

Thirteenth Marcel Grossmann Meeting - MG13 Stockholm, July 1-7, 2012

Ivan De Mitri

Università del Salento and INFN - Lecce, Italy

for the Pierre Auger Collaboration

Outline

- The Pierre Auger Observatory: the physics case and the hybrid detector
- Recent results on:
 - Energy spectrum
 - Mass composition
 - Arrival directions
 - Search for UHE photons and neutrinos
 - Hadronic interactions

Investigating the Ultra-High Energy region

Physics Goals

- Sources and Propagation
- Energy spectrum at UHE
- Mass composition

Need for huge exposures in order to have reasonable statistics

H. Bluemer et al, 2009

The Pierre Auger Observatory

Argentina

Investigate cosmic rays with E $\gtrsim\!10^{17}~eV$

- + Energy spectrum
- Mass composition
- + Arrival direction

The Surface Detector (SD)

The Fluorescence Detector (FD)

- 24 telescopes in 4 sites
- Field of view:
 0-30° in elevation
 0-180° in azimuth

duty cycle ~ 12 - 15%

- DAQ *scheduled:* clear and moonless nights

- **on-time fraction:** weather conditions + DAQ, detector and communication system efficiencies

The hybrid concept

- energy proportional to the signal S(1000) at 1000 m

observation of *longitudinal profile*calorimetric energy (almost independent of hadronic interaction models)

SD and FD combined in the *hybrid mode* (i.e. FD + at least 1 SD)

- accurate energy and direction measurements
- complementary mass sensitive parameters
- calibration of the energy scale for SD events

using golden hybrid data (FD + ≥ 3 SD stations)

Calibration of the SD energy scale

SD energy calibrated with the calorimetric one measured by FD (almost independent of the hadronic interaction models) using the sub-sample of golden hybrid data

R. Pesce for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4809

- FD energy scale: 22% (dominated by Fluorescence Yield)

Measurement of the energy spectrum

SD Exposure (01/2004-12/2010)

- geometrical calculation (~ 21000 km² yr sr)
- syst. uncertainties: ~ 3%

Hybrid Exposure (11/2005-09/2010)

- time-dependent Monte Carlo simulations
- syst. uncertainties ~10% (6%) at 10¹⁸ eV (10¹⁹ eV)

Measurement of the energy spectrum

- Ankle: may indicate a change in the origin of UHECR (galactic to extragal. composition)
- Flux suppression above $10^{19.5}$ eV found with 20 σ significance

Mass composition with FD

X_{max} and RMS(X_{max}) measured from the longitudinal profile observed by FD

- Break of the elongation rate at ~ $2.4 \times 10^{18} \text{ eV}$
- from light to heavier composition at high energy
- similar indication from RMS(X_{max}) and measurement using SD data

significant departure from the predictions of the hadronic models would modify this interpretation

P. Facal for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4804

Mass composition with SD

From the <u>Surface Detector</u>:

D. Garcia Pinto for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4804

Ivan De Mitri for the Pierre Auger Collaboration, XIII Marcel Grossmann Meeting, Stockholm, july 6 - 2012

E [eV]

Mass composition with SD

Muon Production Depth (MPD): the depth, measured parallel to the shower axis, at which a given muon is produced. It can be obtained from the SD signals

Geometrical delay (t_g) : The time difference between the arrival time of the muon and that of the time-reference shower plane

244 SD events E > 20 EeV $55^\circ < \theta < 65^\circ$

Arrival direction and anisotropy

Search for anisotropy using nearby AGN (Veron-Cetty Veron Catalog)

28 / 84 events (up to June 2011)

E > 55 EeV $\psi = 3.1^{\circ}$ $d_{\text{max}} = 75 \text{ Mpc}$

12 events inside a window of 13º close to CenA

The Pierre Auger Collaboration, Astroparticle Physics 34 (2010) 314–326 K. H. Kampert for the Pierre Auger Collab., Highlight at ICRC 2011

Arrival direction: Centaurus A (aka NGC 5128)

Search in the direction of Cen A, the closest AGN (at 3-5 Mpc)

Excess of correlating events at large energies

Large Scale Anisotropy

Upper limits on the equatorial dipole component start probing anisotropy models

H. Lyberis for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4805

Data on the phase of the first harmonic modulation in right ascension suggest an energy dependence

Search for UHE photons

UHE photons mainly produced as:

- secondaries of the photo-pion production (GZK effect) of nuclei

photon fraction at Earth~ 0.1 - 1%

- product in top-down models for UHECR acceleration

photon fraction at Earth ≈ 10%

Search for photons with hybrid events

- FD:
 - Deeper development of the air showers

Larger X_{max}

- SD:
 - Smaller detected signal at a given distance
 - Fewer triggered stations

$$S_b = \sum_i S_i \left(\frac{R_i}{1000}\right)^4$$

- S_i : station signal [VEM] R_i : station distance to the shower axis [m]
- details on S_b : G. Ros et al., arXiv 1104.3399

proton

M.Settimo for the Pierre Auger Collaboration, ICRC 2011, arXiv: 1107.4805

Search for photons with SD

Different air shower development for photon primaries:

- deeper showers
- electromagnetic component
- Events observed by SD-alone
- radius of curvature R and risetime $t_{1/2}$ at 1000 m used for photons identification

Deviations of data from the mean value of R and $t_{1/2}$ expected for photon showers combined with a Principal Component Analysis

Data sample: Jan 2004 - Dec 2006

No photon candidates found

Upper limits to photon flux

E ₀ [EeV]	Νγς	$\begin{array}{l} \phi_{\gamma}^{95CL}(E_{\gamma}>E_{0}) \\ [\rm km^{-2}sr^{-1}y^{-1}] \end{array}$
1	6	8.2 × 10 ⁻²
2	0	2.0 × 10 ⁻²
3	0	2.0 × 10 ⁻²
5	0	2.0 × 10 ⁻²
10	0	2.0 × 10 ⁻²

Impact of systematic uncertainties

(Exposure, ΔX_{max} , ΔS_b , Energy scale, hadronic interaction model and mass composition assumptions)

$$^{+20\%}_{-64\%} (E_0 = 1 \text{ EeV})$$

 $^{+15\%}_{-36\%} (E_0 > 1 \text{ EeV})$

Upper limits to the integral photon fraction assuming the Auger Spectrum 0.4%, 0.5%, 1.0%, 2.6% and 8.9% @ E>1, 2, 3, 5 and 10 EeV

M.Setimo for the Pierre Auger Collaboration, ICRC 2011, arXiv: 1107.4805

Search for neutrinos

Neutrinos/hadron discrimination:

- inclined events (elongated footprint at ground) with SD signals typical of
- young showers (large contribution of em component)

No candidate found so far

Limits to the diffuse neutrino flux

and to point-like sources

as a function of their declination

The Pierre Auger Collaboration, Astrophysical Journal Letters, in press, 2012

Measurement of the p-Air cross section

[qm]

Cross section (proton-air)

The exponential tail of the X_{max} distribution is sensitive to proton-air cross section.

- A systematics
- Energy scale
- Hadronic models + simulations
- Composition:

< +10 mb for < 0.5% of photons -12mb (-80 mb) for 10% (50%) of He

R. Ulrich for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4804

From p-Air to p-p cross section

By using the Glauber formalism:

R. Ulrich for the Pierre Auger Collaboration, TAUP 2011

Test of hadronic interaction models

J. Allen for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4804

K.H. Kampert for the Pierre Auger Collaboration, Highlight talk ICRC 2011,

T. Herman-Josef Mathes for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4807

HEAT

Three additional telescopes at the Cohiueco site to look up to 60 deg in elevation (closer showers).

Infill array

42 additional SD detectors with 750 m spacing close by the Cohiueco site

T. Herman-Josef Mathes for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4807

AUGER Muons and Infill on the Ground Array AMIGA

Infill SD tanks (see previous slides) and scintillator muon detectors 2.3 m below ground in the Cohiueco area

AUGER Engeneering Radio Array: AERA

Detection of shower **radio emission** in the VHF band with an array of 160 (21 already installed) antennas on a 20 km² area close by Cohiueco

B. Wundheiler for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4807

B. Revenu for the Pierre Auger Collaboration, ICRC 2011, arXiv:1107.4807

Many R&D activities related to the detection of shower microwave emission: **AMBER**, **EASIER**,

FDWAVE, MIDAS

New technologies for a novel tank design and a new telecomunication system for AUGER upgrades and/or a new giant UHECR detector

F. Sarazin for the Pierre Auger Collaboration et al., ICRC 2011, arXiv:1107.4807

Interdisciplinary activities and ... Serendipity

Summary

Energy Spectrum Measurement

- Ankle position (10^{18.62} eV) and flux suppression (10^{19.4} eV) measured with high accuracy using SD and hybrid data

Arrival Direction

- **anisotropy** of the arrival direction of CR with E > 55 EeV measured with a p-value of 33%. Directional search and large scale anisotropy studied.

Mass Composition

- The <X_{max}> and the RMS(X_{max}) vs E indicates a **change from light to heavier** composition for increasing E. Interpretation of results relies on hadronic models. Upper limits on **photon** fraction and **neutrino** fluxes

Hadronic Interactions

Measurement of the **p-Air cross section** and estimate of the **p-p cross section at 57 TeV** in c.m.s. **Muon deficit** in model predictions compared to data

Enhancements

HEAT and Infill allow **lowering the energy threshold** down to about 10¹⁷ eV **Muon detector** composition/hadint studies

R&D activities

Test of new detection techniques (radio, microwave) are in progress

Interdisciplinary science,