the complete evaluation of the diagrammatic expansion

[52, 54].

5.3 Features of an anomaly pole and oversubtractions

Once we allow a pole solution of the anomalous Ward identities (see [92] for a general discus-

sion) of a certain correlator, we need to define the kinematical range in which this solution is

reproduced in perturbation theory, since explicit computations show that the tensor decom-
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positions of anomaly diagrams are not unique. We start with the case of the AV V diagram.

For simplicity, we will still denote with k the incoming momentum on the axial-vector line,

and use symmetric expressions (k1 ≡ p, k2 ≡ q) for the two outgoing momenta of the vector

lines. s ≡ k2 denotes the virtuality of the momentum of the axial-vector current. We have the

standard parameterization due to Rosenberg [41]

∆λµν
0 = A1(k1, k2)ε[k1, µ, ν, λ] +A2(k1, k2)ε[k2, µ, ν, λ] +A3(k1, k2)ε[k1, k2, µ, λ]k1

ν

+ A4(k1, k2)ε[k1, k2, µ, λ]kν2 +A5(k1, k2)ε[k1, k2, ν, λ]kµ1 +A6(k1, k2)ε[k1, k2, ν, λ]kµ2 .

(5.15)

This parameterization is not always the most convenient. For instance, if one wants to study

the mechanism of pole subtraction, it is convenient to use Schouten’s relation and re-express

Rosenberg’s expression in an alternative form. A second decomposition of the anomaly graph

into longitudinal and transverse form factors [42] is possible. It has been shown [40] that this

representation is equivalent to the Rosenberg expression [41] (see the discussion in [123]). It

takes the form

W λµν =
1

8π2

[
WLλµν − W T λµν

]
, (5.16)

where the longitudinal component

WLλµν = wL k
λε[µ, ν, k1, k2] (5.17)

(with wL = −4i/s) describes the anomaly pole, while the transverse contributions take the form

W T
λµν(k1, k2) = w

(+)
T

(
k2, k2

1 , k
2
2

)
t
(+)
λµν(k1, k2) + w

(−)
T

(
k2, k2

1 , k
2
2

)
t
(−)
λµν(k1, k2)

+ w̃
(−)
T

(
k2, k2

1 , k
2
2

)
t̃
(−)
λµν(k1, k2), (5.18)

with the transverse tensors given by

t
(+)
λµν(k1, k2) = k1ν ε[µ, λ, k1, k2] − k2µ ε[ν, λ, k1, k2] − (k1 · k2) ε[µ, ν, λ, (k1 − k2)]

+
k2
1 + k2

2 − k2

k2
kλ ε[µ, ν, k1, k2] ,

t
(−)
λµν(k1, k2) =

[
(k1 − k2)λ −

k2
1 − k2

2

k2
kλ

]
ε[µ, ν, k1, k2]

t̃
(−)
λµν(k1, k2) = k1ν ε[µ, λ, k1, k2] + k2µ ε[ν, λ, k1, k2] − (k1 · k2) ε[µ, ν, λ, k]. (5.19)

One should notice the presence of pole-like singularities in both the L and the T components

proportional to s, which clearly invalidate the separation as s goes to zero. The presence of

such singularities is also the signal that in the absence of any extra scale beside s, the two terms

(L/T ) reduce to a single structure.
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To illustrate this point, let’s consider in fact the case s1 = s2 = 0. In this case the two

nonzero form factors are wL and w
(+)
T

wL(s, 0, 0) = w
(+)
T (s, 0, 0) = −4i

s
, (5.20)

w
(−)
T (s, 0, 0) = w̃

(−)
T (s, 0, 0) = 0. (5.21)

The only contributions to the anomaly vertex come from the longitudinal WL component and

by t
(+)
λµν , the second one being irrelevant when the two vector lines are set on-shell. Therefore,

the parameterization reduces only to the longitudinal contribution, and generates, correctly,

the anomaly pole. This is essentially the only case in which the pole is IR coupled, since

with the inclusion of any other scale in the vertex (beside s), this structure, although present,

does not have the right IR limit. However, this is not the end of the story, since there is a

second kinematical configuration where the pole-like 1/s component becomes significant, and

this involves the UV limit. In fact, we are allowed to perform a large s limit, in any direction

away from the light cone, and observe the persistence of a 1/s component related to the anomaly.

Notice that - differently from the case in which the two vector lines are on-shell - in this limit there

is no redundancy between the longitudinal and transverse structure of the L/T decomposition

(the two structures are independent), and the 1/s behaviour is indeed a genuine (irreducible)

part of the amplitude.

Indeed, we can repeat the same analysis for the case in which at least one of the three scales

(m, s1, s2) is non-vanishing. Let’s suppose, for instance, that only m is non-zero. In this case

we obtain (with wL(s1, s2, s,m
2) = WL(0, 0, s,m2))

wL(0, 0, s,m2) = −4i

s

[
1 +

m2

s
log2

(
a3 + 1

a3 − 1

)]
, (5.22)

w
(+)
T (0, 0, s,m2) =

4i

s

[
3 +

m2

s
log2

(
a3 + 1

a3 − 1

)
− a3 log

(
a3 + 1

a3 − 1

)]
, (5.23)

w
(−)
T (0, 0, s,m2) = w̃

(−)
T (0, 0, s,m2) = 0, a3 =

√
1− 4m2

s
. (5.24)

It is straightforward to verify that there is no residue for the 1/s pole term contained in wL. This

involves a cancellation between the two terms present in wL, the constant and the logarithmic

(∼ log2) term.

We conclude that the coupling of the pole in the infrared is controlled - in the absence of

any other scale except s in the diagram - by the 1/s component of WL. This structure indeed

saturates the anomaly. As soon as any other scale is generated, there is no IR coupling of this

invariant amplitude, although it is formally present in the L/T decomposition. It is then clear

that, if other scales are also present, we are still formally allowed to restore the Ward identities
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of the anomalous vertex by a subtraction of WL (which is what the GS mechanism does), but, by

doing so, we have generated a vertex which is unique in its IR properties respect to any trilinear

gauge vertex of the Standard Model. We refer to this situation as to an “oversubtraction” which

can be potentially dangerous in the context of perturbative unitarity. This occurs whenever we

move off-shell on the external lines (with s1 or s2 nonzero) or include a massive exchange in the

loop, while still allowing an ordinary GS subtraction.

A final comment, in this section, is due for the second (and independent) region where the

WL contribution plays a role, which is the UV region. Notice that in the UV, being the external

virtualities and mass negligible compared to the large value of s, we are again approaching the

“pole dominance” typical of an IR (m, s1, s2 ∼ 0) amplitude. It is instructive to perform a large

s limit of the massive form factors given in (5.24), obtaining

wL = −4 i

s
− 4 im2

s2
log
(
− s

m2

)
+O(m3), (5.25)

w
(+)
T (s, 0, 0,m2) =

12 i

s
− 4 i

s
log
(
− s

m2

)
+

4 im2

s2

[
2 + log

(
s2

m4

)
− log2

(
− s

m2

)]
+O(m3).

(5.26)

The result above is susceptible of a simple intepretation. The anomalous contribution can be

uniquely attributed to the pole in WL, and the anomalous Ward identities are corrected by

suppressed terms of the form m2/s which include logarithms of the same ratio. Differently

from the s → 0 case, in this limit of large s there is no “overlap” between the two L/T tensor

structures, and one can unambiguously attribute the anomalous contribution to WL. This is

the second - unequivocally distinct - region where the anomalous 1/s contribution appears. It

is somehow a misnomer, since there is no residue to compute in this case, but this contribution

can still be called an “anomaly pole”, since it is a manifestation of the anomaly and saturates

the anomalous Ward identities as s grows large. It is then clear which are the open issues typical

of the mechanism of pole subtraction. If viewed as an asymptotic statement, we then should

look for a completion of this mechanism. On the other hand, if we insist that the subtraction

represents the only logical way to erase the anomalous variation of the action, then we are bound

to face the issue of oversubtraction that we have mentioned before.

5.4 Quantifying the oversubtraction of an anomaly pole

For the reasons mentioned above, one can ask the question whether there is a completion of the

GS mechanism - viewed as a pole subtraction - in order to avoid possible problems with the new

(corrected) effective action in the infrared.
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The simplest possibility is to cancel identically the anomaly vertex and not just to restore its

Ward identities under any kinematical configurations, which is what the pole subtraction does.

We are going to do it using as a reference the ordinary cancellation via charge assignment, which

allows to generate a complete unitary theory. However, we will be separating the contribution

to the cancellation which can be attributed to the exchange of the pseudoscalars, from the rest,

with the residual interaction fixed by the condition of complete vanishing of the vertex. The

residual terms, not included in the pole subtraction, could be attributed to the dynamics of the

completion theory (e.g. a string theory), but can be quantified in a definite form, as we are

going to show, also in ordinary field theory.

Thus, let’s consider a theory with a single chiral fermion with vector and axial-vector gauged

interactions and the corresponding AVV diagram. A similar analysis can be done for the AAA

diagram of the same model.

We have seen that in this diagram any configuration - except for the on-shell case (m, s1, s2 =

0) of the two V lines - does not allow an identical cancellation of this diagram by a pole coun-

terterm. It amounts, therefore, to an oversubtraction, as we have explained above. We denote

this vertex by W λµν(m, s, s1, s2) and using a standard Pauli-Villars regularization procedure,

we subtract the same amplitude with a generic fermion of mass M in the loop. We obtain, in a

simplified notation, the regulated amplitude

WR = W (m)−W (M) (5.27)

which is obviously finite and satisfies ordinary Ward identities of the form

kλW
λµν
R = 2mW νλ(m)− 2MW νλ(M). (5.28)

Obviously, in a standard Pauli-Villars regularization one could send M to infinity, recuperating

the anomaly contribution from the 2MW (M) term (up to a sign). At this point we re-express

each of the amplitudes in terms of a pole plus the transverse contributions obtaining

WR = (WL(m, s1, s2)) +WT (m, s1, s2))− (WL(M,s1, s2) +WT (M,s, s1, s2)) . (5.29)

Notice that each of WL(m, s1, s2) and WL(M,s1, s2) are made of an anomaly pole plus mass

correction terms.

Eq. (5.29) can be decomposed in terms of wL and wT , showing that WR is free of anomaly

poles, leaving some extra contributions both in the L and T parts which are mass dependent.

However, WR simplifies remarkably if the mass of the subtracted fermion is zero (M=0), since

the anomaly diagram has no correction on the longitudinal structure WL. In this specific case

we obtain

WR =
(
W ′L(m, s1, s2)) +WT (m, s1, s2)

)
−WT (s, s1, s2), (5.30)
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where W ′L denotes the L component of the diagram for the physical fermion with the subtraction

of the anomaly pole. The interpretation of equation (5.30) is now obvious. Had we performed

a pole subtraction on an AV V diagram, W (m, s1, s2), the result would have been given just

by the first two terms in the round bracket, causing on oversubtraction. This is corrected by

the second term WT (s, s1, s2) which performs the unitarization of the vertex at any scales. We

stress once more that this unitarization is obtained from field theory arguments and does not

necessarily correspond to the unitarization that a nonlocal completion theory, such as a string

theory, should perform on the subtraction.

We have gone through this argument to show that if the subtraction of a pole can be under-

stood as a procedure which can be, eventually, unitarized in some way, then we can obviously

give a coherent interpretation of the complete mechanism. This would allow us to attribute the

subtraction of the pole term to one interaction, for instance to the exchange of an axion-ghost

couple, while, at the same time, extra terms, not directly related to axionic contributions, would

be involved in the extra correction. In the example that we have described, this extra term is

given by WT (s, s1, s2), whose explicit expression, in this case, is known [40].

It is clear that there is a way out and a possible answer to the unitarization of the chiral

anomaly pole, but it may not be so in the case of the trace anomaly. It appears obvious that

such a procedure is bound to fail in the trace anomaly case, unless extra contributions to the

running of the beta function will manage to induce a conformal phase. In this respect, while a

coherent formulation of a pole subtraction in superspace treats the trace and the chiral anomaly

components of an anomaly supermultiplet equally, in practice one can’t ignore the different

nature of the two anomalies. This may pose severe constraints on the coupling of superanomaly

multiplets to gravity, since the mechanism of cancellation of the anomaly, if realized by a pole

subtractions in superspace, is not satisfactory. Pole-like contributions appear indeed both in the

case of chiral and trace anomaly diagrams. However, the anomalous effective action generated

by the insertion of arbitrary powers of the energy momentum tensor on correlators of gauge

currents is far more involved. It may not be completely saturated just by a pole to all orders,

even in the weak field limit of the external gravitational field.

5.5 Conclusions

There is an incomplete understanding of the effective action which emerge at low energy from

string theory and which involves a GS mechanism. It should be realized that this discussion

is not just of formal nature, since it involves some issues which are of fundamental interest.

First among them is the possible role played by the GS axion in the cosmology of the early
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Universe. The appearance of an axion is, in fact, the crucial feature of the anomaly cancellation

mechanism also in its realization in terms of a pole subtraction. The superspace formulation of

the subtraction is not so obvious for Kähler anomalies, given the different nature of the chiral

and conformal anomalies which are involved in combination in this subtraction.

Our analysis, clearly, is far from being conclusive, but it raises, we believe, some points

which should motivate further discussions. Taken frontally, the subtraction of an anomaly pole

to ensure the cancellation of some of the anomalies in a certain theory is the correct thing to

do. At the same time, however, it leaves some issues of consistency wide open. In fact, this

approach could be possibly correct only in the on-shell case. By rewriting the nonlocal action

into a local form, using a formulation with two extra degrees of freedom, one ghost and one

axion, one indeed finds that the effective action breaks the Lorentz symmetry. In these effective

actions the dynamical generation of the breaking is, in fact, rather economical. There is indeed a

signal of vacuum instability in theories corrected by a pole subtraction, which seems to indicate

that the ghost can be taken out of the physical spectrum, leaving for the rest a theory which

could be potentially useful but in a nontrivial vacuum.

Studies of gravity expanded around nontrivial background of ghosts are at the center of an

increasing theoretical interest [124, 125] as are studies of the breaking of the Lorentz symmetry

in brane models [126, 127]. Certainly, our comprehension of the vacuum structure of these

theories on more physical grounds, especially in the presence of gravity multiplets, will probably

require a big effort.



Chapter 6

Trilinear gauge interactions in

extensions of the Standard Model

with anomalous abelian symmetries

6.1 Introduction

Models of intersecting branes (see [128] for an overview) have been under an intense theo-

retical scrutiny in the last several years. The motivations for studying this class of theories

are manifolds, being them obtained from special vacua of string theory, for instance from

the orientifold construction [7, 19, 129, 130]. Their generic gauge structure is of the form

SU(3) × SU(2) × U(1)Y × U(1)p, where the symmetry of the Standard Model (SM) is en-

larged with a certain number of extra abelian factors (p). Several phenomenological studies

[15, 16, 17, 20, 23, 131] have allowed to characterize their general structure, whose string origin

has been analyzed at an increasing level of detail [132, 133, 134] down to more direct issues,

connected with their realization as viable theories beyond the SM. Related studies of the Stück-

elberg field [2, 11, 135, 136, 137] in a non-anomalous context have clarified this mechanism of

mass generation and analyzed some of its implications at colliders both in the SM and in its

supersymmetric extensions.

In scenarios with extra dimensions where the interplay between anomaly cancellations in

the bulk and on the boundary branes is critical for their consistency, very similar models could

be obtained following the construction of [138, 139], with a suitable generalization in order to

generate at low energy a non abelian gauge structure.

Specifically, the role played by the extra U(1)’s at low energy in theories of this type after

electroweak symmetry breaking has been addressed in [15, 16, 17], where some of the quantum
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features of their effective action have been clarified. These, for instance, concern the phases

of these models, from their defining phase, the Stückelberg phase, being the anomalous U(1)

broken at low energy but with a gauge symmetry restored by shifting (Stückelberg) axions, down

to the electroweak phase - or Higgs-Stückelberg phase, (HS) - where the vev’s of the Higgs of the

SM combine with the Stückelberg axions to produce a physical axion [15] and a certain number

of goldstone modes. The axion in the low energy effective action is interesting both for collider

physics and for cosmology [23], working as a modified Peccei-Quinn (PQ) axion. In this respect

some interesting proposals to explain an anomaly in gamma ray propagation as seen by MAGIC

[140, 141] using a pseudoscalar (axion-like) has been presented recently, while more experimental

searches of effects of this type are planned for the future by several collaborations using Cerenkov

telescopes (see [140, 141] for more details and references). Other interesting revisitations of the

traditional Weinberg-Wilczek axion [142, 143] to evade the astrophysical constraints and in the

context of Grand Unification/mirror worlds [144] may well deserve attention in the future and be

analyzed within the framework that we outline below. At the same time, comparisons between

anomalous and non anomalous string constructions of models with extra Z ′s should also be part

of this analysis [8, 9, 145, 146].

The presence of axion-like particles in effective theories is, in general, connected to an anoma-

lous gauge structure, but for reasons which may be rather different and completely unrelated,

as discussed in [23]. For the rest, though, the study of the perturbative expansion in theories of

this type is rather general and shows some interesting features that deserve a careful analysis.

In [16, 17] several steps in the analysis of the perturbative expansion have been performed. In

particular it has been shown how to organize the loop expansion in a gauge-invariant way in

1/M1, where M1 is the Stückelberg mass. A way to address this point is to use a typical Rξ

gauge and follow the pattern of cancellation of the gauge parameter in order to characterize it.

This has been done up to 3-loop level in a simple U(1)×U(1) model where one of the two U(1)’s

is anomalous.

The Stückelberg symmetry is responsible for rendering the anomalous gauge bosons massive

(with a mass M1) before electroweak symmetry breaking. A second scale M controls the in-

teraction of the axions with the gauge fields but is related to the first by a condition of gauge

invariance in the effective action [23]. In general, for a theory with several U(1)’s, there is an

independent mass scale for each Stückelberg field.

In the case of a complete extension of the SM incorporating anomalous U(1)’s, all the neutral

current sectors, except for the photon current, acquire an anomalous contribution that modifies

the trilinear (chiral) gauge interactions. For the Z gauge boson this anomalous component

decouples as M1 gets large, though it remains unspecified. For instance, in theories containing
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extra dimensions it could even be of the order of 10 TeV’s or so, in general being of the order of

1/R, where R is the radius of compactification. In other constructions [7, 19] based on toroidal

compactifications with branes wrapping around the extra dimensions, their masses and couplings

are expressed in terms of a string scale Ms and of the integers characterizing the wrappings [20].

Beside the presence of the extra neutral currents, which are common to all the models with

extra abelian gauge structures, here, in addition, the presence of chiral anomalies leaves some

of the trilinear interactions to contribute even in the massless fermion (chiral) limit, a feature

which is completely absent in the SM, since in the chiral limit these vertices vanish.

As we are going to see, the analysis of these vertices is quite delicate, since their behaviour is

essentially controlled by the mass differences within a given fermion generation [17], and for this

reason they are sensitive both to spontaneous and to chiral symmetry breaking. The combined

role played by these sources of breaking is not unexpected, since any pseudoscalar induced in an

anomalous theory feels both the structure of the QCD vacuum and of the electroweak sector,

as in the case of the Peccei-Quinn (PQ) axion. In this chapter we are going to proceed with a

general analysis of these vertices, extending the discussion in [17]. The analysis performed here

is organized as follows.

After a brief summary on the structure of the effective action, which has been included

to make our treatment self-contained, we analyze the Slavnov-Taylor identities of the theory,

focusing our attention on the trilinear gauge boson vertices. Then we characterize the structure

of the Zγγ and ZZγ vertices away from the chiral limit, extending the discussion presented

in [17]. In particular we clarify when the CS terms can be absorbed by a re-distribution of

the anomaly before moving away from the chiral limit. In models containing several anomalous

U(1)’s different theories are identified by the different partial anomalies associated to the trilinear

gauge interactions involving at least three extra Z ′s. In this case the CS terms are genuine

components which are specific for a given model and are accompanied by a specific set of axion

counterterms. Symmetric distributions of the partial anomalies are sufficient to exclude all the

CS terms, but these particular assignments may not be general enough.

Away from the chiral limit, we show how the mass dependence of the vertices is affected

by the external Ward identity, which is a generic feature of anomalous interactions for nonzero

fermion masses. This point is worked out using chiral projectors and counting the mass insertions

into each vertex. On the basis of this study we are able to formulate general and simple rules

which allow to handle quite straightforwardly all the vertices of the theory. We conclude with

some phenomenological comments concerning the possibility of future studies of these theories

at the LHC. In an appendix we present the Faddeev-Popov Lagrangian of the model, which has

not been given before, and that can be useful for further studies of these theories.
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6.1.1 Construction of the effective action

The construction of the effective action, from the field theory point of view, proceeds as follows

[15, 17].

One introduces a set of counterterms in the form of CS and WZ operators and requires that

the effective action is gauge invariant at 1-loop. Each anomalous U(1) is accompanied by an ax-

ion, and every gauge variation of the anomalous gauge field can be cancelled by the corresponding

WZ term. The remaining anomalous gauge variations are cancelled by CS counterterms. A list

of typical vertices and counterterms is shown in Fig. 6.1. We consider the simplest anomalous

A B C D

Figure 6.1: Counterterms allowed in the low energy effective action in the chiral limit: anomalous

contributions (A), CS interaction (B), WZ term (C) and B − b mixing contribution (D). In

particular the bilinear mixing of the axions with the gauge fields is vanishing only for on-shell

vertices and is removed in the Rξ gauge in the WZ case. A discussion of this term and its role

in the GS mechanism can be found in [30].

extension of the SM with a gauge structure of the form SU(3)×SU(2)×U(1)Y ×U(1)B model

with a single anomalous U(1)B . The anomalous contributions are those involving the B gauge

boson and involve the trilinear (triangle) vertices BBB, BY Y, BBY, BWW and BGG, where

W ’s and the G’s are the SU(2) and SU(3) gauge bosons respectively. All the remaining tri-

linear interactions mediated by fermions are anomaly-free and therefore vanish in the massless

limit. Therefore the axion (b) associated to B appears in abelian counterterms of the form

bFB ∧FB , bFB ∧FY , bFY ∧FY and in the analogous non-abelian ones bTrW ∧W and bTrG∧G.

In the absence of a kinetic term for the axion b, its role is unclear: it allows to “cancel” the

anomaly but can be gauged away. As emphasized by Preskill [22], the role of the WZ term is,

at this stage, just to allow a consistent power counting in the perturbative expansion, hinting

that an anomalous theory is non-renormalizable, but, for the rest, unitary below a certain scale.

Theories of this type are in fact characterized by a unitarity bound since local a counterterm

is not sufficient to erase the bad high energy behaviour of the anomaly [30]. Although the

structure of the vertices constructed in this chapter is identified using the WZ effective action

at the lowest order (using only the axion counterterm), their extension to the Green-Schwarz

case is straightforward. In this second case the vertices here defined need to be modified with
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the addition of extra massless poles on the external gauge lines.

The b field remains unphysical even in the presence of a Stückelberg mass term for the B

field, ∼ (∂b −MB)2 since the gauge freedom remains and it is then natural to interpret b as a

Nambu-Goldstone mode. In a physical gauge it can be set to vanish.

Things change drastically when the B field mixes with the other scalars of the Higgs sector of

the theory. In this case a linear combination of b and the remaining CP-odd phases (goldstones)

of the Higgs doublets becomes physical and is called the axi-Higgs. This happens only in specific

potentials characterized also by a global U(1)PQ symmetry (VPQ) [15] which are, however,

sufficiently general. In the absence of Higgs-axion mixing the CP odd goldstone modes of

the broken theory, after electroweak symmetry breaking, are just linear combinations of the

Stückelberg and of the goldstone mode of the Higgs potential and no physical axion appears in

the spectrum. For potentials that allow a physical axion, even in the massless case, the axion

mass can be lifted by the QCD vacuum due to instanton effects exactly as for the Peccei-Quinn

axion, but now the spectrum allows an axion-like particle.

6.1.2 Anomaly cancellation in the interaction eigenstate basis

The anomalies of the model are cancelled in the interaction eigenstate basis of (b,AY , B,W )

and the CS and WZ terms are fixed at this stage. The B field is massive and mixes with the

axion, but the gauge symmetry is still intact. The Ward identities of the theory for the triangle

diagrams assume a nontrivial form due to the B∂b mixing. In the case of on-shell trilinear

vertices one can show that these mixing terms vanish.

The CS counterterms are necessary in order to cancel the gauge variations of the Y,W and G

gauge bosons in anomalous diagrams involving the interaction with B. These are the diagrams

mentioned before. The role of these terms is to render vector-like at 1-loop all the currents

which become anomalous in the interaction with the B gauge boson. For instance, in a triangle

such as Y BB, the AYB∧FB CS term effectively “moves” the chiral projector from the Y vertex

to the B vertex symmetrically on the two B’s, assigning the anomalies to the B vertices. These

will then be cancelled by the axion b via a suitable WZ term (bFB ∧ FY ).

The effective action has the structure given by

S = S0 + San + SWZ + SCS (6.1)

where S0 is the classical action. It is a canonical gauge theory with dimension-4 operators

whose explicit structure can be found in [17]. In Eq. (6.1) the anomalous contributions coming

from the 1-loop triangle diagrams involving abelian and non-abelian gauge interactions are
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summarized by the expression

San =
1

2!
〈TBWW BWW 〉+ 1

2!
〈TBGGBGG〉+

1

3!
〈TBBB BBB〉

+
1

2!
〈TBY Y BY Y 〉+

1

2!
〈TY BB Y BB〉, (6.2)

where the symbols 〈〉 denote integration [16]. In the same notations the Wess Zumino (WZ)

counterterms are given by

SWZ =
CBB
M
〈b FB ∧ FB〉+

CY Y
M
〈b FY ∧ FY 〉+

CY B
M
〈b FY ∧ FB〉

+
F

M
〈b Tr[FW ∧ FW ]〉+ D

M
〈b Tr[FG ∧ FG]〉, (6.3)

and the gauge dependent CS abelian and non abelian counterterms [133, 134] needed to cancel

the mixed anomalies involving a B line with any other gauge interaction of the SM take the form

SCS = d1〈BY ∧ FY 〉+ d2〈Y B ∧ FB〉+ c1〈ǫµνρσBµCSU(2)
νρσ 〉+ c2〈ǫµνρσBµCSU(3)

νρσ 〉.

(6.4)

Explicitly

〈TBWWBWW 〉 ≡
∫
dx dy dzT λµν,ijBWW (z, x, y)Bλ(z)W µ

i (x)W ν
j (y) (6.5)

and so on.

The non-abelian CS forms are given by

CSU(2)
µνρ =

1

6

[
W i
µ

(
FWi, νρ +

1

3
g2 ε

ijkW j
νW

k
ρ

)
+ cyclic

]
, (6.6)

CSU(3)
µνρ =

1

6

[
Gaµ

(
FGa, νρ +

1

3
g3 f

abcGbνG
c
ρ

)
+ cyclic

]
. (6.7)

In our conventions, the field strengths are defined as

FWi, µν = ∂µW
i
ν − ∂νW i

µ − g2εijkW j
µW

k
ν = F̂Wi, µν − g2εijkW j

µW
k
ν (6.8)

FGa, µν = ∂µG
a
ν − ∂νGaµ − g3fabcGbµGcν = F̂Ga, µν − g3fabcGbµGcν , (6.9)

whose variations under non-abelian gauge transformations are

δSU(2)C
SU(2)
µνρ =

1

6

[
∂µθ

i (F̂Wi, νρ) + cyclic
]
, (6.10)

δSU(3)C
SU(3)
µνρ =

1

6

[
∂µϑ

a (F̂Ga, νρ) + cyclic
]
, (6.11)

where F̂ denotes the “abelian” part of the non-abelian field strength.



6.2 BRST conditions in the Stückelberg and HS phases 127

Coming to the formal definition of the effective action, interpreted as the generator of the

1-particle irreducible diagrams with external classical fields, this is defined, as usual, as a linear

combination of correlation functions with an arbitrary number of external lines of the form

AY , B,W,G, that we will denote conventionally as W(Y,B,W ). It is given by

W [Y,B,W,G] =

∞∑

n1=1

∞∑

n2=1

in1+n2

n1!n2!

∫
dx1...dxn1

dy1...dyn2
T λ1...λn1

µ1...µn2 (x1...xn1
, y1...yn2

)

Bλ1(x1)...B
λn1 (xn1

)AY µ1
(y1)...AY µn2

(yn2
) + ...

where we have explicitly written only its abelian part and the ellipsis refer to the additional non

abelian or mixed (abelian/non-abelian) contributions. We will be using the invariance of the

effective action under re-parameterizations of the external fields to obtain information on the

trilinear vertices of the theory away from the chiral limit. Before coming to that point, however,

we show how to fix the structure of the counterterms exploiting its BRST symmetry. This will

allow to derive simple STI’s for the action involving the anomalous vertices.

6.2 BRST conditions in the Stückelberg and HS phases

We show in this section how to fix the counterterms of the effective action by imposing directly

the STI’s on its anomalous vertices in the two broken phases of the theory, thereby removing

the Higgs-axion mixing of the low energy effective theory. As we have already mentioned, the

Lagrangian of the Stückelberg phase contains a coupling of the Stückelberg field to the gauge

field which is typical of a goldstone mode. In [16, 17] this mixing has been removed and the

WZ counterterms have been computed in a particular gauge, which is a typical Rξ gauge with

ξ = 1. Here we start by showing that this way of fixing the counterterms is equivalent to require

that the trilinear interactions of the theory in the Stückelberg phase satisfy a generalized Ward

identity (STI).

After electroweak symmetry breaking, in general one would be needing a second gauge choice,

since the new breaking would again re-introduce bilinear derivative couplings of the new gold-

stones to the gauge fields. So the question to ask is if the STI’s of the first phase, which fix

completely the counterterms of the theory and remove the b-B mixing, are compatible with the

STI’s of the second phase, when we remove the coupling of the gauge bosons to their goldstones.

The reason for asking these questions is obvious: it is convenient to fix the counterterms once

and for all in the effective Lagrangians and this can be more easily done in the Stückelberg

phase or in the HS phase depending on whether we need the effective action either expressed

in terms of interactions or of mass eigenstates respectively. In both cases we need generalized

Ward identities which are local. The presence of bilinear mixings on the external lines of the
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3-point functions would render the analysis of these interactions more complex and essentially

non-local.

This point is also essential in our identification of the effective vertices of the physical gauge

bosons since, as we will discuss below, the definition of these vertices is entirely based on the

possibility of parameterizing the anomalous effective action, at the same time, in the interaction

base and in the mass eigenstate basis. We need these mixing terms to disappear in both cases.

This happens, as we are going to show, if both in the Stückeberg phase and in the HS phase we

perform a gauge choice of Rξ type (we will choose ξ = 1). These technical points are easier to

analyze in a simple abelian model, following the lines of [16]. In this model the B is a vector-axial

vector (V −A) anomalous gauge boson and A is vector-like and anomaly-free.

We will show that in this model we can fix the counterterms in the first phase, having

removed the b-B mixing and then proceed to determine the effective action in the HS phase,

with its STI’s which continue to be valid also in this phase.

Let’s illustrate this point in some detail. We recall that for an ordinary (non abelian) gauge

theory in the exact (non-broken) phase the derivation of the conditions of BRST invariance

follow from the well known BRST variations in the Rξ gauge

δBRST A
a
µ ≡ sAaµ = ωDabµ cb (6.12)

δBRST c
a ≡ sca = −1

2
ωgfabccbcc (6.13)

δBRST c̄
a ≡ sc̄ a =

ω

ξ
∂µA

µa. (6.14)

These involve the non-abelian gauge field Aaµ, the ghost (ca) and antighost (c̄a) fields, with ω

being a Grassmann parameter. We will be interested in trilinear correlators whose STI’s are

arrested at 1-loop level and which involve anomalous diagrams. For instance we could use the

invariance of a specific correlator (c̄AA) under a BRST transformation in order to obtain the

generalized WI’s for trilinear gauge interactions

s 〈0|T c̄a(x)Abν(y)Acρ(z)|0〉 = 0. (6.15)

These are obtained from the relations (6.14) rather straightforwardly

s 〈0|T c̄a(x)Abν(y)Acρ(z)|0〉 = 〈0|T (sc̄a(x))Abν(y)A
c
ρ(z)|0〉 +

+〈0|T c̄a(x)(sAbν(y))Acρ(z)|0〉 + 〈0|T c̄a(x)Abν(y)(sAcρ(z))|0〉 = 0. (6.16)

In fact, by using Eqs. (6.12) and (6.14) we obtain

s 〈0|T c̄a(x)Abν(y)Acρ(z)|0〉 =
1

ξ
〈0|T ω∂µAµ aAbν(y)Acρ(z)|0〉 +

+〈0|T c̄a(x)ωDblν cl(y)Acρ(z)|0〉 + 〈0|T c̄a(x)Abν(y)ωDcmρ cm(z)|0〉 = 0. (6.17)
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Figure 6.2: Graphical representation of Eq. (6.19) at any perturbative order.

Choosing ξ = 1 we get

∂

∂xµ
〈0|T Aµa(x)Abν(y)Acρ(z)|0〉

+ 〈0|T c̄a(x)[δbl∂ν − gf bldAν d(y)]cl(y)Acρ(z)|0〉

+ 〈0|T c̄a(x)Abν(y)[δcm∂ρ − gf cmrAρ r(z)]cm(z)|0〉 = 0. (6.18)

The two fields Aν d(y)cl(y) e Aρ r(z)cm(z) on the same spacetime point do not contribute on-shell

and integrating by parts on the second and third term we obtain

∂

∂xµ
〈0|T AµaAbν(y)Acρ(z)|0〉 −

∂

∂yν
〈0|T c̄a(x)cb(y)Acρ(z)|0〉

− ∂

∂zρ
〈0|T c̄a(x)Abν(y)cc(z)|0〉 = 0, (6.19)

which is described diagrammatically in Fig. 6.2. Let’s now focus our attention on the A-B model

of [16] where we have an anomalous generator YB. This model describes quite well many of the

properties of the abelian sector of the general model discussed in [17] with a single anomalous

U(1). It is an ordinary gauge theory of the form U(1)A × U(1)B with B made massive at tree

level by the Stückelberg term

LSt =
1

2
(∂µb+M1Bµ)

2. (6.20)

This term introduces a mixing M1Bµ∂
µb which signals the presence of a broken phase in the

theory. Introducing the gauge fixing Lagrangian

Lgf = − 1

2ξB
(FSB [Bµ])

2, (6.21)

FSB [Bµ] ≡ ∂µBµ − ξBM1b, (6.22)

we obtain the partial contributions (mass term plus gauge fixing term) to the total action

LSt + Lgf =
1

2

[
(∂µb)

2 +M2
1BµB

µ − (∂µB
µ)2 − ξBM2

1 b
2

]
(6.23)
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and the corresponding Faddeev-Popov Lagrangian

LFP = c̄B
δFB
δθB

cB = c̄B

[
∂µ
δBµ

δθB
− ξBM1

δb

δθB

]
cB , (6.24)

with cB and c̄B are the anticommuting ghost/antighosts fields. It can be written as

LFP = c̄B (� + ξBM
2
1 ) cB , (6.25)

having used the shift of the axion under a gauge transformation

δb = −M1θ. (6.26)

In the following we will choose ξB = 1. The anomalous sector is described by

San = S1 + S3 (6.27)

S1 =

∫
dx dy dz

(
gB g

2
A

2!
T λµνAVV(x, y, z)Bλ(z)Aµ(x)Aν(y)

)
(6.28)

S3 =

∫
dx dy dz

(
g3
B

3!
T λµνAAA(x, y, z)Bλ(z)Bµ(x)Bν(y)

)
, (6.29)

where we have collected all the anomalous diagrams of the form (AVV and AAA) and whose

gauge variations are

1

2!
δB [TAVVBAA] =

i

2!
a3(β)

1

4
[FA ∧ FAθB] (6.30)

1

3!
δB [TAAABBB] =

i

3!

an
3

3

4
〈FB ∧ FBθB〉, (6.31)

having left open the choice over the parameterization of the loop momentum, denoted by the

presence of the arbitrary parameter β with

a3(β) = − i

4π2
+

i

2π2
β a3 ≡

an
3

= − i

6π2
, (6.32)

while

1

2!
δA [TAVVBAA] =

i

2!
a1(β)

2

4
[FB ∧ FAθA] . (6.33)

We have the following equations for the anomalous variations

δBLan =
igBg

2
A

2!
a3(β)

1

4
FA ∧ FAθB +

ig 3
B

3!

an
3

3

4
FB ∧ FBθB (6.34)

δALan =
igBg

2
A

2!
a1(β)

2

4
FB ∧ FAθA, (6.35)

while Lb,c, the axionic contributions (Wess-Zumino terms) needed to restore the gauge symmetry

violated at 1-loop level, are given by

Lb =
CAA
M

bFA ∧ FA +
CBB
M

bFB ∧ FB . (6.36)
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Figure 6.3: Relation between a correlator with non amputated external lines (left) used in a

STI and an amputated one (right) used in the effective action for a triangle vertex and for a CS

term.

The gauge invariance on A requires that β = −1/2 ≡ β0 and is equivalent to a vector current

conservation (CVC) condition. By imposing gauge invariance under B gauge transformations,

on the other hand, we obtain

δB (Lb + Lan) = 0 (6.37)

which implies that

CAA =
i gBg

2
A

2!

1

4
a3(β0)

M

M1
, CBB =

ig 3
B

3!

1

4
an

M

M1
. (6.38)

This procedure, as we are going to show, is equivalent to the imposition of the STI on the

corresponding anomalous vertices of the effective action. In fact the counterterms CAA and

CBB can be determined formally from a BRST analysis.

In fact, the BRST variations of the model are defined as

δBRST Bµ = ω∂µcB (6.39)

δBRST b = −ωM1cB (6.40)

δBRST Aµ = ω ∂µcA (6.41)

δBRST cB = 0 (6.42)

δBRST c̄B =
ω

ξB
FSB =

ω

ξB
(∂µB

µ − ξBM1b). (6.43)

To derive constraints on the 3-linear interactions involving 2 abelian (vector-like) and one

vector-axial vector gauge field, that we will encounter in our analysis below, we require the

BRST invariance of a specific correlator such as

δBRST 〈0|T c̄B(z)Aµ(x)Aν(y)|0〉 = 0, (6.44)
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Figure 6.4: Representation in terms of Feynman diagrams in momentum space of the Slavnov-

Taylor identity obtained in the Stückelberg phase for the anomalous triangle BAA. Here we deal

with correlators with non-amputated external lines. A CS term has been absorbed to ensure

the conserved vector current (CVC) conditions on the A lines.

(Fig. 6.3 shows the difference between the non-amputated and the amputated correlators) and

applying the BRST operator we obtain

ω

ξB
〈0|T [∂λB

λ(z)− ξBM1b(z)]Aµ(x)Aν(y)|0〉 + 〈0|T c̄B(z)ω∂µcA(x)Aν(y)|0〉

+ 〈0|T c̄B(z)Aµ(x)ω∂νcA(y)|0〉 = 0,

(6.45)

with the last two terms being trivially zero. Choosing ξB = 1 we obtain the STI (see Fig. 6.4)

involving only the WZ term and the anomalous triangle diagram BAA. This reads

∂

∂zλ
〈0|T Bλ(z)Aµ(x)Aν(y)|0〉 −M1〈0|T b(z)Aµ(x)Aν(y)|0〉 = 0. (6.46)

A similar STI holds for the BBB vertex and its counterterm

∂

∂zλ
〈0|T Bλ(z)Bµ(x)Bν(y)|0〉 −M1〈0|T b(z)Bµ(x)Bν(y)|0〉 = 0. (6.47)

These two equations can be rendered explicit. For instance, to extract from (6.46) the corre-

sponding expression in momentum space and the constraint on CAA, we work at the lowest order

in the perturbative expansion obtaining

1

2!

∂

∂zλ
〈0|T Bλ(z)Aµ(x)Aν(y) [J5B] [JA]2 |0〉 −M1〈0|T b(z)Aµ(x)Aν(y) [bFA ∧ FA] |0〉 = 0,

(6.48)

where we have introduced the notation [ ] to denote the spacetime integration of the vector (J)

and axial current (J5) to their corresponding gauge fields

J A = −gAψ̄γµψAµ, (6.49)

J5B = −gBψ̄γµγ5ψBµ (6.50)

J̃5GB = 2igB
mf

MB
ψ̄γ5ψGB , (6.51)
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where MB is the mass of the B gauge boson in the Higgs-Stückelberg phase that we will analyze

in the next sections.

In momentum space the STI represented in Fig. 6.4 becomes (ξB = 1)

1

2!
2
[
ikλ

′

] [
− igλλ′

k2 −M2
1

] [
− igµµ′

k2
1

] [
− igνν′

k2
2

] [
−gBg2

A

]
∆λµν(k1, k2)

− 2M1

[
i

k2 −M2
1

] [
− igµµ′

k2
1

] [
− igνν′

k2
2

]
V µν
A (k1, k2) = 0, (6.52)

where the factor 1
2! comes from the presence in the effective action of a diagram with 2 iden-

tical external lines, in this case two A gauge bosons, and the factor 2, present in both terms,

comes from the possible contractions with the external fields. Using in (6.52) the corresponding

anomaly equation

kλ∆
λµν(k1, k2) = a3(β0)ǫ

µναβk1αk2β (6.53)

and the expression of the vertex V µν
A (k1, k2)

V µν
A (k1, k2) =

4CAA
M

ǫµναβk1αk2β (6.54)

we obtain
[

i

k2 −M2
1

] [
− igµµ′

k2
1

] [
− igνν′

k2
2

] [
i gBg

2
Aa3(β0)ǫ

µναβk1αk2β − 2M1
4CAA
M

ǫµναβk1αk2β

]
= 0,

(6.55)

from which we get

i gBg
2
Aa3(β0) = 2M1

4CAA
M

⇒ CAA =
i gBg

2
A

2

1

4
a3(β0)

M

M1
. (6.56)

This condition determines CAA at the same value as before in (6.38), using the constraints of

gauge invariance, having brought the anomaly on the B vertex (β0 = −1/2).

In the case of the second STI given in (6.47), expanding this equation at the lowest relevant

order we get

1

3!

∂

∂zλ
〈0|T Bλ(z)Bµ(x)Bν(y) [J5B]3 |0〉 −M1〈0|T b(z)Bµ(x)Bν(y) [bFB ∧ FB ] |0〉 = 0. (6.57)

Also in this case, setting ξB = 1, we re-express (6.57) as

1

3!
3!
[
ikλ

′

] [
− igλλ′

k2 −M2
1

] [
− igµµ′

k2
1 −M2

1

] [
− igνν′

k2
2 −M2

1

] [
−g3

B

]
∆λµν(k1, k2)

− 2M1

[
i

k2 −M2
1

] [
− igµµ′

k2
1 −M2

1

] [
− igνν′

k2
2 −M2

1

]
V µν
B (k1, k2) = 0, (6.58)
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Figure 6.5: Diagrammatic representation of (6.59) in the Stückelberg phase, determining the

counterterm CBB .

where, similarly to BAA, the factor 1
3! comes from the 3 identical gauge B bosons on the external

lines, the coefficient 3! in the first term counts all the contractions between the vertex ∆λµν and

the propagators of the B gauge bosons, while the coefficient 2 comes from the contractions of

V µν
B with the external lines. From Eq. (6.58) we get

[
i

k2 −M2
1

] [
− igµµ′

k2
1 −M2

1

] [
− igνν′

k2
2 −M2

1

] [
ig3
B kλ∆

λµν(k1, k2)− 2M1V
µν
B (k1, k2)

]
= 0 ,

(6.59)

as depicted in Fig. 6.5.

The anomaly equation for BBB distributes the total anomaly an equally among the three

B vertices, therefore

kλ∆
λµν(k1, k2) =

an
3
ǫµναβk1αk2β , (6.60)

and for the V µν
B (k1, k2) vertex we have

V µν
B (k1, k2) =

4CBB
M

ǫµναβk1αk2β . (6.61)

Inserting (6.60), (6.61) into (6.59) we obtain

i g3
B

an
3

= 2M1
4CBB
M

⇒ CBB =
i g3
B

2

1

4

an
3

M

M1
, (6.62)

in agreement with (6.38). Therefore we have shown that if we gauge-fix the effective Lagrangian

in the Sẗuckelberg phase to remove the b-B mixing and fix the CS counterterms so that the

anomalous variations of the trilinear vertices are absent, we are actually imposing generalized

Ward identities or STI’s on the effective action. On this gauge-fixed axion the b-B mixing is

completely absent also off-shell and the structure of the trilinear vertices is rather simple. We

need to check that these STI’s are compatible with those obtained after electroweak symmetry

breaking, so that the mixing is absent off-shell also in the physical basis.
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6.2.1 The Higgs-Stückelberg phase (HS)

Now consider the same effective action of the previous model after electroweak symmetry break-

ing. If we interpret the gauge-fixed action derived above as a completely determined theory

where the counterterms have been found by the procedure that we have just illustrated, once

we expand the fields around the Higgs vacuum we encounter a new mixing of the goldstones

with the gauge fields. Due to Higgs-axion mixing [16] the goldstones of this theory are extracted

by a suitable rotation that allows to separate physical from unphysical degrees of freedom. In

fact the Stückelberg is decomposed into a physical axi-Higgs and a genuine goldstone. It is then

natural to ask whether we could have just worked out the Lagrangian directly in this phase by

keeping the coefficients in front of the counterterms of the theory free, and had them fixed by

imposing directly generalized WI’s in this phase, bypassing completely the first construction.

As we are now going to show in this model the counterterms are determined consistently also

in this case at the same values given before.

Let’s see how this happens. In this phase the mixing that needs to be eliminated is of the

form Bµ∂µGB , where GB is the goldstone of the HS phase. In this case we use the gauge-fixing

Lagrangian

Lgf = − 1

2ξB
(FHB )2 = − 1

2ξB
(∂µB

µ − ξBMBGB) , (6.63)

and the BRST transformation of the antighost field c̄B is given by

δBRST c̄B =
ω

ξB
FHB =

ω

ξB
(∂µB

µ − ξBMBGB) . (6.64)

Also in this case we use the 3-point function in Eq. (6.38) and ξB = 1 to obtain the STI

∂

∂zλ
〈0|T Bλ(z)Aµ(x)Aν(y)|0〉 −MB〈0|T GB(z)Aµ(x)Aν(y)|0〉 = 0. (6.65)

To get insight into this equation we expand perturbatively (6.65) and obtain

1

2!

∂

∂zλ
〈0|T Bλ(z)Aµ(x)Aν(y) [J5B] [JA]2 |0〉

−MB 〈0|T GB(z)Aµ(x)Aν(y) [GBFA ∧ FA] |0〉

−MB 〈0|T GB(z)Aµ(x)Aν(y)
[
J̃5GB

]
[JA]2 |0〉 = 0, (6.66)

where the first term is the usual triangle diagram with the BAA gauge bosons on the external

lines, the second is a WZ vertex with GB on the exernal line and the third term, which is absent

in the Stückelberg phase, is a triangle diagram involving the GB gauge boson that couples to

the fermions by a Yukawa coupling (see Fig. 6.6). In the Stückelberg phase there is no analogue

of this third contribution in the cancellation of the anomalies for this vertex, since b does not

couple to the fermions.
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Figure 6.6: Diagrammatic representation of Eq. (6.66) in the HS phase, determining the coun-

terterm CAA. A CS term has been absorbed by the CVC conditions on the A gauge bosons.

Notice that the STI now contains a vertex derived from the bFA ∧ FA counterterm, but

projected on the interaction GBFA ∧FA via the factor M1/MB . This factor is generated by the

rotation matrix that allows the change of variables (φ2, b)→ (χB , GB) and is given by

U =

(
− cos θB sin θB

sin θB cos θB

)
(6.67)

with θB = arccos(M1/MB) = arcsin(qBgBv/MB). We recall [16] that the axion b can be ex-

pressed as a linear combination of the rotated fields χ and GB of the form

b = α1χB + α2GB =
qBgBv

MB
χB +

M1

MB
GB , (6.68)

where χ is the physical axion and GB the Goldstone boson; we also recall that the gauge field

Bµ gets its mass MB through the combined Higgs-Stückelberg mechanism

MB =
√
M2

1 + (qBgBv)
2. (6.69)

Now we express the STI given in (6.66) choosing ξB = 1

1

2!
2
[
ikλ

′

] [
− igλλ′

k2 −M2
B

] [
− igµµ′

k2
1

] [
− igνν′

k2
2

] [
−gBg2

A

]
∆λµν(mf , k1, k2)

− MB

[
i

k2 −M2
B

] [
− igµµ′

k2
1

] [
− igνν′

k2
2

] {
2
M1

MB
V µν
A (k1, k2)

+
1

2!
2 i gBg

2
A

(
2i
mf

MB

)
∆µν
GBAA

(mf , k1, k2)

}
= 0,

(6.70)

where the [GBFA ∧ FA] interaction has been obtained from the [bFA ∧ FA] vertex by projecting

the b field on the field GB , and the coefficient 2imf/MB comes from the coupling of GB with
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the massive fermions [16]. The remaining coefficient M1/MB rotates the V µν
A (k1, k2) vertex as

in Eq. (6.70).

Replacing in (6.70) the WI obtained for a massive AVV vertex

kλ∆
λµν(β,mf , k1, k2) = a3(β)εµναβkα1 k

β
2 + 2mf∆

µν(mf , k1, k2), (6.71)

where

∆µν(mf , k1, k2) = mfε
αβµνk1,αk2,β

(
1

2π2

)
I(mf )

I(mf ) ≡ −
∫ 1

0

∫ 1−x

0
dxdy

1

m2
f + (x− 1)xk2

1 + (y − 1)yk2
2 − 2xyk1 · k2

, (6.72)

and the expression for the V µν
A (k1, k2) vertex

V µν
A (k1, k2) =

4CAA
M

ǫµναβk1αk2β, (6.73)

we get

[
igλλ′

k2 −M2
B

] [
igµµ′

k2
1

] [
igνν′

k2
2

] {
i gBg

2
A a3(β0) ǫ

µναβk1αk2β

+2 i gBg
2
Amf ∆µν(mf , k1, k2)− 2MB

4CAA
M

ǫµναβk1αk2β

−2 igBg
2
AMB

mf

MB
∆µν
GBAA

(mf , k1, k2)

}
= 0. (6.74)

Since ∆µν
GBAA

= ∆µν , Eq. (6.74) yields the same condition obtained by fixing CAA in the Stück-

elberg phase, that is

i gBg
2
Aa3(β0) = 2M1

4CAA
M

⇒ CAA =
i gBg

2
A

2

1

4
a3(β0)

M

M1
. (6.75)

A similar STI can be derived for the BBB vertex in this phase, obtaining

∂

∂zλ
〈0|T Bλ(z)Bµ(x)Bν(y)|0〉 −MB〈0|T GB(z)Bµ(x)Bν(y)|0〉 = 0. (6.76)

Expanding perturbatively (6.76) we obtain

1

3!

∂

∂zλ
〈0|T Bλ(z)Bµ(x)Bν(y) [J5B]3 |0〉

−MB 〈0|T GB(z)Bµ(x)Bν(y) [GBFB ∧ FB ] |0〉

−MB 〈0|T GB(z)Bµ(x)Bν(y)
[
J̃5GB

]
[J5B]2 |0〉 = 0, (6.77)
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that gives

1

3!
3!
[
ikλ

′

] [
− igλλ′

k2 −M2
B

] [
− igµµ′

k2
1 −M2

B

] [
− igνν′

k2
2 −M2

B

] [
−g3

B

]
∆λµν(mf , k1, k2)

−MB

[
i

k2 −M2
B

] [
− igµµ′

k2
1 −M2

B

] [
− igνν′

k2
2 −M2

B

] {
2
M1

MB
V µν
B (k1, k2)

+
1

2!
2 i g3

B

(
2i
mf

MB

)
∆µν
GBBB

(mf , k1, k2)

}
= 0, (6.78)

where we have defined

∆µν
GBBB

=

∫
d4q

(2π)4
Tr
[
γ5(/q − /k +mf )γ

νγ5(/q − /k1 +mf )γ
µγ5(/q +mf )

]
[
q2 −m2

f

] [
(q − k)2 −m2

f

] [
(q − k1)2 −m2

f

]

+ {µ↔ ν, k1 ↔ k2} . (6.79)

Since this contribution is finite, it gives

∆µν
GBBB

= 2

∫
d4q

(2π)4

∫ 1

0

∫ 1−x

0
dxdy

2m4iεµναβk1,αk2,β[
q2 − k2

2(y − 1)y − k2
1(x− 1)x+ 2xy −m2

f

]3 (6.80)

and we obtain again

∆µν
GBBB

= ∆µν = εαβµνk1,αk2,βmf

(
1

2π2

)
I(mf ) , (6.81)

Using the anomaly equations in the chirally broken phase

kλ∆
λµν
3 (k1, k2) =

an
3
εµναβkα1 k

β
2 + 2mf∆

µν (6.82)

and the expression of the vertex

V µν
B (k1, k2) =

4CBB
M

ǫµναβk1αk2β , (6.83)

we obtain

CBB =
i g3
B

2

1

4

an
3

M

M1
. (6.84)

Expanding to the lowest nontrivial order this identity we obtain

i
(an

3
ǫµναβk1αk2β + 2mf∆

µν
)
− 2MB

(
4

M
CBB

M1

MB

)
ǫµναβk1αk2β −MB

(
2i
mf

MB

)
∆µν
GBBB

= 0,

(6.85)

which can be easily solved for CBB , thereby determining CBB exactly at the same value inferred

from the Stückelberg phase, as discussed above.
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Figure 6.7: The anomalous effective action in the two basis in the Rξ gauge where we have

eliminated the mixings on the external lines in both basis.

6.2.2 Slavnov-Taylor Identities and BRST symmetry in the complete model

It is obvious, from the analysis presented above, that a similar treatment is possible also in

the non-abelian case, though the explicit analysis is more complex. The objective of this in-

vestigation, however, is by now clear: we need to connect the anomalous effective action of the

general model in the interaction basis and in the mass eigenstate basis keeping into account that

both phases are broken phases. In Fig. 6.7 this point is shown pictorially. In both cases the

bilinear mixings of the goldstones with the corresponding gauge fields, Z∂GZ , Z
′∂GZ′ have been

removed and the counterterms in the eigenstate basis have been fixed as in [17], where we have

just shown it for the A-B model. Equivalently, we can fix the counterterms in the HS phase by

imposing the STI’s directly at this stage, thereby defining the anomalous effective action plus

WZ terms completely. For this we need the BRST transformation of the fundamental fields. As

usual, in the gauge sector these can be obtained by replacing the gauge parameter in their gauge

variations with the corresponding ghost fields times a Grassmann parameter ω. Denoting by s

the BRST operator, these are given by

sAγµ = ω ∂µcγ + iOA11 g2 ω
(
c−W+

µ − c+W−µ
)
, (6.86)

sZµ = ω ∂µcZ + iOA21 g2 ω
(
c−W+

µ − c+W−µ
)
, (6.87)

sZ ′µ = ω ∂µcZ′ + iOA31 g2 ω
(
c−W+

µ − c+W−µ
)

(6.88)

sW+
µ = ω ∂µc

+ − ig2W+
µ ω

(
OA11cγ +OA21cZ +OA31cZ′

)

+ ig2
(
OA11Aγµ +OA21Zµ +OA31Z

′
µ

)
ωc+, (6.89)

sW−µ = ω∂µc
− + ig2W

−
µ ω

(
OA11cγ +OA21cZ +OA31cZ′

)

− ig2
(
OA11Aγµ +OA21Zµ +OA31Z

′
µ

)
ωc−, (6.90)

where the OAij are matrix elements defined exactly as in Eq. (6.111) below. To determine the

transformations rules for the ghost/antighost fields we recall that the gauge-fixing Lagrangians

in the Rξ gauge are given by
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LZgf = − 1

2ξZ
F [Z,GZ ]2 = − 1

2ξZ
(∂µZ

µ − ξZMZG
Z)2, (6.91)

LZ′

gf = − 1

2ξZ′

F [Z ′, GZ
′

]2 = − 1

2ξZ′

(∂µZ
′µ − ξZ′MZ′GZ

′

)2, (6.92)

LAγ

gf = − 1

2ξA
F [Aγ ]

2 = − 1

2ξA
(∂µA

µ
γ )

2, (6.93)

LWgf = − 1

ξW
F [W+, G+]F [W−, G−] =

= − 1

ξW
(∂µW

+µ + iξWMWG
+)(∂µW

−µ − iξWMWG
−), (6.94)

where GZ , GZ
′

, G+ and G− are the goldstones of Z, Z ′, W+ and W− respectively.

In particular, the FP (ghost) part of the Lagrangian is canonically given by

LFP = −c̄a δF
a[Z, z]

δθb
cb, (6.95)

where the sum over a and b runs over the fields Z, Z ′, Aγ , W
+ e W− and is explicitly given in

the appendix. For the BRST variations of the antighosts we obtain

s c̄a = − i

ξa
ωFa a = Z,Z ′, γ,+,− (6.96)

and in particular

s c̄Z = − i

ξZ
ω
(
∂µZ

µ − ξZMZG
Z
)

(6.97)

s c̄Z′ = − i

ξZ′

ω
(
∂µZ

′µ − ξZ′MZ′GZ
′

)
(6.98)

s c̄γ = − i

ξγ
ω
(
∂µA

µ
γ

)
(6.99)

s c̄+ = − i

ξW
ω
(
∂µW

+µ + iξWMWG
+
)

(6.100)

s c̄− = − i

ξW
ω
(
∂µW

−µ − iξWMWG
−
)
, (6.101)

giving typically the STI

∂

∂zλ
〈0|T Zλ(z)Aµ(x)Aν(y)|0〉 −MZ〈0|T GZ(z)Aµ(x)Aν(y)|0〉 = 0, (6.102)

and a similar one for the Z ′ gauge boson.

We pause for a moment to emphasize the difference between this STI and the corresponding

one in the SM. In this latter case the structure of the STI is
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Figure 6.8: The general STI for the Zγγ vertex in our anomalous model away from the chiral

limit. The analogous STI for the SM case consists of only diagrams a) and c).
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Figure 6.9: The STI for the Zγγ vertex for our anomalous model and in the chiral phase. The

analogous STI in the SM consists of only diagram a).

kρG
ρνµ = (k1 + k2)ρG

ρνµ

=
e2g

π2 cos θW

∑

f

gfAQ
2
f ǫ

νµαβk1αk2β

[
−m2

f

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

∆

]
, (6.103)

where Gρνµ is the gauge boson vertex, which is shown pictorially in Fig. 6.8 (diagrams a and c).

Notice that the goldstone contribution is the factor in square brackets in the expression above,

being the coupling of the Goldstone proportional to m2
f/MZ . In the chiral limit the STI of the

Zγγ vertex of the Standard Model becomes an ordinary Ward identity, as in the photon case.

In Fig. 6.8 the modification due to the presence of the WZ term is evident. In fact, expanding

(6.102) in the anomalous case we have

kρG
ρνµ = (k1 + k2)ρG

ρνµ

=
e2g

π2 cos θW

∑

f

gfAQ
2
f ǫ

νµαβk1αk2β

[
1

2
−m2

f

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

∆

]
, (6.104)

where the first term in the square brackets is now the WZ contribution and the second the

usual goldstone contribution, as in the SM case. Notice that the factor
∑

f g
f
AQ

2
f is in fact

proportional to the total chiral asymmetry of the Z vertex, which is mass independent and

appears as a factor in front of the WZ counterterm. In the chiral limit the anomalous STI is
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represented in Fig. 6.9. At this point we are ready to proceed with a more general analysis of

the trilinear gauge interactions to derive the expressions of all the anomalous vertices of a given

theory in the mass eigenstate basis and away from the chiral limit. The reason for stressing this

aspect has to do with the way the chiral symmetry breaking effects appear in the SM and in the

anomalous models. In particular, we will start by extending the analysis presented in [17] for the

derivation of the Zγγ vertex, which is here presented in far more detail. Compared to [17] we

show some unobvious features of the derivation which are essential in order to formulate general

rules for the computation of these vertices. We rotate the fields from the interaction eigenstate

basis to the physical basis and the CS counterterms are partly absorbed and the anomaly is

moved from the anomaly-free gauge boson vertices to the anomalous ones. This analysis is then

extended to other trilinear vertices and we finally provide general rules to handle these types of

interactions for a generic number of U(1)’s.

Before we come to the analysis of this vertex, we recall that the neutral current sector of the

model is defined as [17]

−LNC = ψfγ
µFψf , (6.105)

with

F = g2W
3
µT

3 + gY Y A
Y
µ + gBYBBµ (6.106)

expressed in the interaction eigenstate basis. Equivalently it can be re-expressed as

F = gZQZZµ + gZ′QZ′Z ′µ + eQAγµ, (6.107)

where Q = T 3 + Y . The physical fields Aγ , Z, Z ′ and W3, A
Y , B are related by the rotation

matrix OA to the interaction eigenstates




Aγ

Z

Z ′


 = OA




W3

AY

B


 (6.108)

or equivalently

W 3
µ = OAW3γA

γ
µ +OAW3ZZµ +OAW3Z′Z ′µ (6.109)

AYµ = OAY γA
γ
µ +OAY ZZµ +OAY Z′Z ′µ (6.110)

Bµ = OABZZµ +OABZ′Z ′µ. (6.111)

Substituting these transformations in the expression of the bosonic operator F and reading the

coefficients of the fields Zµ, Z
′
µ and Aγµ we obtain this set of relations for the coupling constants
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Figure 6.10: All the triangle diagrams and the possible CS and WZ counterterms present in the

model (chiral phase). Not all these diagrams project on Z → γγ in the mass eigenstate basis.

and the generators in the two basis, given here in a chiral form

gZQ
L
Z = g2T

3LOAW3Z + gY Y
LOAY Z + gBY

L
BO

A
BZ (6.112)

gZQ
R
Z = gY Y

ROAY Z + gBY
R
B O

A
BZ (6.113)

gZ′QLZ′ = g2T
3LOAW3Z′ + gY Y

LOAY Z′ + gBY
L
BO

A
BZ′ (6.114)

gZ′QRZ′ = gY Y
ROAY Z′ + gBY

R
B O

A
BZ′ (6.115)

eQL = g2T
3LOAW3A + gY Y

LOAY A = gY Y
ROAY A = eQR. (6.116)

6.3 General analysis of the Zγγ vertex

Let’s now come to a brief analysis of this vertex, stressing on the general features of its derivation,

which has not been detailed in [17]. In particular we highlight the general approach to follow

in order to derive these vertices and apply it to the case when several anomalous U(1)’s are

present. We will exploit the invariance of the anomalous part of the effective action under

transformations of the external classical fields. This is illustrated in Fig. 6.7. More formally we

can set

Wanom(B,W,AY ) = Wanom(Z,Z ′, Aγ), (6.117)

where we limit our analysis to the anomalous contributions.

In the chiral phase, the triangle diagrams projecting on this vertex are the following: Y Y Y ,

YW3W3, BY Y and BW3W3. They are represented in Fig. 6.10, where we have added the

corresponding counterterms.
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W3

W3
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=

B

W3

W3

Figure 6.11: The routing of the anomaly and the absorption of the CS term into the anomalous

B gauge boson. The anomaly is distributed among the vertices with the black dot.

The first two are SM-like and hence anomaly-free by charge assignment. The diagrams

involving the B gauge boson are typical of these models, are anomalous, and require suitable

counterterms in order to cancel their anomalies. All the possible counterterms are shown in

Fig. 6.10. The WZ terms of the form bY Y or bW3W3 will project both on a GZγγ and a

χγγ interactions, the first one being relevant for the STI of the vertex. The main issue to be

addressed is that of the distribution of the anomaly among the triangular vertices. These points

have been discussed in [16] and [17] working in the chiral limit, when the fermion masses are

removed from the diagrams.

The procedure can follow, equivalently, two directions: we can start from the BYW3 basis

and project onto the vertices Zγγ,ZZγ..., rotating the fields (not the charges) or, equivalently,

start from the Z,Z ′γ basis and rotate the charges (but not the fields) and the generators onto

the interaction eigenstate basis BYW3. We obtain two equivalent descriptions of the various

vertices. In the interaction basis the CS terms are absorbed and the anomaly is moved from the

Y or W vertices into the B vertex, where it is cancelled by the axion (see Fig. 6.11). This is

the meaning of the STI’s shown above. Therefore it is clear that most of the CS terms do not

appear explicitly if we use this approach. On the other hand, if we work in the mass eigenstate

basis they can be kept explicit, but one has to be careful because in this case also the remaining

vertices containing the generator of the electric charge Q ∼ Y + T3 have partial anomalies. The

two approaches, as we are going to see, can be combined in a very economical way in some

special cases, for instance for the Zγγ vertex, where one can attach all the anomaly to the Z

gauge boson and add only the GZγγ counterterm. Similarly, for other interactions such as the

ZZγ vertex, the total anomaly has to be equally distributed between the two Z ′s, since only

the B generator carries an anomaly in the chiral limit, if we choose to absorb the CS terms.

For other vertices such as ZZZ ′ etc, all the vertices contribute to the total anomaly and their

partial contributions can be identified by decomposing the corresponding triangle in the Y BW3

basis with some CS terms left over.
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6.4 The 〈Zlγγ〉 vertex

In this section we begin our technical discussion of the method. Since the most general case

is encountered when at least 3 anomalous U(1)’s are present in the theory, we will consider

for definiteness a model with three of them, say Bj = {B1, B2, B3}. We can write the field

transformation from interaction eigenstates basis to the mass eigenstates basis as

W3 = OAW3γAγ +

3∑

l=0

OAW3Zl
Zl (6.118)

Y = OAY γAγ +

3∑

l=0

OAY Zl
Zl (6.119)

Bj = OABjγAγ +

3∑

l=0

OABjZl
Zl, (6.120)

with j = 1, 2, 3, where for l = 0 we have the Z0 belonging to the SM and Z1, Z2, Z3 are the

anomalous ones. As in [17] we rotate the external field of the anomalous interactions from one

base to the other, selecting the projections over the Zlγγ vertex (the ellipsis indicate additional

contributions that have no projection on the vertex that we consider)

1

3!
Tr
[
Q3
Y

]
〈Y Y Y 〉 =

1

3!
Tr
[
Q3
Y

]
RY Y YZlγγ

〈Zlγγ〉+ . . . (6.121)

1

2!
Tr
[
QY T

2
3

]
〈YWW 〉 =

1

2!
Tr
[
QY T

2
3

]
RYWW
Zlγγ

〈Zlγγ〉+ . . . (6.122)

1

2!
Tr
[
QBj

Q2
Y

]
〈BjY Y 〉 =

1

2!
Tr
[
QBj

Q2
Y

]
R
BjY Y
Zlγγ

〈Zlγγ〉+ . . . (6.123)

1

2!
Tr
[
QBj

T 2
3

]
〈BjWW 〉 =

1

2!
Tr
[
QBj

T 2
3

]
R
WWBj

Zlγγ
〈Zlγγ〉+ . . . (6.124)

where the rotation coefficients RY Y YZlγγ
, RYWW

Zlγγ
, RBiY Y

Zlγγ
, RBiWW

Zlγγ
containing several products of the

elements of the rotation matrix OA are given by

RY Y YZlγγ
= 3

[
(OA)Y Zl

(OA)2Y γ
]

(6.125)

RYWW
Zlγγ

=
[
2(OA)W3γ(O

A)Y Zl
(OA)Y γ + (OA)2W3γ(O

A)Y Zl

]
(6.126)

RWWW
Zlγγ

=
[
3(OA)BiZl

(OA)2W3γ

]
(6.127)

RY YWZlγγ
=

[
2(OA)Y Zl

(OA)Y γ(O
A)W3γ + (OA)W3Zl

(OA)2Y γ
]

(6.128)

RBiY Y
Zlγγ

= (OA)2Y γ(O
A)BiZl

(6.129)

RBiWW
Zlγγ

=
[
(OA)2W3γ(O

A)BiZl

]
(6.130)

RBiYW
Zlγγ

=
[
2(OA)BiZl

(OA)W3γ(O
A)Y γ

]
(6.131)
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It is important to note that in the chiral phase the Y Y Y and YWW contributions vanish because

of the SM charge assignment. As we move to the mf 6= 0 phase we must include (together with

Y Y Y and YWW ) the other contributions listed below

1

3!
Tr
[
Q3
W

]
〈WWW 〉 =

1

3!
Tr
[
T 3

3

]
RWWW
Zlγγ

〈Zlγγ〉+ . . . (6.132)

Tr
[
QBj

QY T3

]
〈BjYW 〉 = Tr

[
QBj

QY T3

]
R
BjYW
Zlγγ

〈Zlγγ〉+ . . . (6.133)

1

2!
Tr
[
Q2
Y T3

]
〈Y YW 〉 =

1

2!
Tr
[
Q2
Y T3

]
RY YWZlγγ

〈Zlγγ〉+ . . . (6.134)

More details on the approach will be given below. For the moment we just mention that the

structure of the CS term can be computed by rotating the WZ counterterms into the physical

basis, having started with a symmetric distribution of the anomaly in all the triangle diagrams.

The CS terms in this case take the form

VCS =
an
3
ελµνα(k1,α − k2,α)

1

8

∑

j

∑

f

[
gBj

g2
Y θ

BjY Y
f R

BjY Y
Zlγγ

+ gBj
g2
2θ
BjWW
f R

BjWW
Zlγγ

]
Zλl A

µ
γA

ν
γ ,

(6.135)

and they are rotated into the physical basis together with the anomalous interactions [17]. We

have defined the following chiral asymmetries

θ
BjY Y
f = QLBj ,f (Q

L
Y,f )

2 −QRBj ,f (Q
R
Y,f )

2 (6.136)

θ
BjWW
f = QLBj ,f (T

3
L,f )

2 . (6.137)

We can show that the equations of the vertices in the momentum space can be obtained following

a procedure similar to the case of a single U(1) [17], that we are now going to generalize. In

particular we will try to absorb all the CS terms that we can, getting as close as possible to

the SM result. This is in general possible for diagrams that have specific Bose symmetries or

conserved electromagnetic currents, but some of the details of this construction are quite subtle

especially as we move away from the chiral limit.

6.4.1 Decomposition of the Zlγγ vertex

As we have mentioned, the anomalous effective action, composed of the triangle diagrams plus

their CS counterterms can be expressed either in the base of the mass eigenstates or in that of

the interaction eigenstates.

We start by keeping all the pieces of the 1-loop effective action in the interaction basis in

the mf 6= 0 phase and rotate the external (classical) fields on the physical basis taking all the

contribution to the 〈Zlγγ〉 vertex.
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Figure 6.12: Chiral decomposition of the fermionic propagator after a mass insertion.
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Figure 6.13: Chiral triangle contributions to the Y Y Y vertex. The same decomposition holds

for the BiY Y case.

A given vertex is first decomposed into its chiral contributions and then rotated into the

physical gauge boson eigenstates. For instance, let’s start with the non anomalous Y Y Y vertex

see Figs. (6.12,6.13). Actually, in this specific case the sums over each fermion generation are

actually zero in the chiral limit, but we will impose this condition at the end and prefer to follow

the general treatment as for other (anomalous) vertices. We write this vertex in terms of chiral

projectors (L/R), where L/R ≡ 1∓γ5, and the diagrams contain a massive fermion of mass mf .

The structure of the vertex is

〈LLL〉|mf 6=0 =

∫
d4q

(2π)4
Tr
[
(q/+mf )γ

λPL(q/+ k/+mf )γ
νPL(q/+ k/1 +mf )γ

µPL
]

(q2 −m2
f )
[
(q + k)2 −m2

f

] [
(q + k1)2 −m2

f

]

+ exch.

(6.138)

The vertices of the form LLR, RRL, and so on, are obtained from the expression above just by

substituting the corresponding chiral projectors. Notice that for loops of fixed chirality we have

no mass contributions from the trace in the numerator and we easily derive the identity

〈LLL〉|mf 6=0 = −〈RRR〉|mf 6=0. (6.139)
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Figure 6.14: Chiral triangle contributions to the YWW vertex. The same decomposition holds

for the BiWW case.

At this point we start decomposing each diagram in the interaction basis

〈Y Y Y 〉 g3
Y Tr[Q

3
Y ] =

∑

f

[
g3
Y (QLY,f )

3〈LLL〉λµν + g3
Y (QRY,f )

3〈RRR〉λµν

+ g3
Y Q

L
Y,f (QRY,f )

2〈LRR〉λµν + g3
Y Q

L
Y,f Q

R
Y,f Q

L
Y,f 〈LRL〉λµν

+ g3
Y (QLY,f )

2QRY,f〈LLR〉λµν + g3
Y Q

R
Y,f (QLY,f )

2〈RLL〉λµν

+ +g3
Y Q

R
Y,f Q

L
Y,f Q

R
Y,f 〈RLR〉λµν + g3

Y (QRY,f )
2QLY,f〈RRL〉λµν

] 1

8
Zλl A

µ
γA

ν
γR

Y Y Y
Zlγγ

+ . . .

(6.140)

where the factor of 1/8 comes from the chiral projectors and the dots indicate all the other

contributions of the type ZlZmγ, ZlZmZr and so on, which do not contribute to the Zlγγ vertex.

This projection contains chirality conserving and chirality flipping terms. The two combinations

which are chirally conserving are LLL and RRR while the remaining ones need to have 2 chirality

flips to be nonzero (ex. LLR or RRL) and are therefore proportional to m2
f .

We repeat this procedure for all the other vertices in the interaction eigenstate basis that

project on the vertex we are interested in. For instance, in the case of the 〈YWW 〉 vertex the

structure is simpler because the generator associated to W3 is left-chiral (Fig. 6.14)

〈YWW 〉 gY g2
2 Tr[QY (T 3)2] =

∑

f

[
gY g

2
2Q

L
Y,f(T

3
L,f )

2〈LLL〉λµν

+gY g
2
2Q

R
Y,f (T

3
L,f )

2〈RLL〉λµν
] 1

8
Zλl A

µ
γA

ν
γR

YWW
Zlγγ

+ . . . (6.141)

Similarly, all the pieces BiY Y and BiWW for i = 1, 2, 3, give the projections

〈BiY Y 〉 gB g2
Y Tr[QBi

Q2
Y ] =

∑

f

[
gBi

g2
Y Q

L
Bi,f (QLY,f )

2〈LLL〉λµν

+gBi
g2
Y Q

R
Bi,f

(QRY,f )
2〈RRR〉λµν + gBi

g2
Y Q

L
Bi,f

(QRY,f )
2〈LRR〉λµν

+gBi
g2
Y Q

L
Bi,f Q

R
Y,f Q

L
Y,f 〈LRL〉λµν + gBi

g2
Y Q

L
Bi,f Q

L
Y,f Q

R
Y,f 〈LLR〉λµν

+gBi
g2
Y Q

R
Y,f (QLY,f )

2〈RLL〉λµν + gBi
g2
Y Q

R
Bi,f Q

L
Y,f Q

R
Y,f 〈RLR〉λµν

+gBi
g2
YQ

R
Bi,fQ

R
Y,fQ

L
Y,f〈RRL〉λµν

] 1

8
Zλl A

µ
γA

ν
γR

BiY Y + . . . (6.142)
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and

〈BiWW 〉 gY g2
2 Tr[QBi

(T 3)2] =
∑

f

[
gBi

g2
2Q

L
Bi,f (T

3
L,f )

2〈LLL〉λµν

+ gBi
g2
2Q

R
Bi,f (T

3
L,f )

2〈RLL〉λµν
] 1

8
Zλl A

µ
γA

ν
γR

BiWW
Zlγγ

+ . . .

(6.143)

We obtain similar expressions for the terms WWW , Y YW , BiYW , etc. which appear in the

mf 6= 0 phase.

The mf = 0 phase

To proceed with the analysis of the amplitude we start from the chirally symmetric phase

(mf = 0). The terms of mixed chirality (such as 〈LRR〉 and so on) vanish in this limit, leaving

only the chiral preserving interactions LLL and RRR. In this limit we can formally impose the

relation

〈LLL〉λµν(mf = 0) = −4∆AAA(0) (6.144)

that will be used extensively throughout the chapter. This relation or other similar relations

are just the starting point of the entire construction. The final expressions of the anomalous

vertices are obtained using the generalized Ward identities of the theory. What really defines

the theories are the distributions of the partial anomalies. We will attach an equal anomaly

on each axial-vector vertex in diagrams of the form AAA and we will compensate this equal

distribution with additional CS interactions - so to bring these diagrams to the desired form

AV V or V AV or V V A - whenever a non anomalous U(1) appears at a given vertex. For models

where a single anomalous U(1) is present this does not bring-in any ambiguity. For instance,

conservation of the Y current in BiY Y will allow us to move the anomaly from the Y ’s to the

Bi vertices and this is implicitly done using a CS term. We say that this procedure is allowing

us to absorb a CS interaction. Moving to the Y Y Y vertex, this vanishes identically in the chiral

limit since we factorize left- and right-handed modes for each generation by an anomaly-free

charge assignment

(Y Y Y ) : g3
Y Tr[Q

3
Y ] = 0, (6.145)

(YWW ) : gY g
2
2Tr[QY (TL3 )2] = 0. (6.146)

At this point we pause to show how the re-distribution of the anomaly goes in the case at hand.

We have the contribution

V BiY Y
CS = di〈BiY ∧ FY 〉 (6.147)
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and the BRST conditions in the Stückelberg phase give

di = −igBi
g2
Y

2

3
anDBiY Y ; DBiY Y =

1

8
Tr[QBi

Q2
Y ]. (6.148)

Also these terms are projected on the vertex to give

V BiY Y
CS = di〈BiY ∧ FY 〉 = (−i)diελµνα(k1α − k2α)

[
(OA)2Y γ(O

A)BiZl

]
Zλl A

µ
γA

ν
γ + . . .

V BiWW
CS = ci〈εµνρσBµ,iCAbelianνρσ 〉 = (−i)ciελµνα(k1α − k2α)

[
(OA)2W3γ(O

A)BiZl

]
Zλl A

µ
γA

ν
γ + . . .

(6.149)

In general, a vertex such as BiY Y is changed into an AVV, while vertices of the form Y BB

and Y BiBj which appear in the computation of the γZZ γZlZm interactions are changed into

VAV + VVA. This procedure is summarized by the equations

∆λµν
AAA(mf = 0, k1, k2)−

an
3
ελµνα(k1,α − k2,α) = ∆λµν

AV V (mf = 0, k1, k2) (6.150)

∆µνλ
AAA(mf = 0, k2,−k)−

an
3
εµνλα(k1,α + 2k2,α) = ∆µνλ

AV V (mf = 0, k2,−k)

= ∆λµν
V AV (mf = 0, k1, k2) (6.151)

∆νλµ
AAA(mf = 0,−k, k1)−

an
3
ενλµα(−2k1,α − k2,α) = ∆νλµ

AV V (mf = 0,−k, k1)

= ∆λµν
V V A(mf = 0, k1, k2) (6.152)

∆λµν
AAA(mf = 0, k1, k2) +

an
6
ελµνα(k1,α − k2,α) =

1

2

[
(∆λµν

V AV (mf = 0, k1, k2) + ∆λµν
V V A(mf = 0, k1, k2)

]
,

(6.153)

where the last relation can be proved in a simple way by summing the second and the third

contributions. Defining kλ3 = −kλ, one can combine together the AAA plus the counterterms

into a unique expression for each case

V
λµν
BiY Y

= 4DBiY Y gBi
g 2
Y ∆λµν

AAA(k1, k2) +DBiY Y gBi
g 2
Y

i

π2

2
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V
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Y BiY

= 4DBiY Y gBi
g 2
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AAA(k2, k3) +DBiY Y gBi
g 2
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i

π2

2

3
ǫµνλσ(k2 − k3)σ

V
νλµ
Y Y Bi

= 4DBiY Y gBi
g 2
Y ∆νλµ

AAA(k3, k1) +DBiY Y gBi
g 2
Y

i

π2

2

3
ǫνλµσ(k3 − k1)σ

V
λµν
Y BiBj

= 4DY BiBj
gY gBi

gBj
∆λµν

AAA(k1, k2)−DY BiBj
gY gBi

gBj

i

π2

1

3
ǫλµνσ(k1 − k2)σ,

(6.154)
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where we have rotated them onto the Zlγγ vertex. For the non abelian case (WBiW and

WWBi), the calculation is similar, so we omit the details.

Finally the anomalous contributions plus the CS interactions are given by

〈BiY Y 〉|mf =0 + 〈BiWW 〉|mf =0 =

+gBi
g2
Y

∑

f

[
QLBi,f (Q

L
Y,f )

2 −QRBi,f (Q
R
Y,f )

2
] 1

2
∆λµν
AAA(0)RBiY Y

Zlγγ
Zλl A

µ
γA

ν
γ

+gBi
g2
2

∑

f

QLBi,f (T
3
L,f )

2 1

2
∆AAA(0)λµνRBiWW

Zlγγ
Zλl A

µ
γA

ν
γ

−i
[
gBi

g2
Y

4

3
anDBiY YR

BiY Y
Zlγγ

+ gBi
g2
2

4

3
anD

(L)
Bi
RBiWW
Zlγγ

]
ελµνα (k1,α − k2,α)Zλl A

µ
γA

ν
γ ,

(6.155)

which allows to move the anomaly on the axial current and we simply get

〈Zlγγ〉|mf =0 =
∑

i

gBi
g2
Y

∑

f

[
QLBi,f (Q

L
Y,f )

2 −QRBi,f (Q
R
Y,f )

2
] 1

2
∆λµν
AV V (0)RBiY Y

Zlγγ
Zλl A

µ
γA

ν
γ

+
∑

i

gBi
g2
2

∑

f

QLBi,f (T
3
L,f )

2 1

2
∆λµν
AV V (0)RBiWW

Zlγγ
Zλl A

µ
γA

ν
γ , (6.156)

where we transfer all the anomaly on the vertex labelled by the λ index, obtaining that the

Ward identities on the photons are satisfied.

At this point, it is convenient to introduce the chiral asymmetry

θ
YBiBj

f =
[
(QLY,f )(Q

L
Bi,f )(Q

L
Bj ,f )− (QRY,f )(Q

R
Bi,f )(Q

R
Bj ,f )

]
(6.157)

and express the coefficients in front of the CS counterterms as follows

DBiY Y = −1

8

∑

f

θBiY Y
f (6.158)

DBiWW = −1

8

∑

f

θBiWW
f (6.159)

DY BiBj
= −1

8

∑

f

θ
Y BiBj

f . (6.160)

After some manipulations we obtain the expression of the 〈Zlγγ〉 vertex in the mf = 0 phase

which is given by

〈Zlγγ〉|mf =0 = −1

2
∆λµν
AV V (0)Zλl A

µ
γA

ν
γ

∑

i

∑

f

[
gBi

g2
Y θ

BiY Y
f RBiY Y

Zlγγ
+ gBi

g2
2θ
BiWW
f RBiWW

Zlγγ

]
,

(6.161)
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where for ∆AV V (0) we write

∆AV V (0)λµν(k1, k2, 0) =
1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0){
ε[k1, λ, µ, ν]

[
y(y − 1)k2

2 − xyk1 · k2

]

+ε[k2, λ, µ, ν]
[
x(1− x)k2

1 + xyk1 · k2

]

+ε[k1, k2, λ, ν] [x(x− 1)kµ1 − xyk
µ
2 ]

+ε[k1, k2, λ, µ] [xykν1 + (1− y)ykν2 ]} , (6.162)

∆(0) = x(x− 1)k2
1 + y(y − 1)k2

2 − 2xyk1 · k2. (6.163)

At this stage we should keep in mind that if all the external particles are on-shell, the total

amplitude vanishes because of the Landau-Yang theorem. In other words the Zl’s can’t decay

on shell into two on-shell photons. However it is possible to have two on-shell photons if the

initial state is characterized by an anomalous process as well, such as gluon fusion. This does

not contradict the Landau-Yang theorem since the Z-pole disappears [30] in the presence of an

anomalous Z ′ exchange [30].

6.4.2 The mf 6= 0 phase

Now we move to the analysis of the vertices away from the chiral limit. Also in this case we

separate the mass-dependent from the mass-independent contributions.

Chirality preserving vertices

We start analyzing the vertices away from the chiral limit by separating the chiral preserving

contributions from the remaining ones. The general expression of LLL is given by

〈LLL〉|mf 6=0 = A1ε[k1, λ, µ, ν] +A2ε[k2, λ, µ, ν] +A3k
ν
1ε[k1, k2, λ, µ] +A4k

ν
2ε[k1, k2, λ, µ]

+A5k
µ
1 ε[k1, k2, λ, ν] +A6k

µ
2 ε[k1, k2, λ, ν] (6.164)

where we have removed, for simplicity, the dependence on the charges and the coupling constants.

The divergent structures A1 and A2 are given by

A1 = 8i [I30(k1, k2)− I20(k1, k2)] k
2
1 + 16i [I11(k1, k2)− I21(k1, k2)] k1 · k2

+ 8i [I01(k1, k2)− I02(k1, k2) + I12(k1, k2)] k
2
2 + 4i [3D10(k1, k2)− 2D00(k1, k2)]

(6.165)
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where

Ist(k1, k2) =

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4q

(2π)4
xsyt

[
q2 − x(1− x)k2

1 − y(1− y)k2
2 − 2xyk1 · k2 +m2

f

]3

(6.166)

Dst(k1, k2) =

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4q

(2π)4
q2xsyt

[
q2 − x(1− x)k2

1 − y(1− y)k2
2 − 2xyk1 · k2 +m2

f

]3 .

(6.167)

and one can verify that A1(k1, k2) = −A2(k2, k1). All the mass dependence is contained only in

the denominators of the propagators appearing in the Feynman parametrization.

The finite structures A3 . . . A6 are the following

A3(k1, k2) = −16iI11(k1, k2) = −A6(k2, k1) (6.168)

A4(k1, k2) = 16i [I02(k1, k2)− I01(k1, k2)] = −A5(k2, k1) (6.169)

where still we need to perform the trivial finite integrals over the momentum q.

The decomposition of 〈LLL〉f into massless and massive components gives

〈LLL〉f = 〈LLL(mf 6= 0)〉 − 〈LLL〉(0) (6.170)

〈LLL〉(0) = 〈LLL(mf = 0)〉 (6.171)

〈LLL(mf 6= 0)〉 = 〈LLL〉f + 〈LLL〉(0), (6.172)

where we have isolated the massless contributions. As we have seen before, the CS terms act

only on the massless part of the triangles (having used Eq. (6.144)) and reproduce the massless

contribution calculated in Eq. (6.161). Since the mass terms are proportional to the tensors

ε[k1, λ, µ, ν] and ε[k2, λ, µ, ν] they can be included in the singular structures A1 and A2 of

〈LLL〉|mf 6=0

Ā1 = A1 + im2
f (Q

R
Y,f )

2(QLY,f )
[
−8I00(q2, k1, k2) + 24I10(q2, k1, k2)

]

+im2
f (Q

L
Y,f )

2(QRY,f )
[
8I00(q2, k1, k2)− 24I10(q2, k1, k2)

]

−8im2
fQ

R
Y,f(T

L
3,f )

2I10(q2, k1, k2)

−im2
f

∑

i

QRBi,fQ
L
Y,fQ

R
Y,f

[
8I10(q2, k1, k2) + 4I00(q2, k1, k2)

]

+im2
f

∑

i

QLBi,fQ
R
Y,fQ

L
Y,f

[
8I10(q2, k1, k2) + 4I00(q2, k1, k2)

]

−8im2
f

∑

i

QRBi,f (Q
L
Y,f )

2I10(q2, k1, k2) + 8im2
f

∑

i

QLBi,f (Q
R
Y,f )

2I10(q2, k1, k2)

−8im2
f

∑

i

QRBi,f
(TL3,f )

2I10(q2, k1, k2). (6.173)
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At this point we have to consider also the chirality flipping terms. For simplicity we discuss only

the case of the Y Y Y vertex, the others being similar.

Chirality flipping vertices

These contributions are extracted rather straighforwardly and contribute to the total vertex

amplitude with mass corrections that modify A1 and A2. We discuss this point first for the

〈Y Y Y 〉, and then quote the result for the entire contribution to Zγγ.

For YYY we obtain

(QRY,f )
2(QLY,f ) [〈RRL〉+ 〈LRR〉+ 〈RLR〉] =

(QRY,f )
2(QLY,f )

[
8im2

fI00(k1, k2) (ε[k2, λ, µ, ν] − ε[k1, λ, µ, ν])

+24im2
f (I10(k1, k2)ε[k1, λ, µ, ν] − I01(k1, k2)ε[k2, λ, µ, ν])

]
, (6.174)

and the analysis can be extended to the other trilinear contributions and can be simplified using

the relations

[〈RRL〉+ 〈LRR〉+ 〈RLR〉] = − [〈LLR〉+ 〈RLL〉+ 〈LRL〉] . (6.175)

The final result is given by

mass terms = im2
fg

3
Y (QRY,f )

2(QLY,f ) [8I00(k1, k2) (ε[k2, λ, µ, ν] − ε[k1, λ, µ, ν])

+24 (I10(k1, k2)ε[k1, λ, µ, ν]− I01(k1, k2)ε[k2, λ, µ, ν])]

−im2
fg

3
Y (QRY,f )

2(QLY,f ) [8I00(k1, k2) (ε[k2, λ, µ, ν]− ε[k1, λ, µ, ν])

+24 (I10(k1, k2)ε[k1, λ, µ, ν]− I01(k1, k2)ε[k2, λ, µ, ν])]

+8im2
fgY g

2
2Q

R
Y,f(T

L
3,f )

2 (I01(k1, k2)ε[k2, λ, µ, ν]− I10(k1, k2)ε[k1, λ, µ, ν])

+im2
f

∑

i

gBi
g2
YQ

L
Bi,fQ

R
Y,fQ

L
Y,f

[
(8I01(q2, k1, k2)− 4I00(k1, k2))ε[k2, λ, µ, ν]

+(8I10(k1, k2) + 4I00(k1, k2))ε[k1, λ, µ, ν]]

−im2
f

∑

i

gBi
g2
YQ

R
Bi,f

QLY,fQ
R
Y,f [(8I01(k1, k2)− 4I00(k1, k2))ε[k2, λ, µ, ν]

+(8I10(k1, k2) + 4I00(k1, k2))ε[k1, λ, µ, ν]]

+im2
f

∑

i

gBi
g2
YQ

R
Bi,f (Q

L
Y,f )

28 (I01(k1, k2)ε[k2, λ, µ, ν]− I10(k1, k2)ε[k1, λ, µ, ν])

−im2
f

∑

i

gBi
g2
YQ

L
Bi,f (Q

R
Y,f )

28 (I01(k1, k2)ε[k2, λ, µ, ν]− I10(k1, k2)ε[k1, λ, µ, ν])

+8im2
f

∑

i

gBi
g2
2Q

R
Bi,f (T

L
3,f )

2 (I01(k1, k2)ε[k2, λ, µ, ν]− I10(k1, k2)ε[k1, λ, µ, ν])

(6.176)
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and is finite. To conclude our derivation in this special case, we can summarize our findings as

follows.

In a triangle diagram of the form, say, AVV, if we impose a vector Ward identity on the two

V lines we redefine the divergent invariant amplitudes A1 and A2 (A2 = −A1) in terms of the

remaining amplitudes A3, ..., A6, which are convergent. The chirality flip contributions such as

LLR turn out to be finite, but are proportional to A1 and A2, and disappear once we impose

the WI’s on the V lines. This observation clarifies why in the Zγγ vertex of the SM the mass

dependence of the numerators disappears and the traces can be computed as in the chiral limit.

Including the mass dependent contributions we obtain (see Fig. 6.15 for the mf 6= 0 phase)

〈Zlγγ〉|mf 6=0 = 〈Zlγγ〉|mf =0 −
∑

f

1

8
〈LLL〉λµνf

{
g3
Y θ

Y Y Y
f R̄Y Y YZlγγ

+ g3
2θ
WWW
f R̄WWW

Zlγγ

+g2
2gY θ

YWW
f RYWW

Zlγγ
+ g2g

2
Y θ

Y YW
f RY YWZlγγ

+
∑

i

gBi
g2gY θ

BiYW
f RBiYW

Zlγγ

+
∑

i

gBi
g2
Y θ

BiY Y
f RBiY Y

Zlγγ
+
∑

i

gBi
g2
2θ
BiWW
f RBiWW

Zlγγ

}
Zλl A

µ
γA

ν
γ

+m2
f (chirally flipped terms) (6.177)

where 〈LLL〉λµνf is now defined by Eqs. (6.170-6.172). In Eq. (6.177) we have also defined the

following chiral asymmetries

θWWW
f = (T 3

L,f )
3 (6.178)

θY YWf =
[
(QLY,f )

2T 3
L,f

]
(6.179)

θBiYW
f =

[
QBi,fQLY,fT

3
L,f

]
(6.180)

It is important to note that Eq. (6.177) is still expressed as in Rosenberg (see [16, 41]), with

the usual finite cubic terms in the momenta k1 and k2, the two singular invariant amplitudes

(A1 and A2) and the mass contributions.

At this stage, to get the physical amplitude, we must impose e.m. current conservation on

the external photons

kµ1 〈Zlγγ〉|
λµν
mf 6=0 = 0

kν2 〈Zlγγ〉|
λµν
mf 6=0 = 0 . (6.181)

Using these conditions, again we can re-express the coefficient Ā1, Ā2 in terms of A3, . . . , A6

and we drop the explicit mass dependence in the numerators of the expression of the physical

amplitude.



156 Trilinear gauge interactions in U(1) extensions of the Standard Model

Thus, applying the Ward identities on the triangle 〈LLL〉f , it reduces to the combination

∆AV V (mf )−∆AV V (0) which must be added to the first term in the curly brackets of Eq. (6.177),

thereby giving our final result for the physical amplitude

〈Zlγγ〉|mf 6=0 = −1

2
Zλl A

µ
γA

ν
γ

∑

f

[
g3
Y θ

Y Y Y
f R̄Y Y YZlγγ

+ g3
2θ
WWW
f R̄WWW

Zlγγ
+ gY g

2
2θ
YWW
f RYWW

Zlγγ

+ g2
Y g2θ

Y YW
f RY YWZlγγ

+
∑

i

gBi
gY g2θ

BiYW
f RBiYW

Zlγγ

+
∑

i

gBi
g2
Y θ

BiY Y
f RBiY Y

Zlγγ
+ gBi

g2
2θ
BiWW
f RBiWW

Zlγγ

]
∆λµν
AV V (mf 6= 0).

(6.182)

We have defined

R̄Y Y YZlγγ
= (OA)Y Zl

(OA)2Y γ , R̄WWW
Zlγγ

= (OA)W3Zl
(OA)2W3γ , (6.183)

and the triangle ∆AV V (mf 6= 0) is given by

∆AV V (mf 6= 0, k1, k2)
λµν =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )
·

·
{
ε[k1, λ, µ, ν]

[
y (y − 1)k2

2 − x y k1 · k2

]
·+ ε[k2, λ, µ, ν]

[
x (1 − x) k2

1 + x y k1 · k2

]

+ε[k1, k2, λ, ν] [x (x− 1)kµ1 − x y k
µ
2 ] + ε[k1, k2, λ, µ] [x y kν1 + (1− y)ykν2 ]} ,

(6.184)

∆(mf ) = m2
f + x(x− 1) k2

1 + y(y − 1) k2
2 − 2x y k1 · k2 . (6.185)

The SM limit

It is straightforward to obtain the corresponding expression in the SM from the previous result.

As usual we obtain, beside the tensor structures of the Rosenberg expansion, all the chirally

flipped terms which are proportional to a mass term times a tensor kα1,2ε[α, λ, µ, ν]. As we have

seen before in the previous sections all these terms can be re-absorbed once we impose the

conservation of the electromagnetic current.

Then, setting the anomalous pieces to zero by taking gBi
→ 0, we are left with the usual Z

boson (Zl → Z), and we have

〈Zγγ〉|mf 6=0 = −gZe2
∑

f

[
QL,fZ (QLf )2 −QR,fZ (QRf )2

] 1

2
∆λµν
AV V (mf 6= 0)ZλAµγA

ν
γ

= −
∑

f

1

2
∆λµν
AV V (mf 6= 0)

{
g3
Y θ

Y Y Y
f R̄Y Y Y + g2

2gY θ
YWW
f RYWW

Zγγ

+ g3
2θ
WWW
f R̄WWW

Zγγ + g2
Y g2θ

Y YW
f RY YWZγγ

}
ZλAµγA

ν
γ , (6.186)
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Figure 6.15: Interaction basis contributions to the Zγγ vertex. In the SM only the first two dia-

grams survive. The CS terms, in this case, are absorbed so that only the B vertex is anomalous.

In the chiral limit in the SM the first two diagrams vanish.
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Figure 6.16: Chiral triangle contributions to the Zγγ vertex.

where the coefficients R̄Y Y YZγγ , R̄
WWW
Zγγ are defined in the previous section. It is not difficult to

recognize that in the first line we have

〈Zγγ〉|mf 6=0 = −gZe2
1

2

∑

f

(Qf )
2
[
QL,fZ −QR,fZ

]
∆λµν
AV V (mf 6= 0)ZλAµγA

ν
γ (6.187)

and since

[
QL,fZ −QR,fZ

]
= 2gZA,f

gZ ≈
g2

cos θW
(6.188)

finally we obtain

〈Zγγ〉|mf 6=0 = − g2
cos θW

e2
∑

f

(Qf )
2gZA,f∆

λµν
AV V (mf 6= 0)ZλAµγA

ν
γ , (6.189)

which is exactly the SM vertex [147].

6.5 The γZZ vertex

Before coming to analyze the most general cases involving two or three anomalous Z ′s, it is

more convenient to start with the γZZ interaction with two identical Z ′s in the final state and

use the result in this simpler case for the general analysis.
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6.5.1 The vertex in the chiral limit

We proceed in the same manner as before. In the mf = 0 phase, the terms in the interaction

eigenstates basis we need to consider are

1

3!
Tr
[
Q3
Y

]
〈Y Y Y 〉 =

1

3!
Tr
[
Q3
Y

] [
3(OAY Z)2OAY γ

]
〈γZZ〉+ . . . (6.190)

1

2!
Tr
[
QY T

2
3

]
〈Y WW 〉 =

1

2!
Tr
[
QY T

2
3

] [
2OAWZO

A
WγO

A
Y Z + (OAWZ)2OAY γ

]
〈γZZ〉+ . . .

(6.191)
1

2!
Tr
[
QYQ

2
B

]
〈Y BB〉 =

1

2!
Tr
[
QYQ

2
B

] [
OAY γ(O

A
BZ)2

]
〈γZZ〉+ . . . (6.192)

1

2!
Tr
[
QBQ

2
Y

]
〈BY Y 〉 =

1

2!
Tr
[
QBQ

2
Y

] [
2OABZO

A
Y ZO

A
Y γ

]
〈γZZ〉+ . . . (6.193)

1

2!
Tr
[
QBT

2
3

]
〈BWW 〉 =

1

2!
Tr
[
QBT

2
3

] [
2OABZO

A
WZO

A
Wγ

]
〈γZZ〉+ . . . (6.194)

We define for future reference the following expressions for the rotation matrices

RY Y YγZZ =
[
3(OAY Z)2OAY γ

]
(6.195)

RWWW
γZZ =

[
3(OAW3Z)2OAW3γ

]
(6.196)

RWYY
γZZ =

[
2OAW3ZO

A
Y γO

A
Y Z + (OAW3γ)(O

A
Y Z)2

]
(6.197)

RYWW
γZZ =

[
2OAW3ZO

A
W3γO

A
Y Z + (OAW3Z)2OAY γ

]
(6.198)

RBY YγZZ =
[
2OABZO

A
Y ZO

A
Y γ

]
(6.199)

RBBYγZZ =
[
OAY γ(O

A
BZ)2

]
(6.200)

RBBWγZZ =
[
OAW3γ(O

A
BZ)2

]
(6.201)

RBWW
γZZ =

[
2OABZO

A
W3ZO

A
W3γ

]
(6.202)

RBYWγZZ =
[
OABZO

A
W3ZO

A
Y γ +OABZO

A
W3γO

A
Y Z

]
. (6.203)

The chiral decomposition proceeds similarly to the case of Zγγ (see Fig. 6.16). Also in this

situation the tensor 〈LLL〉λµνf is characterized by the two independent momenta k1,µ and k2,ν of

the two outgoing Z ′s. Since the LLL triangle is still ill-defined, we must distribute the anomaly

in a certain way. This is driven by the symmetry of the theory, and in this case the STI’s play

a crucial role even in the (mf = 0) unbroken chiral phase of the theory. In order to define the

〈LLL〉λµν |mf =0 diagram we choose a symmetric assignment of the anomaly

k1,µ〈LLL〉λµν |mf =0 =
an
3
ε[k1, k2, λ, ν] (6.204)

k2,ν〈LLL〉λµν |mf =0 = −an
3
ε[k1, k2, λ, µ] (6.205)

kλ〈LLL〉λµν |mf =0 =
an
3
ε[k1, k2, µ, ν] . (6.206)
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These conditions together with the Bose symmetry on the two Z ′s

〈LLL〉λµν |mf =0(k, k1, k2) = 〈LLL〉λνµ|mf =0(k, k2, k1) (6.207)

allow us to remove the singular coefficients proportional to the two linear tensor structures of

the amplitude. The complete tensor structure of the γZZ vertex in this case can be written in

terms of the usual invariant amplitudes A1, ...A6

A3 = −16 (I10(k1, k2)− I20(k1, k2)) (6.208)

A4 = +16I11(k1, k2) (6.209)

A5 = −16I11(k1, k2) (6.210)

A6 = −16 (I01(k1, k2)− I02(k1, k2)) (6.211)

A1 = −k1 · k2A5 − k2
2A6 +

an
3

(6.212)

A2 = −k1 · k2A4 − k2
1A3 −

an
3
. (6.213)

We have the constraints

kλ〈LLL〉λµν |mf =0 =
an
3
ε [k1, k2, µ, ν]⇒ A1 −A2 =

an
3

(6.214)

and the relation written in Eq. (6.144). In this case the CS terms coming from the Lagrangian

in the interaction eigenstates basis are defined as follows

VCS =
∑

f

{
−gB g2

Y

1

8
θY BYf RY BYγZZ

an
3
εµνλα(k2,α − k3,α)

−gBg2
Y

1

8
θY Y Bf RY Y BγZZ

an
3
ενλµα(k3,α − k1,α) + gY g

2
B

1

8
θYBBf RY BBZZγ

an
6
ελµνα(k1,α − k2,α)

− gBg2
2

1

8
θWBW
f RWBW

ZZγ

an
3
εµνλα(k2,α − k3,α)− gBg2

2

1

8
θWWB
f RWWB

ZZγ

an
3
ενλµα(k3,α − k1,α)

}
.

(6.215)

Then, collecting all the terms, the expression in the mf = 0 phase for the γZZ process can

be written as

〈γZZ〉|mf =0 = −1

2
AλγZ

µZν
∑

f

{
gBg

2
Y θ

Y BY
f RY BYγZZ

[
∆µνλ
AAA(0)− an

3
εµνλα(k2,α − k3,α)

]

+gBg
2
Y θ

Y Y B
f RY Y BγZZ

[
∆νλµ
AAA(0)− an

3
ενλµα(k3,α − k1,α)

]

+gY g
2
Bθ

Y BB
f RY BBZZγ

[
∆λµν
AAA(0) +

an
6
ελµνα(k1,α − k2,α)

]

+gBg
2
2θ
WBW
f RWBW

ZZγ

[
∆µνλ
AAA(0) − an

3
εµνλα(k2,α − k3,α)

]

+gBg
2
2θ
WWB
f RWWB

ZZγ

[
∆νλµ
AAA(0) − an

3
ενλµα(k3,α − k1,α)

]}
,

(6.216)
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and after some manipulations, we obtain

〈γZZ〉|mf =0 = −1

2

[
∆λµν
V AV (0) + ∆λµν

V V A(0)
]
AλγZ

µZν
∑

f

{
gBg

2
Y θ

BY Y
f RBY Y

+gY g
2
Bθ

Y BB
f R̄Y BB + gBg

2
2θ
BWW
f RBWW

}
,

(6.217)

where we have used

θY BBf = QLY,f (Q
L
B,f )

2 −QRY,f (QRB,f )2 (6.218)

R̄BBYγZZ =
1

2
RBBYγZZ . (6.219)

If we define

T λµν(0) =
[
∆λµν
V AV (0) + ∆λµν

V V A(0)
]

(6.220)

we can write an explicit expression for T λµν , which is given by

T λµν(0) =
1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)

{
εαλµνk1,α

[
(1− x)xk2

1 + y(y − 1)k2
2

]

+εαλµνk2,α

[
(1− x)xk2

1 + y(y − 1)k2
2

]

+ε[k1, k2, λ, ν] [2(x− 1)xk1,µ − 2xyk2,µ]

+ε[k1, k2, λ, µ] [2(1− y)yk2,ν + 2xyk1,ν ]} , (6.221)

and it is straightforward to observe that the electromagnetic current conservation is satisfied on

the photon line

k1,µT
λµν =

1

2π2
ε [k1, k2, λ, ν]

k2,νT
λµν = − 1

2π2
ε [k1, k2, λ, µ]

(k1,λ + k2,λ)T
λµν = 0. (6.222)

6.5.2 γZZ: The mf 6= 0 phase

In the mf 6= 0 phase we must add to the previous chirally conserved contributions all the chirally

flipped interactions of the type 〈LLR〉 and similar, which are proportional to m2
f . As we have

already seen in the Zγγ case, all the mass terms have a tensor structure of the typem2
fε
αλµνk1,2,α

and we can always define the coefficients Ā1 and Ā2 so that they include all the mass terms.

Again, they are expressed in terms of the finite quantities A3, . . . , A6 by imposing the physical

restriction, i.e. the e.m. current conservation on the photon line, and the anomalous Ward
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identities on the two Z ′s lines. Since the CS interactions act only on the massless part of the

triangles, they are absorbed by splitting the tensor 〈LLL〉λµν as

〈LLL〉λµν |f = 〈LLL〉λµν |mf =0 + 〈LLL〉λµν(mf );

〈LLL〉λµν(mf ) = 〈LLL〉λµν |mf 6=0 − 〈LLL〉λµν |mf =0.

(6.223)

Then, the structure of the amplitude will be

1

2!
〈γZZ〉|mf 6=0 = Ā1ε[k1, λ, µ, ν] + Ā2ε[k2, λ, µ, ν] +A3k

µ
1 ε[k1, k2, λ, ν]

+A4k
µ
2 ε[k1, k2, λ, ν] +A5k

ν
1ε[k1, k2, λ, µ] +A6k

ν
2ε[k1, k2, λ, ν] (6.224)

and using the explicit expressions of the coefficients we obtain

〈γZZ〉|mf 6=0 = −
∑

f

[
g3
Y θ

Y Y Y
f R̄Y Y YγZZ + g3

2θ
WWW
f R̄WWW

γZZ

+gY g
2
2θ
YWW
f RYWW

γZZ + g2
Y g2θ

Y YW
f RY YWγZZ

+gBg
2
Y θ

BY Y
f RBY YγZZ + gY g

2
Bθ

YBB
f R̄Y BBγZZ

+g2
Bg2θ

WBB
f R̄WBB

γZZ + gBg
2
2θ
BWW
f RBWW

γZZ

+g2
Bg2gY θ

BYW
f RBYWγZZ

] 1

2
T λµν(mf 6= 0)AγZ

µZν , (6.225)

where we have defined

T λµν(mf 6= 0) =
[
∆λµν
V AV (mf 6= 0) + ∆λµν

V V A(mf 6= 0)
]
,

θWBB
f = (QLB,f )

2T 3
L,f ,

R̄WBB
γZZ =

1

2
RWBB
γZZ , (6.226)

with

T λµν(mf 6= 0) =
1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )

{
εαλµνk1,α

[
(1− x)xk2

1 − y(1− y)k2
2

]

+εαλµνk2,α

[
(1− x)xk2

1 − y(1− y)k2
2

]

+ε[k1, k2, λ, ν] [2(x− 1)xk1,µ − 2xyk2,µ]

+ε[k1, k2, λ, µ] [2(1− y)yk2,ν + 2xyk2,µ]} . (6.227)

We can immediately see that the expected broken Ward identities

k1,µT
λµν =

1

π2
ε [k1, k2, λ, ν]

{
1

2
−m2

f

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )

}

k2,νT
λµν = − 1

π2
ε [k1, k2, λ, ν]

{
1

2
−m2

f

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )

}

(k1,λ + k2,λ)T
λµν = 0 (6.228)

are indeed satisfied.
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6.6 Trilinear interactions in multiple U(1) models

Building on the computation of the Zγγ and γZZ presented in the sections above, we formulate

here some general prescriptions that can be used in the analysis of anomalous abelian models

when several U(1)’s are present and which help to simplify the process of building the structure

of the anomalous vertices in the mass eigenstates basis. The general case is already encountered

when the anomalous gauge structure contains three anomalous U(1)’s besides the usual gauge

group of the SM. We prefer to work with this specific choice in order to simplify the formalism,

though the discussion and the results are valid in general.

We denote respectively with W3, AY , B1, B2, B3 the weak, the hypercharge gauge boson and

their 3 anomalous partners. At this point we consider the anomalous triangle diagrams of the

model and observe that we can either

1) distribute the anomaly equally among all the corresponding generators (T3, Y, YB1
, YB2

, YB3
)

and compensate for the violation of the Ward identity on the non anomalous vertices with

suitable CS interactions

or

2) re-define the trilinear vertices ab initio so that some partial anomalies are removed from

the Y −W3 generators in the diagrams containing mixed anomalies. Also in this case some

CS counterterms may remain.

We recall that the anomaly-free generators are not accompanied by axions. The difference

between the first and the second method is in the treatment of the CS terms: in the first

case they all appear explicitly as separate contributions, while in the second one they can be

absorbed, at least in part, into the definition of the vertices. In one case or the other the final

result is the same. In particular one has to be careful on how to handle the distribution of

the partial anomalies (in the physical basis) especially when a certain vertex does not have any

Bose symmetry, such as for three different gauge bosons, and this is not constrained by specific

relations. In this section we will go back again to the examples that we have discussed in detail

above and illustrate how to proceed in the most general case.

Consider the Zγγ case in the chiral limit. For instance, a vertex of the form B2Y Y will

be projected into the Zγγ vertex with a combination of rotation matrices of the form RB2Y Y
Zγγ ,

generating a partial contribution which is typically of the form 〈LLL〉RB2Y Y
Zγγ . At this point,

in the B2Y Y diagram, which is interpreted as a 〈LLL〉 ∼ ∆AAA contribution, we move the

anomaly on the B2-vertex by absorbing one CS term, thereby changing the 〈LLL〉 vertex into

an AVV vertex.
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We do the same for all the trilinear contributions such as B3Y Y , B1WW and so on, sim-

ilarly to what we have discussed in the previous sections. For instance B3Y Y , which is also

proportional to an AAA diagram, is turned into an AVV diagram by a suitable CS term. The

Zγγ is identified by adding up all the projections. This is the second approach.

The alternative procedure, which is the basic content of the first prescription mentioned

above, consists in keeping the B2Y Y vertex as an AAA vertex, while the CS counterterm,

which is needed to remove the anomaly from the Y vertex, has to be kept separate. Also in this

case the contribution of B2Y Y to Zγγ is of the form 〈LLL〉RB2Y Y
Zγγ , with 〈LLL〉 ∼ ∆AAA, and

the CS term that accompanies this contribution is also rotated into the same Zγγ vertex.

Using the second approach in the final construction of the Zγγ vertex we add up all the

projections and obtain as a result a single AV V diagram, as one would have naively expect

using QED Ward identities on the photon lines. Instead, following the first we are forced to

describe the same vertex as a sum of two contributions: a fermionic triangle (which has partial

anomalies on the two photon lines) plus the CS counterterm, the sum of which is again of the

form AVV.

However, when possible, it is convenient to use a single diagram to describe a certain inter-

action, especially if the vertex has specific Bose symmetries, as in the case of the Zγγ vertex.

For instance, we could have easily inferred the result in the Zγγ case with no difficulty at all,

since the partial anomaly on the photon lines is zero and the total anomaly, which is a constant,

has to be necessarily attached to the Z line and not to the photons.

A similar result holds for the ZZZ vertex where the anomaly has to be assigned symmetri-

cally. Notice that, in prescription 2) when several extra U(1)’s are present, the vertices in the

interaction eigenstate basis such as B1B2B3 or B1B1B2 should be kept in their AAA form,

since the presence of axions (b1, b2, b3) is sufficient to guarantee the gauge invariance of each

anomalous gauge boson line.

A final example concerns the case when 3 different anomalous gauge bosons are present, for

instance ZZ ′Z ′′. In this case the distribution of the partial anomalies can be easily inferred by

combining all the projections of the trilinear vertices B1Y Y,B1WW,B1B2B3, B1B2B3, B2B3B3...

etc. into ZZ ′Z ′′. The absorption of the CS terms here is also straightforward, since vertices such

as B1Y Y , Y B1Y and Y Y B1 are rewritten as AVV, VAV and VVA contributions respectively.

On the other hand, terms such as B2B1B1 or B1B2B3 are kept in their AAA form with an

equal share of partial anomalies. Notice that in this case the final vertex, also in the second

approach where the CS terms are partially absorbed, does not result in a single diagram as in

the Zγγ case, but in a combination of several contributions.
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6.6.1 Moving away from the chiral limit with several anomalous U(1)’s

Chiral symmetry breaking, as we have seen in the examples discussed before, introduces a

higher level of complications in the analysis of these vertices. Also in this case we try to find

a prescription to fix the trilinear anomalous gauge interactions away from the chiral limit. As

we have seen from the treatment of the previous sections, the presence of mass terms in any

triangle graph is confined to the denominator of their Feynman parameterization, once the Ward

identities are imposed on each vertex. This implies that all the mixed terms of the form LLR or

RRL containing quadratic mass insertions can be omitted in any diagram and the final result

for any anomalous contributions such as B1B2B3 or B1Y Y involves only an 〈LLL〉 fermionic

triangle where the mass from the Dirac traces is removed.

For instance, let’s consider again the derivation of the γZZ vertex in this case. We project

the trilinear gauge interactions of the effective action written in the eigenstate basis into the

γZZ vertex (see Fig. 6.17) as before and, typically, we encounter vertices such as Y B1Y or

B1Y Y (and so on) that need to be rotated. We remove the masses from the numerator of these

vertices and reduce each of them to a standard 〈LLL〉 form, having omitted the mixing terms

LLR, RRL, etc. Also in this case a vertex such as B1Y Y is turned into an AVV by absorbing

a corresponding CS interaction, while its broken Ward identities will be of the form

k1µ∆
λµν(β, k1, k2) = 0

k2ν∆
λµν(β, k1, k2) = 0

kλ∆
λµν(β, k1, k2) = an(β)εµναβkα1 k

β
2 + 2mf∆

µν , (6.229)

with a broken WI on the A line and exact ones on the remaining V lines corresponding to the

two Y generators. Similarly, when we consider the projection of a term such as B1B2B3 into

the Z ′Z ′′Z vertex, we impose a symmetric distribution of the anomaly and broken WI’s on the

three external lines

k1µ∆
λµν(k1, k2) =

an
3
ελναβkα1 k

β
2 + 2mf∆

λν ,

k2ν∆
λµν(k1, k2) =

an
3
ελµαβkα2 k

β
1 + 2mf∆

λµ,

kλ∆
λµν(k1, k2) =

an
3
εµναβkα1 k

β
2 + 2mf∆

µν . (6.230)

The total vertex is therefore obtained by adding up all these projections together with 3 CS

contributions to redistribute the anomalies. Next we are going to discuss the explicit way of

doing this.
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Figure 6.17: Triangle contributions to the 〈γZlZm〉 vertex in the chiral phase. Notice that the

first four contributions vanish because of the SM charge assignment.

6.7 The 〈γZlZm〉 vertex

At this stage we can generalize the construction of 〈γZZ〉 to a general 〈γZlZm〉 vertex. The

contributions coming from the interaction eigenstates basis to the 〈γZlZm〉 in the chiral limit

are given by

1

3!
Tr
[
Q3
Y

]
〈Y Y Y 〉 =

1

3!
Tr
[
Q3
Y

]
RY Y YγZlZm

〈γZlZm〉+ . . .

1

2!
Tr
[
QY T

2
3

]
〈YWW 〉 = 1

2!
Tr
[
QY T

2
3

]
RYWW
γZlZm

〈γZlZm〉+ . . .

1

2!
Tr
[
QY T

2
3

]
〈WYW 〉 = 1

2!
Tr
[
QY T

2
3

]
RWYW
γZlZm

〈γZlZm〉+ . . .

1

2!
Tr
[
QY T

2
3

]
〈WWY 〉 =

1

2!
Tr
[
QY T

2
3

]
RWWY
γZlZm

〈γZlZm〉+ . . .

1

2!
Tr
[
QBj

T 2
3

]
〈WBjW 〉 =

1

2!
Tr
[
QBj

T 2
3

]
R
WBjW
γZlZm

〈γZlZm〉+ . . .

1

2!
Tr
[
QBj

T 2
3

]
〈WWBj〉 =

1

2!
Tr
[
QBj

T 2
3

]
R
WWBj

γZlZm
〈γZlZm〉+ . . .

1

2!
Tr
[
QBj

Q2
Y

]
〈Y BjY 〉 =

1

2!
Tr
[
QBj

Q2
Y

]
R
Y BjY
γZlZm

〈γZlZm〉+ . . .

1

2!
Tr
[
QBj

Q2
Y

]
〈Y Y Bj〉 =

1

2!
Tr
[
QBj

Q2
Y

]
R
Y Y Bj

γZlZm
〈γZlZm〉+ . . .

T r
[
QYQBj

QBk

]
〈Y BjBk〉 = Tr

[
QYQBj

QBk

]
R
Y BjBk

γZlZm
〈γZlZm〉+ . . .

(6.231)

and they are pictured in Fig. 6.17. The rotation matrices are defined as
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Figure 6.18: Chern-Simons counterterms of the 〈γZlZm〉 vertex.
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3OAY Zl
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3OAW3Zl
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OAW3γ
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RYWW
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R
WBiBj
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=
[
(OABiZl

OABjZm
+OABiZm

OABjZl
)OAW3γ

]

R
BjWW
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=
[
OABjZl

OAWZm
OAWγ +OABjZm

OAWZl
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]

(6.232)

while all the possible CS counterterms are listed in Fig. 6.18 and their explicit expression in the

rotated basis is given by

VCS,lm =
∑

f

{
−
∑

i

1

8
θY BiY
f

an
3
ελµνα(k2,α − k3,α)R

Y BiY
γZlZm

AλγZ
µ
l Z

ν
m

−
∑

j

1

8
θ
Y Y Bj

f

an
3
ελµνα(k3,α − k1,α)R

Y Y Bj

γZlZm
AλγZ

µ
l Z

ν
m

+
∑

i,j

1

8
θ
YBiBj

f
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6
ελµνα(k1,α − k2,α)R

Y BiBj

γZlZm
AλγZ

µ
l Z

ν
m

−
∑

i

1

8
θWBiW
f

an
3
ελµνα(k2,α − k3,α)RWBiW

γZlZm
AλγZ

µ
l Z

ν
m

−
∑

j

1

8
θ
WWBj

f

an
3
ελµνα(k3,α − k1,α)R

WWBj

γZlZm
AλγZ

µ
l Z

ν
m



 , (6.233)
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where we have defined k3,α = −kα, with kα = (k1 + k2)α the incoming momenta of the triangle.

Using Eq. (6.154) it is easy to write the expression of the amplitude for the 〈γZlZm〉 interaction

in the mf = 0 phase, and to separate the chiral components exactly as we have done for the

〈γZZ〉 vertex. Again, the tensorial structure that we can factorize out is 〈LLL〉λµν(0)

〈γZlZm〉|mf =0 =
∑

f

1

8
〈LLL〉λµν(0)AλγZµl Zνm

{
∑

i

g2
Y gBi

θY BiY
f RY BiY

γZlZm

+
∑

j

g2
Y gBj

θ
Y Y Bj

f R
Y Y Bj

γZlZm
+
∑

i,j

gY gBi
gBj

θ
YBiBj

f R
Y BiBj

γZlZm

+
∑

i

g2
2gBi

θWBiW
f RWBiW

γZlZm
+
∑

j

g2
2gBj

θ
WWBj

f R
WWBj

γZlZm



 .

(6.234)

Also in this case we use Eq. (6.144) and proceed from a symmetric distribution of the anomalies

and absorb the equations the CS interactions so to obtain

−〈γZlZm〉|mf =0 =
∑

i

g2
Y gBi

∑

f

1

2
θYBiY
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+
∑
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∑
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At this point one can readily observe that a simple rearrangement of the summations over the

i, j index leads us to factor out the structure VAV plus VVA since we have the same rotation

matrices. Finally, in the mf = 0 phase we have

〈γZlZm〉|mf =0 = −
∑

f

1

2

[
∆λµν
V AV (0) + ∆λµν

V V A(0)
]
AλγZ

µ
l Z

ν
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∑

i
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2
Y gBi

θBiY Y
f RY Y Bi
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+
∑
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gY gBi
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YBiBj

f R
Y BiBj

γZlZm
+ g2

2gBi
θWWBi

f RWWBi

γZlZm



 .

(6.236)

If the CS terms are instead not absorbed we have
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〈γZlZm〉|mf =0 = VCS,lm −
∑

f

1

2
∆λµν
AAA(0)AλγZ

µ
l Z

ν
m ×

∑

i



g

2
Y gBi

θBiY Y
f RY Y Bi

γZlZm
+
∑

j

gY gBi
gBj

θ
Y BiBj

f R
Y BiBj

γZlZm
+ g2

2gBi
θWWBi

f RWWBi

γZlZm



 ,

(6.237)

which is equivalent to that obtained in (6.236).

6.7.1 Amplitude in the mf 6= 0 phase

Once we have fixed the structure of the triangle in the mf = 0 phase, its extension to the massive

case can be obtained using the relation

〈LLL〉(mf 6= 0) = − [∆AV V (mf 6= 0) + ∆V AV (mf 6= 0) + ∆V V A(mf 6= 0) + ∆AAA(mf 6= 0)]

(6.238)

and the expression of the vertex will be

〈γZlZm〉|mf 6=0 =
1

8

∑

f

〈LLL〉λµν(mf 6= 0)AλγZ
µ
l Z

ν
m

{
g3
Y θ

Y Y Y
f RY Y YγZlZm

+g3
2θ
WWW
f RWWW

γZlZm
+ gY g

2
2θ
YWW
f RYWW

γZlZm

+g2
Y g2θ

WYY
f RWY Y

γZlZm
+
∑

i

g2
Y gBi

θY Y Bi

f RY Y Bi

γZlZm

+
∑

i

gY g2gBi
θBiYW
f RBiYW

γZlZm
+
∑

i,j

gY gBi
gBj

θ
Y BiBj

f R
Y BiBj

γZlZm

+
∑

i,j

g2gBi
gBj

θ
WBiBj

f R
WBiBj

γZlZm
+
∑

i

g2
2gBi

θWWBi

f RWWBi

γZlZm





+m2
f [〈LRL〉+ 〈RRL〉+ . . . ] . (6.239)

By imposing the following broken Ward identities on the tensor structure

kµ1

(
〈γZlZm〉λµν + V λµν

CS

)
=

an
2
ελναβk1,αk2,β + 2mf∆

λν (6.240)

kν2

(
〈γZlZm〉λµν + V λµν

CS

)
= −an

2
ελµαβk1,αk2,β − 2mf∆

λµ (6.241)

kλ
(
〈γZlZm〉λµν + V λµν

CS

)
= 0 (6.242)

we arrange all the mass terms into the coefficients Ā1 and Ā2 of the Rosenberg parametrization

of 〈LLL〉λµν and we absorbe all the singular pieces. Since all the CS interactions act only on the
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massless part of the LLL structure, we are left with an expression which is similar to Eq. (6.235)

but with the addition of the triangle contributions coming from the Standard Model where the

mass is contained only in the denominators. Organizing all the partial contributions we arrive

at the final expression in which the structure VAV plus VVA is factorized out

〈γZlZm〉|mf 6=0 = −
∑

f

1

2

[
∆λµν
V AV (mf 6= 0) + ∆λµν

V V A(mf 6= 0)
]
AλγZ

µ
l Z

ν
m ·

·
{
g3
Y θ

Y Y Y
f R̄Y Y YγZlZm

+ g3
2θ
WWW
f R̄WWW

γZlZm

+gY g
2
2θ
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f RYWW

γZlZm
+ g2

Y g2θ
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f RWYY

γZlZm

+
∑

i
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Y gBi

θBiY Y
f RBiY Y

γZlZm
+
∑

i

gY g2gBi
θBiYW
f RBiYW

γZlZm

+
∑

i,j

gY gBi
gBj

θ
Y BiBj

f R
Y BiBj

γZlZm
+
∑

i,j

g2gBi
gBj

θ
WBiBj

f R
WBiBj

γZlZm

+
∑

i

g2
2gBi

θWWBi

f RBiWW
γZlZm

}
. (6.243)

6.8 The 〈ZlZmZr〉 vertex

Moving to the more general trilinear vertex is rather straightforward. We can easily identify all

the contributions coming from the interaction eigenstates basis to the 〈ZlZmZr〉. In the chiral

limit these are

1
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]
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(6.244)
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Figure 6.19: Triangle contributions to the 〈ZlZmZr〉 vertex. As before, in the mf = 0 phase all

the SM contributions vanish because of the charge assignment.
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(6.245)

and are listed in Fig. 6.19. The rotation matrices, in this case, are defined as

RY Y YZlZmZr
=
[
3OAY Zl

OAY Zm
OAY Zr

]

RWWW
ZlZmZr

=
[
3OAW3Zl

OAW3Zm
OAW3Zr

]

RYWW
ZlZmZr

=
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OAY Zl

OAWZm
OAWZr

+OAY Zm
OAWZl

OAWZr
+OAY Zr

OAWZl
OAWZm

]

RWY Y
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OAY Zl

OAY Zr
+OAW3Zr

OAY Zl
OAY Zm

]

R
BjY Y
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=
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OABjZl

OAY Zm
OAY Zr

+OABjZm
OAY Zl

OAY Zr
+OABjZr

OAY Zm
OAY Zl

]

R
BjYW
ZlZmZr

=
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OABjZl

(OAY Zm
OAW3Zr

+OAY Zr
OAW3Zm

) +OABjZm
(OAY Zl

OAW3Zr
+OAW3Zl

OAY Zr
)

+OABjZr
(OAY Zm

OAW3Zl
+OAY Zl

OAW3Zm
)
]

R
BjBkY
ZlZmZr

=
[
(OABjZm

OABkZr
+OABjZr

OABkZm
)OAY Zl

+ (OABjZr
OABkZl

+OABjZl
OABkZr

)OAY Zm

+(OABjZl
OABkZm

+OABjZm
OABkZl

)OAY Zr

]

(6.246)
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. (6.247)

Regarding the CS interactions (see Fig. (6.20)), we observe that we have a CS term corresponding

to the anomalous vertex of the type BiBjBk which is non-zero, and we can formally write this

trilinear interaction as

V ijk
CS, lmr = gBi

gBj
gBk

anθ
ijk
lmrR

ijk
lmrZ

λ
l Z

µ
mZ

ν
r [κi (ε[k1, λ, µ, ν]− ε[k2, λ, µ, ν])

+κj (ε[k2, λ, µ, ν]− ε[k3, λ, µ, ν]) + κk (ε[k3, λ, µ, ν]− ε[k1, λ, µ, ν])] ,

(6.248)

where for brevity we have defined Rijklmr = R
BiBjBk

ZmZlZr
, and so on.

The coefficients θijklmr are the charge asymmetries, and the coefficients κi,j,k, are real numbers

that tell us how the anomaly will be distributed on the AAA triangles. Both are driven by

the generalized Ward identities of the theory. In this generalized case the CS interactions are

not all re-absorbed in the definition of the fermionic triangles. In fact in this case there is no

symmetry in the diagram that forces a symmetric assignment of the anomaly, and the CS terms

in the BiBjBk interaction can re-distribute the partial anomalies. In this case the expression of
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the BiBjBk vertex in the momentum space is given by

V
λµν
BiBjBk

= 4DBiBjBk
gBi

gBj
gBk

∆λµν
AAA(mf = 0, k1, k2)

+DBiBjBk
gBi

gBj
gBk

i

π2

[
2κi
9
ελµνα(k1,α − k2,α)

+
2κj
9
ελµνα(k2,α − k3,α) +

2κk
9
ελµνα(k3,α − k1,α)

]
. (6.249)

We recall that in the treatment of Y BjBk and other similar triangles we still have two contri-

butions for each triangle, due to the two orientations of the fermion number in the loop, so that

our previous expression, obtained for the case of the Y BB vertex, still holds. Also in this case

we are allowed to absorb the CS interaction in the anomalous vertex. On the other hand, for

the BiBjBk vertex we have

3∆λµν
AAA(0, k1, k2)−

ain
3
ελµνα(k1,α − k2,α)− ajn

3
ελµνα(k2,α − k3,α)− akn

3
ελµνα(k3,α − k1,α)

= 3∆λµν
AiAjAk

(0, k1, k2) , (6.250)

where we have used the notation ∆(mf = 0, k1, k2) = ∆(0, k1, k2) and ain = κian. Using these

equations we can write the 〈ZlZmZr〉 triangle in the following way

〈ZlZmZr〉|mf =0 = −1

3

[
∆λµν
V AV (0) + ∆λµν

V V A(0) + ∆λµν
AV V (0)

]
Zλl Z

µ
mZ

ν
r ×

∑

f

∑

i



g

2
Y gBi

θY Y Bi

f RY Y Bi

ZlZmZr
+
∑

j

gY gBi
gBj

θ
BiBjY
f R

Y BjBk

ZlZmZr
+ gBi

g2
2θ
BiWW
f RBiWW

ZlZmZr





+
∑

f

∑

i,j,k

gBi
gBj

gBk
θ
BiBjBk

f

1

2
∆λµν
AiAjAk

(0)R
BiBjBk

ZlZmZr
Zλl Z

µ
mZ

ν
r . (6.251)

From this last result we can observe that the anomaly distribution on the last piece is, in general,

not of the type ∆λµν
AAA(0), i.e. symmetric. If we want to factorize out a ∆λµν

AAA(0) triangle, we

should think of this amplitude as a factorized ∆λµν
AAA(0) contribution plus an external suitable

CS interaction which is not re-absorbed and such that it changes the partial anomalies from

the symmetric distribution ∆λµν
AAA(0) to the non-symmetric one ∆λµν

AiAjAk
(0). These two points

of view are completely equivalent and give the same result.

Finally, the analytic expression for each tensor contribution in the mf = 0 phase is given

below. The AVV vertex has been shown in Eq. (6.163) while for VAV we have

∆λµν
V AV (0) =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)
{ε[k1, λ, µ, ν](k2 · k2y(y − 1)− xyk1 · k2)

+ε[k2, λ, µ, ν](k2 · k2y(y − 1)− xyk1 · k2)

+ε[k1, k2, λ, ν](k
µ
1 x(x− 1)− xykµ2 )

+ε[k1, k2, λ, µ](kν2y(1− y) + xykν1 )} , (6.252)
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where the denominator is defined as ∆(0) = k2
1(x− 1)x+ y(y − 1)k2

2 + 2xyk1 · k2.

Then, for the VVA contribution we obtain

∆λµν
V V A(0) =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)
{ε[k1, λ, µ, ν](k1 · k1x(1− x) + xyk1 · k2)

+ε[k2, λ, µ, ν](k1 · k1x(1− x) + xyk1 · k2)

+ε[k1, k2, λ, ν](k
µ
1x(x− 1)− xykµ2 )

+ε[k1, k2, λ, µ](kν2y(1− y) + xykν1 )} , (6.253)

and finally the contribution for AAA is ∆AAA(0) = 1/3(∆AV V (0) + ∆V AV (0) + ∆V V A(0))

∆λµν
AAA(0) =

1

3π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(0)

{
ε[k1, λ, µ, ν]

(
2y(y − 1)k2

2 − xyk1 · k2 + x(1− x)k2
1

)

+ε[k2, λ, µ, ν]
(
2(1− x)xk2

1 + xyk1 · k2 + y(y − 1)k2
2

)

+ε[k1, k2, λ, ν](k
µ
1 x(x− 1)− xykµ2 )

+ε[k1, k2, λ, µ](kν2y(1− y) + xykν1 )} . (6.254)

6.9 The mf 6= 0 phase of the 〈ZlZmZr〉 triangle

To obtain the contribution in the mf 6= 0 phase we must include again all the contributions

〈Y Y Y 〉 and 〈YWW 〉 coming from the SM. Since the final tensor structure of the triangle is

driven by the STI’s, we start by assuming the following symmetric distribution of the anomalies

on the ∆AAA triangle

kµ1 ∆λµν
AAA(mf 6= 0, k1, k2) =

an
3
ελναβk1αk2β + 2mf

1

3
∆λν

kν2∆λµν
AAA(mf 6= 0, k1, k2) = −an

3
ελµαβk1αk2β − 2mf

1

3
∆λµ

kλ∆λµν
AAA(mf 6= 0, k1, k2) =

an
3
εµναβk1αk2β + 2mf

1

3
∆µν , (6.255)

where

∆λν = −mf

π2
ελναβk1αk2β

∫ 1

0

∫ 1−x

0
dxdy

1

∆(mf )
. (6.256)

These relations define the AAA structure in the massive case. The explicit form of this
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Figure 6.21: STI for the Z1 vertex in a trilinear anomalous vertex with several U(1)’s. The CS

counterterm is not absorbed and redistributes the anomaly according to the specific model.

triangle is given by

∆λµν
AAA(mf 6= 0) =

1

π2

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(mf )
{

ε[k1, λ, µ, ν]

[
−

∆(mf )−m2
f

3
+ k2 · k2y(y − 1)− xyk1 · k2

]

+ε[k2, λ, µ, ν]

[
∆(mf )−m2

f

3
− k1 · k1x(x− 1) + xyk1 · k2

]

+ε[k1, k2, λ, ν](k
µ
1 x(x− 1)− xykµ2 )

+ε[k1, k2, λ, µ](kν2y(1− y) + xykν1 )} , (6.257)

where ∆(mf ) = m2
f + (y − 1)yk2

2 + (x− 1)xk2
1 − 2xyk1 · k2.

Then, the final expression in the mf 6= 0 phase is

〈ZlZmZr〉|mf 6=0 = −Zλl ZµmZνr ×
∑

f

∆λµν
AAA(mf 6= 0)

∑
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Y Y Y
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f RWWW

ZlZmZr
+ gY g
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f RYWW
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Y g2θ
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f RY YWZlZmZr
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Y gBi

θY Y Bi

f RY Y Bi

ZlZmZr
+ gY g2gBi

θBiYW
f RBiYW
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+
∑

j

gY gBi
gBj

θ
BiBjY
f R

Y BjBk

ZlZmZr
+
∑

j

g2gBi
gBj

θ
BiBjW
f R

BjBkW
ZlZmZr

+gBi
g2
2θ
BiWW
f RBiWW

ZlZmZr
+
∑

j,k

gBi
gBj

gBk
θ
BiBjBk

f R
BiBjBk

ZlZmZr



+ VCS .

(6.258)

The diagrammatic structure of the STI for this general vertex is shown in Fig. 6.21, where

an irreducible CS vertex (the second contribution in the bracket) is now present.
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6.10 Discussions

The possibility of detecting anomalous gauge interactions at the LHC remains an interesting

avenue that requires further analysis. The topic is clearly very interesting and may be a way to

shed light on physics beyond the SM in a rather simple framework, though, at a hadron collider

these studies are naturally classified as difficult ones. There are some points, however, that need

clarification when anomalous contributions are taken into account. The first concerns the real

mechanism of cancellation of the anomalies, if it is not realized by a charge assignment, and in

particular whether it is of GS or of WZ type. In the two cases the high energy behaviour of a cer-

tain class of processes is rather different, and the WZ theory, which induces an axion-like particle

in the spectrum, is in practice an effective theory with a unitarity bound, which has now been

quantified [30]. The second point concerns the size of these anomalous interactions compared

against the QCD background, which needs to be determined to next-to-next-to-leading-order

(NNLO) in the strong coupling, at least for those processes involving anomalous gluon interac-

tions with the extra Z ′. These points are under investigations and we hope to return with some

quantitative predictions in the near future.

6.11 Conclusions

In this chapter we have analyzed those trilinear gauge interactions that appear in the context

of anomalous abelian extensions of the SM with several extra U(1)’s. We have discussed the

defining conditions on the effective action, starting from the Stückelberg phase of this model,

down to the electroweak phase, where Higgs-axion mixing takes place. In particular, we have

shown that it is possible to simplify the study of the model in a suitable gauge, where the Higgs-

axion mixing is removed from the effective action. The theory is conveniently defined, after

electroweak symmetry breaking, by a set of generalized Ward identities and the counterterms

can be fixed in any of the two phases. We have also derived the expressions of these vertices

using the equivalence of the effective action in the interaction and in the mass eigenstate basis,

and used this result to formulate general rules for the computation of the vertices which allow

to simplify this construction. Using the various anomalous models that have been constructed

in the previous literature in the last decade or so, it is now possible to explicitly proceed with

a more direct phenomenological analysis of these theories, which remain an interesting avenue

for future experimental searches of anomalous gauge interactions at the LHC.





Chapter 7

Conclusions and perspectives

We have presented in this thesis several analysis of anomalous correlators involving chiral and

trace anomalies, with the intent of providing a more complete theoretical description of the

corresponding effective actions in which they appear.

One of the main results of our analysis has been the discovery of anomaly poles in perturba-

tion theory in the trace anomaly diagrams for QCD and in illustrating their similarity to those

already known in the chiral anomaly. Our work has extended previous analysis by Giannotti

and Mottola in QED [51] and has shown that anomaly poles are the common signatures of these

types of anomalies. The poles, in both cases, can be coupled or decoupled in the IR, as we have

shown in our technical discussions. Obviously, this result raises important questions concerning

the significance and the implications of massless scalar degrees of freedom in gravity. In fact,

the possible significance of these effective degrees of freedom widely discussed in this work is

still open with implications that involve both particle physics and cosmology.

Other possible extensions of this line of research concerns the case of anomaly mediation in super-

symmetric theories. Our results strongly suggest that the anomaly supermultiplet in super-Yang

Mills theory is completely characterized by its anomaly poles. In turn, this suggests that a pole

should be present also in the gamma-trace of the supersymmetric current.

This raises compelling issues in regards to the consistency of the gauging of these multiplets to

supergravities, as we have discussed at length in Chapter 5.

Coming to the mechanism of anomaly cancellation using a pole subtraction, our interpretation

of the pole contributions also as an ultraviolet component, which is inferred from the light-cone

dominance of the correlators at high energy, seems to indicate that this version of the mecha-

nism of cancellation should be viewed as an ultraviolet procedure. On the other hand, the use

of an asymptotic axion for anomaly cancellation is most likely to be consistent in the infrared,

given the presence of a unitarity bound in the formulation of anomalous theories corrected by

177
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Wess-Zumino terms [30].

As we have discussed in chaper 6, one of the most direct way to test experimentally in

the infrared the appearance of anomalous gauge symmetries is in the study of trilinear gauge

interactions, which should be viable at the LHC. For this reason, we have investigated the

general structure of these contributions in the neutral currents sector, analysis which should be

combined with those of anomalous extra Z ′ gauge bosons, in channels such as Drell-Yan and in

the production of direct photons. Some of these issues have been studied in a related work of

us, and we refer to [6] for more details on this point.
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Appendix

A.1 Poles and residui for massive gauge bosons

We are interested in the limit

c) s1 = s2 = M2 s 6= 0 m = 0.

In this case only few simplifications occur in the complete expressions of the amplitudes Ai since

the only surviving symmetry is the one between s1 and s2 and no momentum is set to zero. The

expansion of the three point function is the most general one and the invariant amplitudes are

given by

A1(s,M
2,M2) = − i

4π2
(A.1)

A3(s,M
2,M2) = − 2 iM4

π2s2 (s− 4M2)2
ΦM (s −M2)

− i

2π2s (s− 4M2)2

[
s2 − 6sM2 + 2

(
2M2 + s

)
log

[
M2

s

]
M2 + 8M4

]

(A.2)

A4(s,M
2,M2) =

iM2

π2s2 (s− 4M2)2
ΦM

(
s2 − 3sM2 + 2M4

)

+
i

2π2s (s− 4M2)2

[
2sM2 +

(
s2 − 4M4

)
log

(
M2

s

)
− 8M4

]
, (A.3)

with the functions Φ(x, y) and λ(x, y) defined in this specific case by

ΦM ≡ Φ(
M2

s
,
M2

s
) =

1

λM

[
log2

(
2M2

s(λM + 1)− 2M2

)
+ 4Li2

(
2M2

−s(λM + 1) + 2M2

)
+
π2

3

]
,

(A.4)

λM ≡ λ(M2/s,M2/s) =

√
1− 4M2

s
, (A.5)
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as in Eqs. (1.20,1.21), with x = y = M2/s.

As usual, a symmetric configuration of this type yields

A2(s,M
2,M2) = −A1(s,M

2,M2), (A.6)

A5(s,M
2,M2) = −A4(s,M

2,M2), (A.7)

A6(s,M
2,M2) = −A3(s,M

2,M2) (A.8)

and in the total amplitude only few simplifications occur

∆λµν(s,M2,M2) = A3(s,M
2,M2) ηλµν3 (k1, k2) +A4(s,M

2,M2) ηλµν4 (k1, k2)

+A5(s,M
2,M2) ηλµν5 (k1, k2) +A6(s,M

2,M2) ηλµν6 (k1, k2). (A.9)

The analysis of the spurious pole at s = 0 requires the analytic continuation in the euclidean

region (s < 0) according to the iη prescription: s → s + iη, M2 → M2 + iη. In this case the

only trascendental functions requiring the analytic regularizations are the logarithmic ones, the

dilogarithm being well-definite since

2M2

−s(λM + 1) + 2M2
< 1 for s < 0. (A.10)

Then we substitute

log

[
M2

s
− iη

]
→ log

[
−M

2

s

]
− iπ for s < 0 (A.11)

log

[
2M2

−2M2 + s+ sλ
− iη

]
→ log

[
− 2M2

−2M2 + s+ sλ

]
− iπ for s < 0 (A.12)

into the expressions of A3(s,M
2,M2) and A4(s,M

2,M2) and perform the limit for s→ 0. We

obtain

lim
s→0

sAi(s,M
2,M2) = 0 i = 3, . . . , 6 (A.13)

and also

lim
s→0

s∆λµν(s,M2,M2) = 0, (A.14)

showing that in the presence of external massive gauge lines the triangle amplitude ∆λµν exhibits

no poles. This can be confirmed by a parallel analysis based on the L/T parameterization whose

coefficients are

wL(s,M2,M2) = −4i

s
, (A.15)

w
(+)
T (s,M2,M2) =

4i

(s− 4M2)2

[
(s+ 2M2) log

[
M2

s

]
+

2M2(s−M2)

s
ΦM

]

+
4i

s− 4M2
, (A.16)

w
(−)
T (s,M2,M2) = w̃

(−)
T (s,M2,M2) = 0. (A.17)
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Combining the previous results, the whole amplitude becomes

W λµν (s,M2,M2) =
1

8π2

[
wL(s,M2,M2) kλε[µ, ν, k1, k2]− w(+)

T (s,M2,M2) t
(+)
λµν(k1, k2)

]
.

(A.18)

At this point we perform the same analytic continuations discussed above, shown in Eqs. (A.11)

and (A.12) and take the limits

lim
s→0

swL(s,M2,M2) = − 4 i (A.19)

lim
s→0

sw
(+)
T (s,M2,M22) t

(+)
λµν (k1, k2) = − 4 i (A.20)

which, in combination, give a vanishing residue also in this parameterization

lim
s→0

s W λµν (s,M2,M2) = 0. (A.21)

When the mass of the fermion in the loop is non vanishing, m 6= 0, we consider cases d), e) and

f). We take the appropriate limits starting from the expressions in Eq. (1.32-1.34) obtaining

d) k2
1 = 0 k2

2 6= 0 k2 6= 0 m 6= 0

A1(s, 0, s2,m
2) = − i

4π2
+

s2
4π4 (s− s2)

D2 −
m2

2π4
C̄0, (A.22)

A2(s, 0, s2,m
2) =

i

4π2
+

s2
4π4 (s− s2)

D2 +
m2

2π4
C̄0, (A.23)

A3(s, 0, s2,m
2) = −A6(s, 0, s2,m

2) =

− i

2π2 (s− s2)
− s2

2π4 (s− s2)2
D2 −

m2

π4 (s− s2)
C̄0, (A.24)

A4(s, 0, s2,m
2) =

1

2π4 (s− s2)
D2, (A.25)

A5(s, 0, s2,m
2) = − s2

π4(s + s2)2
(
s− 2m2

)
C̄0 −

(s+ s2)

2π4(s− s2)2
D̄1

+
(2s + s2)s2
π4(s2 − s)3

D2 −
is2

π2(s− s2)2
, (A.26)

where D2 is defined in Eq. (1.38), while D̄1 and C̄0 are the two s1 → 0 limits of D1 and

C0(s1, s2, s,m
2) respectively, that is

D̄1 ≡ lim
s1→0

D1(s, s1,m
2) = iπ2

[
2− a3 log

a3 + 1

a3 − 1

]
, (A.27)

C̄0 ≡ lim
s1→0

C0(s, s1, s2,m
2) = − iπ2

2(s− s2)

[
log2 a2 + 1

a2 − 1
− log2 a3 + 1

a3 − 1

]
. (A.28)
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The coefficients of the w’s in the L/T formulation, in this case, are

wL(s, 0, s2,m
2) = −4i

s
− 8m2

π2s
C̄0, (A.29)

w
(+)
T (s, 0, s2,m

2) =
1

π2(s− s2)2
[
4iπ2s+ 2(s+ s2) D̄1 + 4 s

(
2m2 + s2

)
C̄0

+
2
(
s2 + 4s2s+ s22

)

s− s2
D2

]
, (A.30)

w
(−)
T (s, 0, s2,m

2) = − 1

π2(s− s2)2
[
4iπ2s+ 2(s + s2) D̄1 + 4 s2

(
2m2 + s

)
C̄0

+
2
(
s2 − 6s2s− s22

)

s− s2
D2

]
, (A.31)

w̃
(−)
T (s, 0, s2,m

2) =
1

π2(s− s2)2
[
4iπ2s2 + 2(s + s2) D̄1 + 4 s2

(
2m2 + s

)
C̄0

+
2
(
−s2 + 6s2s+ s22

)

s− s2
D2

]
. (A.32)

Furthermore, in the case in which the massive amplitude has both external vector lines on-shell

e) k2
1 = 0 k2

2 = 0 k2 6= 0 m 6= 0

one obtains

A1(0, 0, s,m
2) = − i

4π2

(
1 +

m2

s
log2 a3 + 1

a3 − 1

)
, (A.33)

A3(0, 0, s,m
2) = −A6(0, 0, s,m

2) = − i

2π2s

(
1 +

m2

s
log2 a3 + 1

a3 − 1

)
, (A.34)

A4(0, 0, s,m
2) = − i

2π2s

(
a3 log

a3 + 1

a3 − 1
− 2

)
. (A.35)

These simple results are obtained with a limiting procedure, starting from the scalar triangle

diagram with off-shell external lines and involves the function Φ(x, y) [148] already encoun-

tered in the explicit expression of the Rosenberg parameterization [41]. Instead, for the L/T

parameterization we obtain

wL(0, 0, s,m2) = −4i

s

[
1 +

m2

s
log2

(
a3 + 1

a3 − 1

)]
, (A.36)

w
(+)
T (0, 0, s,m2) =

4i

s

[
3 +

m2

s
log2

(
a3 + 1

a3 − 1

)
− a3 log

(
a3 + 1

a3 − 1

)]
, (A.37)

w
(−)
T (0, 0, s,m2) = w̃

(−)
T (0, 0, s,m2) = 0. (A.38)

Finally, the particles can be on-shell and both of mass M and in this case we obtain

f) k2
1 = M2 k2

2 = M2 k2 6= 0 m 6= 0
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A1(M
2,M2, s,m2) = − i

4π2
− m2

2π4
C0, (A.39)

A3(M
2,M2, s,m2) =

1

π4s (s− 4M2)

[
iπ2

2

(
2M2 − s

)
−
(
2M2 + s

)
M2

s− 4M2
DM

+

(
2M4(M2 − s)
s− 4M2

−m2(s− 2M2)

)
C0

]
, (A.40)

A4(M
2,M2, s,m2) =

1

π4s (s− 4M2)

[
iπ2M2 +

s2 − 4M4

2(s − 4M2)
DM

+

(
M2(2M4 − 3M2s+ s2)

s− 4M2
+ 2m2M2

)
C0

]
. (A.41)

In the previous expressions we have denoted by C0 the complete expression C0(s1, s2, s,m
2) in

Eq. (1.39) computed at s1 = s2 = M2. In addition to this we have defined

DM (M2, s,m2) ≡ B0(k
2,m2)−B0(M

2,m2) = iπ2

[
aM log

aM + 1

aM − 1
− a3 log

a3 + 1

a3 − 1

]
,

(A.42)

aM =

√
1− 4m2

M2
, a3 =

√
1− 4m2

s
. (A.43)

Similarly, the expressions of the w’s invariant amplitudes in the L/T parameterization for the

massive triangle amplitude are given by

wL(s,m2) = −4i

s
− 8m2

π2s
C0, (A.44)

w
(+)
T (s,m2,M2) =

1

π2(s− 4M2)

[
4iπ2 +

4(s + 2M2)

s− 4M2
DM +

(
8m2 +

8M2(s −M2)

s− 4M2

)
C0

]
,

(A.45)

w
(−)
T (s,m2,M2) = w̃

(−)
T (s,m2,M2) = 0. (A.46)

A.2 Definitions and conventions for the scalar integrals

We collect in this appendix all the scalar integrals involved in this computation. To set all our

conventions, we start with the definition of the one-point function, or massive tadpole A0(m
2),
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the massive bubble B0(s,m
2) and the massive three-point function C0(s, s1, s2,m2)

A0(m
2) =

1

iπ2

∫
dnl

1

l2 −m2
= m2

[
1

ǭ
+ 1− log

(
m2

µ2

)]
, (A.47)

B0(k
2,m2) =

1

iπ2

∫
dnl

1

(l2 −m2) ((l − k)2 −m2)

=
1

ǭ
+ 2− log

(
m2

µ2

)
− a3 log

(
a3 + 1

a3 − 1

)
, (A.48)

C0(s, s1, s2,m2) =
1

iπ2

∫
dnl

1

(l2 −m2) ((l − q)2 −m2) ((l + p)2 −m2)

= − 1√
σ

3∑

i=1

[
Li2

bi − 1

ai + bi
− Li2

−bi − 1

ai − bi
+ Li2

−bi + 1

ai − bi
− Li2

bi + 1

ai + bi

]
,

(A.49)

with

ai =

√

1− 4m2

si
bi =

−si + sj + sk√
σ

, (A.50)

where s3 = s and in the last equation i = 1, 2, 3 and j, k 6= i.

The one-point and two-point functions written before in n = 4−2 ǫ are divergent in dimensional

regularization with the singular parts given by

A0(m
2)sing. → 1

ǭ
m2, B0(s,m

2)sing. → 1

ǭ
, (A.51)

with

1

ǭ
=

1

ǫ
− γ − lnπ (A.52)

We use two finite combinations of scalar functions given by

B0(s,m
2)m2 −A0(m

2) = m2

[
1− a3 log

a3 + 1

a3 − 1

]
, (A.53)

Di ≡ Di(s, si,m2) = B0(s,m
2)− B0(si,m

2) =

[
ai log

ai + 1

ai − 1
− a3 log

a3 + 1

a3 − 1

]
i = 1, 2.

(A.54)

The scalar integrals C0(s, 0, 0,m2) and D(s, 0, 0,m2) are the {s1 → 0, s2 → 0} limits of the

generic functions C0(s, s1, s2,m2) and D1(s, s1,m
2)

C0(s, 0, 0,m2) =
1

2s
log2 a3 + 1

a3 − 1
, (A.55)

D(s, 0, 0,m2) = D1(s, 0,m
2) = D2(s, 0,m

2) =

[
2− a3 log

a3 + 1

a3 − 1

]
. (A.56)
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The master integrals denoted by B0(s, 0), Di(s, si, 0) (i = 1, 2) and C0(s, s1, s2, 0) are consistently

redefined for m = 0 (and s < 0) as

B0(s, 0) =

[
1

ǭ
− log

(
− s

µ2

)
+ 2

]
, (A.57)

Di(s, si, 0) = B0(s, 0)− B0(si, 0) = log
(si
s

)
, i = 1, 2 (A.58)

C0(s, s1, s2, 0) =
1

s
Φ(x, y), (A.59)

where µ is the renormalization scale and the function Φ(x, y) is defined as [67]

Φ(x, y) =
1

λ

{
2[Li2(−ρx) + Li2(−ρy)] + ln

y

x
ln

1 + ρy

1 + ρx
+ ln(ρx) ln(ρy) +

π2

3

}
, (A.60)

with

λ(x, y) =
√

∆, ∆ = (1− x− y)2 − 4xy, ρ(x, y) = 2(1− x− y + λ)−1, (A.61)

x =
s1
s
, y =

s2
s
. (A.62)

The singularities in 1/ǭ and the dependence on the renormalization scale µ cancel out when

taking into account the difference of two functions B0, so that the Di’s are well-defined; the

three-point master integral is convergent.

A.3 Alternative conditions on the correlator in the massless case

As we have mentioned, one can follow an entirely different approach in order to fix the expression

of the correlator. This is based on the requirement that the trace anomaly satisfies a well known

operatorial relation which is imposed on the matrix elements at nonzero momentum. Specifically

we proceed as follows, and illustrate this point in the massless limit. We impose the value of

the trace anomaly as a defining condition on the whole amplitude, so that the (new) request c′)

will be

c′) the non-zero anomaly trace in the massless limit.

As the first two conditions a) and b), respectively the {µ↔ ν} symmetry and the vector current

conservation, remain the same as before, we continue illustrating the modifications due to this

approach from this point on. The third condition is given by

gµν Γµναβ(p, q) = c uαβ(p, q), (A.63)
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where c is related to the usual QED β-function as c = −2β
e . The resulting system is

Eq. (A.63)⇒





4 A41

p·q −A7 + 2A9 −A12 = 0,

c+ 4A37 + 4A42 +A4 p · p− 2A6 p · p

+2A11 p · q + 2A14 q · q +A16 q · q = 0,

(A.64)

whose solutions for A41 and A37 read as

A41 =
p · q
4

(A7 − 2A9 +A12) (A.65)

A37 +A42 =
1

4
[−c−A4 p · p+ 2A6 p · p− 2A11 p · q − 2A14q · q −A16 q · q)] . (A.66)

As seen from the last equation, the second solution returns the sum of two UV divergent am-

plitudes, A37 and A42. However, an explicit computation shows that in the explicit mapping

between the two sets of Ai and Fi these two amplitudes appear in such a way that their diver-

gences cancel. Therefore, reinserting the expressions of A41 and A37 extracted from Eq. (A.66)

into the expression of Γµναβ(p, q) one finds another mapping between the form factors Ai and

Fi, as previously done in Eqs. (2.72-2.84)

F1 =
c

3k · k , (A.67)

F2 = 0, (A.68)

F3 =
A4

4
− c

12 k · k , (A.69)

F4 =
A7

4 p · p, (A.70)

F5 =
A16

4
− c

12k · k , (A.71)

F6 =
A12

4 q · q , (A.72)

F7 = − c

6k · k +
A11

2
+

(A9 p · p+A14 p · q) q · q
2 p · q2 +

p · p(A6 p · q +A9 q · q)
2 p · q2 , (A.73)

F8 = − A9

2 p · q , (A.74)

F9 =
A6

p · q +A9
q · q
p · q2 , (A.75)

F10 = A9
p · p
p · q2 +

A14

p · q , (A.76)

F11 =
A12

2 q · q −
A2

2 p · p, (A.77)

F12 =
A3

2 p · q +
A7

2 p · p, (A.78)
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F13 =
1

4 p · q
[
2A11 p · q2 + c p · q + 4A42 p · q +A4 p · p p · q + 2A6 p · p p · q

+ 2A14 q · q p · q +A16 q · q p · q + 4A9 p · p q · q] ; (A.79)

This new mapping leaves the invariant amplitudes from F9 to F12 the same as before, so the

condition c), i.e. the WI derived from Eq. (2.36) and c′) are perfectly equivalent in determining

these 4 form factors.

A.4 Comparison with the parametric approach and numerical

checks

The parametric approach of [51] allows, by combining the denominators of the various tensor

amplitudes, to give parametric expressions for the form factors Fi starting from a set scalar

parametric integrals. Our results correspond to an explicit computation of these integrals. We

will not give each integral separately, since they are rather lengthy. The mapping between the

Fi’s in the parametric form and our expressions allow to perform numerical checks of our result.

We have perfect agreement between the parametric forms derived in [51], computed numerically,

and our explicit expressions in all the euclidean regions of the external momenta. We briefly

clarify this point.

Explicit formulae for all twelve finite coefficient functions may be given in the Feynman

parameterized form,

Cj(k
2; p2, q2) =

e2

4π2

∫ 1

0
dx

∫ 1−x

0
dy

cj(x, y)

p2 x(1− x) + q2 y(1− y) + 2xy p · q +m2
, (A.80)

where the polynomials ci(x, y) for i = 1, . . . , 12 are listed in Table A.1.

F1 =
C7 + C8 + C9

3
+

p2

3k2
(−C1 + C3 + C8 − C9) +

q2

3k2
(−C7 + C8 + C10 − C12) , (A.81)

F3 =
2C7 − C8 − C9

12
+

p2

12k2
(C1 − C3 − C8 + C9) +

q2

12k2
(C7 − C8 − C10 + C12) , (A.82)

F5 =
−C7 − C8 + 2C9

12
+

p2

12k2
(C1 − C3 − C8 + C9) +

q2

12k2
(C7 − C8 −C10 + C12) ,

(A.83)

F7 =
−C7 + 2C8 − C9

6
+

p2

6k2
(C1 − C3 − C8 + C9) +

q2

6k2
(C7 − C8 − C10 + C12)

+
p2 q2

(p · q)2 C5 +
p2C2 + q2C11

2 (p · q) . (A.84)
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j Cj = coefficient of cj(x, y)

1 pµpνpαpβ −4x2(1− x)(1− 2x)

2 (pµqν + qµpν)pαpβ −x(1− x)(1− 4x+ 8xy) + xy

3 qµqνpαpβ 2x(1− 2y)(1 − x− y + 2xy)

4 pµpνpαqβ −2x(1− x)(1− 2x)(1 − 2y)

5 (pµqν + qµpν)pαqβ x(1− x)(1 − 2y)2 + y(1− y)(1− 2x)2

6 qµqνpαqβ −2y(1− y)(1− 2x)(1 − 2y)

7 pµpνqαpβ 2xy(1− 2x)2

8 (pµqν + qµpν)qαpβ −2xy(1− 2x)(1 − 2y)

9 qµqνqαpβ 2xy(1− 2y)2

10 pµpνqαqβ 2y(1− 2x)(1 − x− y + 2xy)

11 (pµqν + qµpν)qαqβ −y(1− y)(1− 4y + 8xy) + xy

12 qµqνqαqβ −4y2 (1− 2y)(1− y)

Table A.1: The twelve tensors with four free indices (µναβ) on p, q used in ref. [51] for the

construction of the form factors Fi. At each coefficient functions Cj(k
2; p2, q2) correspond a

polynomial cj in the Feynman parameterized form, as given in Eq. (A.80).

F2 =
C1

3q2
+
C12

3p2
+
−C1 + 2C2 − 2C5 + 2C11 − C12

3k2
, (A.85)

F4 = − C1

12q2
+

3C10 − C12

12p2
+
C1 − 2C2 + 2C5 − 2C11 +C12

12k2
, (A.86)

F6 =
−C1 + 3C3

12q2
− C12

12p2
+
C1 − 2C2 + 2C5 − 2C11 + C12

12k2
, (A.87)

F8 = − C5

2p · q −
C1

6q2
− C12

6p2
+
C1 − 2C2 + 2C5 − 2C11 +C12

6k2
. (A.88)

F9 =
C2

p · q +
q2 C5

(p · q)2 , (A.89)

F10 =
p2C5

(p · q)2 +
C11

p · q , (A.90)

F11 =
C3

2q2
− C12

2p2
, (A.91)

F12 =
C10

2p2
− C1

2q2
. (A.92)
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Finally, numerical checks on F13 are performed on the UV convergent amplitude

F13 =
ΠR(p2) + ΠR(q2)

2
+

p2 q2

p · q C5 +
p4C4 + q4C6

4p · q +
p · q
4

(2C2 +C3 + C10 + 2C11)

+
p2

4
(2C2 +C4 + 2C5 + C10) +

q2

4
(C3 + 2C5 + C6 + 2C11) (A.93)

where the scalar two-point functions have been renormalized by the subtraction of the UV 1/ǫ

pole.

A.5 The massive invariant amplitudes

The off-shell massive form factors Fi, with

• s 6= 0 s1 6= 0 s2 6= 0 m 6= 0

and with γ ≡ s− s1 − s2, σ ≡ s2 − 2(s1 + s2) s+ (s1 − s2)2 are given by 1

F1(s; s1, s2, m
2) =

e2γm2

3π2sσ
+
e2D2(s, s2,m

2) s2
[
s2 + 4s1s− 2s2s− 5s21 + s22 + 4s1s2

]
m2

3π2sσ2

− e2

18π2s
− e2D1(s, s1,m

2) s1
[
− (s− s1) 2 + 5s22 − 4 (s+ s1) s2

]
m2

3π2sσ2

− e2 C0(s, s1, s2,m
2)

[
m2γ

[
(s− s1) 3 − s32 + (3s + s1) s

2
2 +

(
−3s2 − 10s1s+ s21

)
s2
]

6π2sσ2
− 2m4γ

3π2sσ

]
,

(A.94)

F2(s; s1, s2, m
2) = −2e2m2

3π2sσ
− 2 e2D2(s, s2,m

2)
[
(s− s1) 2 − 2s22 + (s+ s1) s2

]
m2

3π2 s σ2

− 2e2D1(s, s1,m
2)m2

3π2sσ2

[
s2 + (s1 − 2s2) s− 2s21 + s22 + s1s2

]

− e2 C0(s, s1, s2,m2)

[
4m4

3π2sσ
+

m2

3π2sσ2

[
s3 − (s1 + s2) s

2 −
(
s21 − 6s2s1 + s22

)
s

+ (s1 − s2) 2 (s1 + s2)
]]
, (A.95)

1We use boldfaced notation to facilitate their identification in the lengthier expressions
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F3(s; s1, s2, m
2) = F5(s; s2, s1, m

2) = − e2

144π2sσ3

[
s6 − 3 (s1 − 4s2) s

5 + 6 (3s1 − 7s2) s2s
4

+2
(
5s31 − 69s2s

2
1 + 117s22s1 + 23s32

)
s3 − 3

(
5s41 − 62s2s

3
1 + 72s22s

2
1 + 50s32s1 + 7s42

)
s2

+3 (s1 − s2) 2
(
3s31 − 24s2s

2
1 − 33s22s1 + 2s32

)
s− 2 (s1 − s2) 6

]

− e
2γm2

6π2sσ2

[
s2 − 2 (s1 − 3s2) s+ (s1 − s2) 2

]

− e2 γ

12π2sσ2

[
s2 + (5s2 − 2s1) s+ (s1 − s2) 2

] [
B0(s,m

2)m2 −A0(m
2)
]

− e2m2

12π2 s σ3
D1(s, s1,m

2)

[
(2s+ s1) (s− s1) 4 − 12 (s+ s1) s

2
2 (s− s1) 2

+s1 (41s + 2s1) s2 (s− s1) 2 − (6s+ 5s1) s
4
2 +

(
16s2 − 41s1s+ 14s21

)
s32

]

− e2 s1
48π2 σ4

D1(s, s1,m
2)
[
(s− s1) 6 + 2 (14s + 11s1) s2 (s− s1) 4

−
(
23s2 − 214s1s+ 19s21

)
s22 (s− s1) 2 + 2− 21s62 + (5s1 − 2s) s52

+
(
107s2 − 318s1s+ 71s21

)
s42 + 8

(
−11s3 + 18s1s

2 + 17s21s− 8s31
)
s32

]

− e2 s2 m
2

12π2 s σ3
D2(s, s2,m

2)
[
s42 + (19s + 2s1) s

3
2 − 2

(
12s2 − 23s1s+ 6s21

)
s22

− (s− s1)
(
13s2 − 49s1s+ 14s21

)
s2 + (s− s1) 3 (17s + 5s1)

]

− e2 s2
48π2 σ4

D2(s, s2,m
2)
[
s62 − 2 (s− 14s1) s

5
2 +

(
s2 + 120s1s− 37s21

)
s42

−4
(
s3 + 49s1s

2 − 69s21s+ 13s31
)
s32 + (s− s1)

(
11s3 − 69s1s

2 + 309s21s− 83s31
)
s22

−2 (s− s1) 3
(
5s2 − 49s1s− 4s21

)
s2 + 3 (s− s1) 5 (s+ 5s1)

]

− e2 C0(s, s1, s2,m2)

[
γ m4

3π2 s σ2

[
s2 + (7s2 − 2s1) s+ (s1 − s2) 2

]

+
m2

24π2 s σ3

[
−s62 + (2s1 − 9s) s52 +

(
12s2 − 65s1s+ s21

)
s42

+2
(
13s3 − 54s1s

2 + 55s21s− 2s31
)
s32 − (s− s1)

(
45s3 − 133s1s

2 + 15s21s+ s31
)
s22

+ (s− s1) 3
(
15s2 + 47s1s− 2s21

)
s2 + (s− s1) 5 (2s+ s1)

]

+
s1s2

8π2σ4

[
2s6 + 3 (s2 − 3s1) s

5 +
(
15s21 + 6s2s1 − 13s22

)
s4

+2
(
−5s31 − 19s2s

2
1 + 29s22s1 + s32

)
s3 + 12s2

(
4s31 − 4s2s

2
1 − 3s22s1 + s32

)
s2

+ (s1 − s2) 2
(
3s31 − 15s2s

2
1 − 31s22s1 − 5s32

)
s− (s1 − s2) 4 (s1 + s2)

2
] ]
,

(A.96)
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F4(s; s1, s2, m
2) = F6(s; s2, s1, m

2) =

e2m2

6π2sσ2s1

[
3s3 − 2 (2s1 + 3s2) s

2 +
(
−s21 + 6s2s1 + 3s22

)
s+ 2s1 (s1 − s2) 2

]

+
e2

12π2sσ2s1

[
B0(s,m

2)m2 −A0(m
2)
] [

3s3 − 2 (2s1 + 3s2) s
2 +

(
−s21 + 4s2s1 + 3s22

)
s+ 2s1 (s1 − s2) 2

]

+
e2

24π2σ3s1

[
− s52 + (6s+ 11s1) s

4
2 −

(
14s2 + s1s+ 5s21

)
s32 +

(
16s3 − 35s1s

2 + 46s21s− 15s31
)
s22

− (s− s1) 2
(
9s2 − 11s1s− 6s21

)
s2 + 2 (s− s1) 4 (s+ 2s1)

]

− e2D2(s, s2,m
2)

[
m2

12π2sσ3s1

(
− 2 (2s+ s1) (s− s1) 4 +

(
3s2 − 43s1s+ 2s21

)
s2 (s− s1) 2

+ (9s+ 4s1) s
4
2 +

(
−23s2 + 29s1s− 10s21

)
s32 +

(
15s3 + 2s1s

2 + 5s21s+ 6s31
)
s22

)

− 1

48π2σ4s1

(
3 (s+ s1) (s− s1) 6 − 4

(
4s2 − 14s1s− 5s21

)
s2 (s− s1) 4

+
(
35s3 − 119s1s

2 + 169s21s− 13s31
)
s22 (s− s1) 2 + (s− 3s1) s

6
2 − 8

(
s2 + 9s1s+ 7s21

)
s52

+
(
25s3 + 159s1s

2 − 197s21s+ 157s31
)
s42 + 4

(
−10s4 + 21s21s

2 + 28s31s− 27s41
)
s32

)]

+ e2D1(s, s1,m
2)

[
m2

12π2sσ3s1

(
2s5 + (15s1 − 8s2) s

4 +
(
−53s21 − 5s2s1 + 12s22

)
s3

+
(
49s31 + 46s2s

2
1 − 33s22s1 − 8s32

)
s2 − (s1 − s2)

(
9s31 + 52s2s

2
1 + 23s22s1 + 2s32

)
s

−2s1 (s1 − s2) 3 (2s1 + s2)

)
+

1

48π2σ4

(
s62 + 4 (6s+ 11s1) s

5
2 +

(
−87s2 + 106s1s− 91s21

)
s42

+4
(
22s3 − 69s1s

2 + 40s21s+ s31
)
s32 + (s− s1)

(
3s3 − 29s1s

2 + 209s21s− 79s31
)
s22

−8 (s− s1) 3
(
6s2 − 13s1s− 4s21

)
s2 + (s− s1) 5 (19s + 5s1)

)]

+ e2C0(s, s1, s2,m2)

{
m4

6π2σ2

[
σ (3s+ 2s1)

s s1
+ 18s2

]
− m2

24π2σ3

[
− σ2

ss1

(
9s2 + (59s1 + 3s2) s

+2s1 (s1 + s2)) + 12
(
3s2 − 3 (22s1 + 7s2) s+ s1 (3s1 − 17s2)

)
σ

+720 s s1
(
(s− s1) 2 − 2 (s+ s1) s2

) ]
− 1

16π2σ4

[
− 2s (s− s1) 6

−2
(
s2 + 7s1s+ 2s21

)
s2 (s− s1) 4 + 2

(
7s3 + 6s1s

2 + 11s21s− 4s31
)
s42

+12
(
2s3 − 3s1s

2 − 2s21s+ s31
)
s22 (s− s1) 2 − 4 (s+ s1) s

6
2 + 6

(
s2 − 5s1s+ 2s21

)
s52

−4
(
9s4 − 25s1s

3 + 33s21s
2 − 15s31s+ 2s41

)
s32

]}
,

(A.97)
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F7(s; s1, s2, m
2) =

e2m2

3π2sσ2

[ (
s2 + 12s2s− s22

)
s1 + s31 − (2s + s2) s

2
1 + (s− s2) 2s2

]

+
e2

72π2

[
840s

(
2 (s+ s1) s2 − (s− s1) 2

)
s21

σ3
+

6
(
−13s2 + 166s1s− 13s21 + 39 (s+ s1) s2

)
s1

σ2

+
3 (−s+ 27s1 + s2)

σ
+

2

s
+

9s

γ2
− 6

γ

]

+
e2

6π2

[
B0(s,m

2)m2 −A0(m
2)
] [14s1s2

σ2
+
s+ s1 + s2

sσ
− 3

γ2

]

− e2

16π2
C0(s, s1, s2,m2)

{
m4

[
16γ

3sσ
− 96s1s2

σ2
− 16

γ2

]
+m2

[
960s

(
(s− s1) 2 − 2 (s+ s1) s2

)
s21

σ3
− 4

3s

+
4

γ
+

16
(
7s21 − (74s + 21s2) s1 + s (7s − 19s2)

)
s1

σ2
− 4 (3s (2s + s2) + s1 (87s + 4s2))

3sσ

]

−4s1s2
γ2σ4

[ (
−9s2 + 22s2s− 4s22

)
s61 + 2s

(
20s2 − 39s2s+ 21s22

)
s51 + (s− s2) 6s2 (4s+ s2)

+2s (s− s2) 4
(
2s2 + 5s2s+ 11s22

)
s1 +

(
−65s4 + 96s2s

3 + 33s22s
2 − 62s32s+ 6s42

)
s41

+2s
(
27s4 − 22s2s

3 − 108s22s
2 + 102s32s− 31s42

)
s31 − (s− s2) 2

(
23s4 + 40s2s

3 − 105s22s
2

−34s32s+ 4s42
)
s21 + s81 − 2ss71

]}

− e2

16π2
D1(s, s1,m

2)

[
2

3
m2

(
3

γ2
(1− 3s2

s− s1
) +

20s21 − 37ss1 + s (9s2 − 19s)

σs (s− s1)

+
8s1
(
3s21 − (61s + 3s2) s1 + s (3s − 19s2)

)

σ2s
+

440s21
(
(s− s1) 2 − (3s + s1) s2

)

σ3

)

+
2s1

3γ2σ4

(
−
(
317s2 + 227s1s+ 64s21

)
s62 + (s1 − s) 5

(
−7s2 + 39s1s+ 32s21

)
s2

+
(
397s3 + 846s1s

2 − 539s21s+ 312s31
)
s52 − (s− s1) 3

(
23s3 + 114s1s

2 + 463s21s− 16s31
)
s22

−
(
275s4 + s1

(
1181s3 + s1

(
3s1 (93s + 94s1)− 1441s2

)))
s42 + (s− s1)

(
103s4 + 767s1s

3

−79s21s
2 − 563s31s− 36s41

)
s32 − 23s82 + (133s + 4s1) s

7
2 + (s1 − s) 7 (2s + s1)

)]

− e2D2(s, s2,m
2)

[
m2

6π2sγ2σ3

((
−6s2 + 49s1s− 7s21

)
s52 + (s− s1) 4

(
16s2 − 5s1 (s+ s1)

)
s2

+s72 − (s− 4s1) s
6
2 − 4s (s− s1) 6 + 2

(
5s3 − 87s1s

2 + 56s21s− 4s31
)
s42

− (s− s1) 2
(
21s3 + 40s1s

2 + 147s21s− 4s31
)
s22 +

(
5s4 + 164s1s

3 − 68s21s
2 − 16s31s+ 11s41

)
s32

)

+
s2

24π2γ2σ4

(
− 23s81 + (133s + 4s2) s

7
1 −

(
317s2 + 227s2s+ 64s22

)
s61

+ (s− s2) 5
(
7s2 − 39s2s− 32s22

)
s1 − (s− s2) 7 (2s+ s2)

+
(
397s3 + 846s2s

2 − 539s22s+ 312s32
)
s51 − (s− s2) 3

(
23s3 + 114s2s

2 + 463s22s− 16s32
)
s21

−
(
275s4 + s2

(
1181s3 + s2

(
3s2 (93s + 94s2)− 1441s2

)))
s41 + (s− s2)

(
103s4 + 767s2s

3

−79s22s
2 − 563s32s− 36s42

)
s31

)]
,
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F8(s; s1, s2, m
2) = − e2m2

6π2sσ2

[
3s2 − 2 (s1 + s2) s− (s1 − s2) 2

]

− e2

3π2s γσ2

(
B0(s,m

2)m2 −A0(m
2)

)[
4s3 − 7 (s1 + s2) s

2 + 2
(
s21 + s2s1 + s22

)
s

+ (s1 − s2) 2 (s1 + s2)

]
− e2

12π2γσ3

[
4s52 + (14s1 − 11s) s42 + 2 (s− s1) (2s + 9s1) s

3
2

+2
(
7s3 − 43s1s

2 + 33s21s− 9s31
)
s22 − 2 (s− s1) 2

(
8s2 − 21s1s− 7s21

)
s2

+ (s− s1) 4 (5s+ 4s1)

]
− e2D2(s, s2,m

2)

[
m2

3π2sγσ3

(
− 2s52 + (3s1 − 10s) s42

+
(
39s2 − 33s1s+ 2s21

)
s32 + 7s (s− s1) 2 (s+ 5s1) s2

+
(
−37s3 + 20s1s

2 + 9s21s− 4s31
)
s22 + (s− s1) 4 (3s + s1)

)
+

1

24π2γσ4

(
− 5s72

+3 (s− 13s1) s
6
2 +

(
57s2 − 128s1s+ 43s21

)
s52 +

(
−155s3 + 567s1s

2 − 341s21s+ 121s31
)
s42

+3
(
55s4 − 176s1s

3 + 86s21s
2 + 56s31s− 53s41

)
s32 + 3 (s− s1) 6 (s+ s1)

− (s− s1) 2
(
75s3 + 103s1s

2 − 311s21s− 11s31
)
s22 + (s− s1) 4

(
7s2 + 124s1s+ 25s21

)
s2

)]

− e2D1(s, s1,m
2)

[
m2

3π2sγσ3

(
s52 − ss42 +

(
−6s2 + 35s1s− 4s21

)
s32 +

(
14s3 − 63s1s

2 + 9s21s+ 2s31
)
s22

+
(
−11s4 + 21s1s

3 + 20s21s
2 − 33s31s+ 3s41

)
s2 + (s− s1) 3

(
3s2 + 16s1s+ 2s21

))

+
1

24π2γσ4

(
3s72 + 5 (5s1 − 3s) s62 +

(
27s2 + 24s1s+ 11s21

)
s52 −

(
15s3 + 339s1s

2

−289s21s+ 159s31
)
s42 +

(
−15s4 + 616s1s

3 − 714s21s
2 + 168s31s+ 121s41

)
s32

+ (s− s1)
(
27s4 − 402s1s

3 + 40s21s
2 + 298s31s− 43s41

)
s22 − (s− s1) 3

(
15s3 − 51s1s

2

−245s21s− 39s31
)
s2 + (s− s1) 5

(
3s2 + 22s1s+ 5s21

))]

− e2C0(s, s1, s2,m2)

[
2m4

3π2sγσ2

(
2s3 − 3 (s1 + s2) s

2 + 10s1s2s+ (s1 − s2) 2 (s1 + s2)

)

+
m2

6π2sσ3

(
11s5 − 18 (s1 + s2) s

4 +
(
−11s21 + 94s2s1 − 11s22

)
s3

+ (s1 + s2)
(
31s21 − 90s2s1 + 31s22

)
s2 − 4 (s1 − s2) 2

(
3s21 + 11s2s1 + 3s22

)
s

− (s1 − s2) 4 (s1 + s2)

)
+

1

4π2γσ4

(
(s1 + s2) s

7 − 6
(
s21 − s2s1 + s22

)
s6

+3 (s1 + s2)
(
5s21 − 12s2s1 + 5s22

)
s5 + 2

(
−10s41 + 3s2s

3
1

+54s22s
2
1 + 3s32s1 − 10s42

)
s4 + (s1 + s2)

(
15s41 + 16s2s

3
1 − 126s22s

2
1 + 16s32s1 + 15s42

)
s3

−6
(
s61 + 5s2s

5
1 − s22s41 − 18s32s

3
1 − s42s21 + 5s52s1 + s62

)
s2 + (s1 − s2) 2 (s1 + s2)

(
s41 + 6s2s

3
1 + 34s22s

2
1 + 6s32s1 + s42

)
s+ 2s1 (s1 − s2) 4s2 (s1 + s2)

2

)]
,
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F9(s; s1, s2, m
2) = F10(s; s2, s1, m

2) = − 2e2m2

3π2σs1
− e2

6π2s1

[
B0(s,m

2)m2 −A0(m
2)

](
3

γ2
+

1

σ

)

+
e2

12π2γ2σ2

[
(s− s1) 4 − 4 (4s + s1) s2 (s− s1) 2 − 3s42 + 4 (s1 − 2s) s32 + 2

(
13s2 − 2s1s+ s21

)
s22

]

− e2C0(s, s1, s2,m2)

[
4s2m

4

π2γ2σ
+

m2

2π2γσ2

(
(s− s1) 3 + (7s+ s1) s2 (s− s1)− 3s32 + 5 (s1 − s) s22

)

+
8ss2
γ2σ3

(
s52 + (2s1 − 3s) s42 + 2 (s− s1) (s+ 2s1) s

3
2 + 2

(
s3 − 7s1s

2 + 3s21s− s31
)
s22

− (s− 3s1) (s− s1) 2 (3s+ s1) s2 + s (s− s1) 4

)]

− e2D2(s, s2,m
2)

[
2s2m

2

3π2γ2σ2

(
8 (s− s1) 2 − 5s22 − 3 (s+ s1) s2

)

+
s2

12π2γ2σ3

(
s52 − (35s + 11s1) s

4
2 + 30

(
3s2 + s21

)
s32 + 2

(
−35s3 + 17s1s

2

+11s21s− 17s31
)
s22 + (s− s1) 2

(
5s2 + 26s1s+ 17s21

)
s2 + 3 (s− s1) 4 (3s− s1)

)]

− e2D1(s, s1,m
2)

[
2m2

3π2γ2σ2s1

(
− s42 + 2 (2s+ 3s1) s

3
2 +

(
−6s2 − 6s1s+ s21

)
s22

+ (s− s1)
(
4s2 − 2s1s+ 3s21

)
s2 − (s− 3s1) (s− s1) 3

)
+

1

12π2γ2σ3

(
− s62 + (18s + 11s1) s

5
2

−3
(
21s2 − 3s1s+ 10s21

)
s42 + 2

(
46s3 − 37s1s

2 + 2s21s+ 17s31
)
s32

−
(
63s4 − 82s1s

3 + 2s31s+ 17s41
)
s22 + 3 (s− s1) 3

(
6s2 + 7s1s− s21

)
s2 − s (s− s1) 5

)]
,

(A.100)

F11(s; s1, s2, m
2) = F12(s; s2, s1, m

2) =
2e2m2

3π2σs2
+

e2

6π2σs2
[B0(s,m

2)m2 −A0(m
2)]

+
e2

12π2σ2s2

[
2s3 − (5s1 + 2s2) s

2 +
(
4s21 + 4s2s1 − 2s22

)
s− (s1 − 2s2) (s1 − s2) 2

]

− e2C0(s, s1, s2,m2)

[
m4

π2σs2
+

m2

4π2σ2s2

(
3s3 − (5s1 + 3s2) s

2 +
(
s21 + 10s2s1 − 3s22

)
s

+ (s1 − s2) 2 (s1 + 3s2)

)
+

s

4π2σ3

(
s4 + (s1 − 4s2) s

3 − (s1 − s2) (5s1 + 6s2) s
2

+ (s1 + s2)
(
3s21 + 3s2s1 − 4s22

)
s+ (s1 − s2) 2s2 (3s1 + s2)

)]

− e2D2(s, s2,m
2)

[
m2

6π2σ2s2

(
−4 (s− s1) 2 + 9s22 − 5 (s+ s1) s2

)
+

1

24π2σ3

(
−17s4 + (26s1 + 48s2) s

3

−42s2 (s1 + s2) s
2 − 2 (s1 − s2)

(
5s21 + 17s2s1 + 4s22

)
s+ (s1 − 3s2) (s1 − s2) 3

)]

+ e2D1(s, s1,m
2)

[
m2

6π2σ2s2

(
4s2 + 5s1s− 8s2s− 9s21 + 4s22 + 5s1s2

)
− 2

3σ3s2

(
3s5

− (10s1 + 9s2) s
4 + 2

(
6s21 + 26s2s1 + 3s22

)
s3 − 6

(
s31 + 4s2s

2
1 + 14s22s1 − s32

)
s2

+ (s1 − s2)
(
s31 − 19s2s

2
1 − 43s22s1 + 9s32

)
s+ (s1 − 3s2) (s1 − s2) 3s2

)]
,

(A.101)
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F13,R(s; s1, s2, m
2) = −e

2m2 (s1 + s2)

12π2s1s2
+

e2

48π2

(
sγ

σ
+

3s

γ
+ 1

)

−1

2

[
ΠR(s1,m

2) + ΠR(s2,m
2)
]
− e2

12π2
[B0(s,m

2)m2 −A0(m
2)]

(
1

s1
+

1

s2
+

3

γ

)

+ e2C0(s, s1, s2,m2)

[
m4

2π2γ
+
m2sγ

4π2σ
+
s2s1s2

(
s2 − 2 (s1 + s2) s+ s21 + s22

)

4π2γ σ2

]

− e2D1(s, s1,m
2)

[
1

24π2
m2

(
−5 (s+ s1 − s2)

σ
− 2

s1
− 3

γ

)

+
1

24π2γσ2

(
(s− s1)

(
5s3 + s21s− 4s31

)
s2 +

(
10s2 + 5s1s+ 7s21

)
s32

− (s− s1) 3
(
s2 + 2s1s− s21

)
+
(
−10s3 + 3s1s

2 − 7s31
)
s22 + s52 − (5s + 4s1) s

4
2

)]

−e2D2(s, s2,m
2)

[
1

24π2
m2

(
−5 (s− s1 + s2)

σ
− 2

s2
− 3

γ

)
+

1

24π2γσ2

((
4s3 + s1s

2 + 7s31
)
s22

−
(
8s2 + 5s1s+ 7s21

)
s32 − (s− s1) 5 + (s− 4s1) (s+ s1) s2 (s− s1) 2 − s52 + (5s+ 4s1) s

4
2

)]
,

(A.102)

where as previously done the master integrals are collected in Appendix A.2. These expressions

have been analyzed in the text in various kinematical limits to show the appearance of anomaly

poles and of all the other poles in the off-shell formulation.

Notice that F13 contains two vacuum polarization diagrams with different momenta on the

external lines and has been renormalized by a subtraction at zero momentum

ΠR(s,m2) ≡ Π(s,m2)−Π(0,m2) =
e2

36π2

[(
3 +

6m2

s

)
a3 log

a3 + 1

a3 − 1
− 12m2

s
− 5

]
,

(A.103)

where Π(s,m2) is defined in Eq. (2.41), a3 =
√

1− 4m2/s and

Π(0,m2) = − e2

12π2
B0(0,m

2) = − e2

12π2

[
1

ǭ
− log

(
m2

µ2

)]
(A.104)

with 1/ǭ defined in (A.52).

A.6 The massless invariant amplitudes

We present here the expressions of the invariant amplitudes in the massless limit. We obtain

F1(s; s1, s2, 0) = − e2

18π2s
, (A.105)
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F2(s; s1, s2, 0) = 0, (A.106)

F3(s; s1, s2, 0) = F5(s; s2, s1, 0) = − e2

144π2sσ3

[
s6 − 3 (s1 − 4s2) s

5 + 6 (3s1 − 7s2) s2s
4

+2
(
5s31 − 69s2s

2
1 + 117s22s1 + 23s32

)
s3 − 3

(
5s41 − 62s2s

3
1 + 72s22s

2
1 + 50s32s1 + 7s42

)
s2

+3 (s1 − s2) 2
(
3s31 − 24s2s

2
1 − 33s22s1 + 2s32

)
s− 2 (s1 − s2) 6

]

− e2 s1
48π2 σ4

D1(s, s1, 0)
[
(s− s1) 6 + 2 (14s + 11s1) s2 (s− s1) 4 −

(
23s2 − 214s1s+ 19s21

)
s22 (s− s1) 2

− 21s62 + 2 (5s1 − 2s) s52 +
(
107s2 − 318s1s+ 71s21

)
s42 + 8

(
−11s3 + 18s1s

2 + 17s21s− 8s31
)
s32

]

− e2 s2
48π2σ4

D2(s, s2, 0)
[
s62 − 2 (s− 14s1) s

5
2 +

(
s2 + 120s1s− 37s21

)
s42

−4
(
s3 + 49s1s

2 − 69s21s+ 13s31
)
s32 + (s− s1)

(
11s3 − 69s1s

2 + 309s21s− 83s31
)
s22

−2 (s− s1) 3
(
5s2 − 49s1s− 4s21

)
s2 + 3 (s− s1) 5 (s+ 5s1)

]

− e2

16π2
C0(s, s1, s2, 0)

[
2s1s2
σ4

[
2s6 + 3 (s2 − 3s1) s

5 +
(
15s21 + 6s2s1 − 13s22

)
s4

+2
(
−5s31 − 19s2s

2
1 + 29s22s1 + s32

)
s3 + 12s2

(
4s31 − 4s2s

2
1 − 3s22s1 + s32

)
s2

+ (s1 − s2) 2
(
3s31 − 15s2s

2
1 − 31s22s1 − 5s32

)
s− (s1 − s2) 4 (s1 + s2)

2
] ]
, (A.107)

F4(s; s1, s2, 0) = F6(s; s2, s1, 0) =

e2

24π2σ3s1

[
− s52 + (6s + 11s1) s

4
2 −

(
14s2 + s1s+ 5s21

)
s32 +

(
16s3 − 35s1s

2 + 46s21s− 15s31
)
s22

− (s− s1) 2
(
9s2 − 11s1s− 6s21

)
s2 + 2 (s− s1) 4 (s+ 2s1)

]

− e2

16π2
D2(s, s2, 0)

[
− 1

3σ4s1

(
3 (s+ s1) (s− s1) 6 − 4

(
4s2 − 14s1s− 5s21

)
s2 (s− s1) 4

+
(
35s3 − 119s1s

2 + 169s21s− 13s31
)
s22 (s− s1) 2 + (s− 3s1) s

6
2 − 8

(
s2 + 9s1s+ 7s21

)
s52

+
(
25s3 + 159s1s

2 − 197s21s+ 157s31
)
s42 + 4

(
−10s4 + 21s21s

2 + 28s31s− 27s41
)
s32

)]

− e2

16π2
D1(s, s1, 0)

[
− 1

3σ4

(
s62 + 4 (6s+ 11s1) s

5
2 +

(
−87s2 + 106s1s− 91s21

)
s42

+4
(
22s3 − 69s1s

2 + 40s21s+ s31
)
s32 + (s− s1)

(
3s3 − 29s1s

2 + 209s21s− 79s31
)
s22

−8 (s− s1) 3
(
6s2 − 13s1s− 4s21

)
s2 + (s− s1) 5 (19s+ 5s1)

)]

− e2

16π2
C0(s, s1, s2, 0)

[
1

σ4

(
− 2s (s− s1) 6 − 2

(
s2 + 7s1s+ 2s21

)
s2 (s− s1) 4

+2
(
7s3 + 6s1s

2 + 11s21s− 4s31
)
s42 + 12

(
2s3 − 3s1s

2 − 2s21s+ s31
)
s22 (s− s1) 2

−4 (s+ s1) s
6
2 + 6

(
s2 − 5s1s+ 2s21

)
s52 − 4

(
9s4 − 25s1s

3 + 33s21s
2 − 15s31s+ 2s41

)
s32

)]
,

(A.108)
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F7(s; s1, s2, 0) =
e2

72π2

[
840s s21
σ3

(
2 (s+ s1) s2 − (s− s1) 2

)

+
6s1
σ2

(
−13s2 + 166s1s− 13s21 + 39 (s+ s1) s2

)
+

3 (−s+ 27s1 + s2)

σ
+

2

s
+

9s

γ2
− 6

γ

]

− e2

16π2
C0(s, s1, s2, 0)

{
− 4s1s2
γ2σ4

[ (
−9s2 + 22s2s− 4s22

)
s61 + 2s

(
20s2 − 39s2s+ 21s22

)
s51

+ (s− s2) 6s2 (4s+ s2) + 2s (s− s2) 4
(
2s2 + 5s2s+ 11s22

)
s1

+
(
−65s4 + 96s2s

3 + 33s22s
2 − 62s32s+ 6s42

)
s41

+ 2s
(
27s4 − 22s2s

3 − 108s22s
2 + 102s32s− 31s42

)
s31

− (s− s2) 2
(
23s4 + 40s2s

3 − 105s22s
2 − 34s32s+ 4s42

)
s21 + s81 − 2ss71

]}

− e2

16π2
D1(s, s1, 0)

{
2s1

3γ2σ4

[
−
(
317s2 + 227s1s+ 64s21

)
s62 + (s1 − s) 5

(
−7s2 + 39s1s+ 32s21

)
s2

+
(
397s3 + 846s1s

2 − 539s21s+ 312s31
)
s52 − (s− s1) 3

(
23s3 + 114s1s

2 + 463s21s− 16s31
)
s22

−
(
275s4 + s1

(
1181s3 + s1

(
3s1 (93s + 94s1)− 1441s2

)))
s42 + (s− s1)

(
103s4 + 767s1s

3

− 79s21s
2 − 563s31s− 36s41

)
s32 − 23s82 + (133s + 4s1) s

7
2 + (s1 − s) 7 (2s+ s1)

]}

− e2

16π2
D2(s, s2, 0)

{
2s2

3γ2σ4

[
− 23s81 + (133s + 4s2) s

7
1 −

(
317s2 + 227s2s+ 64s22

)
s61

+ (s− s2) 5
(
7s2 − 39s2s− 32s22

)
s1 − (s− s2) 7 (2s+ s2)

+
(
397s3 + 846s2s

2 − 539s22s+ 312s32
)
s51 − (s− s2) 3

(
23s3 + 114s2s

2 + 463s22s− 16s32
)
s21

−
(
275s4 + s2

(
1181s3 + s2

(
3s2 (93s + 94s2)− 1441s2

)))
s41 + (s− s2)

(
103s4 + 767s2s

3

−79s22s
2 − 563s32s− 36s42

)
s31

]}
,
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F8(s; s1, s2, 0) = − e2

12π2γσ3

[
4s52 + (14s1 − 11s) s42 + 2 (s− s1) (2s+ 9s1) s

3
2

+2
(
7s3 − 43s1s

2 + 33s21s− 9s31
)
s22 − 2 (s− s1) 2

(
8s2 − 21s1s− 7s21

)
s2

+ (s− s1) 4 (5s+ 4s1)

]

− e2

16π2
D2(s, s2, 0)

{
2

3γσ4

[
− 5s72 + 3 (s− 13s1) s

6
2 +

(
57s2 − 128s1s+ 43s21

)
s52

+
(
−155s3 + 567s1s

2 − 341s21s+ 121s31
)
s42

+3
(
55s4 − 176s1s

3 + 86s21s
2 + 56s31s− 53s41

)
s32 + 3 (s− s1) 6 (s+ s1)

− (s− s1) 2
(
75s3 + 103s1s

2 − 311s21s− 11s31
)
s22 + (s− s1) 4

(
7s2 + 124s1s+ 25s21

)
s2

]}

− e2

16π2
D1(s, s1, 0)

{
2

3γσ4

[
3s72 + 5 (5s1 − 3s) s62 +

(
27s2 + 24s1s+ 11s21

)
s52 −

(
15s3 + 339s1s

2

−289s21s+ 159s31
)
s42 +

(
−15s4 + 616s1s

3 − 714s21s
2 + 168s31s+ 121s41

)
s32

+ (s− s1)
(
27s4 − 402s1s

3 + 40s21s
2 + 298s31s− 43s41

)
s22

− (s− s1) 3
(
15s3 − 51s1s

2 − 245s21s− 39s31
)
s2 + (s− s1) 5

(
3s2 + 22s1s+ 5s21

) ]}

− e2

16π2
C0(s, s1, s2, 0)

{
4

γσ4

[
(s1 + s2) s

7 − 6
(
s21 − s2s1 + s22

)
s6

+ 3 (s1 + s2)
(
5s21 − 12s2s1 + 5s22

)
s5 + 2

(
−10s41 + 3s2s

3
1 + 54s22s

2
1 + 3s32s1 − 10s42

)
s4

+ (s1 + s2)
(
15s41 + 16s2s

3
1 − 126s22s

2
1 + 16s32s1 + 15s42

)
s3

− 6
(
s61 + 5s2s

5
1 − s22s41 − 18s32s

3
1 − s42s21 + 5s52s1 + s62

)
s2

+ (s1 − s2) 2 (s1 + s2)
(
s41 + 6s2s

3
1 + 34s22s

2
1 + 6s32s1 + s42

)
s

+ 2s1 (s1 − s2) 4s2 (s1 + s2)
2

]}
, (A.110)

F9(s; s1, s2, 0) = F10(s; s2, s1, 0) =
e2

12π2γ2σ2

[
(s− s1) 4 − 4 (4s+ s1) s2 (s− s1) 2

− 3s42 + 4 (s1 − 2s) s32 + 2
(
13s2 − 2s1s+ s21

)
s22

]

− e2

16π2
C0(s, s1, s2, 0)

[
8ss2
γ2σ3

(
s52 + (2s1 − 3s) s42 + 2 (s− s1) (s+ 2s1) s

3
2

+ 2
(
s3 − 7s1s

2 + 3s21s− s31
)
s22 − (s− 3s1) (s− s1) 2 (3s+ s1) s2 + s (s− s1) 4

)]

− e2

16π2
D2(s, s2, 0)

[
4s2

3γ2σ3

(
s52 − (35s + 11s1) s

4
2 + 30

(
3s2 + s21

)
s32 + 2

(
−35s3 + 17s1s

2

+ 11s21s− 17s31
)
s22 + (s− s1) 2

(
5s2 + 26s1s+ 17s21

)
s2 + 3 (s− s1) 4 (3s− s1)

)]

− e2

16π2
D1(s, s1, 0)

[
4

3γ2σ3

(
− s62 + (18s + 11s1) s

5
2 − 3

(
21s2 − 3s1s+ 10s21

)
s42

+ 2
(
46s3 − 37s1s

2 + 2s21s+ 17s31
)
s32 −

(
63s4 − 82s1s

3 + 2s31s+ 17s41
)
s22

+3 (s− s1) 3
(
6s2 + 7s1s− s21

)
s2 − s (s− s1) 5

)]
, (A.111)
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F11(s; s1, s2, 0) = F12(s; s2, s1, 0) =

e2

12π2σ2s2

[
2s3 − (5s1 + 2s2) s

2 +
(
4s21 + 4s2s1 − 2s22

)
s− (s1 − 2s2) (s1 − s2) 2

]

− e2

16π2
C0(s, s1, s2, 0)

[
−4s

σ3

(
s4 + (s1 − 4s2) s

3 − (s1 − s2) (5s1 + 6s2) s
2

+ (s1 + s2)
(
3s21 + 3s2s1 − 4s22

)
s+ (s1 − s2) 2s2 (3s1 + s2)

)]

− e2

16π2
D2(s, s2, 0)

[
2

3σ3

(
−17s4 + (26s1 + 48s2) s

3 − 42s2 (s1 + s2) s
2

−2 (s1 − s2)
(
5s21 + 17s2s1 + 4s22

)
s+ (s1 − 3s2) (s1 − s2) 3

)]

− e2

16π2
D1(s, s1, 0)

[
− 2

3σ3s2

(
3s5 − (10s1 + 9s2) s

4

+ 2
(
6s21 + 26s2s1 + 3s22

)
s3 − 6

(
s31 + 4s2s

2
1 + 14s22s1 − s32

)
s2

+ (s1 − s2)
(
s31 − 19s2s

2
1 − 43s22s1 + 9s32

)
s+ (s1 − 3s2) (s1 − s2) 3s2

)]
,

(A.112)

F13,R(s; s1, s2, 0) = −1

2
[ΠR(s1, 0) + ΠR(s2, 0)] +

e2

48π2

(
sγ

σ
+

3s

γ
+ 1

)

+
e2

16π2
C0(s, s1, s2, 0)

[
4s2s1s2

(
s2 − 2 (s1 + s2) s+ s21 + s22

)

γσ2

]

− e2

16π2
D1(s, s1, 0)

[
2

3γσ2

(
(s− s1)

(
5s3 + s21s− 4s31

)
s2 +

(
10s2 + 5s1s+ 7s21

)
s32

− (s− s1) 3
(
s2 + 2s1s− s21

)
+
(
−10s3 + 3s1s

2 − 7s31
)
s22 + s52 − (5s+ 4s1) s

4
2

)]

− e2

16π2
D2(s, s2, 0)

[
2

3γσ2

((
4s3 + s1s

2 + 7s31
)
s22 −

(
8s2 + 5s1s+ 7s21

)
s32

− (s− s1) 5 + (s− 4s1) (s+ s1) s2 (s− s1) 2 − s52 + (5s+ 4s1) s
4
2

)]
;

(A.113)

as already noticed above for the case of the massive form factors the last one, i.e. F13,R(s; s1, s2, 0),

has been affected by the renormalization procedure for which the one-loop transverse photon

propagator with a virtual pair of massless fermions is given by

ΠR(s, 0) = − e2

12π2

[
5

3
− log

(
− s

µ2

)]
, (A.114)

where the dependence on the renormalization scale µ remains explicit.
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A.7 The asymptotic behavior of the off-shell massless 〈TJJ〉 cor-
relator

We present here the asymptotic expression of the form factor in the high energy limit. The lead-

ing contributions to the expansion in each expression come from the pole singularities (conformal

or anomalous) except for F13 which has a constant asymptotic term.

F1(s, s1, s2, 0) = − e2

18π2s
, (A.115)

F2(s, s1, s2, 0) = 0, (A.116)

F3(s, s1, s2, 0) = − e2

144π2s
− e2

48π2s2

[
s1 + 6s2 + s1 log

(s1
s

)
+ 3s2 log

(s2
s

)]
+O

(
1

s3

)
,

F4(s, s1, s2, 0) =
e2

48π2s1s

[
3 log

(s2
s

)
+ 4
]

+
e2

48π2s1s2

[
2π2s1 + 16s1 + 6s2 + 19s1 log

(s1
s

)

+ log
(s2
s

)(
9s1 + 8s2 + 6s1 log

(s1
s

)) ]
+O

(
1

s3

)
, (A.117)

F7(s, s1, s2, 0) =
e2

36π2s
+

e2

24π2s2

[
3 (s1 + s2) + 2s1 log

(s1
s

)
+ 2s2 log

(s2
s

)]
+O

(
1

s3

)
,

(A.118)

F8(s, s1, s2, 0) = − e2

24π2s2

[
3 log

(s1
s

)
+ 3 log

(s2
s

)
+ 10

]
+O

(
1

s3

)
, (A.119)

F9(s, s1, s2, 0) =
e2

12π2s2

[
log
(s1
s

)
+ 1
]

+O

(
1

s3

)
, (A.120)

F11(s, s1, s2, 0) =
e2

24π2s2s

[
3 log

(s1
s

)
+ 4
]

+
e2

24π2s2s2

[
6s1 + 2π2s2 + 12s2 + 17s2 log

(s2
s

)

+ log
(s1
s

)(
8s1 + 9s2 + 6s2 log

(s2
s

)) ]
+O

(
1

s3

)
, (A.121)

F13(s, s1, s2, 0) = −1

2
[ΠR(s1, 0) + ΠR(s2, 0)] +

e2

24π2

[
log
(s1
s

)
+ log

(s2
s

)
+

5

2

]

+
e2

12π2s

[
s1 + s2 + 2s1 log

(s1
s

)
+ 2s2 log

(s2
s

) ]

+
e2

24π2s2

[
2
(
s21 +

(
3 + π2

)
s2s1 + s22

)
+ s2 (13s1 + 6s2) log

(s2
s

)

+s1 log
(s1
s

)(
6s1 + 13s2 + 6s2 log

(s2
s

))]
+O

(
1

s3

)
. (A.122)
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A.8 The asymptotic behavior of the on-shell massive 〈TJJ〉 cor-
relator

This appendix contains the asymptotic expansion of the relevant on-shell massive form factors,

that is their dominant contributions as s→∞ with s > 0 after taking into account the suitable

analytic continuation. They result

F1(s, 0, 0,m
2) = − e2

18π2s
+

e2m2

12π2s2

[
4− log2

(
m2

s

)
− 2 iπ log

(
m2

s

)
+ π2

]
+O

(
1

s3

)
,

(A.123)

F3(s, 0, 0,m
2) = F5(s, 0, 0,m

2) = − e2

144π2s
− e2m2

24π2s2

[
− log2

(
m2

s

)

−(6 + 2iπ) log

(
m2

s

)
+ π2 − 6iπ − 14

]
+O

(
1

s3

)
, (A.124)

F7(s, 0, 0,m
2) = −4F3(s, 0, 0,m

2), (A.125)

F13,R(s, 0, 0,m2) =
e2

144π2

[
12 log

(
m2

s

)
+ 35 + 12 i π

]
+
e2m2

8π2 s

[
log2

(
m2

s

)

+10− π2 + 2 i π + (2 + 2i π ) log

(
m2

s

)]
− e2m4

4π2 s2

[
− log2

(
m2

s

)

+(2− 2iπ) log

(
m2

s

)
+ π2 + 2iπ − 3

]
+O

(
1

s3

)
(A.126)

A.9 Form factors for the off-shell 〈TJAJA〉 correlator

This appendix contains the form factors involved in the decomposition of the 〈TJAJA〉 correlator,
as in Eq. (3.103), expressed in terms of scalar integrals after the tensorial reduction

R1(s, s1, s2,m
2) =

g2m2

6π2 s

[
D1(s, s1,m

2) +D2(s, s2,m
2)− 2B0(s

2,m2)− 2

+ (s− 4m2)C0(s, s1, s2,m2)

]
(A.127)

R2(s, s1, s2,m
2) =

g2m2

4π2 σ

[
2(s − s1 − s2)D1(s, s1,m

2) + 4s2D2(s, s2,m
2)

+ ((s− s1)2 − s22)C0(s, s1, s2,m2)

]
(A.128)
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R3(s, s1, s2,m
2) =

g2m2

4π2 σ

[
4s1D1(s, s1,m

2) + 2(s− s1 − s2)D2(s, s2,m
2)

+ ((s − s2)2 − s21)C0(s, s1, s2,m2)

]
(A.129)

R4(s, s1, s2,m
2) = R2(s, s1, s2,m

2) (A.130)

R5(s, s1, s2,m
2) = R3(s, s1, s2,m

2) (A.131)

R6(s, s1, s2,m
2) =

g2m2

2π2(s− s1 − s2)

[
2B0(s,m

2)−D1(s, s1,m
2)−D2(s, s2,m

2)

]
(A.132)

R7(s, s1, s2,m
2) =

g2m2

24π2s

[
2B0(s,m

2) +
2

σ2
C0(s, s1, s2,m2)

(
(s− s1) 2 + s22 + 4ss2 − 2s1s2

)
×

(
2m2

(
s2 − 2 (s1 + s2) s+ (s1 − s2) 2

)
+ s

(
s2 − 2 (s1 + s2) s+ s21 + s22 + 4s1s2

))

+
D1(s, s1,m

2)

σ2

(
5s4 − 2 (7s1 + s2) s

3 + 4
(
3s21 + 5s2s1 − 3s22

)
s2

− 2 (s1 − s2)
(
s21 + 12s2s1 + 5s22

)
s− (s1 − s2) 4

)

+
D2(s, s2,m

2)

σ2

(
− 2

(
9s2 + 8s1s+ 3s21

)
s22 − (s− s1) 4 + 4 (7s+ s1) s2 (s− s1) 2

− s42 + 4 (s1 − 2s) s32

)
+

2
(
(s− s1) 2 + s22 + 4ss2 − 2s1s2

)

σ

]
(A.133)

R8(s, s1, s2,m
2) =

g2m2

24π2s

[
2B0(s,m

2) +
2C0(s, s1, s2,m2)

σ2

(
s2 + 4s1s+ s21 + s22 − 2 (s+ s1) s2

)
×

(
2m2

(
s2 − 2 (s1 + s2) s+ (s1 − s2) 2

)
+ s

(
s2 − 2 (s1 + s2) s+ s21 + s22 + 4s1s2

))

− D1(s, s1,m
2)

σ2

(
s4 − 4 (7s1 + s2) s

3 + 2
(
9s21 + 26s2s1 + 3s22

)
s2

+ 4 (s1 − s2)
(
2s21 + 6s2s1 + s22

)
s+ (s1 − s2) 4

)

+
D2(s, s2,m

2)

σ2

(
5s4 − 2 (s1 + 7s2) s

3 + 4
(
−3s21 + 5s2s1 + 3s22

)
s2 − (s1 − s2) 4

+ 2 (s1 − s2)
(
5s21 + 12s2s1 + s22

)
s

)
+

2
(
s2 + 4s1s+ s21 + s22 − 2 (s+ s1) s2

)

σ

]

(A.134)
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R9(s, s1, s2,m
2) =

g2m2

12π2s

[
2B0(s,m

2)

[
1 +

3s

γ

]
− 2C0(s, s1, s2,m2)

σ2

(
2s2 − (s1 + s2) s− (s1 − s2) 2

)
·

(
2m2

(
s2 − 2 (s1 + s2) s+ (s1 − s2) 2

)
+ s

(
s2 − 2 (s1 + s2) s+ s21 + s22 + 4s1s2

))

+
D1(s, s1,m

2)

γ σ2

(
− 10s5 + (23s1 + 41s2) s

4 − 2
(
5s21 + 27s2s1 + 32s22

)
s3

− 2 (s1 + s2)
(
4s21 + 5s2s1 − 23s22

)
s2 + 2 (s1 − s2)

(
2s31 + 19s2s

2
1 + 8s22s1 + 7s32

)
s

+ (s1 − s2) 4 (s1 + s2)

)

+
D2(s, s2,m

2)

γ σ2

(
2
(
−4s2 + 17s1s+ s21

)
s32 + (s− s1) 2

(
23s2 − 8s1s− 3s21

)
s2

− 2
(
5s3 + 9s1s

2 + 11s21s− s31
)
s22 + s52 + (4s− 3s1) s

4
2 − (s− s1) 4 (10s− s1)

)

+
2
(
−2s2 + (s1 + s2) s+ (s1 − s2) 2

)

σ

]
, (A.135)

where s = k2 = (p+q)2, s1 = p2, s2 = q2, γ ≡ s−s1−s2, σ ≡ s2−2(s1+s2) s+(s1−s2)2 and the

scalar integrals B0(s
2,m2), D1(s, s1,m

2), D2(s, s1,m
2), C0(s, s1, s2,m2) for generic virtualities

and masses are defined in Appendix A.2.

A.10 Form factors for the Λαβ
V V amplitude

We write in this appendix the form factors G1 and G2 appearing in eq. 3.127 as contributions

to the classical trace obtained for the 〈TJV JV 〉 correlator

G1(s, s1, s2,m
2) =

g2γm2

π2σ
+
g2D2(s, s2,m

2) s2m
2

π2σ2

[
s2 + 4s1s− 2s2s− 5s21 + s22 + 4s1s2

]

−g
2D1(s, s1,m

2) s1m
2

π2σ2

[
− (s− s1) 2 + 5s22 − 4 (s+ s1) s2

]

−g2 C0(s, s1, s2,m2)

[
m2γ

2π2σ2

[
(s− s1) 3 − s32 + (3s+ s1) s

2
2 +

(
−3s2 − 10s1s+ s21

)
s2
]
− 2m4γ

π2σ

]
,

(A.136)

G2(s, s1, s2,m
2) = −2g2m2

π2σ
− 2g2D2(s, s2,m

2)m2

π2σ2

[
(s− s1) 2 − 2s22 + (s+ s1) s2

]

− 2 g2D1(s, s1,m
2)m2

π2σ2

[
s2 + (s1 − 2s2) s− 2s21 + s22 + s1s2

]

− g2C0(s, s1, s2,m2)

[
4m4

π2σ
+

m2

π2σ2

[
s3 − (s1 + s2) s

2 −
(
s21 − 6s2s1 + s22

)
s

+ (s1 − s2) 2 (s1 + s2)
]]
, (A.137)

where γ ≡ s − s1 − s2, σ ≡ s2 − 2(s1 + s2) s + (s1 − s2)2 and the scalar integrals D1(s, s1,m
2),

D2(s, s1,m
2) and C0(s, s1, s2,m2) have been already defined in Appendix A.2.
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A.11 Feynman rules

The Feynman rules used throughout the paper are collected here

• Graviton - fermion - fermion vertex

fk2
տ

fk1ր
hµν
→ = −i κ

2
V ′µν(k1, k2)

= −i κ
2

{
1

4
[γµ(k1 + k2)ν + γν(k1 + k2)µ]−

1

2
gµν [γ

λ(k1 + k2)λ − 2m]

}

(A.138)

• Graviton - gluon - gluon vertex

g bσk2
տ

g aρk1
ւ

hµν
→ = −i κ

2
δab V

Ggg
µνρσ(k1, k2)

= −i κ
2
δab

{
k1 · k2 Cµνρσ +Dµνρσ(k1, k2) +

1

ξ
Eµνρσ(k1, k2)

}

(A.139)

• Graviton - ghost - ghost vertex

cak1
տ

c̄ bk2ր

hµν

= −i κ
2
δab Cµνρσ k1 ρ k2 σ

(A.140)

• Graviton - fermion - fermion - gauge boson vertex

f

f̄gaα

hµν

= ig
κ

2
T aW ′µνα = ig

κ

2
T a
{
−1

2
(γµ gνα + γν gµα) + gµν γα

}

(A.141)
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• Graviton - gluon - gluon - gluon vertex

gcλ
k3
տ

gbσk2
ւ

gaρ k1
ց

hµν

= −gκ
2
fabcV Gggg

µνρσλ(k1, k2, k3)

= −gκ
2
fabc {Cµνρσ(k1 − k2)λ + Cµνρλ(k3 − k1)σ

+ Cµνσλ(k2 − k3)ρ + Fµνρσλ(k1, k2, k3)}

(A.142)

• Graviton - ghost - ghost - gauge boson vertex

ca

c̄ bk2
ր

gcρ

hµν

=
κ

2
g fabcCµνρσ k

σ
2

(A.143)

Cµνρσ = gµρ gνσ + gµσ gνρ − gµν gρσ (A.144)

Dµνρσ(k1, k2) = gµν k1σ k2 ρ −
[
gµσkν1k

ρ
2 + gµρ k1σ k2 ν − gρσ k1 µ k2 ν + (µ↔ ν)

]

(A.145)

Eµνρσ(k1, k2) = gµν (k1 ρ k1σ + k2 ρ k2σ + k1 ρ k2σ)−
[
gνσ k1µ k1 ρ + gνρ k2µ k2σ + (µ↔ ν)

]
,

(A.146)

Fµνρσλ(k1, k2, k3) = gµρ gσλ (k2 − k3)ν + gµσ gρλ (k3 − k1)ν + gµλ gρσ(k1 − k2)ν + (µ↔ ν)

(A.147)
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[56] C. Corianò, L.D. Rose and M. Serino, (2011), 1102.4558, * Temporary entry *.
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