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Abstract

Variants of the usual Peccei-Quinn axion theory for the solution of
the strong CP problem allows to generate more general axion-like
terms in an effective Lagrangean beyond the Standard Model. One
of these extensions involves Stuckelberg axions and (gauged)
anomalous abelian symmetries. Similar interactions are generated
by other methods, for instance by a decoupling of chiral fermions
from the low energy spectrum in an anomaly-free theory. A third
possibility is encoded in a scale invariant theory, where an axion, a
dilaton and a dilatino are the anomaly multiplet of an N=1
Superconformal theory, in a nonlinear realization.
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General Results

Effective actions of Stuckelberg-type: SU(3)xSU(2)XU(1)_ Y x U(1)’

Generalising a PQ global symmetry to a local U(1) symmetry
(Stuckelberg axion models). Predict a fundamental axion (gauged axion)
(the axi-Higgs) of a generic mass.

The mass is related to a misalignment potential which is generic.

It can cover the TeV region. Obviously, the misalignment has to be strong
For an axion at the Terascale.

Two models: MSLOM (Irges, Kiritsis, C.C.)
USSM-A (Lazarides, Irges, Mariano, C.C.) (Stuckelberg supermultiplet)

These models are built using a Wess-Zumino Lagrangean with an asymptotic and
elementary axion

Decoupling of a heavy fermion and a gauged (anomaly free U(1) symmetry
can also also be described by this class of models






A superconformal theory can generate these states due to the alignment of
the anomaly multiplet.

Also in this case we need a dynamical breaking of supersymmetry in order
to generate these states. The approach require a

Nonlinear realization of the superconformal symmetry



Axions emerge as a candidate solution of the strong CP problem

The well known solution of the strong CP problem is due to
R. Peccei and H. Quinn (PQ)

It is based on the introduction of an extra U(1) global symmetry of the
SM broken by an anomaly.
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Eg — Mg — Eg x SU(3)
E¢ — Mg — SO(10) x U(1)
SO(10) — Mo — SU(5) x U(1)
SO(10) — M, — SO(6) x SO(4)

50(6) ~ SU(4) 50(4) ~ SU(Q)L X SU(Q)R
SU(4) — M4 — SU(3)C X U(l)B—L
SU(5) — Ms — SU(3) x SU(2) x U(1)

Various effective models
E6 — SM x U (1)

E6—>M6—>M10—>M5—>SMXU(1)
E6 — M10 — M{O — SU(3)C X SU(Z)L X SU(Q)R X U(l)B_L
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The role played by anomalies and anomaly actions in QFT can be hardly
underestimated.

Anomalies describe the radiative breaking of a certain classical symmetry and
theorists have tried to use anomaly actions as a way to show the effect of the anomaly
(example: chiral dynamics and the pion, AVV anomaly)

but also have tried to cancel anomalies when these symmetries are gauged

Anomaly cancellation (for a gauge symmetry):

|. by charge assignment in gauge theory (Standard Model):
in the exact (unbroken ) phase of the theory, choose the representation
in such a way that anomalous chiral interactions cancel

2. by the introduction of extra sectors (axions, dilatons) in the form of local
actions (Wess Zumino actions)

3. More complex mechanisms such as “anomaly inflows” @

Z
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Anomaly inflow on branes
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SUB). | SURw | Uy | U(L)
Q. | 3 2 1/6 20 /5
UR 3 1 2/3 2y v
dp 3 1 -1/3 220 — 2y kip
L 1 2 1/2 | -3z
er |1 1 1 |2z | isa K
H 1 2 1/2 o X
VR.k 1 1 0 2k "
X 1 1 0 -~ N

Charge assignment of fermions and scalars in the U(1)" SM extension.
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Constraints on Abelian Extensions of the
Standard Model from Two-Loop Vacuum
Stability_and U(1)B-L
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Delle Rose, Marzo, C.C.

Perturbativity regions with g'=0.1, g=0
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D p-branes
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N=1 supersymmetry




Label | Multiplicity | Gauge Group Name
stack a No=3 SU(3) x U(1), | Baryonic brane
stack b Ny =2 SU(2) x U(1)y Left brane
stack ¢ N.=1 U(1), Right brane
stack d Ng=1 U(1)a Leptonic brane

Fr-Mp

Leptonic




1 1
/= —— — —Q )
} 3QC 2(vL+(v1

UQ3), ? U(2), uQ). Q UuQ),

Q(3.2,+1,—-1,0,0)
u(3,1,—-1,0,—-1,0)

dC(g’ 1,-1,0,0,—1) Lrges, Kiritsis, C.C.
On the effective theory of low-scale
L(1,2,0,41,0,-1)

Orientifold vacua“
e(1,1,0,0,+1,+1)

Hu(1,2,0,4+1,+1,0)
Hy(1,2,0,—1,0,—1)



The study the effective field theory of

SM x U(1) x U(1) x U(1)
SU(3) x SU(2) x U(1), x U(2).....
from which the hypercharge is assigned to be anomaly free

These models are the object of an intense scrutiny by
many groups working on intersecting branes in the past.
Antoniadis, Kiritsis, Rizos, Tomaras
Antoniadis, Leontaris, Rizos
Ibanez, Marchesano, Rabadan,
Ghilencea, Ibanez, Irges, Quevedo
See. E. Kiritsis’ review on Phys. Rep.

What happens if you to have an anomalous
U(1) at low energy? What is its signature?



Gauged Stuckelberg axions: field theory realization of the
Green-Schwarz mechanism of string theory

The gauging procedure requires an anomalous abelian symmetry
(an anomalous U(1)) and a periodic potential in order to
make the axion physical.

But first we are going to review the PQ axion

5
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Axions and the Strong CP Problem

Axions have appeared in physics in an attempt to solve the strong
CP problem of QCD.

Why is the §G G term so small?
Consider an SU(2) gauge theory

G2, = 0,A — O,A% + ge?™ AL AS

G = 0, AL, — OLAL + [Au, A G = G5, T°
A, — UAUTT + U0, U
G — UG, U™



We look for minima of the Euclidean action
1 4
S = _Tga/d XTI’GILWGMV
In a nonabelian theory a vanishing field strength is possible with
~1
A,=Uo,U

(pure gauge). Solutions of this condition are instanton
configurations, characterised by a topological number.

~ 2
~1672Q(x) = TGy G] = Treuas20u(AdaAs + S AALA)]
. 1 w5 1 2

For an SU(3) gauge theory such as QCD, similarly, the Lagrangean
then allows a total derivative term 6 GG which is a boundary term,
but cannot be neglected. For instantons

~

G =G, /d4XGé(X) = 327°n,



Therefore — There is a dimension-4 operator that we can write
down in the Standard Model (SM)

0oGG

(violates Parity and Time reversal, CP is broken)

It is a total derivative term and as such it does not contribute in
perturbation theory

Adding a total derivative term gives a zero momentum vertex in

perturbation theory, but it contributes non-perturbatively
How?



If we consider an instanton (Euclidean) configuration, then the
contribution to the path integral is

2
_ S, — L [ d*xFF —8m

~ @ — e 48 — e &

» These configurations, at small coupling, give a negligible
contribution

» They are solutions of the classical eq. of motion of QCD,
which is scale invariant at classical level
However, the solution of the equation G = G involves an
iIntegration constant, the size of the instanton.

» T he solution breaks scale invariance, because of the
Integration constant, which remains arbitrary.
It tells us where the energy of the configuration is localized.
At tree level g is constant, but at 1-loop it runs. Scale
Invariance is broken by renormalization.



In the functional integral we need to sum over all these
configurations.
Small instantons (R)

» — large scale A ~ 1/R
» — small coupling g()\) <« 1

_ 8n%
» — large suppression in e &°) . The contribution is

perturbative, since g is small, but it is negligible.

The instanton contribution to the QCD action is dominated
by large instantons (g(A) large). Unfortunately the
contribution is non-perturbative.



» The running is controlled by the size of the instanton,
g =g(M)

In the functional integral we need to sum over all these
configurations.
Small instantons (R)

» — large scale A ~ 1/R
» — small coupling g(\) < 1

871'2

» — large suppression in e &™) . The contribution is
perturbative, since g Is small, but it is negligible.
The instanton contribution to the QCD action is dominated
by large instantons (g(\) large). Unfortunately the
contribution is non-perturbative.

» The saddle point approximation is not valid any more since
the action is O(1).



The partition function can be written in the form

- o872 /g2(N)—ifo
and summing over instantons/anti instantons

Z ~ e 8m/8° () s o
I
0o is not directly observable. One expects the energy density to

dependen on 6y Notice, however, that QCD has a U(1)4 anomaly,
due to fermions. There is an axial symmetry

q — qe"°

and the integration measure is not invariant

DgDg — DgDge 2/ FFd'x
Therefore 6 is not physical because it can be shifted by a field
redefinition

0o — Oy + 2cx



But also the quark mass term gets a phase under the chiral
transformation

g Magr + h.c. — g Mgre®® + h.c.

therefore
argM — argM + 2«

and
0 =0y — argM

is invariant under field redefinitions. If we have fermions in
complex representations of the gauge group, 6q is affected by field
redefinitions and is not physical, but 6 is physical. This can be
generalized to nf fermions.

6o — 6o + 2nra, ArgdetM — ArgdetM + 2nra

0 = 60y — ArgdetM
Is physical.



But also the quark mass term gets a phase under the chiral
transformation

g Mgr + h.c. — C]_LMqRe2ia + h.c.

therefore
argM — argM + 2«

and
0 =0y — argM

is invariant under field redefinitions. If we have fermions in
complex representations of the gauge group, 6g is affected by field
redefinitions and is not physical, but 0 is physical. This can be
generalized to ns fermions.

6o — 0o + 2nra, ArgdetM — ArgdetM + 2nra

0 = 0y — ArgdetM
is physical.



Experimentally 6 is very small. We can set this value to zero
assuming a cancellation between

» 0 ( reated to gluon dynamics )
> ArgDetM ( related to the electroweak sector, Yukawas and
Higgs )
We can easily derive some properties of the vacuum energy as a
function of 6.

o VE(®) _ ’/D¢e—5[¢]—32;29fFI5d4x‘

< /D¢‘e—5[¢]—32;29f/:l:_d4x‘ _ e—VE(@:O)

T E(9) > E(0)

lo

It is also even in 0: E() = E(—0). Periodic of period 27.




We can eliminate the 6y term and bring it completely into the
fermion Mass matrix.

—|—i00/2 —i(90/2

dL — qL¢€ dr — 4rE€

Then
M%e—iQO/ZMe—i90/2

It can be generalized to

f +iQfbo/2

qg. — qLe —iQrbo/2

qf? — qRe€

as far as
Ter =1

(global phase is 6g).



QCD with light quarks has a chiral symmetry (u,d)
U2)L x U(RQ)r = SU(2) x SURR)r x U(1)y x U(1)A
broken by quark condensates and anomalies to
SU(2)y x U(1)y

with U(1)y=baryon number. Three NG-models 7+, 70 of the
broken chiral symmetry. We try to fix the low energy effective
action using the left-over global symmetries

Z[J] :/D¢eiSQCD(¢)+J¢ :/Dﬂ_eiS(ﬂ',J)

A



U — eiﬂ'- T/fr

L= %2 (77 |0.U'0"U| +2B0Tr MU' + M'U|)

f7r2 _ :
E(0, ) = —7280 2ReTr ([m“ 0 ] e’9/2ExpL [

0 mgy fr
0 —mg\° . 0 0
— m72T7‘7T2\/cos2 5 + (ZZ T :Z) sin’ 5 coS(7;—7T
where 0
- _ Mmg —my 2 Y
sin(¢) = P sin® 2

A minimum is obtained for (vev) 70 = £.¢(0) (with
m2 = Byo(m, + my)) Then

0 0
0 —qV

s

4m, _
E(H)m2f7rz\/1( MuMd sm2€

when the mass of any of the quarks goes to zero, the
6-dependence disappears.



For 0 =0 E(0) = —m2f?

Possible solutions. Can we use any existing SM symmetry?

After we turn on the Yukawa's only B and L are left as global
symmetries of the SM.

In the SM we have an anomalous symmetry B, baryon number and
L, lepton number (B-L is anomaly free).

But B is not anomalous respect to SU(3)., whence it cannot
produce a FzF, (gluon).

We then require an extra U(1)pg global symmetry.

There is another solution: if Y, = 0 then we could rotate:

Up — e UR

This symmetry would be anomalous under SU(3). and we could
erase the HFgl—:g term.

Notice that in the electroweak case we could also consider a " weak
CP” problem ~ QwaﬁW



In fact B is anomalous under SU(2),, electroweak quark doublets
therefore could be redefined under U(1)paryon, canceling the
corresponding weak-CP violating term.

A second type of protection from 6y, contributions come from the
fact that the theory is in a Higgs phase. The contribution is

—8W2
eew(W)? which are screened due to the masses of the W'sand Z.



KSVZ axion(Kim, Shifman, Vainshtein, Zakharov)

A pseudoscalar a(x) that shifts under a global U(1)pg symmetry
(NG mode) a(x) — a(x) + af; can do the job.

Use the Lagrangean

—8 aota + ;é);) FF + iQY"0,Q + Mo QL QR

¢ has a typical mexican-hat potential, with (¢) = vpg. Then
a(x)
B(x) = PQ+P "Ypo and

A = j_a
\ﬁngLQR ~ Avpge "Pe QL QR

We perform now a chiral field redefinition

)Y _
% / — e 2VPQ ’75 o V / /
R— Q Q NG PQ R Qr

. We will generate a term 08 = 555— FF since the field

redefinition is anomalous under U(1)pQ




Now we can integrate out ) and p. We are left with an interaction

IV pp_ ) pp
327T2 VPQ 327T2 fa

for N quarks Q, with %2 = f,.



DFSZ axion (PQ), (WW). This is generated using only scalars.
HU7 Hda ¢

Up to dimension-4 involves three mexican-hat types of potentials
for H,, Hy and ¢, and an extra contribution

V' which depends on

[ Hul?, [Hal?, |62, |HuHY (2, Hy - Hal?, Hy - Hag?

Collecting the phases, one can identify the NG mode of the U(1)pg
using the condition that it has to be orthogonal to the hypercharge
There are 3 phases. One of them will identify the Goldstone mode.
Orthogonality respect to the Goldstone of the Z boson is found by
looking at the bilinear mixing MzZ,,0" Gz

v, i) vy 342 V,
Hu:—ue VPQ Hy = —e 'PQ ¢:—¢e VPQ

V2 V2



2 2

Vd
dGp=-1 qu=2-5 q=2-3
v2:v3—|—v§

absence of mixing with Gz: g2vZ — g5v5 = 0. v is the electroweak
vev (246 GeV).

By requiring that a(x) is canonically normalized:

VpQ = vé + v?sin 23, with sin 8 = *u and cos 8 = =¢. Notice that
a(x) is associated mostly to ¢.

From the Yukawa couplings one gets

—YuqrHuqr — YaqrHadr
_ Vy 2iasin?p-2 - V4 2iacos®fB-2
—YuuL—ue "PQ UR — Yqyd —e "PQ dp

V2 V2

Doing a chiral redefinition

§) ~ C
0L = aFF q; v* D N 0, agy"




1
fa

1 ~ 1
L = L‘,QCD(H = 0) + QMJ“ -+ (i — (9) FF + 55%38“3

f, 3272

we can clearly redefine a(x) in order to absorbe 6.
Since f, is very large, then we can treat a(x) as an external source.
To determine its potential, we can then take V/(0) with § — a/f,

d mg,mygy ] d
V(2= —m2f2, 1 2 (2
(fa) M I \/ (my + mg)? >IN <2fa)

from which one can extract the axion mass

7'('](2 mymg

a 27 (my, + my)?



The breaking of the PQ symmetry 2%2% %l
takes place at a large scale f_a, but

The wiggling of the PQ potential a --»>-~<Yarvr4
Occurs much later, at the QCD phase
transition Y

For a PQ axion a: m=C/f,, whilethe aFF interaction is
also suppressed by : a/f, FF with f = 1079 GeV



PVLAS (INFN)

CAST (Cern)




Optical activity

1 1 | ~
L — _ZF,UJVFMV —|— ia,ugpalusp _I_ ZggpFﬂyFluy’
.
V-B =0,
%_If +V x E =0, PVLAS-type

¢ Op = —gFE- B,
| VxB-2% - _GB% 1 3E x Vo,

L. Carcagni’, C.C.

1. 1.
(E — =gpB) =— =gp B, 1
% | 2 D=F — iﬁng,
(B + ?gszE) :?590 LE. 1
H =B+ §§80E
1.
AFE = E(L) - E<O) — 59A90H(0>' Optical activity



Gauging axionic symmetries
The chain of anomalous U(1) symmetries requires
- One Stuckelberg term for each anomalous symmetry

- The U(1)’s are in a massive (Stuckelberg phase)
- One linear combination of them generates the anomaly free hypercharge

Possibility of describing axion-like particles.

Such types of particles have been conjectured in several phenomenological

analysis.
The mass of the particle and its interactions with the photons are independent

quantities.

Our suggestion: use anomalous abelian (gauge) symmetries

This brings us to a mechanism of cancelation of the gauge anomalies
of “GreenSchwarz” type






Compared to a Peccei-Quinn axion, the new axion is gauged

For a PQ axion a: m=C/f,, whilethe aFF interaction is
also suppressed by : a/f, FF with f, = 109 GeV

In the case of these models, the mass of the axion and
its gauge interactions are unrelated

the mass is generated by the combination of the Higgs and
the Stuckelberg mechanisms combined
The interaction is controlled by the Stuckelberg mass (M, )

The axion shares the properties of a CP odd scalar

B
—_— i — __.._
B



Asymptotic axions for Wess Zumino
actions and gauge invariance

1 - .
L=—-F3+ iy (O + igBys Bu)Y

4
L=~ F}— JFi+iy" (0, +igadu +igp1°B)y

Using a Stuckelberg axion and the inclusion of local counterterms

B b
BM_>BM 8M9 CLBBBMFB/\FB—'_CLBAAMFA/\FA

b— b+ MO

1
5((‘%1) + MB,)*



One then considers the effective action

1 1 1 . , b
L= —Zng + §(BM + M%W + ipy* (0, + igB7ys )W + an=rFB A i

where the anomaly generated at one loop level by the fermion/
removed by the Wess-Zumino counterterm

b
n—Fp NF
An o '8 B

Somehow, this mechanism is viewed, from the point of view of
QFT, as the mechanism of “Anomaly Cancellation”

But anomalies are not cancelled by local

D One could go
counterterms. One should notice that the SN g
mechanism of “anomaly cancellation”, in this case, is

== ¥o a gauge where
based on introducing an extra field degree of / _
freedom (b(x)) b(x)=0.
In what sense, then
we cancel the anomaly!?



N s
hd \Y. (~J J
B B b f - b c ..X
INANG XS N By 2N 03 }'"
..-’l L
3 -

DN NN = !

O O - -
A (a) & &6 (c) A (d) B

One loop vertices and counterterms in the R gauge for the A — B model for the WZ case.

A
b red
L,— - (= -
B
.'\ /\J l{-
(b) A

A typical Bouchiat-Iliopoulos-Meyer amplitude and the axion counterterm to restore gauge

invariance in the R¢ gauge in the WZ effective action.

Ca bFy AFy+ Cbp

BrFo AF
1M, oM, BB

Lwz =



Variants: Higgs-axion mixing
There are some
variants of this Lo = 18 +i9aaaBP — 3F3 — 7F3 + (@b + My B, — M4 - Ly
Lagrangian which may :
help us clarify this issue
In this case we consider a model with 2 U(l)’s. The two gauge fields are A and B.The fermion has

axial vector couplings to B and is vector coupled to A.
We have BBB and BAA anomalies.Vector field B is massive, A is massless

+1._I",“(()“ + I.(:'A“ + I"(j];"vr‘sB“)l.f" = /\[L.’[J(,T‘)C“R = /\11;'1{(:) ‘l!‘ll

B mass generated via a combination of the Stuckelberg + Higgs mechanisms.  |(3, +iggquB,)o)*

.

1.
¢ s the Higgs field +5(Gub+ My By)* — A(I¢]° — =)

_ e

B field massive

Ly C . by the Higgs and
Ly = \‘[\bF\ A Fa+ {}[Bb Fp A FB. O (Ly+ Lgn) =0 Stuckelberg
wmechanism
Higgs-Axion Mixing in U(1) Models: massless axi- :
Higgs o e— I -
= (4 LD1)° + (()“cn) 5 (O b)* + (’l[ + (gpgpv)?) B,B* — —m]o;
‘ +B[((}u(‘[b+l(11}QBC) )
OZ—(1+O F10,) ,
v~

Goldstone mode is a combination of
Stuckelberg field and CP odd part of
the Higgs



1 - qiail T . -
Ly = 5 (Guxp)” +3 (uGr)” + 5 (Ouhy)” + 5*‘”1733113“ - 5’"?”? m, = vV2,
+MpB"9,G
The mass of the B gauge boson is a combination
| physical axion (axi-Higgs) XB of the Higgs and the Stuckelberg mechanism
| Higgs hy
| massive gauge boson B, 6 = arccos(M; /Mpg)
» 1 oy ' ;[ —cosbp sinfp
a8 = m(_M' 92+ ap9pvh), (62,b) — (xB,GB) V= ( sinfly,  cosfy )
1

GB = ‘[ (quBva” 2 “[l b)

4B9Bv &
Mg X8 ¥ 3,CP

b=axp+ aGpg =
The Stuckelberg has a gauge invariant physical component, X5
A massive axi-Higgs
(periodic potential)

ordinary Higgs potential V' = p%0"¢+A(6"¢)’
' £ —i b .
V/ 2% bl ((ple_qugB‘“l) g /\1 (QL’G quBM ) E= 2)‘0 (O (D) (O —Wpdpyr \r ) +c.c.

extra potential allowed by the
symmetry

1 M2
N TR m o
e, =4 —+ + :

X u3 )2 )

= —5av’gp.  massive axi-Higgs
7

~




L= — ltr G G" — %tr W, WH — lF’ Frvl
(9, + 292 W+ zq(H" g AV H, ) u|2 — (8, + zg2 T'WE+ qu Ha) g Al )Hd|2 Generic
QLiU“DuQLi =+ UR,;O' Duum + (l'-TRZ-E DudRi extension
L},0"DyLi + €5o"Dyens + v5ho"Dyuvs
"'UHTTZ (QLio*ur;) +’7‘ng1r (QL0dR;) + c.c.
flJHT (LLzU €Rrj) + %JH ( 10 VRJ') +c.c.
1
- 3 > (8ua’ + gM]AL)? + By 777 AL AT F,

+ + + +

+ Y (Drd" tr {GAG} + Fra' tr {W AW} + Crmnd' F™ A F™)
I
+ V(H,, Hy.ad").

The gauge symmetry under which this Lagrangian is invariant is

SU(3)e x SU(2)w x G, Gy =[JU()

Gauge kinetic =1
Stuckeberg mass terms
Chern Simons abelian interactions SU(3) x SU(2) x U(1)q x U(1)y x U(1) X U(1)g.

purpo Al Am n
Ejn€ A,;,Au FpO' Abelian CS terms



Higgs sector

Il .,
D, H,|> + |D,.Ha|* + 5 > (9ay + My A"
I

DﬂHU = ((.9# ._I_ ng (T'*'I‘/"*’ + T—“,‘/’—) _I_ 3g27-3"""73u

NG >

,, Z , e 2 2
D#Hd = (dy -+ ﬁgg (T+H’ + +T-W ) + 257’3“ + §gyAZ + 5 Zqég; Ai) Hd
I

i i
+ §gyA}f t3 > diar AL) H,
I

Typical mass terms for the gauge bosons are generated both from
the Higgs and the Stuckleberg contributions

QZA[I AI gQU.}y +QYA +EQUQ AI)

L
+5 (-0 Wa + ov A+ aar ALYl
I



There will be bilinear mixings in the broken (electroweak) phase
Zr 9, { LCU+ £.00+ 3 g M,og{,a.;} +3" 7440, { FuaC" + f20C 4 ar MIO}J,a}} ,
I J I

We can extract the NG modes by a rotation, identifying 1 single physical axion

ImH? X
( ImH) \ / G \
= OX | GY
@

A

The scalar potential has an ordinary 2-Higgs doublet part and an extra contribution

Veg = 3 (W2HIHa + Naa(HUHL)? ) = 2N HUHL) (HYHa) + 2X, 0| HY 7o Hal

a=u,d

‘/P@ = b (HlHde—'iXI(Qt{_qcli)%) + /\1 (Hl]:Hde_iXI(q{‘—qé)%)Q

+ No(HIH,)(H} Hye™ =105 ) 1 \o(HIH,) (H] Hye™ =130 4 c.c.



The Standard Model with 1 extra anomalous U(1) and an axion

f 1 Q|lug |dg | L | er
q" | a5 | a0, | 4, | af | ¢,
The effective action has the structure given by
7 | sue). | sv@, [vay | o),
Q 3 2 1/6 a3 S = So+SvuktSun+Swz +Scs
UR 3 1 2/3 qg + qf
dr 3 1 -1/3 | ¢ —d7
L 1 2 -1/2 qP
eRr 1 1 -1 | P —4q7
H, 1 2 1/2 qB
H, 1 2 1/2 q7
Y B B SU(3) SU(2)
SeffSO+B\’\< +Bv‘< +B\’\< —|—B\’\Qj _|_B _|_
Y Y B SU(3) SU(2)
Y B B SU(3) SU(2)

Y Y B SU(3) SU(2)



Axionic contributions

Swz = CBB<bFB N\ FB> -+ ny<be AN Fy> + CYB<bFY A\ FB>
+EOTr[FY ANFY]) + D(bTr[FC A FC)),

Abelian/non-abelian Chern Simons terms

Scs = +d1<BY/\Fy>—|—d2<YB/\FB>
_%Cl<€uyp013M(jSLK2)>_+_C2<€uup013M(75LK3)>-

vpo vpo

- I |
ci?) = W, (FWp + 3928 kagw,ﬁf) + cyclzc] ,

1 | a 1 aoc C ‘
C’E,Z)@) 6 G, (nyp + gggf b GZGP) + cyclzc] :

With a single anomalous U(1) these terms care not essential.



V = VPQ<HU7 Hd) + VP@(Hua Hd7 b)

Ve = peH[H, + pGH Ha + N(HIHy)? + Naa(H Y Ha)? = 2\ ua(HLH,) (H Y Hy) + 27, 4| H L 7o Hy |

b

Vpg = Ao(ﬂsze—igB(qu—qd)ﬁ) + )\1<H1]:Hd6_i9B(Qu—Qd) 237 )2 4 )\2(H$Hu)(Hine—igB(Qu—qcz)ﬁ) +

N3 (H Hy) (H} Hye 980000257 ) 4 hc.,

Hf HY
H, = u . H; = o |

This potential is characterized by two null eigenvalues corresponding to two neutral Goldstone modes
(G}, G2) and an eigenvalue corresponding to a massive state with an axion component (). In the

(ImHY,ImHY, b) CP-odd basis we get the following normalized eigenstates

1
Gy = \/ﬁ(vd,vu,m G(l) ImHg
vy + Uy
GZ | =0X | ImH?

1 (94 — qu)vav? gB qd — qu)vivy

G(Q) - d " \/o2M v2 + vi

\/Q%(Qd — qu)?viv2 + 2M? (v + v2) ( \/ V2 + v3 f02 4 02 X b
1
X= <\/_M’Uu, _\/_MvnbgB (Qd - Qu)vdvu> (14)

V9B (@ — @)?0303 + 2M2(03 + v3)



vd Uy 0 \

v v
OX _ 95(94—qu)vavy, 98(q4—qu)v5vu V2 Mo
- v/ 9%(00—qu)2v302+2M202  vy/g%(qa—qu)?v3v2+2M202 /9% (04—qu)? V302 +2M 202
V2Mwv, _ V2Mug 9B (9d—Gqu)vqvu
\/9]25;(Qd—Qu)203v62l+2M2v2 \/g%(qd—qu)Qv%v?l—}—QMQvQ \/QJQB(Qd—Qu)2U%U?l+2M2v2)

where v = /02 + v3.

X inherits WZ interaction since b can be related to the physical axion y and to the Goldstone modes

via this matrix
b = O}G)+ 0%Gh + OXx, Stuckelberg axion

Physical axi-Higgs (gauged axion)

O%‘llde + O;fQImHu + O;f3b.

>
|



The phase-dependent potential has a well-defined periodicity. To identify the corresponding phase in
the Higgs-neutral CP-odd sector we introduce a polar parametrization of the neutral components in

the broken electroweak phase

HEd) ] ifgﬂ
HS = f(f vu+ pl(x)) € e Hi === (V2va+ pi(z) ) e V4, (22)

where we have introduced the two phases Fy, and Fj of the two neutral Higgs fields. The potential is

periodic with respect to the linear combination of fields

9(1) = gB(Qd QU)b( )

0
oM F,(z) +

\/-v 5 dFd(I) (23)

and using the matrix OX to rotate on the physical basis, the phase describing the periodicity of the

potential turns out to be proportional to the physical axion, modulo a dimensionful constant (o)

0(z) = LI) (24)
%
B 2u,vgM . .
ox = Replaces f_a of Peccei Quinn

\/gB(qd qu)? v"v~ + 2M2 (va - vu)

Notice that x (or, equivalently, #) is gauge invariant as one can check quite directly. In fact a U(1)p



The PQ axion feels the QCD vacuum via the a Gé

interaction fa
The angle of misalignment is 9 _ CL(Q:) PQ aXion.
k Vacuum misalighment
-3 —4
010 at the QCD phase
- transition
M'*”
ry -—>
kg
If an axion has charges both
under SU(3) and SU(2)
TT—— — we could consider the

possibility of sequential
misalignments. The dominant
misalignment clearly comes
from the largest potential



(a) (D)

gg=0.1, M;=1TeV, MLSOM charge assignment = f(-1,-1.4)
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several mass values. Here, for the PQ axion, we have chosen

G. Lazarides, A.Mariano, C.C.



Since themass is an independent parameter, you can also

Consider the axi-Higgs tobe in the GeV range.
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Study of the branching ratios of the axi-Higgs. We analyze the dependence on the free

(a)

(b)

tanp = 40, gp= 0.6, M, = 1 TeV, f(-1,-1,4)

ot bb
F YY .
7 i
L e ;2
oy i
- 10 100
mX[GeVJ
tanf3 = 10, gg=0.6, M;=1TeV, f(-1.-1.4)

bb

L ,."!Z Y
‘ {

1 10 100
m, [GeV]

parameters  9p,tan .

Axions from Intersecting Branes and Decoupled Chiral Fermions
at the Large Hadron Collider

M. Guzzi, C.C.
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Conclusions

Gauged Axions are an interesting avenue for physics BSM
They can be framed in a completely supersymmetric scenario

In a local formulation these theories predict a new (gauged)

Axion, an anomalous extra Z prime. In the supersymmetric case
two forms of dark matter.

The issue of the UV completion of anomalus theories
(FROM A FIELD THEORY FRAMEWORK) remains still open.
Similar features appear in gravity, in the trace anomaly, for instance.

We are starting to discover the physical implications of anomalies

using more dynamics than geometry.

How to imbed these formulations in more sophisticated theories such as
gauged supergravities remain open.

Soon or later, these formulations have to be described
By effective actions either of MLSOM-type or of the USSM-A



BACK UP



Anomalous extra Z prime

"~ 4cos? Oy

 4cos O

DH =
tan Oy = gy /go. ,
MZ —
2
T 2 2 zZ' —
MZ’ MZ 2
5MZZ’ —
1
M% = Z <2M12 —1—921)2 +NBB — \/(2M12 —g2’U2 +NBB)2 +492$QB>
~ g'v* — igngB L_g2x23 (Ngp — ¢°v?)
-2 M2 4 Mp o8 VPR ’
1
M3 = 1 ( M} + g*0* + Ngg + \/(2M12 —g202+NBB)2+492:c23)
N
N 2 BB
~ MP+=LE.
Npp = (¢82v2+a5?v3) 95, ap = (aBvi+qivd) 95

M. Guzzi, C.C.
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Armillis, Delle Rose, Guzzi, C.C.

Anomalous U(1) Models in Four and Five Dimensions
and their Anomaly Poles

" Vﬂ_’k] v’ k,
) VAN 9 AV NN
A A
1 = | gk + '
p — | 4 — y
N
DAY P =KV p
k

A())\MV = Al(kla kQ)g[kla s, v, )\] + A2<k17 k2>8[k27 W, v, )\} + A3(k17 k?)g[kla k?a 22 )\}kly
+ A4(k17 k2)€[k17 k27 122 )\]kg + A5(k17 k2)€[k17 k?a v, )\]klli + Aﬁ(kla k2)8[k17 k27 v, A]kl;

Ai(kike) = K-k Ag(ky, ko) + k5 Ag(Fa, ko), As(ki ko) = —Aalks, k)
AQ(kl,kQ) - k’%A5(l€1,]€2)-|-]€1']€2A6(l€1,l€2), Aﬁ(k17k2) - _A3(k27k1)'

Rosenberg, 1963



Ai(s,s1,82) = — : + : {(I)(Sla 52)8182 (82 — 81) + 51 (82 — $12) log [%]

472 8m2co S
592

—55 (51 — 512) log [;] } ;

Nothing specific emerges from this computation

1 _ , y. 14+ py 2
B(z,y) = X{2[L22<—px>+m2<—py>}+1n51n1+gx+1n<px> In(py) + = |.

where s = k?, 51 = ki, s = k3, s19 = ky - kg with 0 = s%, — 5159



The vertex in the longitudinal /transverse (L/T) for-

mulation and comparisons

‘%/AMV ::_;EE [LLﬁLAMV__ L@ﬂFAMV],

ST

(with wp = —4i/s)

W7 (ke, ko) = wl (k2 K2 k3) ¢ (y, ko) + w0l (K2 K2 k2) 150 (K, k)

ALV ALV

+‘IUT (kQ k kg> Aﬂy(kl,kg)

The anomaly is associated to a longitudinal component, which has a pole:
the anomaly pole (1/s). The transverse sector does not contribute to the anomaly.

A
In the on-shell case (two photons on shell) AM(5.0,0) = Wian(5,0,0) = ———* [ty kg, 1],

T2 5






