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Foreword

These notes are conceived to present the problem of describing many-body systems in Quantum Mechan-
ics. The public to which these notes are addressed is that of the graduate students of the Physics course.
I give for granted a basic knowledge of non-relativistic Quantum Mechanics and its simple applications
such as the solution of the Schrödinger equation of a particle in a potential, the quantization of the
angular momenta and the rules to sum them, the treatment of the identical particles, their classification
in fermions and bosons, and the related quantum statistics.

Many of the calculations are presented with a certain detail in order to allow the reader to verify the
results and to show how to apply techniques acquired in the basic mathematics and physics courses in
the undergraduate studies.

Despite the formal aspect of the presentation, no ambition of mathematical rigor is attempted in
the proofs, in particular, questions of convergence have been treated very lightly. In this presentation I
have been more interested in clarifying the physics behind the heavy mathematical apparatus than in the
mathematical rigor. I excuse myself in advance for these gaps.

The attention is focused to the description of the various many-body theories, while I limited the
presentation of the results of the applications to realistic cases. This because these last ones are in
continuous evolution and they are better acquired by consulting updated review articles. On the contrary,
the formulation of the theories is, now, well grounded and can be the subject of a handbook presentation.

Few words on the notation adopted. The operators are identified with a hat to distinguish them from
the functions. This rules is not adopted when the form of the operator is made explicit, for example
when it written as product or sum of derivatives. We use a relatively small number of acronyms whose
meanings are listed in Table E of the Appendix. The symbols which maintain the same meaning all
through the notes are listed in Table F of the Appendix.

Giampaolo Co’
Lecce Sept. 2022
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Chapter 1

Defining the many-body problem

The modern description that physicists gives of the universe reduces every natural phenomenon to the
interaction of six leptons and six quarks mediated by four fundamental interactions: gravitation, electro-
magnetic, strong and weak nuclear forces. This picture, so concise and powerful, is the result of studies
inspired to the most extreme reductionism: the understanding of a complex system goes through the
identification of its components and of their interactions. Decomposing a complex system in its parts is
a much simpler task than that of reconstructing, or building from scratch, the system starting from its
components.

This last job is the goal of the many-body theories. The necessary preconditions to carry out this
work are:
a) definition of the theoretical framework,
b) choice of the fundamental degrees of freedom, or in other words the basic components of the system,
c) definition of their interaction.
These preconditions are not necessary independent of each other.

The theoretical framework can be, for example, that of the Classical Physics, of the non-relativistic
quantum Mechanics or of the Quantum Field Theory. Evidently, the choice is strictly related to the kind
of system under investigation. The description of a planetary system in terms of Quantum Field Theory
is not at all convenient. On the other hand, it would be very difficult to use Classical Physics for the
description of a barion in terms of quarks and antiquarks. In the present tradition of the physics, when
the words many-body theories are used, the speaker refers to theories developed in the framework of non-
relativistic Quantum Mechanics. From the pragmatical point of view, this means that the many-body
problem consists in solving the Schrödinger equation for a system of identical, and interacting, particles.
The validity of the non-relativistic Quantum Mechanics is limited to those microscopic phenomena where
the energies into play are much smaller than the rest masses of the components of the system. These are
atoms, molecules, quantum liquids, metals, crystals and also atomic nuclei, which we shall call simply
nuclei henceforth.

The second precondition requires the definition of the fundamental degrees of freedom, which are, in
other words, the particles composing the system. Also in this case, the choice is related to an economy
principle in the description of the problem. As it has been already point out, at present, the fundamental
bricks of the matter are leptons, quarks, the bosons mediating the four fundamental interactions and the
Higgs boson. Even though it is correct from the fundamental point of view, the use of these physical
entities to describe every microscopic many-body system is not convenient. For each system it is necessary
to identify the physical entities of which it is possible to ignore the internal structure in the description of
the many-body system which does not disregard the essential phenomenology. For example, the structure
of the nucleus is studied by considering the nucleons, protons and neutrons, as basic degrees of freedom.
The description of the liquid helium is carried out by using the helium atoms as fundamental particles.

3



4 CHAPTER 1. DEFINING THE MANY-BODY PROBLEM

The third precondition to be defined, the interaction between the basic degrees of freedom, is, clearly,
related to the second precondition. The choice of the particle defines what is the interaction to be used,
which is not directly one of the four fundamental forces quoted above. The relation between particles
and their interaction is the topic of the Chapter 3.

After having chosen theoretical framework, fundamental degrees of freedom and their interaction,
the many-body problem is well defined and it is only matter of solving the differential, or better to say
the integro-differential, equations which describe the system. In the case of our interest it is matter
of solving the many-body Schrödinger equation. Formally, it is a purely technical problem, but, in
reality, the problem can be solved without making approximation, only for a limited number of cases.
For more general treatments it is necessary to formulate approximations which simplify the problem.
The development of these approximations, their validity, the possibility of controlling, and to improve,
them at will are the topics of the many-body theories. To make this work it is necessary to investigate
deeply the problem, one has to understand the relations between the various theoretical and physical
quantities in order to identify what is relevant and, if it possible, to separate it from what is negligible.
A problem which, formally, is only technical, leads to the investigation of the physical characteristics of
the many-body system in terms of its components.

In the study of the many-body systems of different nature, it comes out the remarkable fact that
the interactions between the different particles show some common features, which are analogous for
the interaction between nucleons, and between atoms or molecules. For this reason, the approximated
techniques aimed to solve the many-body Schrödinger equation are, in fact, independent of the system
under study. These techniques are universal in the sense that they can be applied without using other
assumptions concerning the system. The only differences are the characteristics of the particles and the
interactions which are external inputs of the theories. There is an important discriminating fact in the
structure of the particles and this is related to their bosonic or fermionic structure. Apart from this
important feature, the theories developed have validity ranges which span on 6 orders of magnitude for
what concerns the distances, from the nano to the femto meter, and about 12 orders of magnitudes for
what the energy is concerned, from the meV up to the GeV.

There is not a unique way of tackling the many-body problem. In these notes, the variety of approaches
are divided in two main groups. The first group is that of the theories inspired to the Quantum Field
Theory. The theories of this group are the most commonly used, for both the techniques, but especially
for having defined a specific language. The second group is that of the theories inspired to the Statistical
Mechanics. The two groups of theories focus their attentions on different aspects of the many-body
problem. As usual, studying a problem from different perspectives allows a better understanding the
various aspects pointed out with different emphasis by the each specific perspective.

The last part of these notes presents the phenomenological approaches where the physical properties of
the particles forming the systems and, consequently, their interactions are modified in order to reformulate
the many-body problem in an manner which is technically more easy to solve.



Part I

Basic information
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Chapter 2

Mean-field models

2.1 General properties

The mean-field (MF) model is the starting point from where all the many-body theories evolve. This is
also the easiest approach to the problem, since it makes an approximation which tranforms the many-body
problem in many one-body problems.

In the framework of the non-relativistic Quantum Mechanics, a very general expression of the hamil-
tonian describing the many-body system is

Ĥ =

A∑
i=1

(
− ~2

2mi
∇2
i + V̂0(i)

)
+

1

2

A∑
i,j=1

V̂ (i, j) + · · · , (2.1)

where A is the number of particles, each of them with mass mi. In the expression (2.1), the term
containing the laplacian operator ∇2

i represents the kinetic energy, V̂0(i) is a generic potential acting on

each particle, and V̂ (i, j) is the interaction between two particles. The dots indicate the presence of more
complex terms of the interaction, a point discussed in Chapter 3. These terms are not considered at the
moment.

The use of potential terms implies an instantaneous action between the two particles, a concept valid
only a non-relativistic framework. Let’s consider, for example, the case of the electrons of an atomic
system. In this case, the potential term V̂0(i) of the hamiltonian (2.1) is the electrostatic potential
generated by the nucleus

V̂0(i) = − e2

4πε0

Z

ri
, (2.2)

where e and ε0 are respectively the unitary charge and the vacuum permittivity, ri the distance between
the position of the electron and that of the nucleus which is at the center of the coordinate system, and
Z represents the number of the protons of the nucleus, i.e. the atomic number which, obviously, is the
same as the number of electrons. The interaction potential between two electron is

V̂ (i, j) =
e2

4πε0

1

rij
, (2.3)

where rij = |ri − rj | is the distance between the two electrons. Obviously, in the atomic case in the
expression (2.1) one has Z = A.

In the case of an atomic nucleus, the basic degrees of freedom are the nucleons and in the hamitonian
(2.1)

V̂0(i) = 0 , (2.4)

7



8 CHAPTER 2. MEAN-FIELD MODELS

with V̂ (i, j) representing the strong interaction potential between two nucleons.
By adding and subtracting to the expression (2.1) an average potential Û(i) acting on a single particle

at the time we obtain:

Ĥ =

A∑
i

(
− ~2

2mi
∇2
i + V̂0(i) + Û(i)

)
︸ ︷︷ ︸

Ĥ0

+
1

2

A∑
i,j

V̂ (i, j)−
A∑
i

Û(i)︸ ︷︷ ︸
Ĥ1

. (2.5)

The term in parenthesis, Ĥ0, is a sum of terms acting on a single particle, the i-th particle, at the time.
I can define each term of this sum as single-particle hamiltonian ĥ(i),

Ĥ0 =
∑
i

ĥ(i) =

A∑
i

(
− ~2

2mi
∇2
i + V̂0(i) + Û(i)

)
. (2.6)

The basic approximation of the mean-field model consists in neglecting in the expression (2.5) the
term Ĥ1 called residual interaction. In this way the many-body problem is transformed in a sum of one-
body problems. The model is also called Independent Particle Model (IPM) since the particles described
by Ĥ0 do not interact among them.

The fact that the hamiltonian Ĥ0 is a sum of independent terms implies that its eigenstates can be
built as a product of the eigenstates of ĥ(i)

ĥ(i)|φi〉 = εi|φi〉 , (2.7)

therefore

Ĥ0|Φ〉 =

(∑
i

ĥ(i)

)
|Φ〉 = E|Φ〉 , (2.8)

where

|Φ〉 = |φ1〉|φ2〉 · · · |φA〉 . (2.9)

For fermions, the antisymmetry of the global wave function under the exchange of two particles implies
that the wave function |Φ〉 has to be described as sum of antisymmetrized products of one-particle wave
functions. This solution is known in the literature as Slater determinant [Sla29]

|Φ〉 =
1√
A!

det{|φi〉} . (2.10)

The mean-field potential Û inserted in Ĥ0 is usually phenomenologically selected. For example, in
the many electron atoms Û(i) is a potential which consider the screening generated by the more internal
electrons on the motion of the more external ones. In the case of atomic nuclei the most commonly used
expression of Û(i) are the harmonic oscillator and the Woods-Saxon potential

Û(r) =
−U0

1 + exp( r−Ra )
(2.11)

where U0, R and a are real and positive constants whose values are selected with a procedure implying a
comparison with empirical data.

In the following we present the solution of the mean field problem for some specific expressions of Û .
We consider separately systems with spherical and translational symmetries.
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2.2 Spherical symmetry

In the MF model the solution of the many-body problem consists in solving the one-body Schrödinger
equation (2.7) for each particle.

Atoms and nuclei are systems which are well described by considering a set of spherical coordinates,
and a MF potential which is symmetric with respect rotations of the coordinate system. The spherical
symmetry of the potential implies Û(r) = Û(r), where I used r = |r|. It is convenient search for solutions
of the one-body Schrödinger equation of the type

φ(r) =
∑
n,l,µ,σ

Rnl(r)Ylµ(Ω)χσ , (2.12)

where n, l, µ, σ are the quantum numbers identifying the various terms of the wave function: n is the
principal quantum number, l is the quantum number indicating the orbital angular momentum, µ its
projection on the quantization axis and σ the spin projection on this axis. We indicated with Ylµ the
spherical harmonics and with Ω ≡ (θ, φ) the angular part of the polar spherical coordinates. The Pauli
spinor of the fermion, electron or nucleon, is indicated as

χ1/2 =

(
1
0

)
; χ−1/2 =

(
0
1

)
. (2.13)

The techniques used to solve the one-body Schrödinger equation with a spherically symmetric potential
are well known, see for example [Mes61]. The Laplace operator is expressed in spherical polar coordinates.
In this way it is possible to separate the terms related to r, the distance from the center of coordinates,
from those related to the angular coordinates Ω. Eigenstates of the angular part are the spherical
harmonics Yl,µ(Ω), and the eigenvalues are l(l + 1)~2. By inserting these eigenstates and the relative
eigenvalues in the in the Schrödinger equation we obtain an expression that, from the operator point of
view, depends only on r,[

p̂2
r

2m
+
l(l + 1) ~2

2mr2
+ Û(r)− εnl

]
[Rnl(r)Ylµ(Ω)χσ] = 0 , (2.14)

where the explicit expression of the p̂2
r operator is

p̂2
rRnl(r) = −~2 1

r2

d

dr

(
r2 d

dr
Rnl(r)

)
= −~2

(
d2

dr2
Rnl(r) +

2

r

d

dr
Rnl(r)

)
. (2.15)

By using a potential Û depending only on r, and not on the particle spin, we obtain the expression

d2

dr2
Rnl(r) +

2

r

d

dr
Rnl(r) +

[
2m

~2
(εnl − U(r))− l(l + 1)

r2

]
Rnl(r) = 0 . (2.16)


-V0



V(r)



0



0
 
R


Figure 2.1: Infinite well potential.

This technique, which expands the wave function in spherical harmon-
ics, is useful for every potential depending only on r. The results of its
application is the reduction of a three-dimensional differential equation
to a one-dimensional differential equation. Only after having obtained
the expression (2.16) one has to specify the specific dependence on r
of the potential. I consider here below the cases of potentials interest-
ing for the many-body systems which will be considered in the next
chapters.

A. Constant Potential
The constant potential is typical of systems having translational sym-
metry, such as the infinite Fermi gas or the free particle. In these cases
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the value of the constant can be set equal to zero. The treatment of this
problem by using the spherical symmetry technique outlined above is

rather useful since the eigenstates can be used as basis to expand more complex situations.
Let’s consider a spherical system whose dimensions are defined by R. The potential is

Û(r) = −V0 for r ≤ R e Û(r) =∞ for r > R (2.17)

as it is shown in Fig. 2.1. The equation (2.16) is defined in the range 0 ≤ r ≤ R.
By dividing Eq. (2.16) by k2 defined as

k2 =
2m

~2
(εnl + V0) (2.18)

we obtain the following equation which depends on the dimensionless variable ρ = kr

d2

dρ2
Rnl(ρ) +

2

ρ

d

dρ
Rnl(ρ) +

[
1− l(l + 1)

ρ2

]
Rnl(ρ) = 0 . (2.19)

0.0 1.0 2.0 3.0 4.0
-1.0

-0.5

0.0

0.5

1.0


x [π]



j0



j1


j2



j3


Figure 2.2: The first four spherical Bessel functions.

This differential equation is well known in the literature. Two types of independent solutions are the
spherical Bessel functions jl(ρ), and the spherical Neumann functions nl(ρ). The former ones are regular
at the origin, and the latter ones are irregular. Because of the physical meaning of the wave function,
only the spherical Bessel functions must be considered.

The analytical expressions of the first two spherical Bessel functions are

j0(ρ) =
sin ρ

ρ
; j1(ρ) =

sin ρ

ρ2
− cos ρ

ρ
, (2.20)

and, for l > 0, the following recurrence relation is valid

(2l + 1)jl(ρ) = ρ [jl+1(ρ) + jl−1(ρ)] . (2.21)
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From the physics point of view, since the potential goes to infinity for r ≥ R, it is required that jl is
zero at the point r = R and, obviously, for r > R. This means jl(kR) = jl(Xnl) = 0, and, because of the
definition of k,

2m

~2
(εnl + V0)R2 = X2

nl ; εnl =
~2

2m

X2
nl

R2
− V0 . (2.22)

The zeros of the wave function depend on the principal quantum number n and on the orbital one l. For
example, for j0 the zeros are integer multiple of π. Eq. (2.22) clearly indicates that, in this case, all the
eigenvalues are discrete.

B. Three-dimensional Harmonic Oscillator
In this case the potential is

Û(r) =
1

2
mω2r2 . (2.23)

Since r2 = x2 + y2 + z2 it is possible to solve the problem by rewriting the Schrödinger equation in
cartesian coordinates. In this way the differential equation becomes separable in the tree coordinates
and the eigenvalues can be built as product of eigenfunctions of one-dimensional Harmonic Oscillator
obtained for each of the three coordinates. The eigenvalue is given by the sum of the single eigenvalues
in the three directions.

Obviously, the Harmonic Oscillator potential is of central type, therefore it is possible to use the
expansion in spherical harmonics. In this case the radial part of the wave function is proportional to the
Laguerre polynomials [Mes61]. The energy eigenvalues can be expressed by using the quantum numbers
identifying the single particle basis in spherical coordinates (2.12) as

εnl = ~ω
(
N +

3

2

)
= ~ω

(
Nx +Ny +Nz +

3

2

)
= ~ω

(
2(n− 1) + l +

3

2

)
. (2.24)

The first two terms express the eigenvalues in terms of the quantum numbers of the solution obtained
in cartesian coordinates, while the last expression uses the quantum numbers of the solution in spherical
coordinates. In this latter case, n − 1 indicates the number of nodes of the wave function (the minimal
value of n is 1), and l is the quantum number related to the orbital angular momentum. The value of the
energy depends on N a number which can be obtained by changing both n and l. States with the same
energy, even though characterized by different quantum numbers, are called degenerate. A degeneracy
is called casual, or accidental, when is produced by a specific choice of the potential and not by global
symmetry properties of the problem. A degeneracy of this latter type is related to the µ quantum number
of the spherical harmonics, and it is present in all the problems with spherical symmetry.

N n l n l Π
0 1 0 1s +1
1 1 1 1p -1
2 2 0 2s 1 2 1d +1
3 2 1 2p 1 3 1f -1

Table 2.1: Examples of combinations of quantum numbers producing the same energy values for the Harmonic
Oscillator potential, Eq. (2.24). The various energy levels are identified with the traditional spectroscopic
symbology. The last coloumn indicates the parity of the states obtained as (−1)l.

A list of values of quantum numbers producing the same value of the energy (2.24) is shown in Tab. 2.1.
It is evident that the Harmonic Oscillator produces sequences of eigenstates accidentally degenerated. It
is interesting to notice that all the states with the same energy have the same parity, whose value changes
when the energy eigenvalue is increased by one ~ω step.
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C. Coulomb Potential
In the description of an atomic system with many electrons, the mean-field model intervenes when the
interaction between electrons is neglected and only the interaction of every electron with the nucleus
is considered. Eventually, the potential generated by the nucleus can be corrected by the presence of
a mean-field potential describing the screening effect generated by the presence of other electrons. For
distances very close to the origin of the coordinates the potential felts by the electron is that generated
by the nucleus

lim
ri→0

V̂0(i) + Û(i) = − e2

4πε0

Z

ri
, (2.25)

while at distances far from nucleus the electron is sensitive to a potential screened by the presence of N
electrons

lim
ri→∞

V̂0(i) + Û(i) = − e2

4πε0

Z − (N − 1)

ri
. (2.26)

The bare Coulomb potential

V̂ (r) = − e2

4πε0

Z

r
, (2.27)

generates eigenvalues of the energy which are independent of l, accidental degeneracy, and of µ, degeneracy
produced by the spherical symmetry od the potential

εn = −1

2
mc2

(Zα)2

n2
, (2.28)

where α is the fine structure constant

α =
e2

4πε0

1

~c
' 1

137
, (2.29)

and n is the principal quantum number. For a given value of n the angular momentum quantum number
l can assume the values 0, 1, · · · , n− 1.

n l n l n l
ε1 1 0 1s
ε2 2 0 2s 2 1 2p
ε3 3 0 3s 3 1 3p 3 2 3d

Table 2.2: Level scheme generated by the Coulomb potential. The energies are identified by the quantum number
n, therefore there is an accidental degeneracy for different values of l.

In table 2.2 levels with accidental degeneracy are shown. Every level has a degeneracy related to the
values of the third component of angular momentum characterized by the quantum number µ which can
assume 2l+ 1 values. By considering also the fact that the potential does not depend on the direction of
the electron spin, the global degeneracy is 2(2l + 1). On this ground, by considering the Pauli exclusion
principle, the periodic table of elements is built.

2.2.1 Spin-orbit potential

At the end of this section dedicated to the solution of the one-body Schrödinger equation with central
potentials, we present the treatment related to the presence of a spin-orbit term in the potential. It is
now established that the source of the effects generated by the presence of the interaction between orbital
angular momentum and the half-integer spin of the fermion whose motion is described by the Schrödinger
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equation is the relativity. This fact has always been accepted in atomic physics, but, in nuclear physics,
it has been quantitatively understood only at the beginning of the ’80s of the last century.

For our purposes, the idea is to describe the spin-orbit effects in the framework of the non-relativistic
Quantum Mechanics. We add to one of the spherical potentials presented so far a new term proportional
to the spin-orbit coupling

V̂ (r) = V̂c(r)−
2α

~2
l̂ · σ̂ , (2.30)

where α is a real and positive constant. The scalar product between l̂ and the spin ŝ = σ̂/2 is due the
fact that the hamiltonian is a scalar operator, and this is the simplest type of coupling between the two
vector operators describing the orbital angular momentum and the spin.

The presence of a spin-dependent term in the hamiltonian requires a change in the procedure used
to solve the Schrödinger equation. We used so far an expansion of the wave functions (2.12) in terms

of the spherical harmonics, eigenstates of the l̂2 operator present in the hamiltonian. The Pauli spinors
χ, eigenstates of ŝ2, were factorised. So far, the presence of these latter terms was irrelevant since
the potentials adopted did not contain terms dependent on the spin. The present situation is more
complicated due to the presence of a spin-dependent term in the hamiltonian.

Let’s considers the total angular momentum of the fermion obtained as a sum of the orbital angular
momentum and of the spin ĵ = l̂ + ŝ. This definition implies

ĵ2 = (l + s)2 = l2 + s2 + 2l · s , (2.31)

from which one obtains an expression for l̂ · ŝ depending on the squares of the three angular momenta
under consideration

l̂ · ŝ =
1

2

(
ĵ2 − l̂2 − ŝ2

)
. (2.32)

At this point, it is convenient to consider expressions of the eigenfunction of the hamiltonian of the
form

φnljm(r) = Rnlj(r)
∑
µσ

〈l µ 1

2
σ|j m〉Ylµ(Ω)χσ = Rnlj(r)Yljm(Ω) , (2.33)

where spherical harmonics and Pauli spinors are connected by the Clebsch-Gordan coefficients and form
the so-called the spin spherical harmonics [Edm57] which are eigenstates of the following operators

ĵ2Yljm(Ω) = j(j + 1) ~2 Yljm(Ω) ; ĵzYljm(Ω) = m ~Yljm(Ω) , (2.34)

l̂2Yljm(Ω) = l(l + 1) ~2 Yljm(Ω) ; ŝ2Yljm(Ω) =
3

4
~2 Yljm(Ω) , (2.35)

The spin-orbit term inserted in the hamiltonian gives the result

l̂ · ŝYljm(Ω) =
1

2

[̂
j2 − l̂2 − ŝ2

]
Yljm(Ω) =

1

2

[
j(j + 1)− l(l + 1)− 3

4

]
~2Yljm(Ω) , (2.36)

and since j = l ± 1/2 we obtain

for j = l +
1

2

[
(l +

1

2
)(l +

3

2
)− l2 − l − 3

4

]
= l (2.37)

for j = l − 1

2

[
(l − 1

2
)(l +

1

2
)− l2 − l − 3

4

]
= −(l + 1) ,

This means that εcnl, the energy obtained by considering only the term V̂c in Eq. (2.30), is modified as
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j=l-1/2



j=l+1/2


Figure 2.3: Splitting of the single
particle level because of the action
of the spin-orbit term in the poten-
tial.

εnlj = εcnl + α(l + 1) for j = l − 1

2

εnlj = εcnl − αl for j = l +
1

2
(2.38)

In Eq. (2.30) I defined the constants such as for α > 0 the energy
with l − 1/2 is smaller than εcnl, and the contrary for l + 1/2. This is
what happens in nuclear physics. In atomic physics the effect of the
spin-orbit term is inverted.

2.3 Translational symmetry

Barions, nuclei, atoms and molecules are many-body systems well described by using a rotational sym-
metry. In these systems, even though they are deformed, it is possible to find a point around which
the system develop and this can be considered the center of the mean-field. In the condensed matter
conglomerates the translational symmetry dominates. A basic structure of the system is periodically
repeated in three cartesian directions and it is not possible to find a central point.

The basic mean-field model for this type of systems consider the potential Û to be constant. This
fermionic system is commonly called Fermi gas. It is a toy model, homogeneous, with infinite volume,
composed by an infinite number of fermions which do not interact with each other. Since the energy
scale is arbitrary, it possibile to select Û = 0, without loosing generality. In this case, the one-body
Schrödinger equation is

− ~2

2mi
∇2
iφi(r) = εiφi(r) , (2.39)

with

φi(r) =
1√
V
ei(ki·r)χσχτ , (2.40)

where V is the volume, and χ are the Pauli spinors related to the spin of the fermion and, eventually, to
its isospin. The third components of spin and isopin are indicated as σ e τ , respectively. The physical
quantities of interest are those independent of V whose value, at the of the calculations, is taken to be
infinite.

The symmetry of the problem induces to consider the system contained in a cubic box of side L = V1/3

with periodic boundary conditions

φi(x+ L, y, z) = φi(x, y + L, z) = φi(x, y, z + L) = φi(x, y, z) . (2.41)

Since

φi(r = 0) =
1√
V
χσχτ , (2.42)

in order to satisfy the periodic conditions we have to impose

eikx L = eiky L = eikz L = 1 , (2.43)

and this implies

kx =
2π

L
nx ; ky =

2π

L
ny ; kz =

2π

L
nz , (2.44)

where nx, ny, nz are integer numbers. By defining n ≡ (nx, ny, nz), we can write

d3 n =
L3

(2π)
3 d

3 k =
L3

(2π~)3
d3 p . (2.45)
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The evaluation of the density of states starts by considering the expression of the energy of the
systems in a infinitesimally small energy interval, i.e. the energy between the value ε and ε + dε. In
non-relativistic mechanics, the momentum is related to the wave number by the relation p = mv = ~k,
therefore, ε = mv2/2 = p2/2m = ~2k2/2m. The energy differential is

dε = d

(
1

2
mv2

)
=

1

2
m 2 vdv = vmdv = v dp , (2.46)

with v = |v| and p = |p|. The density of states is

ρε =
d3n

dε
=

L3

(2π~)3
d3p

1

v dp
=

V

(2π~)3
p2dΩpdp

1

v dp
=

V

(2π~)3

p2

v
dΩp , (2.47)

where Ωp indicates the spherical coordinates identifying the direction of p. This is the expression of the
density of states commonly adopted in the calculations of the scattering cross sections.

Let’s calculate the density and the kinetic energy per particle of the Fermi gas. The normalization to
1 of the single particle wave functions (2.40) implies that each integral involving wave functions must be
multiplied by the factor V/(2π)3. In effect,

〈φa|φb〉 =
V

(2π)3

∫
d3 r

1√
V
e−i(ka·r) 1√

V
ei(kb·r) =

V

(2π)3

(2π)3δ(ka − kb)

V
= 1 . (2.48)

The particle density, or number density, in the Fermi gas can be evaluated as

ρ(r) =

A∑
a

|φa(r)|2 , (2.49)

where A is the number of fermions composing the system. This expression is valid only within the the
MF model. It can be obtained by calculating the mean value of the density operator between two Slater
determinants. A more intuitive way of understanding its validity can be acheived by considering that the
interpretation of |φa(r)|2 is the probability of finding a particle, characterized by the a quantum numbers,
in an infinitesimal volume around r. In a situation where the individual particles do not interact, the
individual probabilities are independent of each other and, therefore, the global probability of finding a
particle, independently of its quantum numbers, in the infinitesimal volume around r, is the sum of the
individual probabilities.

Each single particle state is characterized by energy and spin and isospin components and it is occupied
by a single fermion. At zero temperature, when the system is in its ground state, all the single particle
states below a certain value of the energy εF, called Fermi energy, are occupied. All the states with energy
larger than εF are empty. In our case each state is characterised by a wave number directly related to
its energy. The above statements can be repeated by considering a maximum momentum value, called
Fermi momentum pF, and the relative wave number kF. The relation between Fermi energy and wave
number is

εF =
~2

2m
k2

F . (2.50)

As consequence of the considerations the particle density is calculated as

ρ(r) =
∑
a≤kF

|φa(r)|2 =
V

(2π)3
D

∫ kF

0

d3 k
1√
V
e−i(k·r) 1√

V
ei(k·r) =

D

(2π)3

∫ kF

0

d3 k . (2.51)

In this expression D indicates the degeneracy factor related to the characteristics of the fermions forming
the system. In the case of an electron gas, the wave function of each particle is characterised by its
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momentum and by the orientation of the spin. In the case of nuclear matter there is an additional
quantum number related to the third component of the isospin distinguishing protons from neutrons.
Therefore, for electrons we have

D =
∑

σ=±1/2

χ†σχσ = 2 , (2.52)

and for the nucleons
D =

∑
σ=±1/2

χ†σχσ
∑

τ=±1/2

χ†τχτ = 4 , (2.53)

The integral of Eq. (2.51) is given by

ρ(r) =
D

(2π)3

∫ kF

0

d3 k =
D

(2π)3

∫ kF

0

k2dk

∫
dΩk =

D

(2π)3

4

3
πk3

F =
D

2π2

k3
F

3
. (2.54)

The density is independent of r, as expected, since we have considered that the system is homogeneous.
In other words, since we have chosen the plane waves (2.39) as single particle basis, the homogeneity of
the system is implicit. More interesting it is the dependence of the particle density on the third power of
the Fermi momentum.

Let’s calculate the mean kinetic energy of one particle

〈φa′ |
−~2

2m
∇2|φa〉 =

V

(2π)3

∫
d3 r

1√
V
e−i(ka′ ·r)

(−~2

2m
∇2

)
1√
V
ei(ka·r) =

~2k2
a

2m
, (2.55)

This expression confirms the validity of the non-relativistic relation between energy and momentum
εa = p2

a/2m. The total kinetic energy of the system is

K =
∑
k≤kF

〈φa|
−~2

2m
∇2|φa〉 = D

V

(2π)3

∫ kF

0

d3 k
~2k2

2m
= D

V

(2π)3

~2 4π

2m

∫ kF

0

k2 k2 dk

= D
V

(2π)3

~24π

2m

k5
F

5
= D

V

(2π)3

~24π

2m

k2
F

5

(
2π23ρ

D

)
=

3

5
Vρ

~2k2
F

2m
=

3

5
AεF , (2.56)

therefore, the kinetic energy per particle is

K

A
=

3

5
εF . (2.57)

ρ [1022 cm−3] kF [108 cm−1] εF [eV] B [dyne / cm2] Bexp [dyne/ cm2]
Li 4.70 1.11 4.75 23.84 11.5
Na 2.65 0.92 3.24 9.17 6.42
K 1.40 0.75 2.12 3.17 2.81
Rb 1.15 0.70 1.86 2.28 1.92
Cs 0.91 0.65 1.59 1.54 1.43
Cu 8.45 1.36 7.02 63.37 134.3
Ag 5.85 1.20 5.50 34.34 99.9
Al 18.06 1.75 11.65 224.74 76.0

Table 2.3: The electron densities are empirical data used to obtain the values of kF, Eq. (2.54), εF, Eq. (2.50),
and B, Eq. (2.60). This latter quantity is compared with measured values Bexp. The empirical data are taken
from Refs. [Ash76, Kit86].
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Let’s calculate the system pressure by considering that the total energy of a Fermi gas is given by the
kinetic energy, the potential Û is a constant renormalizing the total value,

E = K =
3

5
AεF =

3

5
A
~2k2

F

2m
=

3

5
A

~2

2m

(
2π23

D

A

V

)2/3

= S V−2/3 , (2.58)

where we have identified with S the part multiplying the volume V. The pressure can be expressed as

P = −
(
∂E

∂V

)
A

= −S
(
−2

3

)
V−2/3V−1 =

2

3

E

V
=

2

3

1

V

3

5
AεF =

2

5
εFρ (2.59)

The compressibility K is the inverse of the compression module B whose expression in the Fermi gas
is

B =
1

K
= −V∂P

∂V
= −V 2

3
S V−5/3

(−5

3

)
V−1 =

10

9

E

V
=

2

3
εFρ (2.60)

In Table 2.3 shows the values of kF, εF and B calculated for the electron gases of different crystals.
These results have been obtained by inserting in the equations (2.54) (2.50) e (2.60) empirical values of
the electron densities. The comparison with measured values of the compression module clearly shows
the limits of the mean-field model.

The MF models, or even better the IPM, provide a description of the many-body systems where each
particle moves independently of the presence of the other particles. This fact is particularly evident in the
case of translationally invariant systems where the total hamiltonian is the sum of hamiltonians describing
the free particle motion Eq. (2.39). In this simple model is, however, inserted a physics ingredient which
limits the free particle motion: the Pauli exclusion principle. This is enough to explain some phenomena
appearing at macroscopic level. For example, the stability of a white dwarf star is understood in terms
of Fermi gas model. We discuss here below another example: the case of the specific heat in metals.

The classical, non quantum, description of a gas of A pointlike non-interacting particles predicts for
the specific heat the value 3

2AkB, where kB is the Boltzman constant [Kit80]. The measured values of
the electronic contribution to the specific heat at room temperature are hundred times smaller. The
explanation of this observation is related to the Pauli exclusion principle. In the classical description
all the electrons of the system contribute to the specific heat, even at low temperature, i.e. when the
excitation energies of the system are very small with respect to the total ground state energy. In the
quantum case, at low temperatures, only those electrons close to the Fermi surface can change their state
moving from a state below the Fermi surface, called hole state, to occupy a state above it, called particle
state. For relatively small excitation energies, the electrons with energy much smaller than the Fermi
energy cannot change their states since they would occupy states already occupied by other electrons.

Let’s derive here below the expression of the specific heat of a gas of free electrons, i.e. for a Fermi
gas. By using the expression (2.54) of the particle density, we obtain

kF
3 =

2π2

D
3 ρ , (2.61)

εF =
~2

2m
kF

2 =

(
2π2

D
3 ρ

)2/3

, (2.62)

A = Vρ =
VD

2π23

(
2m

~2
εF

)3/2

, (2.63)

therefore, the density of states can be expressed as

ρε(εF) ≡
(
dA

dε

)
ε=εF

=
VD

4π2

(
2m

~2

)3/2

ε
1/2
F (2.64)
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The increase of internal energy E of an electron gas when the value of the temperature changes from
0 to T is given by

∆E ≡ E(T )− E(0) =

∫ ∞
0

dε ε ρε(ε)f(ε, T )−
∫ ∞

0

dε ε ρε(ε)f(ε, 0) . (2.65)

In the traditional thermodynamics books, for example [Kit80, Blu06], the energy of the system E is
indicated by the symbol U . In the above equation f(ε, T ) is the Fermi-Dirac distribution

f(ε, T ) ≡ 1

exp [(ε− µ)/kBT ] + 1
, (2.66)

where µ is the chemical potential

µ =
∂E

∂A
, (2.67)

whose value is εF at T = 0. The Fermi-Dirac distribution in the limit T → 0 is Θ(εF − ε), where Θ(x) is
the step function equal to 1 for x > 0 and to 0 for x < 0. The equation (2.65) becomes

∆E ≡ E(T )− E(0) =

∫ ∞
0

dε ε ρε(ε)f(ε, T )−
∫ εF

0

dε ε ρε(ε) . (2.68)

By using the Fermi-Dirac distribution the number of particles can be expressed as

A =

∫ ∞
0

dε
dA

dε
=

∫ ∞
0

dε ρε(ε)f(ε, T ) . (2.69)

By multiplying this expression by εF we obtain

εFA =

(∫ εF

0

+

∫ ∞
εF

)
dε εFρε(ε)f(ε, T ) =

∫ εF

0

dε εFρε(ε) . (2.70)

where the last equality indicates that the number of particle does not change when the temperature
changes from 0 to T . By adding and subtracting εFA in the expression (2.68) of ∆E we obtain

∆E =

∫ ∞
0

dε ε ρε(ε)f(ε, T )−
(∫ εF

0

+

∫ ∞
εF

)
dε εFρε(ε)f(ε, T )

−
∫ εF

0

dε ε ρε(ε) +

∫ εF

0

dε εFρε(ε)

=

∫ ∞
εF

dε (ε− εF) ρε(ε)f(ε, T ) +

∫ εF

0

dε (εF − ε)ρε(ε) [1− f(ε, T )] . (2.71)

The term ρε(ε)f(ε, T )dε represents the number of electrons passing from levels with energy ε to levels of
energy ε+ dε. In the second integral the term 1− f(ε, T ) is the probability that an electron is removed
from a level with energy ε.

The specific heat for an electron gas is given by

Cel ≡
dE

dT
=

∫ ∞
0

dε (ε− εF)ρε(ε)
df(ε, T )

dT
, (2.72)

where we have assumed that only term dependent on the temperature T is f . For temperatures much
smaller than the Fermi temperature, i.e. kBT � εF, it is plausible to consider the density of states almost
constant, therefore

Cel ' ρε(εF)

∫ ∞
0

dε (ε− εF)
df(ε, T )

dT
. (2.73)
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This approximation is well verified if we consider that the typical values of the Fermi temperatures are
of the order of ∼ 5× 104K. The evaluation of the integral is presented in the box and it gives the result

Cel ' k2
BTρε(εF)

π2

3
(2.74)

In the following expressions we use the new variables defined as τ = kBT e x = (ε− µ)/(kBT ).

1

kB

df(ε, T )

dT
=
df

dτ
=

exp( ε−µ
kBT

) ε−µ
(kBT )2[

exp
(
ε−µ
kBT

)
+ 1
]2 =

1

[ex + 1]2
ex
x

τ
. (2.75)

For the definition of x one has dx = dε/τ , therefore

Cel = kBρε(εF)

∫ ∞
−εF/τ

(dx τ)(τx)
1

[ex + 1]2
ex
x

τ

' kBτρε(εF)

∫ ∞
−∞

dxx2
ex

[ex + 1]2
= kBτρε(εF)

π2

3
. (2.76)

In the last equation the lower integration limit has been extended to −∞ since the term ex is already
very small for x = −εF/τ when we consider room temperatures. It only remains to calculate an
integral which is well known in the literature.

From the equation (2.64) I obtain

ρε(εF) =
1

2

VD

2π2

(
2m

~2

)3/2

ε
1/2
F =

1

2
3

1

3

VD

2π2

(
2m

~2
εF

)3/2
1

εF
=

3

2

A

εF
, (2.77)

where I used the expression (2.63) for the electron number. By considering that εF = kBTF, the expression
of the specific heat becomes

Cel =
π2

3

3

2

A

kBTF
k2

BT =
π2

2
AkB

T

TF
. (2.78)

This result indicates how, contrary to the prediction of the classical statistical mechanics, only a fraction
of electrons, proportional to T/TF is excited at the temperature T . These are the electrons close to the
Fermi surface.

Element Theory Experiment
Cu 5.3 5.8
Ag 1.2 1.6
Au 1.5 1.6
Fe 1.5 12.0
Mn 1.5 40.0
Bi 4.3 0.2

Table 2.4: Values of the linear coefficient γ of the specific heats of some metals, Eq. (2.79). The values are
expressed in units of 10−4 cal mole−1 K−2. The empirical data are taken from Ref. [Ash76].

The prediction of the linear relation between temperature and specific heat in the metals is one of
the most important consequences of the Fermi-Dirac statistics or, in other words, of the Pauli exclusion
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principle for the electrons. The above result is valid if only the conduction electrons contribute to the
specific heat. In the real situation, for temperatures above the room temperatures, the value of specific
heat is dominated by the contributions of the ions forming the metal. Below room temperatures this
contribution has a behaviour proportional to T 3, and at even lower temperatures it becomes even smaller
than that of the electrons, which, as it is indicated by Eq. (2.78), is linearly dependent on T .

It is common practice to separate the two contributions as

cv = γT +KT 3 . (2.79)

where γ and K are two real constants. The experimental value of the γ coefficient is obtained by
extrapolating the experimental values for T → 0.

Table 2.4 compares some values of the γ coefficient calculated by using Eq. (2.78) with values taken
from measurements. The alkaline metals (Cu, Ag, Au) are relatively well described by the Fermi gas
model. This model makes completely wrong predictions for Fe and Mn giving values much smaller than
the measured ones. On the contrary, the prediction for the Bi is remarkably larger than the observed
value.



Chapter 3

Interactions

3.1 Introduction

In the MF models, the interactions between the particles composing the many-body system is not con-
sidered. In other words, in these models the interaction term of the hamiltonian in Eq. (2.1) is set to
zero. In the previous chapter, we have shown how, by using this approximation, the total hamiltonian
of the system becomes a sum of single particle hamiltonians. The many-body theories go beyond the
mean-field models and also consider the interaction between the particles.

We have chosen to describe the many-body systems within the framework the non-relativistic Quan-
tum Mechanics. The validity of this choice is restricted to situations where the values of the energies
of the phenomena under study are much smaller than those of the rest masses of the particles forming
the system. In the non relativistic framework the interaction between the particles is well described in
terms of potential. The concept of potential implies an instantaneous transmission of the interaction,
independently of the distance between the particles. This assumption is not valid in general because
there is a limiting velocity of the signal transmission, the speed of light in vacuum. Despite of that, in
the energetic conditions described above, the relativistic effects are negligible or, in case, they can be
treated as perturbations.

In this chapter three different types of many-body systems are considered. They are electron gas,
atomic nuclei and, quantum fluids, i.e. liquids and strongly interacting gases, whose basic particles
are molecules. These systems are well described by non-relativistic quantum mechanics. They are also
characterized by the fact that for for each particle, the interaction energy is comparable with the kinetic
energy.

3.2 Electron gas

A good description of the metals is given by a model where the valence electrons of the atoms of the
metal become conduction electrons and they move almost freely through the metal volume. The free
electron model is the Fermi gas described in Sec. 2.3.

A more realistic description of a metal requires to consider the mutual interaction between the electrons
and also that between the electrons and the ionized atoms composing the crystal lattice. The situation
is very complicated, but, for temperature rather close to the absolute zero, the model called Jellium,
or uniform electron gas, describes rather well the propertis of the many-body system. In this model,
the positive charges forms a homogeneous background uniformly distributed in the space. This model
emphasizes those effects that in the solids are generated by the quantum features of the electrons, the
Pauli exclusion principle and their interaction, independently of the crystal structure.

21
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In this model, the system hamiltonian is

Ĥ =

A∑
i=1

−~2

2mi
∇2
i +

1

2

A∑
i,j=1

e2

4πε0

1

|ri − rj |
+ Û (3.1)

where e is the elementary charge and ε0 the vacuum permittivity. We indicated with |ri−rj | the distance

between two interacting electrons and with Û a constant potential which renormalizes the energy values.

3.3 Nuclei

The description of nuclear systems is based on the interaction between nucleons. Nucleons are not
elementary entities of the nature, such as the electrons, but they are composite systems formed by
quarks, antiquarks and gluons. At present, the most accredited theory describing the nuclear strong
interaction, whose gluon and quarks are sensitive, but not leptons, is the Quantum Chromodynamics
(QCD). This theory is non-perturbative in the energy range of interest for nuclear phenomena, from few
keV to about 150 MeV, the pion emission threshold. For this reason, the well settled techiques used to
solve Quantum Electrodynamics (QED), which is perturbative, cannot be used.

The QCD field equations are solved mainly numerically by discretizing the space and time in a set of
points with the aim to bring this lattice more dense in order to describe a space-time continuum. Despite
the great development of the computational devices, at present, we are still far from achieving this limit.
From practical purposes QCD cannot be used even to describe mesons, barions and their interaction.
Even more difficult is the description of atomic nuclei.

For the above mentioned reasons, the basic degrees of freedom used to describe nuclear systems are
mesons and barions, mainly protons and neutrons, generically called nucleons. Clearly, QCD remains in
the background as asymptotic limit, but it is never used to generate realistic interaction between nucleons.

3.3.1 Two-body forces

The nucleon-nucleon interaction is tailored to describe the experimental data related to the two-nucleon
systems. This means the deuteron, the only bound state, and few thousand of elastic scattering data.

The deuteron has the following characteristics.

1. It is the only bound state of two nucleons.

2. It is composed by one proton and one neutron.

3. It has a binding anergy of abut 2.22 MeV.

4. It does not have excited states.

5. It has total spin S = 1.

6. It has a dipole magnetic moment whose value in, nuclear magnetons, is

µD = 0.8574 = µp + µn − 0.0222 ,

where µp and µn are the dipole magnetic moments of the proton and of the neutron, respectively.

7. It has an electric quadrupole moment of Q=2.82 mb.
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In the selection of the two-nucleon interaction, the main source of information comes from the scatter-
ing data. Since the internal structure of the nucleons is not considered, only elastic scattering processes
are considered, where there is not exchange of energy between the nucleons to modify their internal struc-
ture. Elastic processes are the only ones permitted below the pion production threshold, about 145 MeV.
This is roughly the maximum relative kinetic energy of the data used to determine the nucleon-nucleon
interaction.

Experimental data have been taken in different laboratories. A big effort has been done in order to
make homogeneous and coherent this set of data, and this work is in continuous evolution. At present
the data base used to select the two-nucleon interaction is composed by about 3000 data of proton-proton
scattering and about 4700 data of proton-neutron scattering.

The elastic cross sections are decomposed by using a partial wave expansion. Each partial wave
depends on the relative angular momentum of the interacting nucleon pair. From these expanded cross
sections it is possible the extraction of the phase shifts. The relation between the total cross section σ
and the phase shifts is given by

σ =
4π

k2

∞∑
L=0

(2L+ 1) sin2 δL ,

where L is the relative angular momentum of the two-interacting nucleons and δL is the related phase
shift. Nowadays nuclear potentials able to describe these data with a χ2 per datum of about 1 are called
realistic.

From the analysis of the two-nucleon data, it is possible to determine some general characteristics of
the nucleon-nucleon potential.

• Actraction.
Nuclei are bound systems of nucleons. This means that the nucleon-nucleon potential contains an
attractive part able to bind the system.

• Short-range.
There are quite a few observations indicating that the two-nucleon interaction is active up to
distances of the order of 2 fm. For larger distances the interaction is not active. This is an essential
difference with respect to the gravitational and electromagnetic interactions which have infinite
interacting ranges.

• Dependence on spin and isospin.
The only bound state of two nucleons is the deuteron formed by one proton and one neutron
with total spin 1. The latter observation indicates a dependence on the spin orientation of the
nuclear force. If the force would independent of the spin we would observe deuterons with spin
0 with abundancy of 1/3 with respect to those with spin 1. In analogy, if the interaction would
be independent of the isospin we would observe also bound systems composed by two protons and
two-neutrons.

• Non centrality.
The deuteron has a non zero electric quadrupole moment. This is possible only if the charge
distribution does not have spherical symmetry. For central potential the two-particle ground state
is that with relative angular momentum zero, i.e. spherical symmetry. A deformation is possible
only if the interaction contains a term which, even though the distance between two nucleons
remains the same, behaves differently if the spins of the two nucleons have different orientation
with respect to the direction of the line joining the two nucleons, for example if they parallel or
orthogonal. This term, called tensor term, has a dependence of the type (σ̂1 · r)(σ̂2 · r), where σ̂
indicates the nucleon spin and r is the vector joining the two nucleons.
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• Repulsive core.
The analysis of the elastic scattering phase shifts indicates that there is a change of sign with the
increasing of the scattering energy. This means that, by increasing he resolution power of the probe,
it is possibile to observe that the potential at short relative distances, smaller than 0.5 fm, becomes
strongly repulsive.

The modelling of the nucleon-nucleon interaction must consider the following features related to
general symmetry properties.

1. Hermiticity.
Globally the hamiltonian is hermitian since its eigenvalues are observables, the energies of the
system. Since the kinetic energy term is hermitian, also the potential term must be hermitian.

2. Scalar expression
The hamiltonian is a scalar operator, therefore also the potential term must be a scalar operator.

3. Invariance for coordinate exchange ⇒ V̂ (1, 2) = V̂ (2, 1).
The interaction is active between identical particles.

4. Translational invariance ⇒ V̂ (r1, r2) = V̂ (r1 − r2) ≡ V̂ (r12).
The interaction depends only on the distance between the two particles.

5. Galilean invariance
The interaction depends only on the relative momentum between the two particles and it is inde-
pendent of the motion of the observer.

6. Invariance under space inversions ⇒ V̂ (r,p) = V̂ (−r,−p).
The strong interaction conserve parity, contrary to the weak interaction.

7. Time reversal invariance ⇒ V̂ (p,S) = V̂ (−p,−S),

where Ŝ = σ̂1 + σ̂2 is the total spin of the nuclear pair.

8. Invariance under space rotations
The total angular momentum of the system is conserved in presence of interaction between the
particles.

9. Invariance under isospin rotations
This property indicates that the nucleon-nucleon interaction is the same for proton-proton, neutron-
neutron and proton-neutron scattering each time that the final states of this processes are compa-
rable. This last statement is due to the fact that the nucleons, since are fermions, are subject to the
Pauli exclusion principle, which is expressed by imposing that the global wave function describing
a system composed by fermions must be antisymmetric under the exchange of two of them. Since
proton and neutron are different particles, or in the isospin formalism they have different isospin
third components, in the collisions they have access to all the possible final states. This is not pos-
sible for nucleons of the same type, where only specific combinations of partial waves and couplings
of the spins are allowed. Modern experiments show small violations of this isospin symmetry, and
in the updated potential there are terms taking care of these effects.

The procedure to construct a nucleon-nucleon potential consists in assuming a functional dependence
of the potential containing various parameters. Clearly, this functional dependence must satisfy the
properties indicated above. The values of the parameters are chosen to reproduce at best the experimental
data. I indicate here below the three types of approaches used to generate nucleon-nucleon potentials
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Figure 3.1: The first 8 terms defined in (3.2) for the Urbana V14 (UV14), Argonne V8 (AV8), and Argonne V18
(AV18) potentials.

Phenomenological potentials.
The goal of constructing these potentials is their use in nuclear structure calculations, without

any ambition in understanding the physics providing their characteristics. It is a pure fit to the
experimental data.

The most direct of these approaches consists in adopting an expression of the potential which is a sum
of terms dependent on operators which respect the symmetries of the hamiltonian. If one neglects
terms depending on derivatives of the position, the most commonly used expression is

V̂ (i, j) =
∑
p=1,18

vp(rij)Ô
p
ij (3.2)

where vp(rij) are scalar functions whose dependence on the distance between the two interacting
nucleons is expressed in terms of analytic functions containing the free parameters whose values are
chosen to reproduce the experimental data.

In this representation, the so-called central terms are

Ôp=1,4 = Î, τ̂ i · τ̂ j , σ̂i · σ̂j , σ̂i · σ̂j τ̂ i · τ̂ j , (3.3)

and the tensor terms are
Ôp=5,6 = Ŝij , Ŝij τ̂ i · τ̂ j , (3.4)

where the tensor term is defined as

Ŝij = 3
σ̂i · rijσ̂j · rij

r2ij
− σ̂i · σ̂j . (3.5)

Obviously, the tensor part is represented by the first term of this expression, the second one is added
in order to set equal to zero the angular integral of Sij . In the potential also spin-orbit terms are
considered

Ôp=7,8 = L̂ · Ŝ , L̂ · Ŝ τ̂ i · τ̂ j , (3.6)

where L is the relative angular momentum of the nucleon pair. Also quadratic terms of the angular
momentum are considered

Ôp=9,14 = L̂2 , L̂2τ̂ i · τ̂ j , L̂2σ̂i · σ̂j , , L̂2σ̂i · σ̂j τ̂ i · τ̂ j . (3.7)
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The terms violating the rotational isospin invariance are

Ôp=15,18 =
[
1̂, σ̂i · σ̂j Ŝij

]
⊗ [τ̂z,i + τ̂z,j ] (3.8)

This is the typical structure of potential called of Urbana and Argonne type. The vp(rij) are con-
structed in order to have three different interacting ranges, a short range, up to about 0.5 fm, a
medium range, up to about 1 fm, and a long range up to about 2 fm. Each of these parts has a
special functional expression, for example sum of Yukawa functions (see below), and contains the
parameters whose values are chosen for the fit to the experimental data.

In the figure 3.1 we show the first 8 terms for the Urbana U14, Argonne V8 e Argonne V18 potential
as a function of the two-nucleon distance. Two comments are in order. The first one is that, even
though the number of data to be reproduced is large, and all the potentials have similar performances
in the fit procedure, χ2 ∼ 1 per datum, the functions are quite different. This indicate that the data
do not imply restrictions so severe to uniquely define the potential. The data are correlated and they
can be reproduced by suitable combinations of the various terms.

The second observation is that all the parametrizations, in the scalar channel V1, show a strongly
repulsive core at small distances, an attractive pocket at intermediate distances and they go rapidly to
zero at about 2 fm. The presence of the repulsive core makes inapplicable the traditional perturbative
techniques.

Meson exchange potentials.
A more ambitious approach to the construction of the nucleon-nucleon potential starts from the

Yukawa idea and shapes the potential in terms of exchange of mesons. The basic point is that the
interaction range is determined by the mass of the meson exchanged by the two nucleons. The motion
of the meson exchanged is a Yukawa function and it has the expression

V̂ (r) =
e−

m
~c r

r
,

where m is the mass of the exchanged meson and r the distance between the two interacting nucleons.
Evidently, V̂ (r) goes more rapidly to zero the heavier is the exchanged meson.

The first nucleon-nucleon potentials constituted by a sum of terms summing contributions of ex-
changed mesons have been built at the beginning of the 80s of the past century. Table 3.1 present
the characteristics of the mesons considered in the construction of these potentials. In addition to its
mass, each meson is characterized by its spin and intrinsic parity. These characteristics identify the
type of coupling with the nucleon. While the mass sets the interaction ranges, the type of meson-
nucleon coupling selects operator dependence which, in the phenomenological potentials, is described
by the Op operators.

Type Jπ coupling meson mass [MeV]

Pseudoscalar 0− γ5 π 139.578
η 548
η′ 958

Vector 1− γµ ρ 765
ω 783
φ 1019

Scalar 0+ 1 σ 500

Table 3.1: Mesons used to construct the nucleon-nucleon potential.

The goal of this research project is to identify the mesons responsible for the various parts of the
nucleon-nucleon interaction, both in terms of interaction range and also in terms of operator depen-
dence. For example, the pion, the π meson, is the lightest meson and it is responsible of the long-range
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part of the interaction, Furthermore, its pseudoscalar coupling is related, in a non-relativistic reduc-
tion, to the tensor-isospin channel O6

ij = Sij τ i · τ j of the interaction. In effect, in Fig. 3.1 the term
with the longest interaction range is the tensor-isospin one, V6.

This ambitious project has to face the limits of our knowledge of meson physics. We know mass,
type of nucleon-meson coupling and the value of the coupling constant only for the π meson. This
knowledge comes from the large amount of pion-nucleon scattering data available. For the other
mesons the situation is not so well defined. The short life times of these other mesons do not allow
to perform scattering experiments. Therefore, while we have information on their masses, spin and
parity, and this means we know the type of coupling, we do not know the values of their coupling
constants. In the construction of the potential, these experimentally unknown coupling constants are
considered free parameters whose values are selected to fit the nucleon-nucleon data. The number
of free parameters is almost the same used in the phenomenological approach. With this number of
free parameters it is possibile to obtain fits to the experimental data of accuracy comparable to that
obtained in the phenomenological approach.

At this point it is worth to emphasize that, in order to reproduce the two-nucleon experimental data,
it is necessary to include a fake meson, never identified experimentally, the σ meson, which has a
scalar coupling type and with a mass of, exactly, 500 MeV. This meson describe the attractive poket
around the distances of about 1 fm. The need of including this fake meson is clearly a failure of
this ambitious approach. In reality, the model has been constructed by considering the exchange of
a single meson between the two interacting nucleons. Calculations considering also the exchange of
two pions indicates that the fake meson σ simulates, at least in part, the exchange of two mesons in
relative s wave.

This does not mean that the meson exchange potentials do not show differences, and advantages, with
respect to the phenomenological potentials. The formulation is fully relativistic, therefore invariant
for Lorentz transformations. This means that, by applying the charge conjugation operators, it is
possible to obtain the nucleon-antinucleon potential and also that between two antinucleons. The
comparison with the relatively few experimental data of these systems confirms the success of this
approach in building the process.

The use of these potentials in standard nuclear structure calculations is not straightforward. This
type of calculations require potentials which are non-relativistic and local, i.e. do not contain terms
related to the derivative of the particle position. The meson exchange potentials are relativistic and
they are usually expressed in momentum space with an explicit dependence on the momentum of
each particle, in other words they are non-local. Before using these potential in nuclear structure
calculations a non-relativistic reduction is required, and also the elimination of the non local terms.

Potentials from chiral effective field theories.
The most modern, and ambitious, method of modelling the two-nucleon potential is obtained from
the so-called chiral effective field theories. The idea is to construct an effective theory of the QCD
which is valid at energies of the order of the MeV. In the effective lagrangian the symmetry properties
of the QCD are respected, especially the chiral symmetry. The lagrangian is built by considering pion
exchanged at different orders. Each expansion order contains contact terms inserted to satisfy the
chiral symmetry. The modern potentials include terms up the third perturbative order to obtain a fit
of the two-nucleon data with χ2 ' 1. Also this model requires about 20 free parameters to generate
this high-quality fit of the data. This is about the same number of free parameters used in the other
two approaches.

3.3.2 Three-body forces

The fundamental assumption on which is based the construction of the nucleon-nucleon potential is that
the nucleons are pointlike particles, in other words their internal structure is neglected. This is obviously



28 CHAPTER 3. INTERACTIONS

an approximation which is supposed to be valid in the energy range of interest for the nuclear physics.
The data used to select the two-nucleon potential are only elastic scattering data, and those related to
the deuteron.

Potential 2N 2N+3N
CD Bonn 7.953 8.483
Nijm II 7.709 8.477
Nijm I 7.731 8.480
Nijm 93 7.664 8.480
Reid 93 7.648 8.480
AV14 7.683 8.480
AV18 7.567 8.479

Table 3.2: Binding energies of 3H, in MeV, calculated with different two-nucleon potentials and then obtained
by inserting a proper three-body force. The experimental value of the 3H binding energy is 8.481 MeV.

Since the two-nucleon systems are used to build the interaction, the simplest system where we can
test the prediction power of the potential is the triton. The 3H is formed by one proton and two neutrons.
In this system the electromagnetic interaction is absent and, therefore, it is the ideal system to test the
quality of the nucleon-nucleon potentials.

The techniques to solve the Schrödinger equations for a tree-body system are standardised as those
of the two-body case. It is possible to solve the problem without approximations. Recently, 3H binding
energies obtained with seven different techniques have been compared. Given the same nucleon-nucleon
potential all the results correspond, within the numerical accuracy of the calculations. This clearly
indicates that the solution of the three-body problem, without approximation is well controlled.

Table 3.2 shows the 3H binding energies obtained by using different nucleon-nucleon potentials, each
of them describing the two-nucleon data with the same accuracy. The differences of the results are due
only to the input of the potential, since the Schrödinger equation is solved without approximations. This
results confirm what has been previously stated: the fit the two-nucleons data is not sufficiently restrictive
on the construction of the potential. The main, and more general, results is that none of the two-body
potential is able to reproduce the experimental value of the triton binding energy.
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Figure 3.2: Fujita-Miyazawa
three-body interaction.

Since all the computational techniques generate the same results
and by using two-body potential one obtains binding energies smaller
than the experimental one, it only remains to attribute to the hamil-
tonian the source of the discrepancy with the experiment, and more
precisely to the assumption that nucleons are pointlike particles.

In Fig. 3.2 an example of a phenomenon not considered in the
two-nucleon potential is shown. The diagram describes the system of
three-nucleons, indicated by the three thin vertical lines. The nucleon
in the middle interacts with the nucleon to its right, by exchanging
a π meson, and it is transformed in a ∆ resonance. While it is a ∆,
the barion in the middle interacts with the nucleon to its left and it
is transformed back into a nucleon. The initial and final states of this

process involves only nucleons but there is a transformation of one nucleon in another barion. This is
possibile only because the nucleon has an internal structure which can be modified by the interaction.
Effects of nucleons changing their structure and in this state interact with another nucleon before turning
back to its original nucleonic state are present also in the two-body interaction. These phenomena are
automatically considered during the fit procedure. The process shown in Fig. 3.2 is not included in the
construction of the two-body potential, and it has to be considered separately.



3.4. LIQUIDS AND STRONGLY INTERACTING GASES 29

With the insertion of a three-body term, the hamiltonian becomes

Ĥ =

A∑
i=1

−~2

2mi
∇2
i +

A∑
i<j

V̂ (i, j) +

A∑
i<j<k

Ŵ (i, j, k) , (3.9)

where the first term represents the kinetic energy, the second one is the two-body potential, selected to fit
the two-body data, and the third one is the three-body potential. This latter contains the contribution
of the process described in Fig. 3.2, called Fujita-Miyazawa, and, in addition, a phenomenological term
whose parameters are selected to reproduce the experimental value of the triton binding energy. This
procedure implies that each two-body potential has its own three-body force.

Since the hamiltonian containing only two-body terms of the interaction is not able to reproduce
the simplest three-body system, and it requires the insertion of an ad hoc three-body interaction, it is
reasonable to ask whether this procedure has to continue. To describe more more complicated systems,
do we have to include four-, five-, . . . A-body terms in the hamiltonian? Fortunately, the hamiltonian
(3.9) is able to describe well also nuclear system containing more than three nucleons, as we discuss in
Chapter 4.

The importance of the many-body forces increases with the probability of finding a certain number
of particles sufficiently closed to interact. We remember that the nuclear interaction is short-ranged,
therefore the particles must be within the interaction range in order to interact. For nuclear density
of ordinary nuclei four-body forces are negligible with respect to the strength of two-, and three-, body
forces.

3.4 Liquids and strongly interacting gases

The fundamental interaction forming liquids or strongly interacting gases is the electromagnetic interac-
tion which is well described by the QED. The QED are solved with high accuracy by using perturbation
techniques. In principle, it is possibile to use the QED equations to describe the interaction between
atoms or molecules by considering the electromagnetic interaction between the basic elements forming
these systems, i.e. electrons and nuclei.

This microscopic description of the interaction between atoms or between molecules is obtained by
using a hamiltonian which describes the motion of the electrons, that of the nuclei forming the molecules
and their mutual interactions of Coulomb type. The electrons do not have internal structure, and in this
approach we would neglect the internal structure of the nuclei. This latter approximation is well justified
by considering that the energies under study are of the order of eV, while those related to the nuclear
system are of the order of MeV.

Molecular structure calculations are normally carried out by keeping fixed the distance between the
nuclei of the atoms composing the molecule and by solving the Schrödinger equation which describe the
electron motion. This is the essentially the so-called Born-Oppenheimer approximation. The calculations
are repeated for different values of the distance between the nuclei to search for the minimum energy value.
From this calculations it is possible to obtain the interacting potential between atoms, or molecules.

The description of a many atoms, or molecules, system starting from the electromagnetic interaction
between its components is a program feasible, in principle. From the pragmatic point of view, it is very
difficult to carry out, and, probably, excessively ambitious with respect to the purpose of describing the
properties of many-atoms, many-molecules, systems.

A most pragmatical approach uses a strategy analogous to that used to define the nucleon-nucleon
interaction. The basic interaction used to describe liquids and strongly interacting gases is obtained by
neglecting the internal structure of what are considered the basic degrees of freedom, in this case, atoms
or molecules. The interest is focused on the two atoms, or two molecules, interaction, which is quite
different from the basic Coulomb interaction which generate them.
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Figure 3.3: Lennard-Jones potential between two
atoms of Ne expressed in K. The distances are
expressed in Å.

In molecular physics, the forces acting among atoms
are classified as (a) valence binding, (b) ionic binging, (c)
metallic binding, (d) van der Waals binding. The forces
(a) and (b), active for example in the diamonds or in
NaCl, are so strong that at room temperature the sys-
tems form solid structures, therefore we do not consider
them. The metal link forms the electron gas discussed in
3.1. We focus our attention on the van der Waals forces
which are responsible of these substances that at room
temperatures are in fluid state. These are the interac-
tions active also in quantum liquids such as the superfluid
helium, both in bosonic case, composed by atoms with
4He nuclei, and in fermionic case, composed by atoms
with 3He nuclei.

The system we consider is formed by well struc-
tured molecules which do not share electrons with other

molecules. In the case the molecules are composed by atoms of different type, or by atoms with a strong
asymmetry of the electronic cloud, there is a polarization of the positive and negative charges in the space.
These molecules have permanent electric multipoles, for example dipoles, quadrupoles etc. . The van der
Waals interaction between molecule can be seen as interaction between different electric multipoles.

Also the case where the center of mass of positive and negative charges coincide, and this happens
normally for molecules composed by identical atoms, can be described in terms of interaction among
electric multipoles. This because the approaching of two molecules generates a distortion, a polarization,
of the electon clouds.

The interaction between the two atoms or two molecules is zero at distances much larger than the
atomic, or molecular dimensions. This because non-ionized atoms and molecules are neutral. At large
distances, the centres of their positive and negative charge distributions are seen as overlapping. This
feature puts these interactions in the class of the finite-range interactions, analogously to the nucleon-
nucleon interaction. At intermediate distances, the interaction is, in first approximation, that between
two electric dipoles, therefore essentially attractive. Finally, at short distances, the electron clouds start
to overlap, and therefore there is repulsion. Fig. 3.3 shows the interaction potential between two neon
atoms, calculated by using the Lennard-Jones potential discussed below. The behaviour is analogous to
that of the scalar part of the nucleon-nucleon potential: zero at large distances, attractive at intermediate
distances and with a strongly repulsive core at short distances.

The approach used to obtain this potential consists in using an analytic expression containing free
parameters whose values are chosen to reproduce empirical data describing systems of two atoms or two
molecules.

Probably the most used potential is the Lennard-Jones which is usually expressed as

V (r) = 4ε

{(σ
r

)12

−
(σ
r

)6
}

(3.10)

where r is the distance between the two interacting particles wihch are assumed to be point-like, and ε
and σ are the two free parameters.

The interaction between two molecules is much simpler than that between two nucleons: it is purely
scalar, therefore independent of the spin of the two molecules and of their relative angular momenta. The
expression (3.10) is extremely simple, but it contains all the relevant physics required to describe these
many-body systems.

While in the nuclear case the interaction selected as indicated in Sect. 3.3 is used to describe every
nucleus, in the case of fluids it is necessary to set the values of the interaction for every type of atom or
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Ne Ar Kr Xe N2 CH

σ (Å) 2.75 3.405 3.60 4.10 3.70 3.82
ε(K) 35.6 119.8 171 221 95.1 148.2

Table 3.3: Parameters of the Lennard-Jones potential for some atoms and molecules, from [Pry66].

molecule which composes the system. As example, we show in Table 3.3 the values of the parameters
selected for some molecules.

We have considered so far that the hamiltonian contains only two-body interaction terms. This
description of the interaction is working until the assumption that the interacting particles do not have
internal structure remains valid. We have shown that in the nucleonic case this assumption is not so
reliable and it is necessary to include a three-body force in the nuclear hamiltonian. The assumption that
the hamiltonians in molecular physics require only two-body interaction terms is usually called pairwise
additivity. The validity of this assumption is widely analyzed in statistical and molecular physics (see
for example the discussion in the Sect. 4.3.b of [Goo85]).

To evaluate the relevance of the many-body forces it is necessary to consider two physical quantities.
The first one is the excitation energy of the basic particle which is considered point-like. The second
quantity is the relative density of the system. The first quantity has to be compared with energy of the
system. For example, the empirical value of binding energy of nuclear matter in the stability point is
about 16 MeV per nucleon. The first resonance of the nucleon is the ∆ which has a mass about 300
MeV larger than that of the nucleon. This means that the nucleonic internal structure starts to be
important at energies about 18 times the energy of the system. The typical energies of superfluid helium
are about 2µeV, while the energy of the first excited state of He atom is about 20 eV. There are 7 orders
of magnitude of difference. By comparing these numbers, evidently the assumption of neglecting the
internal structure of the basic degrees of freedom of the system is much more valid in liquid helium than
un nuclear matter.

The second quantity to be considered is the probability that the particle get sufficiently close to
interact, which is strictly related to the density of the system. The particles must be in the interaction
range of the force which is short-ranged. An estimate of this probability can be obtained by considering
how many particle stay in the volume defined by the repulsive short-range core of the interaction. Here
below we calculate these numbers for both liquid helium and nuclear matter. The results indicate that, at
the equilibrium density, there are 0.084 nucleons in volume of interest, to be compared with 2.317 helium
atoms in the liquid helium case. From the relative densities point of view liquid helium is much denser
than nuclear matter. The probability to find three helium atoms interacting is certainly larger than that
to find three nucleons interacting. On the other hands, has discussed above, the energetics indicate that
exciting helium atoms in liquid helium is much less probable than exciting a nucleon in nuclear matter.
For this reason three-body forces are seldom used in the description of liquid helium.

Relative densities
In the framework of the many-body theories, the relative densities are important. These densities
are related to the number of particles, whose internal structure is not considered, which are in the
volume characterized by repulsive short-range core of the interaction.

1. Nuclear matter.
In this case the range of the repulsive core is σ ' 0.5 fm. The value of the reference volume is
then

V =
4

3
πσ3 = 0.524 fm3



32 CHAPTER 3. INTERACTIONS

The empirical value of the nuclear matter density at equilibrium is 0.16 nucleons per fm3. The
number of nucleons in the volume of interest is

N = ρV = (0.16)
nucleons

fm3
(0.524) fm3 = 0.084 nucleons

2. Liquid Helium.
The mass density of liquid helium is 1.47 · 105 g m−3. The molecular weight is 4 g mole−1,
which is the weight of an Avogadro number of helium atoms. The number density of helium
atoms in liquid helium is

ρ =
1.47 · 105g

m3

6.2 · 1023

4g
=

2.263 · 1028atoms

m3

In liquid helium the range of the repulsive core of the interaction i s σ=2.9 Å= 2.9 10−10 m.
The volume of the sphere of radius σ is V = 1.024 · 10−28m3. The number of atoms in this
volume is (Vρ) = 2.317.
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Chapter 4

Monte Carlo Techniques

After having defined the theoretical framework, the degrees of freedom (the particles) and the hamiltonian
(the interaction), the remaining task is the solution of the Schrödinger equation. Since the two-body
systems, and eventually also the three-body systems, have been used to define the interaction, see Chapter
3, the first, and easiest, application of theory is done on four-body systems. This allows a pragmatical
definition of many-body system, which is composed by more than three particles.

There are techniques which consider the solution of the Schrödinger equation for 4, 5, and even 6
body systems without approximations. Usually, these techniques have been tailored to treat this specific
number of particles, and it is difficult to extend them to handle systems with larger numbers of particles.

In this chapter, we present a technique which solves the many-body Schrödinger equation without
approximation, and it is formulated independently of the number of particles to be considered. As we shall
discuss, the only limitations are of pragmatical type, related to the technological limits of computational
resources.

The development of the electronic technology has strongly increased the possibility of performing
numerical calculations. These technological advances allowed the use of Monte Carlo calculations. The
name Monte Carlo indicates a way of using the computer based on its capacity to generate sequences
of random numbers. This feature is used in different manners, for example to simulate the behaviour of
complex systems such as the time evolution of the population or the performances of particle detectors.

In these notes we discuss how Monte Carlo techniques are used in the framework of the many-body
physics. As I have already stated above, these techniques allows the solution of the Schrödinger equation
without approximation. The only assumptions, and approximations, are of numerical type, related to
the algorithm used in the calculations.

The application of the Monte Carlo techniques in this contest is related to the possibility to carry
out multidimensional integrals in reasonable execution times. We first present the basic idea behind the
numerical integration with the Monte Carlo techniques, and then the implementations related to the
many-body problems.

4.1 Numerical integrations

If we neglect the presence of spin and, eventually, isospin, the many-body wave function |Ψ〉 is charac-
terized by the 3A variables identifying the position of each particle. This means that the calculation of
the energy of the system

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (4.1)

35
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involves 3A dimensional integrals. If we consider a uniform grid of cartesian coordinates, and indicate
with N the number of points of each dimension of the grid, the number of these 3A dimensional integrals
to be calculate is N3A−1 +1. The number of integration points, N in this example, commonly used in the
ordinary integration techniques, Simpson, etc. , is of the order of 100. Even assuming very short times
to execute each integral, let’s say 10−6 s, it is evident the difficulty of using these integration techniques
to describe a many-body system. The calculation of a system with A = 4 would require 106 s, about four
months, with A = 5 about 400 years.

The computation of integrals with Monte Carlo techniques is not convenient for one, two-dimensional
integrals since it requires much more time machine than that use by the usual integration methods to
obtain similar numerical accuracy. On the other hand, this is the only techniques which allows us to make
estimates of multidimensional integrals in reasonable times. We present here below the basic idea of the
Monte Carlo integration by using a one-dimensional example. The generalization to more dimension is
straightforward.

Any definite integral can be expressed as∫ b

a

f(u) du = (b− a)

∫ 1

0

f(x) dx , (4.2)

where we used a new integration variable

x =
u− a
b− a . (4.3)

This indicates that the problem to be tackled is an integration in the dominion between 0 and 1, where
the computer generates random numbers.
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Figure 4.1: Functions to be integrated with the Monte
Carlo method. The red points and the black crosses indi-
cate the points of the two functions selected by the same
random choice of the variable x.

From the numerical point of view the value of
the integral is obtained by summing the values of f
calculated for N random values of the integration
variable x,

I =

∫ 1

0

f(x) dx ' 1

N

N∑
i=1

f(xi) . (4.4)

The estimate of I improves by increasing the num-
ber N . The value of N good enough to obtain an
accurate estimate of the integral depends on the
behaviour of f in the integration domain. If f is
rather flat, few points would be sufficient. In the
limit when f is a constant, one point is enough.

A useful strategy to make flat the behaviour
of the function to integrate consists in multiplying
it, and also dividing it, by a weight function P ,
defined always positive in the integration interval,
and behaving as a probability density∫ 1

0

P (x) dx = 1 , (4.5)

therefore

I =

∫ 1

0

f(x) dx =

∫ 1

0

f(x)

P (x)
P (x) dx =

∫ 1

0

F (x)P (x) dx . (4.6)

We define a new variable

y(x) =

∫ x

0

P (x′) dx′ ;
dy(x)

dx
= P (x) ; y(0) = 0 ; y(1) = 1 , (4.7)
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and then

I =

∫ 1

0

f(x) dx =

∫ 1

0

F (x)P (x) dx =

∫ 1

0

F (x(y)) dy ' 1

N

N∑
i=1

f(x(yi))

P (x(yi))
. (4.8)

The better choices of P are those able to make almost constant the ratio f/P . The problematic point of
the procedure is the inversion of the relation (4.7), which could not be trivial.
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Figure 4.2: Gaussian distribution around the central
value.

At this point, a theorem, called Theorem of the
central limit, describes the distribution of the ap-
proximated values of I. The theorem states that,
for a function F (x), the probability distribution
P(IN ) of the values IN , defined as

IN =
1

N

N∑
i=1

F (xi) , (4.9)

has a gaussian form

lim
N→∞

P(IN ) =
1√

2πσ2
N

exp

(
(IN − 〈F 〉)2

2σ2
N

)
.

(4.10)
In the above expression, we used the quantities
defined as

〈F 〉 =

∫ 1

0

F (x)P (x)dx ;

〈F 2〉 =

∫ 1

0

F 2(x)P (x)dx ;

σ2
N =

1

N

(
〈F 2〉 − 〈F 〉2

)
.

The theorem is based on the ansatz that the
values of xi are independent of each other and have

the same probability of being selected. The theorem indicates that the value of I has, for N sufficiently
large, a gaussian distribution around the expected value. The width of the amplitude is σN , and scales
as N−1/2. Therefore,

I =

∫ 1

0

f(x) dx =

∫ 1

0

F (x)P (x) dx =

∫ 1

0

F (x(y)) dy ' 1

N

N∑
i=1

f(x(yi))

P (x(yi))
± σN (4.11)

This technique can be extended to multidimensional integrals. The gaussian uncertainty is independent
of the number of dimension. The idea is to apply this technique to evaluate the energy (4.1), or, more in

general, to calculate the expectation value of a generic operator Ô between two many-body states.

4.2 Variational Monte Carlo

A first application of the Monte Carlo techniques, called Variational Monte Carlo (VMC), for the evalu-
ation of the energy of the ground state of a many-body system is based on the variational principle.

Searching for the minimum of the energy functional (4.1) is equivalent of solving the Schrödinger
equation (see Appendix A). In practical applications, the search for the energy minimum is done by
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considering only wave functions with precise functional form. This limitation restricts the search within
a Hilbert sub-space. For this reason, the solution of the Schrödinger equation is approximated, and the
obtained energy value is always larger than those obtained without approximations.

In the case of the VMC calculations, the trial wave function is built in analogy to what it is done in
the Correlated Basis Function theory, which will be presented in Chapter 13,

|ΨT 〉 = F |Φ〉 (4.12)

where |Φ〉 is a Slater determinant, and F̂ is called correlation function. This function is defined the
Jastrow’s ansatz, i.e. as a product of two-body correlation functions f

F =

A∏
i<j

f(rij) . (4.13)

We have pointed out in Chapter 3, that a typical feature of the interactions in many-body systems is
the presence of a strongly repulsive core at short distance between interacting particles. The goal of the
correlation f is to prohibit two particles to approach in the range of the repulsive core. For this reason,
f is essentially zero at short relative distances, and becomes 1 at distances larger than the interaction
range.

The complexity of the nucleon-nucleon interaction, requires, in nuclear physics, the use of correla-
tion expressions depending on various operator terms, in analogy with the expression of the interaction
presented in Chapter 3.3.1

F̂ = S

A∏
i<j

(∑
p

fp(rij)Ô
p
ij

)
, (4.14)

where S is an operator which makes symmetric F̂ for the exchange of two fermions, i.e. the two indexes i, j.
This is necessary since the Slater determinant Φ is already antisymmetrized for two-fermions exchange,
and, in general, the Ôp operators do not commute with each other. The explicit expressions of the
operators are those presented in Sect. 3.3.1.

The wave functions used in VMC calculations are expressed as:

|Ψ(r), S, T 〉 ≡
∑

s=1,2A

∑
t=1,2A

Rs,t(R)Xs(S)Xt(T ) , (4.15)

where R indicates the radial part of the wave function, R is the set of all the space coordinates describing
the fermions of the system, and Xs and Xt are the parts of the wave function describing the spin S, and
eventually, isospin T terms. This part of the wave function describes all the possible spin and isospin
combinations in the system formed by A fermions. If we consider a nucleus with Z protons and A − Z
neutrons, the number of these combinations is given by

Nconf = 2A
A!

Z!(A− Z)!
. (4.16)

The values of Nconf for some nuclei of interest are given in Table 4.1.
As we discussed in Chapter 3.3.1, in nuclear physics the interaction between two nucleons can be

expressed by using an expression of the type

V̂ (i, j) =
∑
p

vp(rij)Ô
(p)
ij , (4.17)

where vp are scalar functions of the relative distance between the two interacting particles. The matrix
elements of the interaction (4.17) can be directly evaluated for states in the representation (4.15), as it
is shown in the box for the case of 3 particles.
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Nucleo Z N=A-Z Nconf
3H 1 2 24
3He 2 1 24
4He 2 2 96
6He 2 4 960
6Li 3 3 1280
8He 2 6 7168
12C 6 6 3784704
16O 8 8 8.4 · 108

40Ca 20 20 1.5 · 1023

48Ca 20 28 4.7 · 1027

Table 4.1: Number of spin and isospin configurations for some nuclei.

Let’s consider, for example, the term depending on the spin p = 3 in (4.14). By using the traditional
Pauli matrices we obtain

σ̂x ≡
(

0 1
1 0

)
, σ̂y ≡

(
0 i
i 0

)
, σ̂z ≡

(
1 0
0 −1

)
. (4.18)

We define rising and lowering operators as

σ̂+ ≡
1

2
(σ̂x + iσ̂y) =

(
0 1
0 0

)
, σ̂− ≡

1

2
(σ̂x − iσ̂y) =

(
0 0
1 0

)
(4.19)

whose action on the spin eigenstates is

σ̂+| ↓〉 = | ↑〉 ; σ̂+| ↑〉 = 0 ; σ̂−| ↓〉 = 0 ; σ̂−| ↑〉 = | ↓〉 ; σ̂z| ↑〉 = | ↑〉 ; σ̂z| ↓〉 = −| ↓〉 . (4.20)

To simplify the writing we indicated with | ↑〉 the spin wave function with 1/2 projection on the
quantization, z, axis, and with | ↓〉 that with −1/2 components.

We express the scalar product between two spin operators as sum of lowering and rising operators

σ̂(1) · σ̂(2) = 2 [σ̂+(1)σ̂−(2) + σ̂+(2)σ̂−(1)] + σ̂z(1)σ̂z(2) . (4.21)

By considering, for example, the case of three fermions we obtain

σ̂(1) · σ̂(2)



(↓1↓2↓3)
(↑1↓2↓3)
(↓1↑2↓3)
(↑1↑2↓3)
(↓1↓2↑3)
(↑1↓2↑3)
(↓1↑2↑3)
(↑1↑2↑3)


=



(↓1↓2↓3)
2(↓1↑2↓3)− (↑1↓2↓3)
2(↑1↓2↓3)− (↓1↑2↓3)

(↑1↑2↓3)
(↓1↓2↑3)

2(↓1↑2↑3)− (↑1↓2↑3)
2(↑1↓2↑3)− (↓1↑2↑3)

(↑1↑2↑3)


, (4.22)

where we used the subindexes to identify the particle, and in the round parentheses we put the
product of three spin eigenstates.

The calculation of the energy does not present formal problems and consists in evaluating the expec-
tation value of the hamiltonian

E = 〈Ĥ〉 =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

. (4.23)
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The variational principle is applied by searching for the minimum of this energy functional. The parts of
the the many-body wave function which can variate are the single particle wave functions φi forming the
Slater determinant and the scalar functions f of the correlation.

In the calculation of the energy (4.23), or more in general of the expectation value of any operator

Ô, the module of the wave function |Ψ|2 plays the role of the weight function P (x) introduced in the
previous section. The wave function Ψ of a fermionic system is antisymmetric for the exchange of two
particles. This means that the by exchanging two particles the wave function changes sign. Since Ψ
is a continuous function of the space coordinates, there are values of R for which the wave function is
zero, and, obviously, also its square modulus is zero. Evidently, these points, where P (x) is zero, create
problems in the calculation of the integral (4.11). This problem, know in the literature as sign problem,
is tackled by using approximate techniques. This includes in the calculation of fermionic systems some
assumptions absent in the bosonic case.

4.3 Green Function Monte Carlo (GFMC)

The theoretical limitations of the VMC calculations are related to the need of choosing specific expression
of the trial wave function. In the case above discussed this is the expression (4.12) proposing a trial wave
function formed by a single Slater determinant multiplied by a correlation function which also has a
peculiar expression. The GFMC technique solves the Schrödinger equation without making any assump-
tion on the expression of the many-body wave function. This technique is independent of parameters or
assumptions on he form of the wave function, it depends only on the hamiltonian, i.e. on the interaction.

A trial wave function can be expressed as linear combination of eigenstates of the hamitonian Ĥ

|ΨT〉 =
∑
n

Dn|Ψn〉 , (4.24)

wehre the Dn coefficients are numbers. We construct an operator which applied to the trial wave function
isolates the |Ψn〉 with the smallest energy eigenvalue. We use an evolution operator whose evolution
parameter τ has the dimension of an imaginary time. We apply this operator to the trial wave function,
and we carry out the asymptotic limit of τ . We obtain

lim
τ→∞

e−
Ĥ−E0

~ τ |ΨT〉 = lim
τ→∞

e−
Ĥ−E0

~ τ
∑
n

Dn|Ψn〉 = lim
τ→∞

∑
n

e−
En−E0

~ τDn|Ψn〉 = D0|Ψ0〉 , (4.25)

this because for n 6= 0 En > E0, where E0 is the smallest eigenvalue. If the set of quantum numbers
characterising the |Ψn〉 states is the same of those which describe the ground state of the system, then
E0 is the ground state energy.

The evolution of a state in coordinates representation |R〉 for small increments, dτ , of the imaginary
time an be expressed as

Ψ(R, τ + dτ) ≡ 〈R|Ψ(τ + dτ)〉 = 〈R|e−(H−E0) dτ~ |Ψ(τ)〉 =

∫
dR′ 〈R|e−(H−E0) dτ~ |R′〉︸ ︷︷ ︸

propagator

〈R′|Ψ(τ)〉 , (4.26)

where we used the completeness ∫
dR′|R′〉〈R′| = 1 .

We consider the hamiltonian Ĥ = T̂ + V̂ , and we make the assumption that the potential V̂ is diagonal in
R, in other words that the potential is local. This means that the operator terms forming the potential
do not contain derivatives with respect to R. This is one of the essential requirements of the Monte Carlo
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calculations. In order to simplify the calculations it is convenient to use an approximated expression,
named Trotter-Suzuki formula, of the evolution operator.

e−(T̂+V̂−E0) dτ~ = e−
1
2 (V̂−E0) dτ~ e−T̂

dτ
~ e−

1
2 (V̂−E0) dτ~ +O(dτ3) , (4.27)

which is valid when
|dτ3(T̂ V̂ − V̂ T̂ )| � 1 . (4.28)

By using the Trotter-Suzuki formula, and neglecting the terms in dτ3, we obtain

Ψ(R, τ + dτ) '
∫
〈R|e− 1

2 (V̂−E0) dτ~ |R〉〈R|e−T̂ dτ~ |R′〉〈R′|e− 1
2 (V̂−E0) dτ~ |R′〉Ψ(R′, τ)dR′

=

∫
e−[ 1

2 (V̂ (R)+V̂ (R′))−E0] dτ~ 〈R|e−T̂ dτ~ |R′〉Ψ(R′, τ) dR′ . (4.29)

The calculation of the evolution propagator defined in Eq. (4.25) is presented in the box here below.

We define the propagators

GV(R← R′) = e−[ 1
2
(V̂ (R)+V̂ (R′))−E0] dτ~ , (4.30)

G0(R← R′) = 〈R|e−T̂
dτ
~ |R′〉 . (4.31)

We obtain the expression of the free propagator G0 by using a Schrödinger-like equation depending
on the imaginary time τ ,

~ ∂
∂τ

Φ(R, τ)− ~2

2m
∇2Φ(R, τ) = 0 . (4.32)

Let’s formally solve this equation by using the Fourier transform of Φ in n = 3A dimensions

Φ̃(K, τ) =

∫
dR e−iK·RΦ(R, τ) , (4.33)

which satisfies the equation

~ ∂
∂τ

Φ̃(K, τ) +
~2K2

2m
Φ̃(K, τ) = 0 , (4.34)

with

Φ̃(K, τ) = Φ̃(K, 0) exp

(
−~2K2

2m

τ

~

)
= Φ̃(K, 0)g̃(K, τ) , (4.35)

where we defined

g̃(K, τ) = exp

(
−~K2

2m
τ

)
. (4.36)

For the folding theorem of the Fourier transforms, Eq. (4.35) can be considered as the result of the
folding product between Φ and g expressed in coordinates space, therefore, we can write

Φ(R, τ) =

∫
Φ(R′, 0)g(R′ −R, τ)dR′ , (4.37)

This expression allows us to obtain g in coordinates space as anti-transform

g(R, τ) =
1

(2π)n

∫
dKeiK·Re−

~τ
2m

K2

=
exp

(
−2mR2/4~τ

)
(2 ~τ

2m
)n/2

, (4.38)

therefore

Φ(R, τ) =
1

(~τ/m)n/2

∫
dR′ exp

[
− m

2~τ
(R−R′)2

]
Φ(R′, 0) , (4.39)

The free propagator can be expressed as

G0(R← R′, τ) =

(
~τ
m

)−n/2
exp

[
− m

2~τ
(R−R′)2

]
. (4.40)
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By using the expressions of the free and interacting propagators, the evolution of the wave function
given in Eq. (4.29) can be expressed as

Ψ(R, τ + ∆τ) '
∫
dR′ exp

{[
−1

2

(
V̂ (R′) + V̂ (R)

)
− E0

]
∆τ

~

}
×
(

~
m

∆τ

)−n/2
exp

[
− m

2~∆τ
(R−R′)2

]
Ψ(R′, τ) . (4.41)

To calculate the expectation value of an operator it is common use to adopt a mixed representation
where both the trial and the time evolved states are present. By naming Rn the set of space coordinates
at the time τn and

Pn = RnRn−1Rn−2 · · ·R0 , (4.42)

we express the expectation values of the operator Ô in the mixed representation as

〈Ô〉mix =
〈ΨT|Ô|Ψ(τ)〉
〈ΨT|Ψ(τ)〉 =

∫
dPnΨ†T(Rn) ÔG(Rn,Rn−1) · · ·G(R1,R0)ΨT(R0)∫
dPnΨ†T(Rn)G(Rn,Rn−1) · · ·G(R1,R0)ΨT(R0)

, (4.43)

where the propagator G is given by the product of GV and G0. With good approximation the expectation
value of Ô is given by

〈Ô〉 ' 〈Ô〉mix +
[
〈Ô〉mix − 〈Ô〉T

]
. (4.44)

Method Trial wave function Energy (K)
VMC McMillan -5.72(2)
VMC PPA -5.93(1)
VMC Shadow -6.24(4)
VMC McMillan + 3B -6.65(2)
VMC OPT + 3B -6.79(1)
GFMC McMillan -7.12(3)
Exp. - -7.14

Table 4.2: Energies, expressed in K, of liquid He4 calculated with VMC and GFMC by using different
types of trial wave functions. Exp. inidicates the experimental value of the energy. Data taken from
Ref. [Sch92].

As examples of Monte Carlo calculations, we compare in Tables 4.2 and 4.3 the binding energies of
liquid helium systems obtained in VMC and GFMC calculations by using different types of trial wave
functions. The results show a great sensitivity of the VMC results to the choice of the trial wave function
ΨT. The GFMC results are independent of this choice and they produce smaller energies than those
obtained by VMC calculations. This is a quantitive confirmation of the limitation of the use of the
variational principle. The bosonic liquid, He4 is more bound than the fermionic one, He3. The agreement
between the GFMC results and the experimental value is spectacular.

Similar calculations have been done for light nuclei. We summarize the GFMC results for the ground
states of some light nuclei of Ref. [Car15]. The blue points have been obtained by considering only a
two-body nucleon-nucleon interaction, the Argonne V18. The red points show the results obtained when
three-body terms of the interaction are included in the nuclear hamiltonian. The tree-body interaction
increases the binding of the system and produces an excellent agreement with the experimental values.
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Method Trial wave function Energy (K)
VMC McMillan -1.08(2)
VMC 2B + 3B -1.61(3)
VMC 2B + BF -1.55(4)
VMC 2B + 3B + BF -2.15(3)
GFMC 2B + 3B + BF -2.44(4)
Exp. - -2.47

Table 4.3: Energies, expressed in K, of liquid He3 calculated with VMC and GFMC by using different
types of trial wave functions. Exp. inidicates the experimental value of the energy. Data taken from
Ref. [Sch92].

The results of the GFMC calculations provide a quantitative, and positive, answer to the question
about the validity of the assumptions done to tackle the many-body problem, those assumptions discussed
in Chapter 1. The Schrödinger equation can describe well many-body systems in a non-relativistic
regime. The essential point is that no approximation must be done. Even one simple approximation,
such as that related to variational principle, can destroy this good description of the many-body system.
Unfortunately, GFMC method has strong computational limitations, therefore it is necessary to develop
approximated methods of solution of the many-body Schrödinger equation. Knowing, and controlling,
these approximation is essential for the application of these theories.

4.4 Auxiliary Field Diffusion Monte Carlo (AFDMC)

The GFMC method is very powerful in describing nuclear systems up to 12C. The main limitation of this
method is the computational effort which increases exponentially with the particle numbers, because of
the number of spin and isospin configurations. In the expression (4.41) of the wave function calculated
at the time τ + ∆τ , V̂ (R) appears in the exponents. The potential contains terms which quadratically
depends on the spin and on the isospin of the interacting particles. The quadratic form is because two
particle are involved in the interaction, the terms of the tree-body force are even more complicated. These
terms are the responsible of of the rapid increase of number of spin, and isospin, configurations.

This problem is tackled by using an approximated expression, called Hubbard-Stratonovich trans-
formation. In this expression, the propagators containing quadratic operator terms can be written,
approximatively, as propagators containing only linear terms of the operator

e−dt
Ô2

2 =
1√
2π

∫
dxe−

x2

2 e−x Ô
√
−dt (4.45)

where the variables x are called auxiliary fields, and Ô is a generic operator.
In order to use the expression (4.45) it is useful to rewrite the, local, interaction (4.17) separating the

scalar part (SI), independent of the spin and of the isospin, from the spin and isospin dependent part
(SD)

V̂ (i, j) = V̂SI(i, j) + V̂SD(i, j) (4.46)

where the VSD term contains the full operator dependence with Ôp>1
ij .

By using various transformation it is possible to rewrite the part of the interaction which depends on
the operators, VSD(i, j), such as the operator dependence can be expressed as

V̂SD(i, j) '
∑
n

λnÔ
2

n (4.47)
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Figure 4.3: GFMC results for some nuclei [Car15]. The blu points show the energies obtained by considering
only a two-body interaction (Argonne V18). The red points include the three-body interaction (IL-17). The black
points show the experimental values.

where the λn coefficient are numbers.

Let’s consider the operator dependent part of the two-body interaction

V̂SD(i, j) =
1

2

∑
iαjβ

σ̂α(i)A
(σ)
iαjβ σ̂β(j) +

1

2

∑
iαjβ

σ̂α(i)A
(στ)
iαjβ σ̂β(j)τ̂ (i) · τ̂ (j)

+
1

2

∑
ij

A
(τ)
ij τ̂ (i) · τ̂ (j) (4.48)

where the labels i and j indicate the interacting fermions and α e β the cartesian coordinates. The
A(σ) and A(στ) matrices have 3A × 3A components while the A(τ) has A × A components. The
elements of these matrices can be expressed in terms of the scalar functions of the definition (4.17)
of the interaction:

A
(σ)
iαjβ = v3(rij)δαβ + v5(rij)(3r̂

α
ij r̂

β
ij − δαβ) (4.49)

A
(στ)
iαjβ = v4(rij)δαβ + v6(rij)(3r̂

α
ij r̂

β
ij − δαβ) (4.50)

A
(τ)
ij = v2(rij) (4.51)
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The A matrices are zero along the diagonal, for i = j, in order to avoid self-interaction. They are
real and symmetric, and have real eigenvalues and eigenvectors which can be expressed as∑

jβ

A
(σ)
iαjβψ

(σ)
n,jβ = λ(σ)ψ

(σ)
n,iα (4.52)

∑
jβ

A
(στ)
iαjβψ

(στ)
n,jβ = λ(στ)ψ

(στ)
n,iα (4.53)

∑
jβ

A
(τ)
iαjβψ

(τ)
n,jβ = λ(τ)ψ

(τ)
n,iα (4.54)

It is possible to define new operators of the type

Ô
(σ)
n =

∑
jβ

σ̂β(j)ψ
(σ)
n,jβ (4.55)

Ô
(στ)
nα =

∑
jβ

τ̂(i)ασ̂β(j) ψ
(στ)
n,jβ (4.56)

Ô
(τ)
nα =

∑
j

τ̂(j)αψ
(τ)
n,j (4.57)

The potential V̂SD can be rewritten as

V̂SD(i, j) =
1

2

3A∑
n=1

(Ô(σ)
n )2λ(σ)

n

+
1

2

3∑
α=1

3A∑
n=1

(Ô(στ)
nα )2λ(στ)

n

+
1

2

3∑
α=1

3A∑
n=1

(Ô(τ)
nα )2λ(στ)

n (4.58)

In this way it is possible to use the Hubbard-Stratonovich expression (4.45) and to rewrite Eq. (4.41)
as

Ψ(R, τ + ∆τ) '
∫
dR′

(
~
m

∆τ

)−n/2
exp

[
− m

2~∆τ
(R−R′)2

]
exp

{[
−1

2

(
V̂SI(R

′) + V̂SI(R)
)
− E0

]
∆τ

~

}
×

15∏
n=1

1√
2π

∫
dxne

− x
2
n
2 e−x Ô

√
−λn∆t Ψ(R′, τ) (4.59)

where the dependence on R′ in the last term is inserted in the λn.
The key difference between the expressions (4.41) and (4.59) is the presence, in the latter expression,

of an additional integral on the xn variable, called auxiliary field. The effort in calculating this additional
integral is compensated by the linear presence of the Ô reducing enormously the number of spin and
isospin configurations to be calculated.

The AFDMC allows calculations of nuclear systems with a number of particles larger than 12. There
are difficulties in treating systems composed by particles of different type, in the nuclear case this is
related to the presence of the isospin terms. For this reason systems containing only neutrons are favorite.
Results obtained with a finite number of neutrons (66) have been compared with those obtained by other
microscopic theories treating infinite neutron matter [Car15]. The comparison indicates a convergence of
the results obtained with different theories for this specific system.
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Chapter 5

Occupation number representation

5.1 Slater determinants

The use of creation and destruction operators has been introduced in Quantum Field Theories where
the number of particles is not constant, since it is possible to create particle-antiparticle pairs. Non
relativistic Quantum Mechanics treats phenomena whose energetics are much smaller than the particles
rest masses, therefore the creation of particle-antiparticle pairs is not possible. On the other hand, in the
treatment of many-body systems, the formalism developed by using creation and destruction operators
is very useful. As we discuss below, the physical meaning of the action of these operators is very different
from that defined in field theory.

We consider only the case of fermions. The treatment of bosonic systems is not difficult, even though
it is not a straightforward modification of the fermionic case. A system of A identical fermions can be
described by the time-independent Schrödinger equation

Ĥ Ψ(x1, x2 . . . xA) = EΨ(x1, x2 . . . xA) , (5.1)

where x indicates all the quantum numbers characterizing each particle: position (r), spin (σ), isospin
(τ) and eventually other quantum numbers such as flavour, color. Since we deal with fermions, the global
wave function Ψ must be antisymmetric for the exchange of two particles:

Ψ(. . . xi, . . . , xj . . .) = −Ψ(. . . xj , . . . , xi . . .) . (5.2)

Each eigenfunction of Ĥ can be written as linear combination of a complete system of orthonormal
functions forming a basis. For example

Ψ =
∑
i

CiΦi , (5.3)

where Φi is a Slater determinant and the Ci coefficient is a number. The Slater determinant is built by
products of single particle wave functions. As it has been discussed in Chapter 2, these single-particle
wave functions, which form a basis, are obtained by solving a single-particle Schrödinger equation:

ĥνφν(x) = ενφν(x) , (5.4)

where ν is the set of quantum numbers characterising the single-particle state. These are the three
components of the momentum p, in the case of plane waves. For the wave functions in a potential with
spherical symmetry they are the principal quantum number n, and those quantum numbers related to
the orbital angular momentum l, total angular momentum, j, and its projection m on the quantisation
axis quantum numbers

49
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Once the single-particle wave functions φν are known the Slater determinant for A particles is built
as

Φ(x1, . . . xA) =
1√
A!

∑
P

(−)PPφν1(x1)φν2(x2) . . . φνN (xA) , (5.5)

where P indicates the permutations between the indexes of the coordinates. The
√
A! factor gives the

normalisation
〈Φ | Φ〉 = 1 . (5.6)

Eq. (5.5) can be written as

Φ(x1 . . . xA) =
1√
A!

∣∣∣∣∣∣∣
φν1(x1) . . . φνA(x1)

...
...

φν1(xA) . . . φνA(xA)

∣∣∣∣∣∣∣ . (5.7)

The Slater determinant is eigenstate of a many-body hamiltonian which is sum of single-particle
hamiltonians: ∑

ν

ĥνΦ = Ĥ0Φ = E0Φ . (5.8)

5.2 Creation and destruction operators

The Slater determinant contains redundant information. From the physics point of view, it is important
to know whether the state φν is occupied or not. The knowledge of what is the fermion occupying
this state is not relevant since all the fermions composing the system are identical. The information
contained in the Slater determinant can be summarised in a set of ordered numbers indicating which
are the occupied single-particle states. It is possible to map this set of ordered numbers to the Slater
determinant:

|Φ〉 −→ |νA, νA−1 . . . ν1〉 . (5.9)

In a commonly used convention, the order of the indexes is that of decreasing values of energies. The νA
state is that with with highest energy, and so on. This representation of a Slater determinant is usually
called Occupation Number Representation (ONR).

It is useful to relate states with different particle numbers. For example, the single-particle state

|φν〉 ≡ |ν〉, (5.10)

can be imagined as obtained by adding a particle to the vacuum state |0〉. In symbols

|ν〉 = â+
ν |0〉, (5.11)

where â+
ν represents the operator which puts a particle on the single-particle state characterized by the

ν quantum numbers.
In general one can write:

â+
ν |νA . . . ν1〉 = |ννA . . . ν1〉. (5.12)

This state with A+ 1 particles is not necessarily ordered. The newly added particle, ν, must be correctly
positioned. This is done by considering that any change of position produces a multiplicative negative
phase, this is because we are dealing with a determinant describing a set of fermions. The possible
ambiguities on the global sign of the state can be defined by choosing that the sign of the determinant
does not change if the new particle remains in the first position, as we have assumed in writing Eq. (5.12).

For example:
â+
ν1 |ν3ν2〉 = |ν1ν3ν2〉 = −|ν3ν1ν2〉 = |ν3ν2ν1〉 . (5.13)
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It follows from Eq. (5.11) and (5.12) that:

|νA . . . ν1〉 = â+
νA â

+
νA−1 . . . â

+
ν1 |0〉 . (5.14)

For the properties of the Slater determinant we have that:

â+
ν |νA . . . ν . . . ν1〉 = 0 . (5.15)

This operation inserts in a determinant a row, or a column, equal to a row, or a column already present.
From the physics point of view Eq. (5.15) expresses the Pauli exclusion principle.

From what we have presented so far, it possible to deduce that the creation operators have the
following anti-commutation properties

â+
ν1 â

+
ν2 = −â+

ν2 â
+
ν1 . (5.16)

Let’s demonstrate the validity of Eq. (5.16). We assume ν > ν′

â+
ν â

+
ν′Φ

A(A . . . . . . 1) = θIν′ â
+
ν ΦA+1(A . . . ν′ . . . 1) = θIνθ

I
ν′Φ

A+2(A . . . ν . . . ν′ . . . 1) ,

â+
ν′ â

+
ν ΦA(A . . . . . . 1) = θIIν â

+
ν′Φ

A+1(A . . . ν . . . 1) = θIIν θ
II
ν′ Φ

A+2(A . . . ν . . . ν′ . . . 1) .
(5.17)

We indicated with θIν = (−)p ≡ (−1)p the phase acquired by carrying out the necessary permutations to
put in the proper position the ν particle, and in analogy θIν′ = (−)p

′
. The phases obtained in the second

case have been indicated as θIIν and θIIν′ . Since ν > ν′, θIν = θIIν because the number of permutation to
put in order ν is the same in both cases. On the other hand, θIν′ = −θIIν′ since in the second case, an
additional permutation has to be done to arrange ν′. Therefore, we obtain

â+
ν â

+
ν′Φ = −â+

ν′ â
+
ν Φ , (5.18)

from where the relation (5.16) between operators is derived. Obviously Eq. (5.16) implies(
a+
ν

)2
= 0 , (5.19)

which is another way to express Eq. (5.15), i.e. the Pauli exclusion principle.

It is possible to define the adjoint operator of â+ whose action can be understood by taking the adjoint
of Eq. (5.11).

(â+
ν )+ = âν , (5.20)

|ν〉 = â+
ν |0〉 ; 〈ν| = 〈0|âν , (5.21)

〈ν1ν2 . . . νN | = 〈0|âν1 . . . âνN−1
âνN , (5.22)

since 〈ν|ν〉 = 1 we obtain
〈0 |âν â+

ν |0〉︸ ︷︷ ︸
|0〉

= 1 , (5.23)

and therefore,
|0〉 = âν â

+
ν |0〉 = âν |ν〉 = |0〉 . (5.24)

The effect of applying âν on the ket state is that of taking out a particle which occupied the |ν〉 state.
From this the name of destruction operator. Let’s analyze the behaviour of âνr .

âνr |νA . . . νr+1νrνr−1 . . . ν1〉 = |νA . . . νr+1νr−1 . . . ν1〉(−)r−1 . (5.25)



52 CHAPTER 5. OCCUPATION NUMBER REPRESENTATION

Since, by definition, in the vacuum all the single-particle states are empty, we can write

âν |0〉 = 0 . (5.26)

If the vector |νN . . . ν1〉 does not contain the ν state, then

âν |νA . . . ν1〉 = 0 . (5.27)

Also in the case of the destruction operators it is possible to show that

âν1 âν2 = −âν2 âν1 and therefore (âν)2 = 0 . (5.28)

Analogously, it is possible to demonstrate that, for ν1 6= ν2, the following relation holds:

âν1 â
+
ν2 = −â+

ν2 âν1 . (5.29)

By using the properties previously discussed we obtain:

âν â
+
ν |νA . . . ν1〉 =

{
0 if ν ∈ S S = {νA . . . ν1}
|νA . . . ν1〉 if ν 6∈ S (5.30)

â+
ν âν |νA . . . ν1〉 =

{
|νA . . . ν1〉 if ν ∈ S
0 if ν 6∈ S (5.31)

Eqs. (5.30) and (5.31) leads to the relation(
âν â

+
ν + â+

ν âν
)
|νA . . . ν1〉 = |νA . . . ν1〉 . (5.32)

This relation is valid for any vector |νA . . . ν1〉 since one of the two terms gives a zero result, while the
other one reproduces the starting vector.

Eq. (5.31) defines the occupation number operator

n̂ν = â+
ν âν , (5.33)

whose eigenvalues are 1 or 0 whether the state to which is applied contains, or not, the single-particle
state ν.

The relation between creation and destruction operators given by Eqs. (5.30) and (5.31) is:

âν â
+
ν + â+

ν âν = 1 . (5.34)

The relations (5.16), (5.28), (5.29), defining the properties of the creation and destruction operators,
can be summarised as: {

âν , â
+
ν′

}
= δνν′ {âν , âν′} = 0

{
â+
ν , â

+
ν′

}
= 0 , (5.35)

where the symbol {, } indicates the anti-commutator operator.

When the many-body system has rotational symmetry is it convenient to work with operators which
have the properties of the irreducible spherical tensors. For this reason, it is convenient the use of creation
and destruction operators defined in a slightly different manner, as indicated in the Appendix B.
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5.3 One- and two-body operators

We used the ONR to describe state vectors, Slater determinants to be precise, but the approach can
continue to describe the operators.

We indicated with |S〉 and |S′〉 two vectors described in ONR, and with |ΦS〉 and |ΦS′〉 the two
corresponding Slater determinants. Let’s consider, in the configuration space, a generic many-body
operator ÔS(x1 . . . xA). Since the physical quantities which can be measured are related to the expectation
value of operators between states, the two representations must provide the same value

〈ΦS′ |ÔS |ΦS〉 = 〈S′|Ô|S〉 . (5.36)

In the study of many-body systems, the most common operators are the one- and two-body operators.
In the coordinate space, a one-body operator is given by the sum of operators acting on a single coordinate
at the time:

ÔIS(x1 . . . xA) =
A∑
i=1

ôI(xi) . (5.37)

The kinetic energy is a typical one-body operator. For simplicity let’s use a basis of single-particle wave
functions where ÔI is diagonal

ôI(x)φν(x) = ωνφν(x). (5.38)

By using the Slater determinant built on the φν states we obtain:

ÔIS(x1 . . . xA)ΦS(x1 . . . xA) =

=
1√
A!

∑
P

(−)P
A∑
i=1

ôI(xi)P̂ φν1(x1) . . . φνA(xA) =

=
1√
A!

∑
P

(−)P
A∑
i=1

P̂ ôI(xi)φν1(x1) . . . φνA(xA)

=
1√
A!

∑
P

(−)P
A∑
i=1

(ωνi P̂ φν1(x1) . . . φνA(xA)

=

A∑
i=1

ωνiΦS =
∑

ν occupied

ωνΦS =
∑
ν

ωνnνΦS , (5.39)

where we have indicated with P̂ the operator which makes all the possible P permutations. In the
previous equations nν = 1 for all the occupied levels and nν = 0 for the empty ones. The evaluation of
the matrix element is:

〈ΦS′ |ÔIS |ΦS〉 = 〈ΦS′ |
∑
ν

ωνnν |ΦS〉 = (5.40)

=
∑
ν

ων〈S′|n̂ν |S〉 = 〈S′|OI |S〉 , (5.41)

where we used the occupation number operator defined in Eq. (5.33). By substituting we obtain

〈S′|OI |S〉 = 〈S′|
∑
ν

ων â
+
ν âν |S〉 , (5.42)

and then:
ÔI =

∑
νν

ωνν â
+
ν âν , (5.43)
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where

ωνν =

∫
d3rφ∗ν(r)ôI(r)φν(r) . (5.44)

The expression of the one-body operator for a generic single-particle basis is:

ÔI =
∑
νν′

OIνν′ â
+
ν âν′ (5.45)

OIνν′ =

∫
dxφ∗ν(x)ôI(x)φν′(x) ≡ 〈ν|oI |ν′〉 (5.46)

where x is a generalized coordinate, containing space, spin and, eventually, also isospin. This expression
shows that the one-body operator takes out a particle in ν′ and puts a particle in the ν state. Obviously,
ν′ must be occupied and ν empty. This action is called creation of a particle-hole pair. In the case where
|S〉 = |S′〉 the only contributions different from zero are those where ν′ = ν.

Analogous procedure can be used to obtain the ONR expression for the two-body operators, defined
as sum of operators acting on two-coordinates at the time:

ÔIIS (x1 . . . xA) =
∑
i<j

ôII(xi, xj) =
1

2

∑
i6=j

ôII(xi, xj) (5.47)

A typical example of two-body operator is the interaction potential V̂ = 1
2

∑
i 6=j V (xi, xj). In ONR,

operators of this type are respresented as:

ÔII =
1

2

∑
νν′µµ′

OIIνµν′µ′ â
+
ν â

+
µ âµ′ âν′ , (5.48)

where OIIνµν′µ′ , which is a number, is defined as:

OIIνµν′µ′ = 〈νµ|OII |ν′µ′〉 =

∫
dxdx′φ∗ν(x)φ∗µ(x′)ôII(x, x′)φν′(x)φµ′(x

′) . (5.49)

It is worth to remark that the order of the two sub-indexes are inverted in the sequence of the creation
and destruction operators with respect to that of the matrix element.

In this case the two-body operator takes out two particles from occupied states and puts them in two
empty states.

5.4 Field operators

The creation and destruction operators â+
ν and âν presented here follows the same algebra, defined by the

anti-commutation relations (5.35), of the anaolgous operators introduced in the field theory. The physical
interpretation of the action of these operators is different in the two theories. In field theory the operators
describe the creation and the destruction of particles, as example in the formation of particle-antiparticle
pairs. In many-body theory the idea is that the mean-field problem has already been solved, and its
solution has provided a basis of single-particle states. The creation operator â+

ν puts a particle on the
state characterised by the ν quantum numbers, and âν takes out a particle occupying this state.

In field theory the field operator ψ̂+(r) creates a particle in the point r and the operator ψ̂(r) destroys
a particle positioned in r. It is possible to define this kind of operators also in many-body theory. These
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field operator are related to the creation and destruction operators through the single-particle wave
functions φν(r) generated by the solution of the mean-field problem:

ψ̂(r) =
∑
ν

âνφν(r) , (5.50)

ψ̂+(r) =
∑
ν

â+
ν φ
∗
ν(r) . (5.51)

Because of the orthonormality of the φ, these two equations can be inverted to express the creation and
destruction operators in terms of field operator:

âν =

∫
d3rφ∗ν(r)ψ̂(r) and â+

ν =

∫
d3rφν(r)ψ̂+(r) . (5.52)

By using the anticommutation relations (5.35) in the above definitions, it is possible to obtain analogous
relations for the field operators:{

ψ̂+(r), ψ̂+(r′)
}

= 0
{
ψ̂(r), ψ̂(r′)

}
= 0

{
ψ̂+(r), ψ̂(r′)

}
= δ(r− r′) . (5.53)

The one- and two-body operators can be expressed in terms of field operators as:

ÔI =

∫
d3r ψ̂+(r)ôI(r)ψ̂(r) , (5.54)

ÔII =
1

2

∫
d3rd3r′ ψ̂+(r)ψ̂+(r′)ôII(r, r′)ψ̂(r′)ψ̂(r) . (5.55)

The hamiltonian operator can be written in terms of creation and destruction operators or in terms
of field operators:

Ĥ = =
∑
νν′

〈ν|T̂ |ν′〉â+
ν âν′ +

1

2

∑
νν′µµ′

〈νµ|V̂ |ν′µ′〉â+
ν â

+
µ âµ′ âν′ , (5.56)

=

∫
d3rψ̂+(r)

(
− ~2

2m
∇2

)
ψ̂(r) +

1

2

∫
d3rd3r′ψ̂+(r)ψ̂+(r′)V (r, r′)ψ̂(r′)ψ̂(r) . (5.57)
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Chapter 6

Perturbation theory of many-body
systems

6.1 Pictures

The values of the observable quantities, in Quantum Mechanics, are obtained by calculating expectation
values of operators between states. These quantities are invariant if the same unitary transformation
is applied to the states and to the operators. These unitary transformations can contain the time and,
for example, they can transform states which depend on time in time-independent states. In this latter
case, the dependence on the time is inserted in the operator expressions. These time-dependent unitary
transformations are called pictures of the Quantum Mechanics.

Schrödinger picture

The most used picture is that of Schrödinger where the states describing the system depend on the time,
while the operators are time-independent. In this picture, the time evolution of the system is described
by the equation:

i~
∂

∂t
|ΨS(t)〉 = Ĥ|ΨS(t)〉 , (6.1)

which is the well known time-dependent Schrödinger equation.
For those system where the energy is conserved, the hamilton operator Ĥ does not depend on the

time. In this case, the formal solution of Eq. (6.1) is:

|ΨS(t)〉 = e−i
Ĥ(t−t0)

~ |ΨS(t0)〉 . (6.2)

In this equation the exponential function of an operator is present. The action of this function on the
state |ΨS(t0)〉 can be expressed in terms of a power expansion of the exponential. In addition, since Ĥ

is an hermitian operator, e
i
~ Ĥt is a unitary operator.

The Eq. (6.2) allows us to know the solution of the Schrödinger equation at any time t once the state
of the system is known at a specific time value t0.

Heisenberg picture

In this picture, the states are time-independent, while the operators have an explicit time dependence.
The states in the Heisenberg picture are related to those of the Schrödinger picture by the relation

|ΨH(t)〉 ≡ ei Ĥt~ |ΨS(t)〉 . (6.3)

57
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The time evolution of these states in the Heisenberg picture is:

i~
∂

∂t
|ΨH(t)〉 = −Ĥei Ĥt~ |ΨS(t)〉+ ei

Ĥt
~ i~

∂

∂t
|ΨS(t)〉 = for (6.1)

= −Ĥei Ĥt~ |ΨS(t)〉+ Ĥei
Ĥt
~ |ΨS(t)〉 = 0 . (6.4)

This clearly shows that |ΨH〉 does not depend on time.
The relation between the expressions of the operators in the two pictures is obtained by considering

that the expectation values of the operators must be the same:

〈ΨS(t)|ÔS |ΨS(t)〉 = 〈ΨH |ei
Ĥt
~ ÔSe

−i Ĥt~ |ΨH〉 , (6.5)

obviously

ÔH ≡ ei
Ĥt
~ ÔSe

−i Ĥt~ . (6.6)

The time evolution of the operator provides the equation of motion:

i~
∂

∂t
ÔH(t) = −Ĥei Ĥt~ ÔSe−i

Ĥt
~ + ei

Ĥt
~ ÔSĤe

−i Ĥt~ =

= −ĤÔH + ÔHĤ = [ÔH , Ĥ] (6.7)

where we exploited the fact that Ĥ and ei
Ĥt
~ commute. In general, ÔH and Ĥ do not commute. In case

of commutation, Eq. (6.7) expresses the fact that ÔH describes a constant of motion.

Interaction picture

This picture, intermediate between that of Heisenberg and that of Schrödinger, is that of main interest
in the description of many-body systems.

Let’s consider a time-independent hamiltonan in the Schrödinger picture, and let’s separate it in two
terms

Ĥ = Ĥ0 + Ĥ1 . (6.8)

The state vector in the interaction picture is defined as:

|ΨI(t)〉 ≡ ei
Ĥ0t
~ |ΨS(t)〉 . (6.9)

The time evolution of the state |ΨI(t)〉 is given by:

i~
∂

∂t
|ΨI(t)〉 = −Ĥ0e

i
Ĥ0t
~ |ΨS(t)〉+ ei

Ĥ0t
~ i~

∂

∂t
|ΨS(t)〉

= ei
Ĥ0t
~

[
−Ĥ0 + Ĥ0 + Ĥ1

]
e−i

Ĥ0t
~ ei

Ĥ0t
~ |ΨS(t)〉

= ei
Ĥ0t
~ Ĥ1e

−i Ĥ0t
~ |ΨI(t)〉 = Ĥ1,I(t)|ΨI(t)〉 , (6.10)

where in the second step we used Eq. (6.1). In general, Ĥ1 and Ĥ0 do not commute.
Also in this case, the expression of the operators in the interaction picture, in terms of the operator

in Schrödinger picture, is obtained by considering that the expectation values must be the same in both
pictures:

〈ΨS(t)|ÔS |ΨS(t)〉 = 〈ΨI |e+i
Ĥ0t
~ ÔSe

−i Ĥ0t
~ |ΨI〉 , (6.11)

from where we obtain the definition:

ÔI(t) = ei
Ĥ0t
~ ÔSe

−i Ĥ0t
~ . (6.12)
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From the above equations, it appears clear that, in the interaction picture, both states and operators
depend on time. The equation of motion in the interaction picture is:

i~
∂

∂t
ÔI(t) = −Ĥ0e

i
Ĥ0t
~ ÔSe

−i Ĥ0t
~ + ei

Ĥ0t
~ ÔSĤ0e

−i Ĥ0t
~

= ei
Ĥ0t
~ ÔSe

−i Ĥ0t
~ Ĥ0 − Ĥ0e

i
Ĥ0t
~ ÔSe

−i Ĥ0t
~

= ÔIĤ0 − Ĥ0ÔI =
[
ÔI(t), Ĥ0

]
. (6.13)

Since in the ONR all the operators can be expressed in terms of creation and destruction operators, it
is convenient to obtain the expressions of these operators in the interaction picture. In order to simplify
the calculation we consider a special situation where Ĥ0 is a one-body operator diagonal in the chosen
single-particle basis:

Ĥ0 =
∑
k

~ωkâ+
k âk . (6.14)

The equation of motion for an operator in the interaction picture is

i~
d

dt
âI,k(t) = ei

Ĥ0t
~

[
âS,k, Ĥ0

]
e−i

Ĥ0t
~ = ei

Ĥ0t
~

[
âS,k,

∑
k′

~ωk′ â+
S,k′ âS,k′

]
e−i

Ĥ0t
~

= ei
Ĥ0t
~
∑
k′

[
âS,k, â

+
S,k′ âS,k′

]
e−i

Ĥ0t
~ ~ωk′ ,

where I and S indicate the interaction and Schrödinger pictures respectively. The term in parentheses
becomes:

[âS,kâ
+
S,k′ âS,k′ − â+

S,k′(−âS,kâS,k′)] = [âS,kâ
+
S,k′ âS,k′ − (−δkk′ âS,k′ + âS,kâ

+
S,k′ âS,k′)] = âS,k .

We have then:

i~
d

dt
âk,I(t) = ~ωkâk,I(t) , (6.15)

and, by assuming âI(t = 0) = âS ,
âI,k(t) = âS,ke

−iωkt . (6.16)

For the adjoint operator, we obtain:
â+
I,k(t) = â+

S,ke
iωkt . (6.17)

Since the time dependence is present only in the complex phase, the (anti-)commutation properties of
the creation and destruction operators in the interaction picture are the same as those in the Schrödinger
picture.

In order to obtain the expression of the whatever operator in the interaction picture, it is enogh to
substitute the âk with âI,k(t) and analogously with the creation operators. Also the field operators can be
expressed in terms of âS,k and â+

S,k, therefore their expressions in the interaction picture can be obtained
by using the same procedure.

6.2 Time-evolution operator

We define an operator Û(t, t0), the time evolution operator, which determines the state vector at the
time t once the state vector is known at the t0 time

|ΨI(t)〉 = Û(t, t0)|ΨI(t0)〉 . (6.18)
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From the definition of state in the interaction picture, and from Eq. (6.2) we can write:

|ΨI(t)〉 = ei
Ĥ0t
~ |ΨS(t)〉 = ei

Ĥ0t
~ e−i

Ĥ
~ (t−t0)|ΨS(t0)〉

= ei
Ĥ0t
~ e−i

Ĥ
~ (t−t0)e−i

Ĥ0t0
~ |ΨI(t0)〉 ,

and therefore

Û(t, t0) ≡ ei
Ĥ0t
~ e−i

Ĥ(t−t0)
~ e−i

Ĥ0t0
~ . (6.19)

The properties of Û(t, t0) can be deduced by the above equation. For example:

Û(t0, t0) = 1 , (6.20)

and
Û+(t, t0)Û(t, t0) = Û(t, t0)Û+(t, t0) = 1 , (6.21)

which implies
Û+(t, t0) = Û−1(t, t0) , (6.22)

and
Û(t1, t2)Û(t2, t3) = Û(t1, t3) , (6.23)

and
Û(t, t0)Û(t0, t) = 1 which implies Û(t0, t) = Û+(t, t0) , (6.24)

Eq. (6.19) is not very useful for the calculation of observables. From the computational point of view,
the solution of Eq. (6.18) by using the expression (6.19) is equivalente to solve the Schrödinger equation.
The usefulness of Û(t, t0) is related to the possibility of calculating it by doing a perturbation expansion.
In order to acheive this goal it is convenient to use an integral expression of Û(t, t0).

Let’s rewrite Eq.(6.10) as

i~
∂

∂t
|ΨI(t)〉 = Ĥ1(t)|ΨI(t)〉 (6.25)

where Ĥ1(t) is the term of the hamiltonian in the interaction picture. To simplify the writing we did not
write the sub-index I in hamiltonian term which will be understood henceforth. By using Eq. (6.18) we
obtain:

i~
∂

∂t
Û(t, t0)|ΨI(t0)〉 = Ĥ1(t)Û(t, t0)|ΨI(t0)〉. (6.26)

Since |ΨI(t0)〉 is different from zero, we can divide by it the above equation and obtain a relation between
operators:

i~
∂

∂t
Û(t, t0) = Ĥ1(t)Û(t, t0) . (6.27)

By integrating from t0 to t we obtain∫ t

t0

i~
∂

∂t′
Û(t′, t0)dt′ =

∫ t

t0

Ĥ1(t′)Û(t′, t0)dt′

= i~
[
Û(t, t0)− Û(t0, t0)

]
=

∫ t

t0

dt′Ĥ1(t′)Û(t′, t0).

By considering Eq. (6.20) we have:

Û(t, t0) = 1− i

~

∫ t

t0

dt′Ĥ1(t′)Û(t′, t0) (6.28)
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We obtain a formal solution Eq. (6.28) by by inserting its expression of Û(t′, t0) in the right hand
side:

Û(t, t0) = 1− i

~

∫ t

t0

dt′Ĥ1(t′)

[
1− i

~

∫ t′

t0

dt′′Ĥ1(t′′)[1− . . .]
]

Û(t, t0) = 1− i

~

∫ t

t0

dt′Ĥ1(t′) +

(−i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ1(t′)Ĥ1(t′′)︸ ︷︷ ︸
t>t′

+ . . . (6.29)

Let’s consider the third term in the right hand side of the above equation:∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ1(t′)Ĥ1(t′′) =
1

2

∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ1(t′)Ĥ1(t′′)︸ ︷︷ ︸
t′>t”

+
1

2

∫ t

t0

dt′′
∫ t′′

t0

dt′Ĥ1(t′′)Ĥ1(t′)︸ ︷︷ ︸
t”>t′

. (6.30)

In this expression the dummy indexes of the integration variables have been interchanged. In general,
one has ∫ b

a

dy

∫ b

y

dxf(x)f(y) =

∫ b

a

dx

∫ x

a

dyf(x)f(y) , (6.31)

therefore Eq. (6.30) can be written as:∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ1(t′)Ĥ1(t′′) =

1

2

∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ1(t′)Ĥ1(t′′) +
1

2

∫ t

t0

dt′
∫ t

t′
dt′′Ĥ1(t′′)Ĥ1(t′) =

1

2

∫ t

t0

dt′
∫ t

t0

dt′′
[
Ĥ1(t′)Ĥ1(t′′)θ(t′ − t′′) + Ĥ1(t′′)Ĥ1(t′)θ(t′′ − t′)

]
=

1

2

∫ t

t0

dt′
∫ t

t0

dt′′T̂
[
Ĥ1(t′)Ĥ1(t′′)

]
, (6.32)

where I introduced a time-ordering operator T̂ whose action consists in ordering a product of operators
in decreasing time from the left to the right.

Generalising the result (6.32) for each term, we obtain, for Eq. (6.29), the expression

Û(t, t0) =

∞∑
n=0

(−i
~

)n
1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtnT̂
[
Ĥ1(t1) . . . Ĥ1(tn)

]
. (6.33)

Demonstration of Eq. (6.31). Let’s define

dF (x)

dx
= f(x) .

We consider the first term of Eq. (6.31).∫ b

a

dy

∫ b

y

dxf(x)f(y) =

∫ b

a

dyf(y) [F (b)− F (y)] = F (b) [F (b)− F (a)]−
∫ b

a

dyf(y)F (y)

= F (b) [F (b)− F (a)]−
∫ b

a

dy
1

2

d

dy
[F (y)]2 = F 2(b)− F (b)F (a)− 1

2

[
F 2(b)− F 2(a)

]
=

1

2
F 2(b) +

1

2
F 2(a)− F (b)F (a) =

1

2
[F (b)− F (a)]2 .
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The second term of Eq. (6.31) is∫ b

a

dx

∫ x

a

dyf(x)f(y) =

∫ b

a

dxf(x) [F (x)− F (a)] =

∫ b

a

dxf(x)F (x)− F (a) [F (b)− F (a)]

=

∫ b

a

dx
1

2

d

dx
[F (x)]2 − F (a)F (b) + F 2(a) =

1

2

[
F 2(b)− F 2(a)

]
− F (a)F (b) + F 2(a)

=
1

2
F 2(b) +

1

2
F 2(a)− F (b)F (a) =

1

2
[F (b)− F (a)]2 .

6.3 Wick’s theorem

Before considering the use of the time-evolution operator in the perturbation expansion we shall present
a theorem which is very useful in the calculations of the expectation values of operators expressed in
ONR.

Time-ordering operator T̂

I have already introduced in Eq. (6.32) the time-ordering operator

T̂[ÂB̂Ĉ . . .], (6.34)

which orders a sequence of time-dependent operators, such as those expressed in the interaction picture,
with the latest times to the left. Since these operators can be expressed in terms of creation and destruc-
tion operators, it is necessary to take care of the anticommutation relations in doing this ordering. This
means one has to add a -1 sign for each interchange of fermion operators.

For example, assuming tn+1 < tn, we have that:

T̂
[
â(t3)â+(t1)â+(t2)

]
= â+(t1)â+(t2)â(t3). (6.35)

Another example:
T̂
[
â(t2)â+(t1)â+(t3)

]
= −â+(t1)â(t2)â+(t3) . (6.36)

Normal order product

By definition, the expectation value of a normally ordered set of creation and destruction operators with
respect to the ground state of the system is zero. This enforces the construction of an operator N̂ which
arranges the sequence of creation and destruction operators to obtain a zero value. The action of N̂
depends on the definition of the system ground state.

In field theory, the ground state of the system is the physical vacuum, i.e. a state without particles,
|0〉. In this case, the action of N̂ consists in putting on the right hand side the destruction operators, and
to the left hand side the creation operators. This because â|0〉 = 0, and 〈0|â+ = 0. For example:

N̂[â1â
+
2 â3â

+
4 ] = −â+

2 â
+
4 â1â3 , field theory. (6.37)

In the case of many-body systems, it is much more convenient to consider a ground state given by the
solution of the mean-field problem |Φ0〉, where all the levels below the Fermi surface are occupied (hole

states) and those above the Fermi surface are empty (particle states). The action of N̂ on the creation and
destruction operators is more involved than in the previous case. Following the traditional nomenclature
we indicate with the latin letters (ijkl) the hole states, and with (mnpq) the particle states. We shall
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use the greek letters to indicate a generic state which can be hole or particle. The action of the creation
and destruction operators on the mean-field ground state is:

âj |Φ0〉 6= 0 ; âm|Φ0〉 = 0 ;

â+
j |Φ0〉 = 0 ; â+

m|Φ0〉 6= 0 . (6.38)

In this case, the action of N̂ consists in moving to the right hand side the âm and the â+
j operators, and

to the left hand side the operators âj and â+
m. Also in this case, every change in the position of the

operators inserts a minus sign. The following example contains two minus signs:

N̂[âmâ
+
j âj â

+
m] = (−âj â+

m)(−âmâ+
j ) = âj â

+
mâmâ

+
j . (6.39)

Contraction

The contraction is defined as the difference between two time-ordered and normal-ordered operators.

ÂB̂ ≡ T̂[ÂB̂]− N̂[ÂB̂] . (6.40)

We identify the two operators to contract by a line joining them.
If the operators are time-independent, or if they are defined at the same time:

T̂[ÂB̂] = ÂB̂ . (6.41)

For example, the contraction of a particle creation operator with a hole destruction operator is:

â+
mâi = T̂[â+

mâi]− N̂[â+
mâi] = â+

mâi − â+
mâi = 0 . (6.42)

The result of the contraction is not an operator, or an operator sequence, but it is a number. This is
a consequence of the anti-commutation rules of the creation and destruction operators. The contraction
is related to the anti-commutator of these operators.

The contraction is the expectation value of the two operators on the ground state:

〈Φ0|ÂB̂|Φ0〉 = 〈Φ0|ÂB̂|Φ0〉+ 〈Φ0|N̂[ÂB̂]|Φ0〉 = ÂB̂〈Φ0|Φ0〉 , (6.43)

where we used the fact that 〈Φ0|N̂[ÂB̂]|Φ0〉 = 0. by definition.
In a set of various operators, eventually with more than one contraction, the pair of operators which

has to be contracted must be arranged such as the operators to be contracted are close to each other.
This procedure includes a -1 for each operator exchange. The global sign must take care of For example:

ÂB̂ĈD̂ÊF̂ = −ÂĈB̂F̂ D̂Ê . (6.44)

Formulation of the Wick’s theorem

The Wick’s theorem states that a time-ordered product of operators can be written as sum of normal-
ordered products where all the possible contractions are executed:

T̂[ÂB̂Ĉ . . . Ẑ] = N̂[ÂB̂Ĉ . . . Ẑ] + N̂[ÂB̂ . . . Ẑ] + N̂[ÂB̂Ĉ . . . Ẑ]

+ N̂[ÂB̂ĈD̂ . . . Ẑ] + N̂[ÂB̂ĈD̂ . . . Ẑ]

+ N̂[ÂB̂ĈD̂ . . . Ẑ] + . . . .
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Since the result of a contraction is a number, all the contracted operators are not involved by the action
of N̂. For example, the Wick’s theorem applied to the product of four operators gives:

ÂB̂ĈD̂ = N̂[ÂB̂ĈD̂] + N̂[ÂB̂ĈD̂] + N̂[ÂB̂ĈD̂] + N̂[ÂB̂ĈD̂]

+ N̂[ÂB̂ĈD̂] + N̂[ÂB̂ĈD̂] + N̂[ÂB̂ĈD̂]

+ N̂[ÂB̂ĈD̂] + N̂[ÂB̂ĈD̂] + N̂[ÂB̂ĈD̂]

= N̂[ÂB̂ĈD̂] + ÂB̂ N̂[ĈD̂]− ÂĈ N̂[B̂D̂] + ÂD̂ N̂[B̂Ĉ]

+ B̂Ĉ N̂[ÂD̂]− B̂D̂ N̂[ÂĈ] + ĈD̂ N̂[ÂB̂]

+ ÂB̂ĈD̂ − ÂB̂ĈD̂ + ÂB̂ĈD̂ . (6.45)

From this expression it appears clear that the calculation of the expectation value of these operators with
respect to the ground state is reduced to the evaluation of the contractions since all the terms containing
N̂ are zero, by definition.

6.4 Adiabatic switching on of the interaction

We use here the adiabatic switching on of the interaction as a mathematical expedient to write the
eigenstates of a system of interacting particles in terms of states of non-interacting particles, i.e. MF
states. This is very useful since the MF problem is easily solved.

Let’s consider a hamiltonian of the form

Ĥ = Ĥ0 + e−ε|t|Ĥ1 , (6.46)

where ε is a real, and positive, number. Obviously:

lim
t→±∞

Ĥ = Ĥ0 , (6.47)

and at the time t = 0 the hamiltonian (6.46) is the full hamiltonian:

lim
t→0

Ĥ = Ĥ0 + Ĥ1 . (6.48)

The ε parameter can be chosen in order to switch on and off, slowly at pleasure, the perturbation. The
final results must be independent of the value of ε.

The eigenstates of the hamiltonian (6.46) in interaction picture can be expressed as:

|ΨI(t)〉 = Ûε(t, t0)|ΨI(t0)〉 . (6.49)

The sub-index ε has been added to the time evolution operator Û since in its definition, Eq. (6.19),
instead of Ĥ1(t) we use e−ε|t|Ĥ1(t).

Eq. (6.33), expressing the time-evolution operator in perturbative terms, becomes:

Ûε(t, t0) =

∞∑
n=0

(−i
~

)n
1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn

e−ε|[t1|+|t2|+...]T̂[Ĥ1(t1) . . . Ĥ1(tn)] , (6.50)
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where the exponential terms have been exctracted from T̂ since they commute with Ĥ1. The equation of
motion (6.10) for a system described by the hamiltonian (6.46) can be expressed as:

i~
∂

∂t
|ΨI(t)〉 = e−ε|t|Ĥ1(t)|ΨI(t)〉 →t→±∞ 0 , (6.51)

therefore, in the limit t→ ±∞ one has that |ΨI(±∞)〉 is time independent. For t→ ±∞ the hamiltonian
reduces to Ĥ0, therefore we have

|ΨI(t)〉 = Ûε(t,−∞)|Φ0〉 , (6.52)

where |Φ0〉 is eigenstate of Ĥ0.

If the interaction term Ĥ1 would not be present, |ΨI〉 would be always equal to |Φ0〉. When the time
increases the interaction is switched on up to t = 0 when it is fully active. After that the interaction it
is slowly switch off up to become zero for t = +∞.

The definitions of the state in the Heisenberg, Schrödinger and interaction pictures determine the
states at t = 0:

|ΨH(t)〉t→0 = lim
t→0

ei
Ĥt
~ |ΨS(t)〉 = |ΨS(0)〉 (6.53)

|ΨI(t)〉t→0 = lim
t→0

ei
Ĥ0t
~ |ΨS(t)〉 = |ΨS(0)〉 (6.54)

|ΨH(0)〉 = |ΨI(0)〉 = |ΨS(0)〉 , (6.55)

and then:

|ΨS(0)〉 = |ΨH(0)〉 = |ΨI(0)〉 = Ûε(0,−∞)|Φ0〉 . (6.56)

Eq. (6.56) expresses the eigenstate of an interacting hamiltonian Ĥ in terms of an eigenstates of
a non-interacting, mean-field, hamiltonian Ĥ0. The result obtained is physically meaningful if all the
quantities calculated in the lim ε→ 0 are finite.

The Gell-Mann and Low theorem answer to this question. Let’s consider a perturbation expansion of
the following mathematical entity

Ûε(0,−∞)|Φ0〉
〈Φ0|Ûε(0,−∞)|Φ0〉

≡ |Ψ0〉
〈Φ0|Ψ0〉

=

∞∑
n=0

|ξ(n)
ε 〉 gn , (6.57)

where gn is a generic expansion parameter. If, for each n the limε→0 |ξ(n)
ε 〉 exists, i.e. it is finite, then,

the full quantity defined in Eq. (6.57) is eigenstate of the hamiltonian Ĥ:

Ĥ
|Ψ0〉
〈Φ0|Ψ0〉

= E0
|Ψ0〉
〈Φ0|Ψ0〉

. (6.58)

Multiplying on the left both terms of the above equation by 〈Φ0| we obtain:

〈Φ0|Ĥ|Ψ0〉
〈Φ0|Ψ0〉

= E0 =
〈Φ0|Ĥ0|Ψ0〉
〈Φ0|Ψ0〉

+
〈Φ0|Ĥ1|Ψ0〉
〈Φ0|Ψ0〉

= E0 +
〈Φ0|Ĥ1|Ψ0〉
〈Φ0|Ψ0〉

,

teherefore:
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E0 − E0 =
〈Φ0|Ĥ1|Ψ0〉
〈Φ0|Ψ0〉

=
〈Φ0|H1 Û(0,−∞)|Φ0〉
〈Φ0|Û(0,−∞)|Φ0〉

. (6.59)

Detailed proofs of the Gell-Mann and Low theorem can be found in various textbooks, for example
[Fet71, Gro91]. We would like here to emphasize the essential point of the theorem, by pointing out that
in the limε→0 numerator and denominator of Eq. (6.57) do not separately exists, but the limit of they
ratio is finite. The numerator has divergencies of ε−1 order which are canceled by analogous divergencies
present in the denominator.

The result (6.59) is important since it expresses the difference between the energy of a system of
interacting particles with that of non-interacting particles described by a mean-field model. All the
ingredients necessary to calculate this quantity are known. The basic assumption of our approach is that
the mean-field problem is solved, which implies that |Φ0〉 is known. The time-evolution operator Û is
calculated by using the perturbation expansion given by the expression (6.33) where the Wick’s theorem

allows the evaluation of the time-ordering operator T̂ applied to the various Ĥ1 acting at different times.



Chapter 7

Goldstone theorem

7.1 Goldstone diagrams

The analysis of the various terms of the perturbative expansion is simplified by the use of graphic
techniques. These techniques consist in associating a graphic symbol to every element of the equation
which is perturbatively expanded. Every expansion term is identified by a diagram.

In relativistic field theory, these diagrams are called Feynman diagrams. There is a set of rule which
allows the exact reconstruction of the mathematical expression of the perturbative term graphically
described.

It is not our interest here to use the graphic techniques in this manner. We use these diagrams to
identify the terms of the perturbative expansion having similar characteristics.

Since the Feynman diagrams are used in relativistic field theory, we call Goldstone diagrams those
used in non-relativistic Quantum Mechanics.


t
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+

m
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a m



B



a i



C



a
+

i



D


Figure 7.1:

In Fig. 7.1 the various elements composing the diagram are presented. In this representation let’s
imagine an ideal time arrow oriented from the lower to the upper sides of the diagram. This line has
been drawn in Fig. 7.1 but it will be understood in all the other figures.

An oriented line coming out from a point and moving in the direction of positive times (A in the
figure) represents the creation of a particle. This diagram is related to the creation operator â+

m. We
remember the convention adopted to indicate with the m,n, p, q, r, the states above the Fermi surface,

67
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and with the i, j, k, l letters the states below it. In case of coordinate representation, this symbol is
related to the field operator ψ̂+(r), which indicates the creation of a particle in the point r. An oriented
line moving in the positive time direction and disappearing in a point (B in the Figure) represents the

destruction of a particle, and the operators associated to it are âm or ψ̂(r).
In relativistic field theory, the lines oriented in opposite direction with respect to the time arrow

(negative times) represent antiparticles. In our case, Goldstone diagrams, they, instead, represent hole
states, i.e. single particle states below the Fermi surface. A disappearing line (case D of the Figure)

indicates the creation of a hole state, and the associated operators are â+
i or ψ̂(r). Obviously, the

oriented line moving back in the time and disappearing in a point (case C of the Figure) indicates the

destruction of a hole state. In this case, the related operators are âi o ψ̂+(r).
The last graphic element required to compose the diagrams is that related to the interaction V̂ (r1, r2).

We have chosen a dashed line joining two points, which describe the action of a two-body interactions.
Since the framework is non relativistic, the action of the interaction is instantaneous, therefore in the
Goldstone diagrams the dashed lines are always horizontal. This is not the case in the Feynmann where
the interaction propagates at finite velocity.

i

j m

r
1 r

2

i

j m

r
1 r

2 n

A B

Figure 7.2:

As example, we present in Fig. 7.2 two diagrams of which we calculate the explicit expressions. The
diagrams represent the expectation values of the type:

〈Φa|V̂ |Φb〉 , (7.1)

where |Φa〉 indicates the initial state and |Φb〉 the final one.
Let’s consider the A diagram of Fig. 7.2. The initial state is formed by a particle state n and by a

hole state i:

〈Φa| = 〈Φ0|â+
i ân , |Φa〉 = â+

n âi|Φ0〉 (7.2)

In this diagram also the final state is composed by hole and particle states which are different with respect
to those of the initial state:

|Φb〉 = â+
mâj |Φ0〉. (7.3)

The expression of the A diagram of the Fig. 7.2 is:

〈Φ0|â+
i ânV̂ â

+
mâj |Φ0〉. (7.4)
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At this point one has to insert the expression of V̂ in ONR:

V̂ =
1

2

∑
νν′µµ′

Vνµν′µ′ â
+
ν â

+
µ âµ′ âν′ , (7.5)

and then to use the Wick’s theorem to evaluate the expectation value.
The evaluation of the B diagram of Fig. 7.2 proceeds in analogous manner. The difference with the

previous case that the hole states of the initial and final states are the same. The expression of the
diagram is:

〈Φ0|â+
i âj V̂ âiâ

+
m|Φ0〉. (7.6)

7.2 Goldstone theorem

The Goldstone theorem states that the difference between the energy of system of interacting particles
and that of a system of non-interacting particles can be expressed as:

E0 − E0 = 〈Φ0|Ĥ1

∞∑
n=0

(
1

E0 − Ĥ0

Ĥ1

)n
|Φ0〉c , (7.7)

where Ĥ0 and Ĥ1 are time-independent operators in the Schrödinger picture, and |Φ0〉 is the eigenstate
of Ĥ0, the MF hamiltonian. The meaning of the important sub-index c will be clarified below.

Let’s write explicitly the first terms of Eq. (7.7):

E0 − E0 = 〈Φ0|Ĥ1|Φ0〉

+ 〈Φ0|Ĥ1
1

E0 − Ĥ0

Ĥ1|Φ0〉c

+ 〈Φ0|Ĥ1
1

E0 − Ĥ0

Ĥ1
1

E0 − Ĥ0

Ĥ1|Φ0〉c

+ . . . . (7.8)

Some of the diagrams related to the expansion terms are shown in Fig. 7.3. The diagram A is contained
in the first term of Eq. (7.8). A single dashed line indicates the presence of only one interaction Ĥ1.
There are not open lines of particle or holes since the expectation value is evaluated on the mean-field
ground state. The other diagram present in the first expansion term is that called exchange term. In this
diagram the particle and hole lines are interchanged between the various points. This is the diagram B
of Fig. 7.4).

The diagram B of Fig. 7.3 is one of the diagrams of the second term of Eq. (7.8) since it contains
to interaction lines Ĥ1. Also in this case it is necessary to add the exchange term. This diagram show
that Ĥ1 creates an intermediate state characterised by 2 particle states and 2 hole states (2p− 2h). This
happens since Ĥ1 is a two-body operator. This intermediate state propagates (the term (E0 − Ĥ0)−1 is
the Fourier transform of the time propagation operator) and it is de-excited by the action of another Ĥ1

term.
The traditional expression of the perturbative expansion can be obtained by inserting a completeness

of Ĥ0 eigenstates Î =
∑
n 6=0 |Φn〉〈Φn|, (where Î is the identity operator):

E0 − E0 = 〈Φ0|Ĥ1|Φ0〉+
∑
n 6=0

〈Φ0|Ĥ1|Φn〉〈Φn|Ĥ1|Φ0〉
E0 − En

+ . . . (7.9)

The absence of the n = 0 terms is a subtle point which we clarify here below where we show how to
obtain Eq. (7.7) starting from the expression of the Gell-Mann and Low theorem.
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Figure 7.3:
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Eq. (6.59) can be rewritten as:

E0 − E0 =
〈Φ0|Ĥ1|Ψ0〉
〈Φ0|Ψ0〉

=
〈Φ0|Ĥ1Û(0,−∞)|Φ0〉
〈Φ0|Û(0,−∞)|Φ0〉

. (7.10)

By using the expression (6.33) of the time evolution operator, we obtain, for the numerator:

〈Φ0|Ĥ1Û(0,−∞)|Φ0〉 =
∑
ν=0

(−i
~

)ν
1

ν!

∫ 0

−∞
dt1 . . .

∫ 0

−∞
dtν

〈Φ0|T̂[Ĥ1, Ĥ1(t1) . . . , Ĥ1(tν)]|Φ0〉 , (7.11)

where we used the lim ε→ 0 of Eq. (6.50). The H1 operator which in (7.10) is out of the action of T̂
here it has been included in the first position between the operators which have to be ordered by T̂. This
operation does not modify the results since this Ĥ1 is defined at t = 0 which is the latest time involved.

The various terms of the perturbative expansion can be calculated by using the Wick theorem. The
investigation of the diagrams which are here generated indicates the possibility of classify them in two
categories: linked and unlinked. The linked diagrams are those where there are contractions between the
creation and destruction operators defining Ĥ1(0) and other operators defined at earlier times.

Let’s consider, for example, the term with ν = 1:

〈Φ0|Ĥ1(0)Ĥ1(t1)|Φ0〉 ∼
〈Φ0|V̂µνµ′ν′ â+

µ (0)â+
ν (0)âν′(0)âµ′(0)V̂ηξη′ξ′ â

+
η (t1)â+

ξ (t1)âξ′(t1)âη′(t1)|Φ0〉 , (7.12)

where we have explicitly written Ĥ1 in terms of creation and destruction operators in interaction picture.
For simplicity in writing we understand the sum on the repeated greek indexes.

In absence of contraction between operators defined at the time t1 and those defined at t = 0, the two
terms can be separated by inserting an identity operator |Φ0〉〈Φ0| = Î:

〈Φ0|Vµνµ′ν′a+
µ a

+
ν aν′aµ′ |Φ0〉t=0〈Φ0|Vηξη′ξ′a+

η a
+
ξ aξ′aη′ |Φ0〉t=t1 . (7.13)

The contractions different from zero in these two terms are:

â+
µ (t)â+

ν (t)âν′(t)âµ′(t) , (7.14)

and

â+
µ (t)â+

ν (t)âν′(t)âµ′(t) . (7.15)

The first of these terms is presented in the diagram A of Fig. 7.4 and the second term by the diagram B
of the same figure. By using this result we observe that the term of Eq. (7.13) produces four diagrams,
each of them obtained by coupling two of the diagrams of Fig. 7.4: one at the time t = 0 and the other
one at the time t = t1. Clearly these diagrams are unlinked.

On the other hand, if we apply the Wick theorem by using contractions relating operators defined at
t = 0 with those defined at t = t1, we obtain linked diagrams. For example:

〈Φ0|Vµνµ′ν′ â+
µ (0)â+

ν (0)âν′(0)âµ′(0)Vηξη′ξ′ â
+
η (t)â+

ξ (t)âξ′(t)âη′(t)|Φ0〉 . (7.16)

The diagram representing this term is shown in Fig. 7.5.
The term with ν = 1 in Eq. (7.12) produces both unlinked diagrams, as the diagram A of Fig. 7.6,

and linked diagrams, as the diagram B of the same figure.
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BA

Figure 7.4:

	C

t=0

t=t
1

Figure 7.5:

After this discussion on the structure of the various terms of the expansion we present a derivation
of Eq. (7.7). Let’s consider a term of Eq. (7.11) and assume it is composed by two unlinked parts, as,
for example, the diagram shown in Fig. 7.7. The contribution of a diagram of this type is:

〈Φ0|Ĥ1Û(0,−∞)|Φ0〉ν =(−i
~

)ν
1

ν!

∫ 0

−∞
dt1 . . .

∫ 0

−∞
dtn〈Φ0|T̂[Ĥ1(0) . . . Ĥ1(tn)]|Φ0〉c∫ 0

−∞
dtn+1 . . .

∫ 0

−∞
dtn+m〈Φ0|T̂[Ĥ1(tn+1) . . . Ĥ1(tn+m)]|Φ0〉c . (7.17)

We factorized the two linked parts, the first one containing n interaction terms Ĥ1 and the second one
with m interactions.

In general, the total contribution of a diagrams of ν order which can divided in two parts, of n and
m (ν = m + n) order. Diagrams of this type can be obtained by exchanging the position of the Ĥ1

under the action of T̂. By exchanging two Ĥ1 operators defined at different times there is an exchange
of 4 creation and destruction operators, therefore the total phase generated by this exchange is always
positive. The number of possibile permutations is ν!. On the other hand, two Ĥ1 operators belonging to
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BA

Figure 7.6:

the same partition do not produce a new diagram, since the time ordering operator re-order the various
terms. The number of permutations which do not produce any new diagram is n! m!.

The total contribution to Eq. (7.11) of diagrams such as that of Fig. 7.7 is:∑
n

∑
m

(−i
~

)n+m
ν!

n!m!

1

ν!

∫ 0

−∞
dt1 . . .

∫ 0

−∞
dtn〈Φ0|T̂[Ĥ1, Ĥ1(t1) . . . Ĥn(tn)]|Φ0〉c∫ 0

−∞
dtn+1 . . .

∫ 0

−∞
dtn+m〈Φ0|T̂[Ĥ1(tn+1) . . . Ĥ1(tn+m)]|Φ0〉c (7.18)

The second term of this expression is present in the denominator of Eq. (7.10). In this second term,

under the action of the time-ordering operator T̂ is not present Ĥ1(0) which is the only extraneous term
with respect to those present in the denominator of Eq. (7.10). Eq. (7.10) can be rewritten as:

E0 − E0 =

[ ∞∑
ν=0

(−i
~

)ν
1

ν!

∫ 0

−∞
dt1 . . .

∫ 0

−∞
dtν〈Φ0|T̂[Ĥ1(0), Ĥ1(t1) . . . , Ĥ1(tν)]|Φ0〉

]
c[ ∞∑

µ=0

(−i
~

)µ
1

µ!

∫ 0

−∞
dt1 . . .

∫ 0

−∞
dtµ〈Φ0|T̂[Ĥ1(t1) . . . , Ĥ1(tµ)]|Φ0〉

]
/〈Φ0|Û(0,−∞)|Φ0〉

=

[ ∞∑
ν=0

(−i
~

)ν
1

ν!

∫ 0

−∞
dt1 . . .

∫ 0

−∞
dtν〈Φ0|T̂[Ĥ1, Ĥ1(t1) . . . , Ĥ1(tν)]|Φ0〉

]
c

,

where we used the fact that ν, µ and the times t are dummy indexes since they are summed or integrated.
All the diagrams not linked to Ĥ1(0) are eliminated by the denominator.

After having clarified why in the expression of the Goldstone theorem only linked diagrams appear,
we calculate the time integrals. Let’s consider the order n of the expansion and use the explicit expression
of the Ĥ1 operator in interaction picture:

Ĥ1(t) = ei
Ĥ0t
~ Ĥ1e

−i Ĥ0t
~ . (7.19)

The term of order n can be written as:

[E0 − E0]n =

(−i
~

)n ∫ 0

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtne

ε(t1+...tn)
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Figure 7.7:

〈Φ0|Ĥ1e
i
Ĥ0t1

~ Ĥ1e
−i Ĥ0t1

~ ei
Ĥ0t2

~ Ĥ1 . . . e
−i Ĥ0

~ tn−1ei
Ĥ0
~ tnĤ1e

−i Ĥ0
~ tn |Φ0〉c

where T̂ has been eliminated since we have explicitly written the integration limits and we inserted the
factor eεt. We make a change of the integration variables:

x1 = t1 , x2 = t2 − t1 , x3 = t3 − t2 , . . . , xn = tn − tn−1

t1 = x1 , t2 = x2 + x1 , t3 = x3 + x2 + x1 , . . . , tn =
∑
n

xn

and, by using Ĥ0|Φ0〉 = E0|Φ0〉 we obtain:

[E0 − E0]n =

(−i
~

)n
〈Φ0|

∫ 0

−∞
dx1

∫ 0

−∞
dx2 . . .

∫ 0

−∞
dxn

eε(x1+(x2+x1)+(x3+x2+x1)+...(xn+xn−1...+x2+x1)

Ĥ1e
i
Ĥ0x1

~ Ĥ1e
i
Ĥ0x2

~ Ĥ1 . . . e
i
Ĥ0xn

~ Ĥ1e
−i Ĥ0tn

~ |Φ0〉c
Let’s consider the term on the right hand side of the above equation,

e−i
Ĥ0tn

~ |Φ0〉 = e−i
E0
~ tn |Φ0〉 = e−i

E0
~ (x1+...xn)|Φ0〉 (7.20)

and insert it in the integral:

[E0 − E0]n =

(−i
~

)n
〈Φ0|Ĥ1

∫ 0

−∞
dx1 e

nεx1ei
(Ĥ0−E0)

~ x1 · Ĥ1∫ 0

−∞
dx2 e

(n−1)εx2ei
(Ĥ0−E0)

~ x2 · Ĥ1 . . .

∫ 0

−∞
dxN e

εxnei
(Ĥ0−E0)

~ xnĤ1|Φ0〉c

The nth term is expressed as product of integrals of the type:∫ 0

−∞
dx1e

i
~ (Ĥ0−E0−inε~)x1 =

~
−i

1

[E0 − Ĥ0 + inε~]
(7.21)
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Since there are n equal terms, there is a factor
(

~
−i

)n
which can be factorized, therefore:

[E − E0]n = 〈Φ0|Ĥ1
1

E0 − Ĥ0 + iεn~
Ĥ1

1

E0 − Ĥ0 + iε(n− 1)~
. . . Ĥ1

1

E0 − Ĥ0 + iε~
Ĥ1|Φ0〉c (7.22)

By executing the lim ε→ 0 we obtain the expression of the Goldstone theorem.

Since Eq. (7.7) is valid only for linked diagram, as the sub-index c indicates, it is prohibited to insert
|Φ0〉 〈Φ0| terms, therefore there are not divergencies since the contribution of the denominator E0 − Ĥ0

is always different from zero.
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Chapter 8

Brueckner theory

8.1 Introduzione

The evaluation of the ground state energy of a system of interacting particles is based on the Goldstone
equation which we rewrite

E0 − E0 = 〈Φ0|Ĥ1

∞∑
n=0

(
1

E0 − Ĥ0

Ĥ1

)n
|Φ0〉c , (8.1)

where E0 is the energy of the system of interacting particles, E0 is the smallest eigenvalue of H0, i.e.
the ground state energy of the MF solution of the many-body problem, and the sub-index c indicates
that only the linked diagrams must be considered in the expansion formula. This last point avoids the
divergencies produced by zeros of the denominator.

The computational scheme is, in principle, well defined. After obtaining V̂ , included in Ĥ1, from
the study of the two-fermions systems as indicated in Chapter 3 one has to insert it in the Goldstone
expansion (8.1) to obtain the value of the ground state energy. The problem is in the behaviour of the
two-fermion potential at short distances. The microscopic interaction becomes extremely large, it can
even diverge, for small values of the relative distance between the two fermions. This empirical evidence
has been found for most different two-fermions systems, from nucleons to molecules. The same problem is
present also in the electron gas where the Coulomb interaction has a divergence for zero relative distances.

This problem, related to the divergence, or a strong repulsion, for small distances is sketched in Fig.
8.1 where we indicated with ψ the wave function describing the relative motion of the two fermions
which interact by means of the potential V̂ (r). Since ψ is eigenstate of the full hamiltonian, the product
V̂ (r) ψ(r) is always finite for every value of r. At short distances where the potential becomes very large,
the ψ(r) wave function is very small. In the limit of a potential going to infinity, the wave function goes
to zero more rapidly than the divergence of the potential such as the product V̂ (r) ψ(r) remains always
finite. This is not the case if one multiplies the potential for the relative wave functions φ of two free,
therefore non-interacting, particles. The φ is eigenstate of the Ĥ0 hamiltonian.

In the Goldstone equation (8.1) one has to calculate matrix elements of the interaction between
eigenstates |Φ0〉 of Ĥ0. The problem arising in this procedure appears clear if one assumes that the
potential V̂ (r) goes to infinity at short distances. Each expansion term goes to infinity and the solution
of the Goldstone equation would consists in obtaining a finite value by summing and subtracting infinities.
Even by assuming finite, but large, values of the potential at short distances, the problem remains. The
value of each expansion term would be much larger than the expected energy value. This is exactly the
opposite of the basic assumption of the perturbation expansions. Evidently, the microscopic potentials
are not pertubative, and, therefore, they should not be directly used in Goldstone expansions.
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Figure 8.1: Microscopic potential between two fermions and relative wave functions. With ψ we indicate the wave
function describing the relative motion of the two interacting particles, while with φ that of two non-interacting
particles. The figure is sketching the behaviour of potential and wave functions, therefore the units are indicative.

The idea of the Brueckner theory is that of using in the Goldstone expansion (8.1) an effective
interaction which behaves well at short distances in order to be perturbative. This implies the definition
of a new interaction Ĝ such as

Ĝ|Φ0〉 = V̂ |Ψ0〉 , (8.2)

where

Ĥ0|Φ0〉 = E0|Φ0〉 , (8.3)

and

Ĥ|Ψ0〉 = (Ĥ0 + Ĥ1)|Ψ0〉 = (Ĥ0 + V̂ )|Ψ0〉 = E0|Ψ0〉 . (8.4)

8.2 The Bethe-Goldstone equation

The equation which satisfies the definition (8.2) of effective interaction Ĝ is called Bethe-Goldstone
equation. We derived it by starting from the definition (8.2) and by using the relations

Ĥ0|Φn〉 = En|Φn〉 (8.5)

Ĥ|Ψn〉 = (Ĥ0 + Ĥ1)|Ψn〉 = En|Ψn〉 . (8.6)

Since the eigenstates of Eq. (8.5) form a complete basis, it is possible to expand |Ψ0〉 on this basis.
Neglecting the role of a global constant used for the proper normalization of the state, we obtain

|Ψ0〉 ' |Φ0〉+
∑
n 6=0

an|Φn〉 . (8.7)
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where an are complex numbers. We use Eq. (8.6) to express the ground state

(Ĥ0 + Ĥ1)

|Φ0〉+
∑
n 6=0

an|Φn〉

 = E0

|Φ0〉+
∑
n 6=0

an|Φn〉

 , (8.8)

(Ĥ0 − E0)

|Φ0〉+
∑
n 6=0

an|Φn〉

 + Ĥ1|Ψ0〉 = 0 . (8.9)

Multiplying on the left hand side by 〈Φ0|, and considering the orthogonality of the |Φn〉 states, we obtain:

〈Φ0|(Ĥ0 − E0)
(
|Φ0〉+

∑
n 6=0

an|Φn〉
)

+ 〈Φ0|Ĥ1|Ψ0〉 = 0 ,

E0 − E0 + 〈Φ0|Ĥ1|Ψ0〉 = 0 . (8.10)

Repeating an analogous operation on the (8.9), but by using 〈Φn| with n > 0, we have

〈Φn|(Ĥ0 − E0)
(
|Φ0〉+

∑
n′ 6=0

an′ |Φn′〉
)

+ 〈Φn|Ĥ1|Ψ0〉 = 0 , (8.11)

and, since 〈Φn|Φn′〉 = δn,n′ ,

(En − E0)an + 〈Φn|Ĥ1|Ψ0〉 = 0 . (8.12)

By using the expression of an taken from the above equation, and inserting it in (8.7) we obtain

|Ψ0〉 ' |Φ0〉+
∑
n 6=0

1

E0 − En
|Φn〉〈Φn|Ĥ1|Ψ0〉

= |Φ0〉+ Q̂
1

E0 − Ĥ0

Ĥ1|Ψ0〉 , (8.13)

where we defined the operator Q̂ as

Q̂ =
∑
n 6=0

|Φn〉〈Φn| . (8.14)

Multiplying on the left hand side by Ĥ1 we get the expression

Ĥ1|Ψ0〉 = Ĥ1|Φ0〉+ Ĥ1
Q̂

E0 − Ĥ0

Ĥ1|Ψ0〉 , (8.15)

and considering the definition (8.2) of the operator Ĝ, and the fact that in the present derivation Ĥ1 = V̂ ,
we obtain the Bethe-Goldstone equation

Ĝ|Φ0〉 = Ĥ1|Φ0〉+ Ĥ1
Q̂

E0 − Ĥ0

Ĝ|Φ0〉 =

(
Ĥ1 + Ĥ1

Q̂

E0 − Ĥ0

Ĝ

)
|Φ0〉 . (8.16)

8.3 The sum of the ladder diagrams

In this section, we show how the Bethe-Goldstone equation can be obtained by considering the diagrams
techniques presented in Chapter 7. This different derivation of the Bethe-Goldstone equation provides
insight which allows a better understanding of the physical content of this equation.
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We consider a hamiltonian containing only two-body interaction,

Ĥ =
∑
i

t̂i +
∑
i<j

v̂ij =
∑
i

(t̂i + ûi) +
∑
i<j

v̂ij −
∑
i

ûi , (8.17)

where the mean-field potential ûi has been summed and subtracted. We define

Ĥ0|Φ0〉 = (T̂ + Û)|Φ0〉 =
∑
i

(t̂i + ûi)|Φ0〉 =
∑
i

ĥi|Φ0〉 , (8.18)

where Φ0 is the Slater determinant

Φ0(r1, r2, · · · , rA) =
1√
A!

det |φ1(r1)φ2(r2) · · ·φA(rA)| , (8.19)

and the single-particle wave functions are defined as:

ĥi|φi〉 = εi|φi〉 , (8.20)

and
E0 =

∑
i

εi . (8.21)

In ONR the two terms of the hamiltonian under consideration can be expressed as:

Ĥ0 =
∑
ν

(
〈ν|t̂|ν〉+ 〈ν|û|ν〉

)
â+
ν âν , (8.22)

and

Ĥ1 =
1

2

∑
νν′µµ′

〈νµ|v̂|ν′µ′〉â+
ν â

+
µ âµ′ âν′ −

∑
ν

〈ν|û|ν〉â+
ν âν . (8.23)

By definition we have that

E0 = 〈Φ0|Ĥ0|Φ0〉 = 〈Φ0|T̂ |Φ0〉+ 〈Φ0|Û |Φ0〉 . (8.24)


-
 
+


Figure 8.2: Diagrams corresponding to the (8.25) term.

The first term of the expansion (8.1) is that with n = 0

(E0 − E0)(n=0) = 〈Φ0|Ĥ1|Φ0〉 = 〈Φ0|V̂ − Û |Φ0〉

=
1

2

∑
νν′µµ′

〈νµ|v̂|ν′µ′〉〈Φ0|â+
ν â

+
µ âµ′ âν′ |Φ0〉 −

∑
ν

〈ν|û|ν′〉〈Φ0|â+
ν âν′ |Φ0〉

=
1

2

∑
ij

(〈ij|v̂|ij〉 − 〈ij|v̂|ji〉)−
∑
i

〈i|û|i〉 . (8.25)
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The diagrams corresponding to the three terms of the above equation are shown in Fig. 8.2. We use
the usual convention of indicating with the i, j, k, l letters single-particle states of hole type and the
m,n, p, q, r the particle states.

Let’s consider now the term n = 1.

(E0 − E0)(n=1) = 〈Φ0|Ĥ1(E0 − Ĥ0)−1Ĥ1|Φ0〉c
= 〈Φ0|V̂ (E0 − Ĥ0)−1V̂ |Φ0〉c − 〈Φ0|Û(E0 − Ĥ0)−1V̂ |Φ0〉c
− 〈Φ0|V̂ (E0 − Ĥ0)−1Û |Φ0〉c + 〈Φ0|Û(E0 − Ĥ0)−1Û |Φ0〉c . (8.26)

The first term of the above expression can be written as

〈Φ0|V̂ (E0 − Ĥ0)−1V̂ |Φ0〉c
=

1

4
〈Φ0|

∑
νν′µµ′

〈νµ|v̂|ν′µ′〉â+
ν â

+
µ âµ′ âν′(E0 − Ĥ0)−1

∑
αβα′β′

〈αβ|v̂|α′β′〉â+
α â

+
β âβ′ âα′ |Φ0〉c . (8.27)

We insert in the left and right hand side of the denominator (E0−Ĥ0)−1 a projection operator |Φn〉〈Φn| =
Î taking care that n 6= 0 otherwise unliked diagrams would be produced against the requirement imposed
by the sub-index c. These Slater determinants |Φn〉 represents excited states of the system of non
interacting particles formed by 2-particles 2-hole (2p− 2h) excitations, whose energy is given by

|Φn〉 = â+
mâ

+
n âj âi|Φ0〉 ; E0 + εm + εn − εi − εj , (8.28)

where the ε indicate the energy of the single-particle state.


m
 
i
 
j
 
n


Figure 8.3: Diagram corresponding the the (8.29) term.

Since |Φn〉 is eigenstate of Ĥ0, the denominator of (8.29) is diagonal with respect to these states,
therefore the non zero contributions are those with the same state on the left and right hand side of the
denominator. For this reason the particle and hole lines created by the interaction on the left hand side
are linked to those destroyed by the interaction on the right hand side. The direct diagram corrresponding
to this term is presented in Fig. 8.3. The contribution to this diagram is:

〈Φ0|V̂ (E0 − Ĥ0)−1V̂ |Φ0〉c =
1

4

∑
ijmn

(
〈ij|v̂|mn〉(E0 − (E0 + εm + εn − εi − εj))−1〈mn|v̂|ij〉

)
=

1

4

∑
ijmn

(
〈ij|v̂|mn〉(εi + εj − εm − εn)−1〈mn|v̂|ij〉

)
. (8.29)

The other terms of Eq. (8.29) can be calculated in analogous manner. For example:

〈Φ0|V̂ (E0 − Ĥ0)−1Û |Φ0〉c =
1

2

∑
ijm

(
〈ij|v̂|mj〉(εi − εm)−1〈m|û|i〉

)
. (8.30)
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Figure 8.4: Insertion of interactions on a particle lines.

We consider now a generic diagram and we focus our attention to an interaction acting between the
particle lines. The choice of operating only on particle lines is related to the fact that the interaction
changes the state |φα〉, and working on particle lines avoid problems related to the blocking due to the
Pauli exclusion principle.

Let’s consider the diagram of Fig. 8.4 and insert the interaction lines in the part of the p e n line.
The diagram with a single interaction between p and n is given by

〈Φ0|V̂ (E0 − Ĥ0)−1V̂ (E0 − Ĥ0)−1V̂ |Φ0〉c
=

1

8

∑
ijmp

〈ij|v̂|mp〉(εi + εj − εm − εp)−1
∑
kn

〈pk|v̂|nk〉(εi + εj − εm − εn)−1〈mn|v̂|ij〉 . (8.31)

The diagram with two interaction lines between p and n is given by

〈Φ0|V̂ (E0 − Ĥ0)−1V̂ (E0 − Ĥ0)−1V̂ (E0 − Ĥ0)−1V̂ |Φ0〉c
=

1

16

∑
ijmp

〈ij|v̂|mp〉(εi + εj − εm − εp)−1

∑
kn

[∑
p1q1

〈pk|v̂|p1q1〉(εi + εj + εk − εm − εp1 − εq1)−1〈p1q1|v̂|nk〉
]

(εi + εj − εm − εn)−1〈mn|v̂|ij〉 . (8.32)

In the above equation it is possible to identify terms present also in Eq. (8.31) and not modified. These
are the first and the last terms of the equation. The part which is modified is in square brackets. Also
in this latter term there is a part, in the denominator, identical to that in Eq. (8.31) representing the
energy differences between the parts of the diagram which did not changed after the inclusion of a new
interaction line. I define

W = εi + εj + εk − εm . (8.33)

The terms of the diagram which are modified by inserting the interaction lines are:

1 line
1

2
〈pk|v̂|nk〉 ≡ 〈pk|V̂ |nk〉 (8.34)

2 lines
1

4

∑
p′q′

〈pk|v̂|p1q1〉(W − εp1 − εq1)−1〈p1q1|v̂|nk〉

≡ 〈pk|V̂ |p1q1〉(W − εp1 − εq1)−1〈p1q1|V̂ |nk〉 (8.35)

3 lines
1

8

∑
p1q1p2q2

〈pk|v̂|p1q1〉(W − εp1 − εq1)−1〈p1q1|v̂|p2q2〉(W − εp2 − εq2)−1〈p2q2|v̂|nk〉
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≡
∑

p1q1p2q2

〈pk|V̂ |p1q1〉(W − εp1 − εq1)−1〈p1q1|V̂ |p2q2〉(W − εp2 − εq2)−1〈p2q2|V̂ |nk〉(8.36)

n lines · · ·
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Figure 8.5: Insertion of interactions in a particle line.

We can build an operator Ĝ whose action is the insertion of interaction lines between the states 〈pk|
and |nk〉. For this purpose we define an operator Q̂ such as:

Q̂|αβ〉 = |αβ〉 , if εα, εβ > εF (8.37)

Q̂|αβ〉 = 0 , (if εα, εβ < εF) . (8.38)

This operator selects only particle lines in the diagram. It is useful to consider also the operator Ŵ whose
action is

Ŵ|pq〉 = (W − εp − εq)|pq〉 , (8.39)

where W is defined in Eq. (8.33). In the example we are discussing, the expectation value of Ĝ is

〈pk|Ĝ|nk〉 = 〈pk|V̂ |nk〉
+

∑
p1q1

〈pk|V̂ |p1q1〉(W − εp1 − εq1)−1〈p1q1|V̂ |nk〉

+
∑

p1q1p2q2

〈pk|V̂ |p2q2〉(W − εp2 − εq2)−1〈p2q2|V̂ |p1q1〉(W − εp1 − εq1)−1〈p1q1|V̂ |nk〉
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+ · · ·

= 〈pk|V̂ + V̂
Q̂

Ŵ
V̂ + V̂

Q̂

Ŵ
V̂
Q̂

Ŵ
V̂ + · · · |nk〉

= 〈pk|V̂ + V̂
Q̂

Ŵ
Ĝ|nk〉 . (8.40)

From the operators point of view, we obtain the Bethe-Goldstone equation (8.16)

Ĝ = V̂ + V̂
Q̂

Ŵ
Ĝ . (8.41)

This equation, gives a prescription how to construct an effective interaction whose behaviour at short
distances does not produces the divergences. The idea is to use Ĝ instead of V̂ in the Goldstone expansion
(8.1). Since the effective interaction Ĝ has been obtained by considering an infinite set of ladder diagrams,
it is necessary to care about the possibility that, in this procedure, some of the diagrams of the Goldstone
expansion are already included in the definition of Ĝ. In order to avoid this problem of double counting,
the selection of the Goldstone diagrams to calculate has to be accurate. For example, in the diagram of
Fig. 8.6 the two upper lines represents a double counting.

Figure 8.6: Diagram showing a double counting.
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8.4 Comparison with the Lippmann-Schwinger equation

The Bethe-Goldstone equation (8.41) has strong analogies with an integral equation, the Lippmann-
Schwinger equation, used to make a formal description of the scattering of two particles. In this section
we recall the main physics assumptions leading to the Lippmann-Schwinger equation useful to clarify the
differences between these two very similar equations. More detailed discussions and derivations of the
Lippmann-Schwinger equation can be found in the basic Quantum Mechanics textbooks, such as [Mes61].

Let’s consider the scattering of two particles in vacuum which interacts with a central potential. The
asymptotic behaviour of the wave function describing the relative motion of the two particles can be
expressed as:

lim
r→∞

ψka(r) = eika·r + fka(Ω)
eikar

r
. (8.42)

The cross section is related to the transition amplitude by the relation

dσ

dΩ
= |fka(Ω)|2 . (8.43)

For a hamiltonian Ĥ = T̂ + V̂ the scattering amplitude is defined by the relation [Mes61]

〈φb|V̂ |ψa〉 = −2π~2

m
fa(Ω) , (8.44)

where the writing has been simplified by indicating a ≡ ka and analogously for b. Strictly speaking, Eq.
(8.44) does not describe a matrix element since the two state of the expectation value are not eigenstates
of the same hamiltonian. We indicated with φ the eigenfunction of Ĥ0 = T̂ , and with ψ that of he full
hamiltonian Ĥ.

We define here the Green’s function as a resolvent of the free and interacting hamiltonian. For the
free Green’s function we have the expression

~2

2m

[
∇2 + k2

]
G0(r, r′) = δ(r− r′) , (8.45)

implying

G0(r, r′) = − m

2π~2

eik|r−r
′|

|r− r′| , (8.46)

where the energy of the free particle is

E =
~2k2

2m
. (8.47)

The validity of the expression (8.46) can be verified by substitution and remembering that

∇2 1

|r− r′| = −4πδ(r− r′) .

The solution of the Schrödinger equation for the two-interacting particles is

ψ(r) = eik·r +

∫
d3r′G0(r, r′)V̂ (r′)ψ(r′) , (8.48)

in fact, by inserting the above expression in the equation

~2

2m

[
∇2 + k2

]
ψ(r) = V̂ (r)ψ(r) , (8.49)



86 CHAPTER 8. BRUECKNER THEORY

we obtain

~2

2m

[
∇2 + k2

]
eik·r +

∫
d3r′

~2

2m

[
∇2 + k2

]
G0(r, r′)V̂ (r′)ψ(r′)

=
~2

2m

[
−k2 + k2

]
eik·r +

∫
d3r′ δ(r− r′)V̂ (r′)ψ(r′)

= 0 + V̂ (r)ψ(r) .

Let’s define an operator T̂ such as

〈φb|T̂|φa〉 = 〈φb|V̂ |ψa〉 . (8.50)

which is the analogous of the definition (8.2) of Ĝ but for two particles in vacuum.

We can consider Eq. (8.45) as an equality between operators

(E − Ĥ0)G0 = Î ; G0 =
Î

(E − Ĥ0)
, (8.51)

and Eq. (8.48) can be written as

|ψa〉 = |φa〉+G0V̂ |ψa〉 = |φa〉+
1

E − Ĥ0 + iη
V̂ |ψa〉 , (8.52)

where the iη term has been inserted to avoid divergences. Multiplying on the left hand side for V̂ and
considering the definition (8.50) of T̂ we obtain

V̂ |ψa〉 = V̂ |φa〉+ V̂
Î

E − Ĥ0 + iη
V̂ |ψa〉 (8.53)

or equivalently

T̂|φa〉 =

(
V̂ + V̂

Î
E − Ĥ0 + iη

T̂

)
|φa〉 , (8.54)

which is the Lippmann-Schwinger equation.

The analogy with the Bethe-Goldstone equation (8.16) is evident. Rhe Bethe-Goldstone equation
describes the interaction between two particles which scatter in the medium. The most remarkable
difference is related to the presence of the operator Q̂ which takes into account the Pauli exclusion
principle. In the medium, only the reactions populating states above the Fermi surface are allowed. In
the vacuum there are not limitations to the final states.

Another difference is related to the energy denominator. In the Lippmann-Schwinger equation, the
denominator contains only the kinetic energies of the colliding particles, and the presence of the imaginary
term is necessary since there is the possibility that the denominator can be zero. In the Bethe-Goldstone
equation, the denominator is never equal to zero since there are not unlinked diagrams. Furthermore, the
single particle energies are not the kinetic energies of the particles, but they contain also the mean-field
energy term. Finally, there is also the W term, defined by Eq. (8.33) inserting in the denominator the
dependence on the single particle energies of the diagrams terms which are not directly involved by the
interaction of the two particles.
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8.5 Application to nuclear matter

The most remarkable application of the Brueckner theory to physical system has been done on nuclear
matter. This is a fictitious system of a infinite number nucleons which has translational symmetry. These
properties simplify the mean-field problems since the potential is constant and the single-particle wave
functions are plane waves. The Coulomb interaction is switched off, and, here, we shall consider the case
of equal number of protons and neutrons. The single-particle wave functions are characterized by the
wave number k = p/~c, where p is the momentum of the particle (see section 2.3).

The empirical evidences coming from the elastic electron scattering off nuclei indicate that the charge
distributions at the nuclear center have similar values for the different nuclei on the nuclide chart [Kra88].
By simplifying the situation let’s consider the nucleus as a rigid sphere of constant density with a radius
R. We then obtain the density value by dividing the number of nucleons by the volume of the sphere:

ρ =
A

4
3πR

3
=

A
4
3πr

3
0A

=
3

4πr3
0

= 0.17± 0.02 fm−3 , (8.55)

where the empirical relation R = r0A
1
3 with r0=1.12 fm has been used.

In order to estimate the binding energy of this system, we consider the following expression of the
semi-empirical mass formula [Kra88]

B(A,Z) = avA+ asA
2
3 + ac

Z2

A
1
3

+ ai
(N − Z)2

A
+ δ(A) , (8.56)

and we study its behaviour under the assumptions mentioned above. Since we assume that the number
of protons and neutrons is the same, the asymmetry term, the fourth term in the right hand side, is
zero. This approximation is done here to simplify the treatment, but it not necessary for the system
stablilty. There are studies on asymmetric nuclear matter, and especially on neutron matter. Neutron
stars, associated to the pulsars, are, at the moment, the physical systems most similar to nuclear matter.

Much more relevant the other assumption: the Coulomb interaction is switched off. This assumption
is necessary for the stability of the infinite system. Because the Coulomb interaction has infinite range,
all the protons interact among them. In the limit for an infinite number of protons there will be an
infinite repulsion.

With these assumptions the expression of the binding energy per nucleon of nuclear matter is:

B(A,Z)

A
= av + asA

− 1
3 +

δ(A)

A
, (8.57)

and neglecting the last term, the pairing term, in the limit for A going to infinity only the volume term
survives: av = 16.0 MeV.

A proper description of nuclear matter should predict an equation of state relating the binding energy
per nucleon with the density of the system. The minimum of this function should appear in the empirical
region where for ρ = 0.17± 0.02 , fm−3 one has B(A,Z)/A = 16.0± 1.0 MeV.

The mean-field treatment of a system with translational invariance has been presented in Section 2.3.
Eq. (2.54) expresses the density of the system as a function of the Fermi momentum

ρ(r) =
2

3π2
kF

3 . (8.58)

By using the empirical value of the density we find that the numerical value of the Fermi momentum is
kF = 1.36 fm−1 = 250 MeV/c. Eq. (2.57) gives he kinetic energy per particle of the system

T

A
=

3

5
εF , (8.59)
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where the Fermi energy is given by

εF =
~2

2m
kF

2 . (8.60)

We present here below how the Brueckner theory is applied to this system. We define the relative
coordinates of the two interacting particles p and q

R =
1

2
(rp + rq) ; r = rp − rq (8.61)

Kpq = kp + kq ; kpq = kp − kq . (8.62)

The unperturbed wave function describing the motion of the two particles is

Φpq(rp, rq) =
1

V
eikp·rpeikq·rq =

1

V
eiKpq·Reikpq·r =

1

V
eiKpq·Rφpq(r) , (8.63)

where we indicated with V the volume, which will go to infinity at the end of the calculation, and we
neglected the spin and isospin terms.

The operators Q̂ and Ŵ previously defined act on this wave function. The action of Q̂ on the wave
function

Q̂|Φpq〉 = |Φpq〉 , (8.64)

is different from zero only when both |kp| and |kq| are larger than kF, and the action of Ŵ is

Ŵ|Φpq〉 = [W − ε(kp)− ε(kq)] |Φpq〉 = e(kp,kq)|Φpq〉 . (8.65)

The wave function of the two interacting particles can be written by factorizing the free motion of
the center of mass with respect to the relative motion

Ψpq(rp, rq) =
1

V
eiKpq·Rψpq(r) . (8.66)

Because of he definition (8.2) we can write

〈Φpq|Ĝ|Φrs〉 =

∫
d3rp d

3rq Φpq(rp, rq)V̂ (r)Ψrs(rp, rq)

=
1

(2π)3
δ(Kpq −Ksr)

∫
d3reikpq·rV̂ (r)ψrs(r) ≡ 〈φpq|Ĝ|φrs〉 . (8.67)

The part related to the center of mass coordinate can be factorized, therefore, by considering Eq.
(8.66), we obtain

ψpq(r) = φpq(r) +

∫
d3r′Kpq(r, r

′)V̂ (r′)ψpq(r
′) , (8.68)

with

Kpq(r, r
′) =

1

(2π)3

∫
d3k

Q̂(Kpq,k)

e(Kpq,k)
eik·(r−r

′) . (8.69)

In the solution of the Goldstone equation (8.1) it is necessary to select the type of diagram to calculate.
In this diagram there is certainly a matrix element of the (8.67) type. The procedure adopted to solve
the set of equations giving the value of this matrix element is composed by the following steps.

1. Choice of Û to select the single particle energies of the denominator.

2. Numerical solution of Eq. (8.69).

3. Insertion of the kernel (8.69) in Eq. (8.68).

4. Insertion of Eq. (8.68) in the matrix element (8.67).
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8.6 Final considerations

1. In the scattering in vacuum, the denominator of the Lippmann-Schwinger equation (8.54) has an
imaginary part. This implies that asymptotically there is a phase shift between scattering and free
wave functions. In the Bethe-Goldstone equation (8.16) the imaginary term is not present, therefore
there is no phase shift between the relative wave functions of the interacting particles ψpq and those
of the non interacting particles φpq. The difference between these two wave functions is present
only at short distances where the, finite range, potential plays an important role, essentially in the
region of the strongly repulsive core.

2. The key parameter of the Goldstone expansion is not the number of interacting lines but the number
of hole lines. Diagrams differing by one interaction line generate contribution of the same order of
magnitude. On the other hand diagrams with an additional hole lines produce contributions one
order of magnitude smaller with respect to the diagrams with a hole line less [Day67]. The hole
line expansion is an expansion in density powers. In many-body physics one has to consider the
relative density, i.e. the number of pointlike particles present in the volume defined by the strongly
repulsive core of the interaction (see Section 3.4).

3. In principle, the interaction Ĝ should be independent of the choice of the mean-field potential Û . In
reality this does not happens since the Goldstone expansion (8.1) is truncated. The convergence of

the expansion by using Ĝ, calculated with Ĥ1 = V̂ is very slow. The insertion in the perturbative
term of the hamiltonian of a one-body term, Ĥ1 = V̂ − Û contributes to speed up the convergence.
The self-consistent choice of Û is

Û =
∑
α

〈φα|Ĝ(W )|φα〉 (8.70)

The so-called normal choice consists in considering in the above sum only the states below the
Fermi surface. In this choice there is a discontinuity in the single particle energies. Those below
the Fermi energy contain also the potential term, while those above the Fermi energy are only
kinetic energies. This, relatively simple, choice does not guarantee stability of the results which are
strongly dependent on the choice of Û . When it has been possible, thanks to the improvement of
the computational capacities, the continous choice, consisting in considering the full space in the
sum of Eq. (8.70), showed a remarkable independence of the results on the choice of Û .
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Chapter 9

Mean-field applications of the
variational principle

9.1 Introduction

The variational principle is one of the most used methods to solve the Schrödinger equation in approx-
imated manner. The basic idea is that the wave function which minimizes the energy, considered a
functional of the many-body wave function, is the correct eigenfunction of the hamiltonian. This is cor-
rect if the search for the minimum is carried out by considering the full Hilbert space. In reality the
problem is simplified by assuming a specific expression of the wave function and the search for the mini-
mum is done in the subspace spanned by all the wave functions which have the chosen expression. In this
manner the energy value obtained is an upper bound of the correct energy eigenvalue of the hamiltonian.
The formal properties of the variational principle are discussed in the Quantum Mechanics textbooks, for
example [Mes61]. A summary of the properties of our interest is given in the Appendix A.

We have already shown an application of the variational principle in Sect. 4.2. In that case the
multi-dimensional integrals required by the calculation of the energy were carried out with Monte Carlo
techniques. In that calculation the expression of the trial wave functions was given by Eq. (4.12) which
represented the product of a Slater determinant by a correlation function. Another application of the
variational principle with this type of trial wave function will be presented in Chapter 13.

In this chapter, we shall concentrate our attention on the application of the variational principle to
much simpler trial wave functions whose expression is that of a singular Slater determinant. This choice
of the trial wave function leads to theories which, in the language of the many-body physics, are classified
as MF theories: Hartree-Fock (HF) and Density Functional Theory (DFT).

The microscopic theories describing many-body systems consider the MF problem has been solved
and make use of the single-particle basis generated by this solution. We have presented in Chapter
2 how the MF model is solved for different kinds of many-body systems. Those approaches were of
phenomenological type. The average potentials contained parameters whose choice was guided by the
requirement of reproducing some, selected, experimental data. In this chapter, we present an approach
which provides a solid theoretical ground of the phenomenological models of Chapter 2.

91
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9.2 Hartree-Fock

9.2.1 The Hartee-Fock hamiltonian

In this section we obtain an expression of the hamiltonian very convenient for its use in HF calculations.
No new physics is presented, it is only a rewriting of the expression of the hamiltonian. In this new
expression it will become evident the approximation made by the HF theory.

Let’s consider the expression of the hamiltonian in ONR Eq. (5.56):

Ĥ =
∑
νν′

Tνν′ â
+
ν âν′ +

1

2

∑
νµν′µ′

Vνµν′µ′ â
+
ν â

+
µ âµ′ âν′

=
∑
νν′

Tνν′ â
+
ν âν′ +

1

4

∑
νν′µµ′

V νµν′µ′ â
+
ν â

+
µ âµ′ âν′ . (9.1)

where only two-body interactions have been considered. The antisymmetrized matrix element is defined
as:

V νµν′µ′ ≡ 〈νµ|V |ν′µ′〉 − 〈νµ|V |µ′ν′〉 . (9.2)

From the definition of contraction (see Sect. 6.3), for ν and ν′ < εF we have that

â+
ν âν′ = δνν′δν′i ; âν â

+
ν′ = 0 ; âν âν′ = 0 ; â+

ν â
+
ν′ = 0 . (9.3)

By considering the definition of normal ordered product N̂ we obtain

â+
ν âν′ = N̂[â+

ν âν′ ] + â+
ν âν′ , (9.4)

and, for the Wick’s theorem,

â+
ν â

+
µ âµ′ âν′ = N̂[â+

ν â
+
µ âµ′ âν′ ]

+ N̂[â+
µ âµ′ ]â

+
ν âν′ + N̂[â+

ν âν′ ]â
+
µ âµ′

− N̂[â+
µ âν′ ]â

+
ν âµ′ − N̂[â+

ν âµ′ ]â
+
µ âν′

+ â+
µ âµ′ â

+
ν âν′ − â+

ν âµ′ â
+
µ âν′ . (9.5)

Let’s insert the above expression in Eq. (9.1)

Ĥ =
∑
νν′

Tνν′ â
+
ν âν′ +

1

4

∑
µµ′νν′

V νµν′µ′
{
N̂[â+

ν â
+
µ âµ′ âν′ ]

+ N̂[â+
µ âµ′ ]δνν′δνi + N̂[â+

ν âν′ ]δµµ′δµi − N̂[â+
µ âν′ ]δνµ′δνi − N̂[â+

ν âµ′ ]δµν′δµi

+ δνν′δνiδµµ′δµj − δνµ′δνiδµν′δµj
}

(9.6)

where we have already considered the fact that a contraction is different from zero only if the single-particle
state is of hole type, i.e. if its energy is below the Fermi surface. We used the common convention of
indicating with i, j, k, l the hole states and with m,n, p, q, r the particle states.

By considering the restrictions imposed by the indexes of the Kronecker δ, we obtain

Ĥ =
∑
νν′

Tνν′ â
+
ν âν′ +

1

4

∑
µµ′νν′

V νµν′µ′N̂[â+
ν â

+
µ âµ′ âν′ ]
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+
1

4

∑
µµ′i

V µiµ′iN̂[â+
µ âµ′ ] +

1

4

∑
νν′i

V iνiν′N̂[â+
ν âν′ ]

− 1

4

∑
µν′i

V iµν′iN̂[â+
µ âν′ ]−

1

4

∑
νµ′i

V νiiµ′N̂[â+
ν âµ′ ]

+
1

4

∑
ij

V ijij −
1

4

∑
ij

V ijji . (9.7)

The definition (9.2) of the antisymmetric matrix element implies the following relations:

V νµν′µ′ = −V µνν′µ′ = V µνµ′ν′ = −V νµµ′ν′ , (9.8)

therefore

Ĥ =
∑
νν′

Tνν′ â
+
ν âν′ +

1

4

∑
µµ′νν′

V νµν′µ′N̂[â+
ν â

+
µ âµ′ âν′ ]

+
∑
νν′i

V νiν′iN̂[â+
ν âν′ ] +

1

2

∑
ij

V ijij . (9.9)

Let’s consider the normal ordered product of two operators and write it following the definition of con-
traction

N̂[â+
ν âν′ ] = â+

ν âν′ − â+
ν âν′ . (9.10)

The last but one term of Eq. (9.9) becomes∑
νν′i

V νiν′iN̂[â+
ν âν′ ] =

∑
νν′i

V νiν′iâ
+
ν âν′ −

∑
ij

V ijij , (9.11)

therefore, the hamiltonian can be expressed as

Ĥ =
∑
νν′

(
Tνν′ +

∑
i

V νiν′i

)
â+
ν âν′

+
1

4

∑
µµ′νν′

V νµν′µ′N̂[â+
ν â

+
µ âµ′ âν′ ]−

1

2

∑
ij

V ijij . (9.12)

This expression makes evident the presence in the hamiltonian of a one-body operator, the term multi-
plying â+

ν âν′ . It is interesting to notice that part of the interaction V contributes to the one-body term.
So far, we did not make any assumption on the structure of the basis of single-particle wave functions
composing the Slater determinant on which the creation and destruction operators are acting. For this
reason we can choose the single-particle basis which diagonalizes the one-body term of Eq. (9.12), that
is

hνν′ = Tνν′ +
∑
i

V νiν′i , (9.13)

therefore
〈ν|h|ν〉 = εν . (9.14)

The expression of the hamiltonian in this basis is

Ĥ =
∑
ν

εν â
+
ν âν −

1

2

∑
ij

V ijij +
1

4

∑
µµ′νν′

V νµν′µ′N̂[â+
ν â

+
µ âµ′ âν′ ] = Ĥ0 + V̂res . (9.15)
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In the above expression Ĥ0 has been defined as the one-body term plus the constant term and V̂res, called
residual interaction, is the last operator term containing the normal ordered product of four creation and
destruction operators.

The expectation value of the hamiltonian (9.15) on the Slater determinant built with the eigenstates

of ĥ and describing the ground state of the system is

〈Φ0|Ĥ|Φ0〉 = 〈Φ0|Ĥ0|Φ0〉+ 〈Φ0|V̂res|Φ0〉

=
∑
ν

εν〈Φ0|â+
ν âν |Φ0〉 −

1

2

∑
ij

V ijij〈Φ0|Φ0〉

+
1

4

∑
µµ′νν′

V νµν′µ′〈Φ0|N̂[â+
ν â

+
µ âµ′ âν′ ]|Φ0〉

=
∑
i

εi −
1

2

∑
ij

V ijij = E0 . (9.16)

Let’s summarize here below the remarkable results of this section.

• The expression (9.15) of the hamiltonian is only a different way of writing Eq. (9.1), but in the
former expression the normal ordered product is highlighted. There is not difference in the physics
contents of the two expressions.

• The expectation value of the hamiltonian calculated for the ground state Slater determinant neglects
one term of the hamiltonian. In the description of a many-body system in terms of a single Slater
determinant, or in other words in terms of MF model, the contribution of the term related to the
normal ordered product is zero, by definition. This is the great approximation implicit in any MF
description of a many-body system. The term of the hamiltonian which is not considered in this
description is called residual interaction. The one-body part, Ĥ0, of the hamiltonian is responsible
of the IPM, or MF model. Phenomena beyond this description are due the presence of the residual
interaction V̂res, ad they are generically called long-range correlations to distinguish them from other
effects related to the strongly repulsive core of the interaction which are, instead, called short-range
correlations.

• The total energy of the many-body system in the framework of a mean-field model can be calculated
by knowing only the two-body interaction V̂ . The expression (9.16) indicates that the total energy
is not simply the sum of the single-particle energies but it explicitly contains an interaction term.

It is evident from the discussion done in Chapter 8 that the interaction used in the HF calculations
is not one of the microscopic interactions presented in Chapter 3. The strongly repulsive core of these
interactions is not properly handled in these calculations which require the use of the effective interactions
such as that presented in Chapter 8.

9.2.2 Hartree-Fock equations

The variational calculation of the energy of the system is carried out by using Eq. (9.16). In the
HF theory the search is for that Slater determinant which minimizes this value. It is therefore matter
of searching for the minimum of E0, considered a functional of the many-body wave function, in the
subspace of the Hilbert space spanned by all the possible Slater determinants which can be built. The
variational principle is applied by selecting the set of single particle states forming the Slater determinant.
Clearly, these single-particle wave functions must be orthonormalized to form a basis. This is an external
condition which has to be imposed. Therefore, the problem to be solved is in the search of a constrained
minimum which is tackled by using the Lagrange multipliers technique.
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The variational principle with the orthonormalization conditions can be expressed as

δ

E(Φ)−
∑
ij

λij〈i|j〉

 = 0 , (9.17)

and, by using the hamiltonian operator Ĥ

δ〈Φ|Ĥ|Φ〉 −
∑
ij

λijδ〈i|j〉 = 0 , (9.18)

where |Φ〉 is the Slater determinant formed by the functions |i〉, and λij is the Lagrange multiplier.
By using the expression (9.12) of the hamiltonian operator we obtain∑

i

δ〈i|T̂ |i〉+
1

2

∑
ij

[
δ〈ij|V̂ |ij〉 − δ〈ij|V̂ |ji〉

]
−
∑
ij

λijδ〈i|j〉 = 0 . (9.19)

Since i and j are dummy indexes indicating hole states, we have that∑
ij

δ〈ij| =
∑
ij

[〈(δi)j|+ 〈i(δj)|] = 2
∑
ij

〈(δi)j| , (9.20)

and therefore, ∑
i

〈δi|T̂ |i〉+
∑
ij

[
〈(δi)j|V̂ |ij〉 − 〈(δi)j|V̂ |ji〉

]
−
∑
ij

λij〈(δi)|j〉 = 0 . (9.21)

Since the variations 〈δi| are independent of each other, each term of the above sum on i must be zero.
This implies that for a generic term with i = k we have

〈δk|T̂ |k〉+
∑
j

[
〈δk|〈j|V̂ |j〉|k〉 − 〈δk|〈j|V̂ |k〉|j〉

]
=
∑
j

λkj〈δk|j〉 . (9.22)

Since |δk〉 is different from zero, I can simplify the above expression by writing

T̂ |k〉+
∑
j

[
〈j|V̂ |j〉|k〉 − 〈j|V̂ |k〉|j〉

]
=
∑
j

λkj |j〉 . (9.23)

The Lagrange multiplier λij is a real number, therefore it can be considered as the expectation value of

a single-particle hamiltonian ĥ
λkj = 〈k|ĥ|j〉 . (9.24)

By using a unitary transformation, it is possible to find a single-particle basis where ĥ is diagonal:

〈k̃|ĥ|j̃〉 = εkδkj . (9.25)

The operator Û which makes the unitary transformation from a single-particle basis to another one is
given by

|k̃〉 =
∑
k′

Ûkk′ |k′〉 with
∑
kk′

Û
†
kk′Ûk′k = Î . (9.26)

The Slater determinant in the new basis is

|Φ̃〉 = det(Û)|Φ〉 , (9.27)
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The Û is unitary operator which means that it satisfies the relation |det(U)| = 1. This implies that the
value of the determinant in the two bases is the same, apart from a phase factor, therefore the value of the
functional E(Φ) is invariant under a unitary transformation of the basis, and, clearly, also its variation
is invariant.

In the new basis (and here we substituted k to k̃ to simplify the writing), we obtain the expression

ĥ|k〉 = T̂ |k〉+
∑
j

[
〈j|V̂ |j〉|k〉 − 〈j|V̂ |k〉|j〉

]
= εk|k〉 . (9.28)

We define the average potential as

Û(r) =
∑
j

〈j|V̂ |j〉 =
∑
j

∫
d3r′φ∗j (r

′)V̂ (r, r′)φj(r
′) , (9.29)

which is also called Hartree term. The sum is carried on all the states below the Fermi surface. This
term describes the interaction of the k particle with all the other ones.

The second term containing the interaction is non-local, and is called Fock - Dirac term

Ŵ (r, r′) =
∑
j

φ∗j (r
′)V̂ (r, r′)φj(r) . (9.30)

In configuration space, the expression of Eq. (9.29) is

ĥφk(r) = −~2∇2

2m
φk(r) + Û(r)φk(r)︸ ︷︷ ︸

Hartree

−
∫
d3r′Ŵ (r, r′)φk(r′)︸ ︷︷ ︸

Fock−Dirac

= εkφk(r) . (9.31)

By neglecting the Fock-Dirac term we obtain a differential equation of mean-field type. The Fock-Dirac
term, also called exchange term, changes the bare mean-field equation by inserting the effect of the Pauli
exclusion principle.

It is worth to remark that the sums on the equations (9.29) and (9.30) do not have any limitations.
If separately considered in the Eq. (9.28) they contain self-interaction terms when j = k. In the HF
case, the two terms are identical but with opposite sign, therefore in the expression (9.28) there are not
self-interactions.

The differential equations (9.31) are numerically solved by using an iterative procedure. One starts
with a set of trial wave functions |k〉(1) built with mean-field methods, using for example harmonic
oscillator or Woods-Saxon potentials. With these trial wave functions the Hartree (9.29) and Fock-Dirac
(9.30) terms are calculated and included in Eq. (9.31). The solution of the Equations (9.31), solved with
standard numerical methods, generates a new set of wave functions |k〉(2) which can be used to calculate

new Û and Ŵ potentials. The process continues up to convergence. Normally, the converge criterium is
chosen by considering the differences between the total energies of the system (9.16) calculated in the i
and i+ 1 iteration.

Koopmans’ theorem
The physical meaning of the Lagrange multiplier εk is clarified by what is called Koopmans’ theorem

indicating that this quantity corresponds to the energy required to add a particle to the system of A
particles.
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We call |ΦA〉 the HF state describing the A nucleon system, and with EA the energy of this system
calculated with the HF theory. In the framework of the HF theory, we define the state of the system
with an additional particle as

|ΦA+1〉 = â+k |ΦA〉 . (9.32)

The difference between the energies of the two systems is given by:

∆E
HF
k ≡ 〈ΦA+1|Ĥ0 + V̂res|ΦA+1〉 − 〈ΦA|Ĥ0|ΦA〉

= 〈ΦA|âkĤ0â
+
k |ΦA〉+ 〈ΦA|âkV̂resâ

+
k |ΦA〉 − 〈ΦA|Ĥ0|ΦA〉

= 〈ΦA|âkĤ0â
+
k |ΦA〉+ 〈ΦA|âkV̂resâ

+
k |ΦA〉 − E

HF
A ≡ E

HF
A+1 − E

HF
A , (9.33)

where we used the fact that the property

〈ΦA|N̂[· · ·]|ΦA〉 = 0 , (9.34)

is defined for the ground state of the A fermion system, but, in general, one has that

〈ΦA+1|N̂[· · ·]|ΦA+1〉 6= 0 . (9.35)

Let’s calculate the first term of Eq. (9.33)

〈ΦA|âkĤ0â
+
k |ΦA〉 =

A+1∑
ν=1

εν −
1

2

A+1∑
i,j=1

V ijij

=

A∑
ν=1

εν + εk −
1

2

A∑
i,j=1

V ijij −
A∑
i=1

(
1

2
V ikik +

1

2
V kiki

)
− 1

2
V kkkk (9.36)

= E
HF
A + εk −

A∑
i=1

V ikik , (9.37)

since for the definition of V we have that

V ikik = V kiki and V kkkk = 0 . (9.38)

Here εk is the Lagrange multiplier associated to the k single-particle state. The term of Eq. (9.33)
related to he residual interaction is

〈ΦA|âkV̂resâ
+
k |ΦA〉 =

1

4

∑
µµ′νν′

V νµν′µ′〈ΦA|âkN̂[â+ν â
+
µ âµ′ âν′ ]â

+
k |ΦA〉 . (9.39)

The expectation value of the term containing the creation and destruction operators is

〈ΦA|âkN̂[â+ν â
+
µ âµ′ âν′ ]â

+
k |ΦA〉 =

〈ΦA|âkâ+ν â+µ âµ′ âν′ â+k |ΦA〉+ 〈ΦA|âkâ+ν â+µ âµ′ âν′ â+k |ΦA〉

+ 〈ΦA|âkâ+ν â+µ âµ′ âν′ â+k |ΦA〉+ 〈ΦA|âkâ+ν â+µ âµ′ âν′ â+k |ΦA〉

= δkνδkν′δµµ′δµ,i − δkνδkµ′δµν′δµ,i − δkµδkν′δνµ′δµ′,i + δkµδkµ′δνν′δν,i . (9.40)

by exploiting the properties of V we can write

〈ΦA|akV̂resa
+
k |ΦA〉 =

∑
i

V kiki (9.41)

Therefore

∆E
HF
k = E

HF
A + εk −

A∑
i=1

V ikik +

A∑
i=1

V kiki − E
HF
A = εk , (9.42)

which is Koopmans’ theorem. The Lagrange multipliers εk of the constrained minimisation problem
correspond to the energy differences between the MF energies of the A+ 1 and A fermions.
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9.2.3 Hartree-Fock in Fermi gas

A simple application of the HF theory is the description of an infinite and homogeneous system of
fermions. This is the system that in Sect. 2.3 we called Fermi gas.

We rewrite the HF equations in the coordinate space

− ~2

2m
∇2φk(r) +

∑
k′≤kF

∫
d3r′ |φk′(r′)|2V̂ (r, r′)

−
∑
k′≤kF

∫
d3r′φ∗k′(r

′)V̂ (r, r′)φk(r′)φk′(r) = εkφk(r) , (9.43)

where the sums on the occupied states are indicated as sums on the wave number k whose values are
smaller than the Fermi value, kF . The translational invariance implies that V̂ (r, r′) = V̂ (r − r′). The
single-particle wave functions are eigenstates of the momentum p = ~k, that is the plane waves defined
in Eq. (2.40), and satisfy the Schrödinger equation

− ~2

2m
∇2φk(r) = ε

(0)
k φk(r) . (9.44)

The term V̂ (r − r′) represents the interaction between two of the fermions of the system. In Fermi
gas case, there is not interaction among the particles composing the system. Each particle moves inde-
pendently of the presence of the other particles in a uniform, and constant, potential which can also be
eliminated by defining the zero of the energy in appropriated way.

The HF theory proposes a different approximated solution of the many-body problem. The total wave
function is again a Slater determinant, but the interaction between fermions is switched on.

We define the Fourier transform of the interaction between two fermions as

Ṽ (k) =

∫
d3x V̂ (x) eik·x . (9.45)

Let’s consider the third term of Eq. (9.43), the Fock–Dirac term, by including the normalization factor
(2.48)

V

(2π)3

∫
d3k′Θ(kF − k)

∫
d3r′

e−ik
′·r′

V1/2

[
eik·re−ik·r

]
V̂ (r− r′)

eik·r
′

V1/2

e−ik
′·r

V1/2

=
1

(2π)3

∫
d3k′Θ(kF − k)

∫
d3(r′ − r)ei(k′−k)·(r′−r)V̂ (r− r′)

eik·r

V1/2

=
1

(2π)3

∫
d3k′Θ(kF − k)Ṽ (k− k′)

eik·r

V1/2
. (9.46)

Since the density of the system is defined as (2.51),

ρ(r) =
∑
k≤kF

|φa(r)|2 , (9.47)

by using (9.44) we can write the HF equation (9.43) as[
ε
(0)
k + ρ Ṽ (0)− 1

(2π)3

∫
d3k′Θ(kF − k)Ṽ (k− k′)

]
φk(r) = εkφk(r) . (9.48)

where

Ṽ (0) =

∫
d3x V̂ (x) (9.49)
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is called volume integral of the interaction.
The presence of the interaction modifies the energy of the particle

εk = ε
(0)
k + UHF(k) =

~2k2

2m
+ UHF(k) , (9.50)

where

UHF(k) = ρ Ṽ (0)− 1

(2π)3

∫
d3k′Θ(kF − k′)Ṽ (k− k′) . (9.51)

9.3 Density Functional Theory

The HF model is widely used in nuclear and atomic physics. There are two problems related to its use. A
first one is related to the formal development of the theory and it shows up mainly in the nuclear physics
framework. Since HF is a MF theory it is necessary to use effective interactions, i.e. interactions without
the strongly repulsive core at short distances between the two interacting particles. The commonly
used interactions adopted in nuclear physics have a phenomenological input and they contain also terms
explicitly dependent on the density of the system. Without these terms the HF calculations are unable
to reproduce binding energies and densities of nuclei. The addition of these terms allows the construction
of interactions able to produce high quality results in all the nuclide table. What are the parts of the
bare nucleon-nucleon interaction, or the many-body effects which renormalize it, simulated by the density
dependence of the effective interaction are still matter of study. The formal fact is that the variational
principle above defined is not valid if the interaction V̂ depends explicitly on the density.

The second problem consists in the difficulty of evaluating the Fock-Dirac term in Eq. (9.31). Nuclei
and atoms, even those showing a deformation, are systems which develop around a central point which
can be conveniently used as a center of the coordinate system. The evaluation of the Fock-Dirac term is
not easy but feasible in these system. The situation becomes prohibitive in the case of complex molecules
which do not have a precise reference central point or translational invariance.

The Density Functional Theroy (DFT), solves both problems. The theory is based on a theorem
formulated in the second half of the 60’s of the last century. On this theoretical basis a set of equations
has been obtained. These equations are very similar to the HF equations but they contain an effective
local term which takes into account the Pauli principle, and also correlations beyond mean-field approach,
and substitute the Fock-Dirac term.

9.3.1 Theorem of Hoenberg-Kohn

The starting point of the DFT is the theorem of Hohenberg-Kohn stating that the ground state of a
many-particle system can be completely characterized bt the density of the particles and by correlated
quantities. Let’s consider the hamiltonian of a system of A fermions of mass m, and spin 1/2. we write
it as

Ĥ = T̂ + Ûext + V̂ , (9.52)

where

T̂ =
∑
i=1

−~252
i

2m
, Ûext =

∑
i=1

ûext(i) , V̂ =
1

2

∑
ij

v̂(i, j) , (9.53)

where all the sums run on all the A fermions. The kinetic energy term, T̂ , and the external potential
Ûext, are one-body operators, while the interaction term V̂ is a two-body potential. Other many-body
interactions are not considered. The kinetic energy term plus V̂ are characteristic of the many-fermion
system, while Ûext depends on external situations, and therefore, in principle, can be modified. For
example, in an atomic system Ûext is given by the interaction of the electrons with the nucleus and it
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can be modified if the neutron number changes, modifying in this manner the charge distribution of the
nucleus, even though the global electric charge of the nucleus remains the same. This is the origin of the
so-called isotope shift effects on the atomic spectra. In an electon gas of a crystal the external field can
be modified by changing the position of the ions in the crystal, or by considering the system of positive
charges as uniform, and homogeneous, distribution with a defined charge density. In the case of the
nucleus, the external field can be the mean-field where the nucleons are immersed and it can be described
by potentials of harmonic oscillator or Woods-Saxon type.

Let’s consider the set of all the hamiltonians of type (9.53) having non degenerate ground states,
i.e. the set of external potentials Ûext generating a specific ground state |Ψ0〉. This set of hamiltonians
contain not only the physically reasonable potentials, but also an infinite number of potentials which
have only a mathematical relevance. In addition, for each Ûext there is an infinite number of copies
obtained by adding a constant. These copies generate the same ground state, therefore, from the physics
point of view they are equivalent. The presence of degenerate states can be removed by inserting a small
perturbation which removes the symmetry of the system.

Figure 9.1:

The theorem states that there is a bijective correspondence between the external potential Ûext, the
ground state |Ψ0〉 and the number density

ρ0(r) = 〈Ψ0|
N∑
i=1

δ(r− ri)|Ψ0〉 , (9.54)

of the system. This means that it is not possible that the same potential generates more than one ground
state, and that a ground state is generated by more than one external potential. In addition, every ground
state produces only one density ρ0, and each density is not generated by more than one Ψ0 state. This

is sketched in Fig. 9.1 where we indicated that Ψ
(2)
0 is generated only by v2, and ρ

(2)
0 is generated only

by Ψ
(2)
0 . The important feature of the theorem is that the two maps are injective, and therefore unique.

The proof of the theorem requires two steps:
(i) for each Ûext only one Ψ0 exists,
(ii) there is not Ψ0 which is simultaneously the ground state of two potentials Ûext and Û ′ext which can
differ by more than a constant value.

(i) Since we consider a non degenerate system, by definition for each hamiltonian there is only one
Ψ0.
(ii) The proof of the second point is done by absurd. Let’s assume that the same state |Ψ0〉 is
eigenstate of two hamiltonians differing by more than a constant term.

Ĥ|Ψ0〉 = [T̂ + V̂ + Uext]|Ψ0〉 = E0|Ψ0〉
Ĥ ′|Ψ0〉 = [T̂ + V̂ + U ′ext]|Ψ0〉 = E′0|Ψ0〉 .



9.3. DENSITY FUNCTIONAL THEORY 101

By subtracting the two terms of these equations we obtain

[Ûext − Û ′ext]|Ψ0〉 = (E0 − E′0)|Ψ0〉 ,

and dividing by |Ψ0〉 ∑
i

[Ûext(ri)− Û ′ext(ri)] = E0 − E′0 .

The previous equation implies that Ûext(ri)− Û ′ext(ri) is constant for each value of ri and for each i.
This means that the two potentials differ by a constant value. If we exclude this situation, the above
equation leads to a contradiction. The left hand side changes if ri changes, while the right hand side
remains constant. Therefore every Ûext, apart from a constant value, defines a hamiltonian with only
one eigenstate describing the ground state of the system.

Also the second part of the statement, each density ρ0 is generated by a single state |Ψ0〉, is demon-
strated by absurd. Let’s assume that the same density is produced both by the |Ψ0〉 and the |Ψ′0〉
eigenstates of the hamiltonians H and H ′ above defined. For the variational principle we obtain the
inequality

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′0|Ĥ|Ψ′0〉 , (9.55)

where Ĥ is the hamiltonian of which |Ψ0〉 is eigenstate, and the inequality comes from the fact that
the system is not degenerate. I can rewrite the right hand side by adding and subtracting Û ′ext

E0 < 〈Ψ′0|[(T̂ + V̂ + Ûext) + Û ′ext − Û ′ext]|Ψ′0〉 = 〈Ψ′0|[(T̂ + V̂ + Û ′ext) + Ûext − Û ′ext]|Ψ′0〉
= E′0 + 〈Ψ′0|Ûext − Û ′ext|Ψ′0〉 ,

The contribution of the one-body external potential can be written as:

〈Ψ′0|
∑
i

Ûext(ri)|Ψ′0〉 =

∫
d3r Ûext(r)〈Ψ′0|

∑
i

δ(r− ri)|Ψ′0〉 =

∫
d3r Ûext(r) ρ0(r) ,

where we assumed that

〈Ψ′0|
∑
i

δ(r− ri)|Ψ′0〉 = ρ0(r) = 〈Ψ0|
∑
i

δ(r− ri)|Ψ0〉

which is what we want to prove wrong. We can write the inequality as

E0 < E′0 +

∫
d3r [Uext(r)− U ′ext(r)] ρ0(r)

All the discussion has been done by assuming Eq. (9.55) and it could be repeated by inverting the
role of the two hamiltonians. Therefore we would obtain

E′0 < E0 +

∫
d3r [Û ′ext(r)− Ûext(r)] ρ0(r) ,

from where, by summing the two equations member to member

E0 + E′0 < E0 + E′0 ,

which is absurd. Therefore there is unique mapping between |Ψ0〉 and ρ0.

The Hoenberg-Kohn theorem has the following implications.

(a) There is a bijective mapping between external potential Ûext and the, not degenerate, ground state
|Ψ0〉 obtained by the solution of the Schrödinger equation, and the ground state density ρ0

Ûext ⇐⇒ |Ψ0〉 ⇐⇒ ρ0 . (9.56)

Since the three quantities are related by bijective mappings, I can consider the states as functionals
of the density |Ψ0[ρ]〉.
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(b) Because of (a), |Ψ0[ρ]〉 is a functional of ρ, every observable is also a functional od ρ: O[ρ]. Specif-
ically, this is true for the energy of the system

E[ρ] = 〈Ψ[ρ]|Ĥ|Ψ[ρ]〉 = F [ρ] +

∫
d3r Ûext(r) ρ0(r) , (9.57)

where the universal part, the part independent of the external potential, is defined as

F [ρ] ≡ 〈Ψ[ρ]|T̂ + V̂ |Ψ[ρ]〉 . (9.58)

(c) There is a principle related to the minimum of E. If ρ0 is the ground state density corresponding
to a specific value of Ûext, then, for each ρ 6= ρ0 the following relation holds:

E0 ≡ E[ρ0] < E[ρ] (9.59)

This is a consequence of the unicity of the relation between density, eigenstate and external potential,
and of the variational principle.

9.3.2 Khon and Sham equations

The application of the Hoenberg-Khon theorem is based on the idea of building the ground state density
ρ0 of a system of interacting fermions by using a fictitious system of non-interacting fermions by changing
the hamiltonian. The idea is graphically described in Fig. 9.2. The green line represents the density, and

Figure 9.2:

it is the same in the system described in the left part of the figure, a system of interacting fermions, and
in that represented in the right part. In the system of the left part the external potential ÛHO is very
different from that ÛKS of the right part. The first potential is included in a hamiltonian containing V̂ ,
while the second one is included in a hamiltonian which does not contain V̂ .

The idea of describing a system of interacting fermions by using an effective system of non interacting
fermions is analogous to that used by Landau to describe the Fermi liquids (see Chapter 17). In this
latter case the properties of the fermions are modified, they acquire effective masses and charges. In
the Khon e Sham approach is the hamiltonian to be modified by changing the potentials external to the
system.

The starting point consists in writing the density (9.54) as a sum of orthonormalized single-particle
wave functions

ρ0(r) = ρKS
0 (r) =

∑
i<εF

|φKS
i (r)|2 , (9.60)
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where KS indicates Kohn-Sham. The density (9.60) is generated by a one-body hamiltonian whose
eigenstate is a Slater determinant |ΦKS〉.

The energy functional built in this system is usually expressed as:

E[ρ0] = TKS[ρ0] + EKS
H [ρ0] + EKS

ext[ρ0] + EKS
xc [ρ0] , (9.61)

where there is a kinetic energy term,

TKS[ρ0] = 〈ΦKS|T̂ |ΦKS〉 =

∫
d3r

∑
i

φ∗KS
i (r)

(
−~2∇2

2m

)
φKS
i (r) , (9.62)

a Hartree term,

EKS
H [ρ0] =

∫
d3ri

∫
d3rjρ0(ri)V̂ (ri, rj)ρ0(rj) , (9.63)

and an external mean-field term

EKS
ext[ρ0] =

∫
d3rρ0(ri)Û

KS
ext (ri) . (9.64)

The additional term is called of exchange and correlation EKS
xc .

The application of the variational principle follows the path outlined in the case of HF. The final
result is again a set of equations which allows the evaluation of the KS single-particle wave functions{

−~2∇2

2m
+

∫
d3rj V̂ (r, rj)ρ0(rj) + ÛKS

ext (r) + ÛKS
xc (r)

}
φKS
i (r) = εiφ

KS
i (r) . (9.65)

This integro-differential equation is numerically solved by using iterative techniques analogous to those
used in the HF case.

• In Eq. (9.65) only local terms appear, contrary to the HF equation containing the non-local Fock-
Dirac term. This makes the numerical solution of the KS equations much simpler than that of the
HF equations.

• The expression of the operators of kinetic energy and in the Hartree term of the KS functional are
the same as in the interacting system. This does not mean that from the quantitative point of view
the values of the kinetic energy and of the Hartree term are equal in the two systems. In effect,
the expectation values are evaluated between the Slater determinant for the KS functional, and
between |Ψ0〉 for the interacting systems.

• In the KS energy functional (9.61) the part which sums the contributions of kinetic energy, Hartree
term and external potential are much larger than the contribution of the exchange and correlation
term.

• The KS equations (9.61) are equivalent to the minimization of the ground state energy, in the same
spirit of the HF equations. This because the bijection between density and energy functional.

• The Slater determinant |ΦKS〉 is not the exact eigenvalue |Ψ0〉 of the many-body hamiltonian. The
DFT is based on the equality between densities (9.60), called one-body densities. The one-body
densities contain poorer information than the states. I shall discuss this point in more detail in the
next section.

• The single-particle wave functions φKS
i (r) do not have a precise physical meaning, but they must be

considered a mathematical instrument to obtain the density, which in the DFT is the only physically
meaningful tool to obtain values of observables. Also the eigenvalues εi have to be considered only
as Lagrange multipliers and not single-particle energies as indicated by the Koopmans’ theorem in
the HF case.
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• There are not theoretical prescriptions or bounds to regulate the choice of the exchange and corre-
lation term. The selection of this term is done on pragmatical basis. Great part of the theoretical
work in the DFT framework is related to the construction of this term.

• The DFT is an independent particle model.

9.4 Density and single-particle wave functions

In this section we discuss about the definitions of the particle densities in view of their relevance in the
framework of HF and DFT. We use a formalism considering a definition of the density in most general
aspect, i.e. independent of the modelization of the many-body wave function. We define the density
matrix of a many-body system as

ρ(r1, r
′
1) =

A

〈Ψ|Ψ〉

∫
d3r2 d

3r3 · · · d3rAΨ∗(r1, r2, · · · , rA)Ψ(r′1, r2, · · · , rA) , (9.66)

where Ψ is the wave function describing the system.
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Figure 9.3: Comparison between the occupation numbers of an IPM, dashed lines and those of natural orbits
indicated by the histograms. These latter numbers are calculated by using two different correlation functions.
The system under investigation is the 48Ca nucleus. The figure on the left hand side indicates the results for the
protons, the figure on the right hand side that for the neutrons.
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Figure 9.4: Independent particle model
single-particle wave functions, full lines,
and natural orbits for three neutron states
of 48Ca. The natural orbits have been cal-
culated by using two different correlation
functions, indicated by the f1 and f6 la-
bels.

For sake of precision, this is the definition of one-body density
matrix, since in the equation (9.66) all the coordinates but one
are integrated. The density matrix (9.66) is normalized to the
particle number A, as it can be obtained by integrating on the r1

e r′1 coordinates and by inserting a δ(r1−r′1) factor. The density
used in the DFT is the diagonal part of the one-body density
matrix. It is evident that by integrating on A − 1 coordinates
a lot of the information contained in Ψ is lost. This limitation
becomes evident when the observables studied are of two body-
type or they are sensitive to the off-diagonal part of the density
matrix.

In the IPM, the state |Ψ〉 is a Slater determinant |Φ〉 com-
posed by a set of orthonormal single-particle states |φi〉. By
inserting in Eq. (9.66) the Slater determinant we obtain a den-
sity matrix given by

ρIPM(r1, r
′
1) =

∑
i≤εF

φ∗i (r1)φi(r
′
1) (9.67)
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The mean-field single particles are those generated in a
independent particle model and produce densities of the type
(9.67).

The natural orbits are defined as those single particle wave
functions which diagonalize the density matrix (9.66) which can
be described as

ρ(r1, r
′
1) =

∑
α

cαφ
∗NO
α (r1)φNO

α (r′1) (9.68)

The difference between the expressions (9.67) and (9.68)
consists in the fact that, in the second expression, the sum is
extended up to infinity and the, real, coefficients cα are the di-
agonal terms of the density matrix, and indicate the occupation
of the natural orbit. The two densities are normalized such as

A =

∫
d3r1ρ

IPM(r1, r
′
1)δ(r1 − r′1)

=

∫
d3r1ρ

NO(r1, r
′
1)δ(r1 − r′1) =

∑
α

cα . (9.69)

This allows the interpretation of the expression (9.67) in analogy to (9.68) where the occupation numbers
are 1 for the states below the Fermi surface, and 0 for those above it.

In Fig. 9.3 we compare the occupation numbers of an IPM with those obtained by a microscopic
calculations (FHNC see Chapter 13) carried out with two different correlation functions. The many-body
system under investigation is the 48Ca. The left panel shows the result for protons, the right panel that
for neutrons.
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Figure 9.5: Difference between the
charge distributions of 206Pb and 205Tl.
IPM indicates the results with mean-
field wave functions. The other lines
have been obtained by considering dif-
ferent types of correlations, at short-
and long-range, SRC and LRC respec-
tively.

The IPM predicts full occupation for the states below the
Fermi surface, while above it the occupation is zero. The calcu-
lations which include correlations show that the natural orbits
are only partially occupied below the Fermi surface, even though
the occupation numbers are very close to 1. Above the Fermi
surface, the occupation numbers are very small but not zero.

In Fig. 9.4 we compare some wave functions of the IPM
with the neutron natural orbits in 48Ca. There is a great simi-
larity between single-particle wave functions and natural orbits.
The effects of correlations are mainly related to the changes of
the occupation numbers rather than on the shape of the wave
functions.

Another type of wave function referred to the individual
fermion is that of the quasi-particle wave functions defined
as the superposition of the wave functions describing systems
with A and A− 1 particles

ψα(r) =

√
A〈Ψ(A− 1)|δ(r− rA)|Ψ(A)〉

〈Ψ(A− 1)|Ψ(A− 1)〉1/2〈Ψ(A)|Ψ(A)〉1/2 . (9.70)

In Fig. 9.5 we show the difference between the charge dis-
tributions of the 206Pb and 205Tl nuclei. The shell structure
of these nuclei indicates that the difference between these two

charge distributions is due to the absence of a proton in the 3s1/2 state.
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Figure 9.6: Momentum distributions for
five spherical and doubly-magic nuclei ob-
tained in IPM and with a theory which
consider the correlations between the par-
ticles.

The line indicated as IPM shows the square modulus of this
single-particle wave function in the IPM. The form of the wave
function is similar to that indicated by the experiment. On the
other hand, the IPM results is much above the experimental
curve. In order to have a proper description of this charge
distribution is necessary the inclusion of various effects which
take care that in 206Pb the neutrons do not completely fill all
the levels, IPM∗, of the collective surface vibrations of the nuclei
LRC, and, finally, of the fact that the interaction between two
nucleons has strongly repulsive core, SRC. All these phenomena
are not considered in the IPM and they are included in the
generic category of correlations.

If one adopts for the many-body system an IPM, than single-
particle wave function, natural orbits and quasi-particle wave
functions coincide. In calculations beyond IPM the subtle dif-
ferences between these three types of wave functions become
evident only in very special cases. This is what makes very use-
ful mean-field calculations such as HF and DFT. In the frame-
work of the latter theory, formulated in terms of the functional
of the density, the correlation effects are visible only on observ-
ables which are sensitive to the off-diagonal part of the one-body
density matrix (9.66).

One observable of this type is the momentum distribution,
traditionally indicated as n(k), and defined as:

n(k) =
1

(2π)3

1

〈Ψ|Ψ〉

∫
d3(r − r′) eik·(r−r′)ρ(r, r′) . (9.71)

The momentum distribution is, in momentum space, analogous to the number density. It answer to the
question of what is the probability of finding in the many-body system a particle with momentum, wave
number, with value between k and k + dk.

In Fig. 9.6 we show the momentum distributions for five spherical and doubly magic nuclei. The full
lines have been obtained by considering an IPM, or, in other words, a diagonal density matrix. The other
lines have been obtained by solving the many-body problem in the framework of the Correlated Basis
Function theory (see Chapter 13). The difference between the IPM results and the correlated ones is
remarkable at large values of k, which indicate that the off-diagonal parts of the density matrix generates
high-momentum components.



Chapter 10

Excited states

In the previous chapters we focused our attention to the description of the ground state of systems
composed by many-fermions. In this Chapter we present the Random Phase Approximation (RPA) a
theory aiming to describe the excitation spectrum of these system. The RPA is an approach which goes
beyond the IPM since it considers also effects generated by the residual interaction, defined in Eq. (9.16).

The RPA theory has been proposed in the middle of the 50’s of the last century to describe plasma
excitations [Boh53]. The name has an historical motivation since the authors of Ref. [Boh53] made the
assumption of neglecting the coupling of plasma oscillations with different momenta. This assumption
concerned the system under investigation and not the theory which does not contain any random phase.

The RPA theory will be proposed again in Sect. 12.5, by using the two-body Green’s functions. The
formulation used in this chapter, the so-called Equation of Motion Method, is less general, but it has the
advantage of a simpler interpretation. The is a third method to get the RPA equations, a method based
on time-dependent HF theory. Obviously all the formulations lead to the same set of equations to be
numerically solved, and each of them emphasizes aspects that are hidden in other formulations. Usually,
in the treatment of infinite systems with translational invariance the Green’s function formulation is
preferred, while for systems with rotational invariance, the Equation of Motion method is usually chosen.

10.1 The equations of motion method

This method is inspired to the Heisenberg picture of the Quantum Mechanics. Also in this case, the
commutation properties of a hamiltonian with an operator are exploited.

Let’s consider the Schrödinger equation

Ĥ |Ψν〉 = Eν |Ψν〉 , (10.1)

where |Ψν〉 describe an excited state of the system. We define the Q̂+
ν operator whose action on the

system ground state defines the excited states:

Q̂+
ν |Ψ0〉 = |Ψν〉 ; Q̂ν |Ψ0〉 = 0 . (10.2)

The choice of Q̂+
ν defines completely the problem to be solved, and also the ground state of the system.

Let’s calculate the commutator of the Q̂+
ν operator with the hamiltonian[

Ĥ, Q̂+
ν

]
|Ψ0〉 =

(
ĤQ̂+

ν − Q̂+
ν Ĥ
)
|Ψ0〉 = Ĥ |Ψν〉 − Q̂+

ν E0 |Ψ0〉

= Eν |Ψν〉 − Q̂+
ν E0 |Ψ0〉 = (Eν − E0) Q̂+

ν |Ψ0〉 , (10.3)
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and for the operator Q̂ν we obtain[
Ĥ, Q̂ν

]
|Ψ0〉 =

(
ĤQ̂ν − Q̂νĤ

)
|Ψ0〉 = ĤQ̂ν |Ψ0〉 − E0Q̂ν |Ψ0〉 = 0 . (10.4)

We multiply Eq. (10.3) by a generic operator Ô and by 〈Ψ0|, and we subctract the complex conjugate

〈Ψ0|
[
Ô, [Ĥ, Q̂+

ν ]
]
|Ψ0〉 = 〈Ψ0|Ô[Ĥ, Q̂+

ν ]|Ψ0〉 − 〈Ψ0|[Ĥ, Q̂+
ν ]Ô|Ψ0〉

= 〈Ψ0|
(
Ô[Ĥ, Q̂+

ν ]− [Ĥ, Q̂+
ν ]Ô

)
|Ψ0〉 for Eqs. (10.3) and (10.4)

= (Eν − E0) 〈Ψ0|ÔQ̂+
ν |Ψ0〉 − 〈Ψ0|ĤQ̂+

ν Ô|Ψ0〉+ 〈Ψ0|Q̂+
ν ĤÔ|Ψ0〉

= (Eν − E0) 〈Ψ0|ÔQ̂+
ν |Ψ0〉 − E0 〈Ψ0|Q̂+

ν Ô|Ψ0〉+ 〈Ψ0|Q̂+
ν ĤÔ|Ψ0〉 .

Since 〈Ψ0| Q̂+
ν = 0, we can write

〈Ψ0|
[
Ô, [Ĥ, Q̂+

ν ]
]
|Ψ0〉 = (Eν − E0) 〈Ψ0|ÔQ̂+

ν |Ψ0〉 = (Eν − E0) 〈Ψ0|
[
Ô, Q̂+

ν

]
|Ψ0〉 . (10.5)

This result is independent on the expression of the operator Ô. In the construction of the various the-
ories describing the system excited states, the Ô operator is substituted by the δQ̂ν operator representing
an infinitesimal variation of the excitation operator defined by the Eqs. (10.2).

10.2 Tamm-Dankoff approximation (TDA)

A first choice of the Q̂+
ν consists in considering the excited state as linear combination of particle-hole

excitations. Clearly, this implies that the mean-field problem has already been solved, and a set of
orthonormal single-particle wave functions, with the relative single-particle energies, is available. The
ground state is characterized by fully occupied hole states, those below the Fermi energy, and totally
empty particle states, those above the Fermi energy. The set of single-particle wave functions can be
obtained by using the MF techniques presented in Chapter 2 or by solving the HF or the KS equations
as indicated in Chapter 9.

The definition of Q̂+
ν in terms of creation and destruction operators is

Q̂+
ν =

∑
p h

Xν
phâ

+
p âh (10.6)

and then

δQ̂ν =
∑
p h

â+
h âpδX

∗ν
ph . (10.7)

In the above equation Xν
ph is a number and the usual convention of indicating the hole states with

the letters h, i, j, k, l and the particle states with m,n, p, q, r has been adopted. The ground state |Ψ0〉
satisfying the Eqs. (10.3) and (10.4) is the MF ground state |Φ0〉, in effect

Q̂ν |Φ0〉 =
∑
p h

Xν
phâ

+
h âp |Φ0〉 = 0 , (10.8)

since it is not possible to remove particles above the Fermi surface or to put particles below it (see
Chapter 5).
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By substituting Eq. (10.7) in Eq. (10.5) we obtain

〈Φ0|
[∑
p h

â+
h âpδX

∗ν
ph ,
[
Ĥ,
∑
p′ h′

Xν
p′h′ â

+
p′ âh′

]]
|Φ0〉

= (Eν − E0) 〈Φ0|
[∑
mi

â+
i âmδX

∗ν
mi,
∑
n j

Xν
nj â

+
n âj

]
|Φ0〉 . (10.9)

Every variation δX∗νph is independent on the other ones. For this reason, the above equation is a sum of
terms independent of each other. The equation is satisfied if all the terms related to the same variation
of Xν

ph satisfy the relation. Let’s consider a single term of the sum, and, since δX∗νph 6= 0 , we can divide
it by this factor and obtain a system of connected equations which can be expressed as

〈Φ0|
[
â+
i âm, [Ĥ,

∑
n j

Xν
nj â

+
n âj ]

]
|Φ0〉 = (Eν − E0)

∑
qk

Xν
qk 〈Φ0|

[
a+
i am, a

+
q ak

]
|Φ0〉 . (10.10)

Let’s calculate the right hand side of Eq. (10.10):

〈Φ0|
[
â+
i âm, â

+
q âk

]
|Φ0〉 = 〈Φ0|â+

i âmâ
+
q âk|Φ0〉 − 〈Φ0|â+

q âk, â
+
i âm|Φ0〉 .

We apply the Wick theorem to the first term

〈Φ0|â+
i âmâ

+
q âk|Φ0〉 = δmqδik .

The second term is zero since
âm |Φ0〉 = 0 .

By using this result in Eq. 10.10) we obtain

〈Φ0|
[
â+
i âm, [Ĥ,

∑
n j

Xν
nj â

+
n âj ]

]
|Φ0〉 = (Eν − E0)Xν

mi . (10.11)

For the calculation of the left hand side of Eq. (10.11) we use the expression of the hamiltonian given
in Eq. (9.15)

Ĥ =
∑
αβ

hαβ â
+
α âβ −

1

2

∑
ij

V ijij +
1

4

∑
µµ′νν′

V νµν′µ′N̂[â+
ν â

+
µ âµ′ âν′ ] , (10.12)

where the greek indexes can assume values above or below the Fermi surface, while for the latin indexes
we used the common convention. The calculation of the double commutator is carried out here below.

We calculate the double commutators of Eq. (10.11) by considering a term at the time. For the first
commutator of the first term of Eq. (10.12) we obtain, by considering the anti-commutation rules of
the creation and destruction operators,

[â+α âβ , â
+
n âj ] = δnβ â

+
α âj − δjαâ+n âβ ,

therefore, the commutator of the hamiltonian can be written as

[Ĥ, â+n âj ] =
∑
αβ

hαβ
(
δnβ â

+
α âj − δjαâ+n âβ

)
+

1

4

∑
αα′ββ′

V αβα′β′

[
N̂[â+α â

+
β âβ′ âα′ ], â

+
n âj

]
.
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We did not considered the second term of the hamiltonian (10.12) since it is a number, therefore
commuting with every operator. We consider the expectation value of the double commutator

〈Φ0|
[
â+i âm, [Ĥ, â

+
n âj ]

]
|Φ0〉

The contribution of the first term of the hamiltonian can be rewritten as

hαβ 〈Φ0|
[
â+i âm,

(
δnβ â

+
α âj − δjαâ+n âβ

) ]
|Φ0〉

= hαβ 〈Φ0|
(
â+i âmδnβ â

+
α âj − â+i âmδjαâ

+
n âβ

)
|Φ0〉

= hαβ 〈Φ0|â+i âmâ
+
α âj |Φ0〉 δnβ − hαβ 〈Φ0|â+i âmâ

+
n âβ |Φ0〉 δjα

= hαβδijδmαδnβ − hαβδiβδmnδjα
= (εm − εi)δijδmn , (10.13)

where in the last step we considered the diagonal expression of hα,β . For the calculation of the second
term of the hamiltonian we consider that[

N̂[â+α â
+
β âβ′ âα′ ], â

+
n âj

]
= N̂[â+α â

+
β âβ′ âα′ ]â

+
n âj − â+n âjN̂[â+α â

+
β âβ′ âα′ ] ,

therefore

〈Φ0|
[
â+i âm, N̂[â+α â

+
β âβ′ âα′ ]â

+
n âj − â+n âjN̂[â+α â

+
β âβ′ âα′ ]

]
|Φ0〉

= 〈Φ0|â+i âmN̂[â+α â
+
β âβ′ âα′ ]â

+
n âj |Φ0〉 (10.14)

− 〈Φ0|N̂[â+α â
+
β âβ′ âα′ ]â

+
n âj â

+
i âm|Φ0〉 (10.15)

− 〈Φ0|â+i âmâ
+
n âjN̂[â+α â

+
β âβ′ âα′ ]|Φ0〉 (10.16)

+ 〈Φ0|â+n âjN̂[â+α â
+
β âβ′ âα′ ]â

+
i âm|Φ0〉 . (10.17)

The terms (10.15) and (10.17) are zero since am |Φ0〉 = 0. The situation for the term (10.16) is
more involved. In the application of the Wick’s theorem one can see that in all the possible set of
contractions there are always terms where â+n is contracted with âα′ or âβ′ , and these contractions
are zero. Only the term (10.14) is different from zero, and, by applying the Wick’s theorem we have
to consider all the possible contractions and we obtain

〈Φ0|a+i amN [a+αa
+
β aβ′ aα′ ]a

+
n aj |Φ0〉 = δiα′δmαδβ′nδβj − δiα′δmβδβ′nδαj

− δiβ′δmαδα′nδβj + δiβ′δmβδα′nδαj (10.18)

By inserting the above result in Eq. (10.11) and by considering the symmetry properties of V α,β,α′,β′

we obtain the TDA equations

∑
nj

Xν
nj

[
(εn − εj)δmnδij + V mjin

]
= (Eν − E0)Xν

mi , (10.19)

where
V mjin ≡ 〈mj|V |in〉 − 〈mj|V |ni〉 . (10.20)
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The expression (10.19) represents a homogenous system of linear equations whose unknown are the
Xν
mi. The number of unknowns, and therefore of the solutions, is given by the number of the particle-hole

pairs which truncates the sum.
The normalization condition of the excited state induces a relation between the Xν

mi amplitudes:

1 = 〈Ψν |Ψν〉 = 〈Φ0|Q̂νQ̂+
ν |Φ0〉 = 〈Φ0|

∑
p h

â+
h âpX

∗ν
ph

∑
p′ h′

Xν
p′h′ â

+
p′ âh′ |Φ0〉

=
∑
p h

∑
p′ h′

X∗νphX
ν
p′h′ 〈Φ0|â+

h âpâ
+
p′ âh′ |Φ0〉 =

∑
p h

|Xν
ph|2 , (10.21)

which defines without ambiguity the values of the Xν
ph and proposes a probabilistic interpretation. Here

below we present an example of TDA equations applied to the case of only two particle-hole pairs.

Let’s consider the case where there are only two possible particle-hole excitation pairs. The TDA
equations are εp1 − εh1 − ω + V p1h1h1p1 V p2h2h1p1

V p1h1h2p2 εp2 − εh2 − ω + V p2h2h2p2

 Xp1h1

Xp2h2

 = 0 , (10.22)

with ω = E − E0.

The system has solutions different from the trivial one only if the determinant of the known terms
matrix is zero, therefore

(εp1 − εh1 − ω + V p1h1h1p1)(εp2 − εh2 − ω + V p2h2h2p2)− V p2h2h1p1V p2h2h2p2 = 0 . (10.23)

The equation is quadratic in ω, therefore it is satisfied by two values.

In case V = 0 the two values are ω = εp1 − εh1 and ω = εp2 − εh2 , which are the energy of the possible
excitations in a pure MF model. The presence of the residual interaction mixes the components of
the two particle-hole pairs in each excited state, and also the energy eigenvalues are modified with
respect to the MF solution. The stronger is the effect of V̂ the larger is the mixing of the particle-hole
pairs. These type of states with large mixing of particle-hole pairs are called collective states.

The TDA theory describes not only the energy spectrum of the system, but, for each excited state
it provides the many-body wave function written in terms of single particle states. This allows the
calculation of the transition probability from the ground state to an excited state.

Let’s assume that the action of the external field which excites the system is described by a one-body
operator

F̂ =
∑
µµ′

〈µ|f̂ |µ′〉 â+
µ âµ′ ≡

∑
µµ′

fµµ′ â
+
µ âµ′ . (10.24)

The transition probability from the ground state to an excited state is

〈Φν |F̂ |Φ0〉 = 〈Φ0|Q̂ν F̂ |Φ0〉
= 〈Φ0|

∑
mi

X∗νmiâ
+
i âm

∑
µµ′

fµµ′ â
+
µ âµ′ |Φ0〉

=
∑
mi

X∗νmi
∑
µµ′

fµµ′ 〈Φ0|â+
i âmâ

+
µ âµ′ |Φ0〉

=
∑
mi

X∗νmi
∑
µµ′

fµµ′δiµ′δmµ =
∑
mi

X∗νmi 〈m|f̂ |i〉 . (10.25)

The many-body transition probabilities are described in terms of single-particle transition probabilities.
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10.3 Random Phase Approximation (RPA)

10.3.1 Limits of the TDA

The comparison between the TDA results and the experimental data is not satisfying, especially for the
nuclear physics case, therefore from the second half of the 60’s of the last century the assumptions related
to the TDA theory have been carefully analyazed. These assumptions are those of the choice of the
expression (10.7) of the Q̂ν operator. From these studies it appeared clear that this choice is inconsistent
with the the equations of motion (10.5). The inconsistency can be pointed out in the following manner.

The equation of motions (10.5) have been obtained without making any assumption on the operator Ô.
For an operator of the type â+

mâi, the equation of motion are:

〈Ψ0|
[
â+
mâi, [Ĥ, Q̂

+
ν ]
]
|Ψ0〉 = (Eν − E0) 〈Ψ0|â+

mâiQ̂
+
ν |Ψ0〉 = (Eν − E0) 〈Ψ0|

[
â+
mâi, Q̂

+
ν

]
|Ψ0〉 . (10.26)

By inserting the expression of the TDA operator (10.7) for the right hand side of the above equation we
obtain∑

nj

Xν
nj 〈Φ0|

[
â+
mâi, â

+
n âj

]
|Φ0〉 =

∑
nj

Xν
nj

{
〈Φ0|â+

mâiâ
+
n âj |Φ0〉 − 〈Φ0|â+

n âj â
+
mâi|Φ0〉

}
= 0 . (10.27)

This result requires that also the left hand side of the equation (10.26) must be zero. In effects, the
one-body term of the hamiltonian has a double commutator equal to zero∑

αβ

hα,β 〈Φ0|â+
mâi, (â

+
α âjδnβ − â+

n âβδjα)|Φ0〉 = 0 ,

but the double commutator of the interaction term, in general is not equal to zero,∑
α,β,α′,β′

V α,β,α′,β′ 〈Φ0|
[
â+
mâi,

[
N̂[â+

α â
+
β âβ′ âα′ ], â

+
n âj

]]
|Φ0〉 6= 0 .

In the evaluation of this double commutator there are terms of the type∑
α,β,α′,β′

V α,β,α′,β′ 〈Φ0|â+
mâiâ

+
α â

+
β âβ′ âα′ â

+
n âj |Φ0〉 ,

evidently different from zero.

10.3.2 The RPA equations

Instead than the choice (10.7) the RPA excitation operator is defined as

Q̂+
ν ≡

∑
p h

Xν
phâ

+
p âh −

∑
p h

Y νphâ
+
h âp , (10.28)

where both Xν
ph and Y νph are numbers, called RPA amplitudes.

The RPA ground state is defined by the equation Q̂ν |ν0〉 = 0. Evidently |ν0〉 is not a MF ground
state. In this last case we would have

Q̂ν |Φ0〉 =
∑
p h

X∗νph â
+
h âp |Φ0〉 −

∑
p h

Y ∗νph â
+
p âk |Φ0〉 ,
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The first term is certainly zero, while the second one is not zero. The RPA ground state |ν0〉 is more
complex than the mean-field ground state and it contains effects beyond it. These effects, correlations,
here are described in terms of hole-particle excitations as we shall discuss in Sect. 10.3.6.

By using the definition (10.28) of the RPA amplitudes the equations of motion (10.5) becomes

〈ν0|
[
δQ̂ν ,

[
Ĥ, Q̂+

ν

]]
|ν0〉 = (Eν − E0) 〈ν0|

[
δQ̂ν , Q̂

+
ν

]]
|ν0〉 ,

therefore

〈ν0|
[(∑

mi

â+
i âmδX

ν
mi −

∑
mi

â+
mâiδY

ν
mi

)
,
[
Ĥ, Q̂+

ν

]]
|ν0〉

= (Eν − E0) 〈ν0|
[(∑

mi

â+
i âmδX

ν
mi −

∑
mi

â+
mâiδY

ν
mi

)
, Q̂+

ν

]
|ν0〉 ,

and making explicit the the variations on the RPA amplitudes we obtain∑
mi

δXν
mi 〈ν0|

[
â+
i âm,

[
Ĥ, Q̂+

ν

]]
|ν0〉 −

∑
mi

δY νmi 〈ν0|
[
â+
mâi,

[
Ĥ, Q̂+

ν

]]
|ν0〉

= (Eν − E0)

{∑
mi

δXν
mi 〈ν0|

[
â+
i âm, Q̂

+
ν

]
|ν0〉 −

∑
mi

δY νmi 〈ν0|
[
â+
mâi, Q̂

+
ν

]
|ν0〉

}
.

As in the TDA case, the above equation represent a sum of independent terms since each variation
is independent of the other ones. By equating the terms related to the same variation we obtain the
following relations

〈ν0|
[
â+
i âm,

[
Ĥ, Q̂+

ν

]]
|ν0〉 = (Eν − E0) 〈ν0|

[
â+
i âm, Q̂

+
ν

]
|ν0〉 (10.29)

〈ν0|
[
â+
mâi,

[
Ĥ, Q̂+

ν

]]
|ν0〉 = (Eν − E0) 〈ν0|

[
â+
mâi, Q̂

+
ν

]
|ν0〉 . (10.30)

Let’s consider the left hand side of Eq. (10.29)

〈ν0|
[
â+
i âm,

[
Ĥ, Q̂+

ν

]]
|ν0〉

=
∑
nj

Xν
nj 〈ν0|

[
â+
i âm,

[
Ĥ, â+

n âj
]]
|ν0〉 −

∑
nj

Y νnj 〈ν0|
[
â+
i âm,

[
Ĥ, â+

j ân
]]
|ν0〉

≡
∑
nj

Xν
njAminj +

∑
nj

Y νnjBminj . (10.31)

These equations define the elements of the A and B matrices. The sign of the element of B has to be
pointed out.

To calculate the left hand side of Eq. (10.29) we use an approximation know in the literature as
Quasi-Boson-Approximation (QBA) consisting in considering that the expectation value of commutator
between RPA states has the same value of the commutator between MF states |Φ0〉. In the specific case
under study we have that

〈ν0|
[
â+
i âm, Q̂

+
ν

]
|ν0〉 ' 〈Φ0|

[
â+
i âm, Q̂

+
ν

]
|Φ0〉 . (10.32)

It is worth to remark that the QBA can be applied only if the matrix element is expressed in terms of
commutators. The idea is that the pairs of creation and destruction operators behave as

[â+
i âm, â

+
n âj ] = δmnδij ,
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this means that the operators Ôim ≡ â+
i âm and Ô+

jn ≡ a+
n aj would be boson operators.

By using the QBA we can write

〈ν0|
[
â+
i âm, Q̂

+
ν

]
|ν0〉

'
∑
nj

Xν
nj 〈Φ0|[â+

i âm, â
+
n âj ]|Φ0〉 −

∑
nj

Y νnj 〈Φ0|[â+
i âm, â

+
j ân]|Φ0〉

=
∑
nj

Xν
nj

{
〈Φ0|â+

i âm, â
+
n âj |Φ0〉 − 〈Φ0|â+

n âj â
+
i âm|Φ0〉

}
−

∑
nj

Y νnj
{
〈Φ0|â+

i âmâ
+
j ân|Φ0〉 − 〈Φ0|â+

j ânâ
+
i âm|Φ0〉

}
=

∑
nj

Xν
nj 〈Φ0|â+

i âm, â
+
n âj |Φ0〉 = Xν

miδmnδij , (10.33)

where we have taken into account that the terms multiplying Y νnj do not conserve the particle number
and, furthermore, that am |Φ0〉 = 0. Eq. (10.29) becomes∑

nj

Xν
njAminj +

∑
nj

Y νnjBminj = (Eν − E0)Xν
mi . (10.34)

For the calculation of the left hand side of equation (10.30) we consider that:

[Ĥ, â+
n âj ]

+ = (Ĥâ+
n âj − â+

n âjĤ)+ = â+
j ânĤ − Ĥâ+

j ân = −[Ĥ, â+
j ân] , (10.35)

since Ĥ = Ĥ+, and then[
â+
i âm, [Ĥ, â

+
j ân]

]+
= −

[
â+
mâi,−[Ĥ, â+

n âj ]
]

=
[
â+
mâi, [Ĥ, â

+
n âj ]

]
. (10.36)

The double commutator becomes

〈ν0|
[
a+
mai,

[
H,Q+

ν

]]
|ν0〉

=
∑

Xν
nj 〈ν0|

[
a+
mai,

[
H, a+

n aj
]]
|ν0〉 −

∑
Y νnj 〈ν0|

[
a+
mai,

[
H, a+

j an
]]
|ν0〉

=
∑

Xν
nj 〈ν0|

[
a+
i am,

[
H, a+

j an
]+]|ν0〉 −

∑
Y νnj 〈ν0|

[
a+
i am,

[
H, a+

n aj
]+]|ν0〉

=
∑
nj

Xν
nj(−B∗minj) +

∑
nj

Y νnj(−A∗minj) , (10.37)

where we considered the definitions of the matrix elements A e B in Eq. (10.31).
For the calculation of the right hand side of Eq. (10.30) by using the QBA we have

〈ν0|
[
â+
mâi, Q

+
ν

]
|ν0〉 → (QBA)→ −

∑
nj

Y νnj 〈Φ0|
[
â+
mâi, â

+
j ân

]
|Φ0〉 = Y νmiδijδmn , (10.38)

therefore Eq. (10.30) becomes∑
nj

Xν
nj(−B∗minj) +

∑
nj

Y νnj(−A∗minj) = (Eν − E0)Y νmi . (10.39)

The equations (10.34) and (10.39) represent a homogenous system of linear equations whose unknown
are the RPA amplitudes Xν

ph and Y νph. Usually, this system is presented as A B

B∗ A∗

 Xν

Y ν

 = (Eν − E0)

 I 0

0 −I

 Xν

Y ν

 = (Eν − E0)

 Xν

−Y ν

 , (10.40)
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where A and B are square matrices whose dimensions are those of the number of the particle-hole pairs
describing the excitation, and X e Y are vectors of the same dimensions.

The expressions of the matrix elements of A and B in terms of effective interaction between two
interacting particles are

Aminj → (QBA)→ 〈Φ0|
[
â+
i âm,

[
Ĥ, â+

n âj
]]
|Φ0〉 = (εm − εi)δmnδij + V mjin , (10.41)

Bminj → (QBA)→ −〈Φ0|
[
â+
i âm,

[
Ĥ, â+

j ân
]]
|Φ0〉 = V mnij . (10.42)

The element Aminj is the same as that of the TDA, Eq. (10.19).

For the term Bminj we consider, again, the expression (10.12) of the hamiltonian. Also in this case,
as in the case of the TDA, the scalar term V ijij does not contribute to the double commutator. Also
the contribution of the one-body term is zero. By considering the anti-commutation properties of the
creation and destruction operators we obtain

[â+α âβ , â
+
j ân] = δβj â

+
α ân − δnαâ+j âβ ,

therefore

〈Φ0|
[
â+i âm,

[
â+α âβ , â

+
j an

]]
|Φ0〉

= 〈Φ0|â+i âmâ
+
α ân|Φ0〉 → 0

− 〈Φ0|â+α ânâ+i âm|Φ0〉 → 0

− 〈Φ0|â+i âmâ
+
j âβ |Φ0〉 = δjβδim → 0

+ 〈Φ0|â+j âβ â
+
i âm|Φ0〉 → 0 .

For the two-body term we have to evaluate

〈Φ0|
[
a+i am,

[
N [a+αa

+
β aβ′aα′ , a

+
j an

]]
|Φ0〉 .

Three terms of the double commutators are zero since the contain am |Φ0〉 = 0. Only the term

−〈Φ0|â+i âmâ
+
j ânâ

+
α â

+
β âβ′ âα′ |Φ0〉 ,

is different from zero, therefore

Bminj =
1

4

∑
αβα′β′

V αβα′β′ 〈Φ0|â+i âmâ
+
j ânâ

+
α â

+
β âβ′ âα′ |Φ0〉 .

By considering the symmetry properties of V and all the possible contractions one obtains Eq. (10.42).

10.3.3 Properties of the RPA equations

We consider the RPA equations in the form A B

B∗ A∗

 Xν

Y ν

 = ων

 Xν

−Y ν

 ,

where ω = Eν − E0 is the excitation energy.
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• If B = 0 we obtain the TDA equations.

• The two RPA equations can be written as the system

AXν +B Y ν = ων X
ν

−B∗Xν −A∗ Y ν = ων Y
ν .

We take the complex conjugate of the above equations

A∗X∗ν +B∗ Y ∗ν = ων X
∗ν

BX∗ν +AY ∗ν = −ων Y ν ,

which can be written as  A B

B∗ A∗

 Y ∗ν

X∗ν

 = −ων

 Y ∗ν

−X∗ν

 .

Therefore the RPA equations allow positive and negative eigenvalues with the same absolute value.

• The RPA matrix is not hermitian. A is hermitian but B is symmetric but not hermitian Bminj =
Bnjmi. It possible to show that the eigenvalues are real numbers.

Normally real interactions are used, therefore the matrix element of the A and B matrices are real.
Also the X and Y amplitudes are real.

• Eigenvectors corresponding to different eigenvalues are orthogonal. A B

B∗ A∗

 Xν

Y ν

 = ων

 Xν

−Y ν

 ;

 A B

B∗ A∗

 Xµ

Y µ

 = ωµ

 Xµ

−Y µ

 .

Let’s calculate the hermitian conjugate of the second equation

(Xµ+, Y µ+)

 A B

B∗ A∗

 = (Xµ+,−Y µ)ωµ .

We multiply the first equation by (Xµ+, Y µ+) on the left hand side, and the second equation on
the right hand side by  Xν

−Y ν


and we obtain

(Xµ+, Y µ+)

 A B

B∗ A∗

 Xν

Y ν

 = ων(Xµ+, Y µ+)

 Xν

−Y ν


(Xµ+, Y µ+)

 A B

B∗ A∗

 Xν

Y ν

 = ωµ(Xµ+,−Y µ)

 Xν

Y ν


By subtracting the two equations we have

0 = (ων − ωµ)(Xµ+Xν − Y µ+Y ν) .
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Since we have assumed ων 6= ωµ we obtain

(Xµ+Xν − Y µ+Y ν) = 0 .

• The normalization between two excited states requires

δνν′ = 〈ν|ν′〉 = 〈ν0|Q̂νQ̂+
ν′ |ν0〉 = 〈ν0|[Q̂ν , Q̂+

ν′ ]|ν0〉 → (QBA)→ 〈Φ0|[Q̂ν , Q̂+
ν′ ]|Φ0〉

=
∑
mi

(
Xν
miX

ν′

mi − Y νmiY ν
′

mi

)
,

where we used the fact that Q̂ν |ν0〉 = 0.

10.3.4 Transition probabilities in RPA

In analogy to the TDA case, we assume that the action of the external field exciting the system is
described by a one-body operator expressed as in Eq. (10.24). The transition probability between the
RPA ground state and excited state is described by

〈ν|F̂ |ν0〉 = 〈ν0|Q̂ν F̂ |ν0〉 = 〈ν0|[Q̂ν , F̂ ]|ν0〉 , (10.43)

where we used the fact that Q̂ν |ν0〉 = 0. Since the equation is expressed in terms of commutator we can
use the QBA

〈ν|F̂ |ν0〉 → (QBA)→ 〈Φ0|[Q̂ν , F̂ ]|Φ0〉
=

∑
µµ′

fµµ′
{∑

mi

Xν
mi 〈Φ0|[â+

i âm, â
+
µ âµ′ ]|Φ0〉 −

∑
mi

Y νmi 〈Φ0|[â+
mâi, â

+
µ âµ′ ]|Φ0〉

}
. (10.44)

The two matrix elements are

〈Φ0|[â+
i âm, â

+
µ âµ′ ]|Φ0〉 = 〈Φ0|â+

i âmâ
+
µ âµ′ |Φ0〉 − 〈Φ0|â+

µ âµ′ â
+
i âm|Φ0〉 = δmµδiµ′ − 0 ,

〈Φ0|[a+
mai, a

+
µ aµ′ ]|Φ0〉 = 〈Φ0|a+

maia
+
µ aµ′ |Φ0〉 − 〈Φ0|a+

µ aµ′a
+
mai|Φ0〉 = 0− δmµ′δiµ ,

Therefore

〈ν|F̂ |ν0〉 '
∑
µµ′

fµµ′

(∑
mi

Xν
miδmµδiµ′ +

∑
mi

Y νmiδmµ′δiµ

)
=
∑
mi

(Xν
mi 〈m|f |i〉+ Y νmi 〈i|f |m〉) . (10.45)

Also in this case the transition amplitude of a many-body system is expressed as linear combination of
single particle transitions.

10.3.5 Sum rules

In general, by indicating with |Ψν〉 the eigenstates of the hamiltonian Ĥ

Ĥ |Ψν〉 = Eν |Ψν〉 ,

for an external operator F̂ inducing a transition of the system from the ground state to the excited state
one has that:

2
∑
ν

(Eν − E0)
∣∣∣〈Ψν |F̂ |Ψ0〉

∣∣∣2 = 〈Ψ0|
[
F̂ ,
[
Ĥ, F̂

]]
|Ψ0〉 . (10.46)



118 CHAPTER 10. EXCITED STATES

We derive here the above expression

〈Ψ0|
[
F̂ , (ĤF̂ − F̂ Ĥ)

]
|Ψ0〉 = 〈Ψ0|

[
F̂ ĤF̂ − F̂ F̂ Ĥ − ĤF̂ F̂ + F̂ ĤF̂ )

]
|Ψ0〉

=

[
2 〈Ψ0|F̂ ĤF̂ |Ψ0〉 − 〈Ψ0|F̂ F̂ |Ψ0〉E0 − E0 〈Ψ0|F̂ F̂ |Ψ0〉

]
= 2 〈Ψ0|F̂ (Ĥ − E0)|Ψ0〉 .

We insert the completness

2 〈Ψ0|F̂
∑
ν

|Ψν〉 〈Ψν |(Ĥ − E0)F̂ |Ψ0〉

= 2 〈Ψ0|F̂
∑
ν

|Ψν〉 〈Ψν |(Eν − E0)F̂ |Ψ0〉 = 2(Eν − E0)
∑
ν

〈Ψ0|F̂ |Ψν〉 〈Ψν |F̂ |Ψ0〉 .

This expression puts a quantitative limit on the total value of the excitation strength of a many-body
system to an external probe. This value is determined by the ground state properties only, and the
knowledge of the excited states structure is not required. The validity of Eq. (10.46) is related to the
fact that the |Ψν〉 are eigenstates of Ĥ. In actual calculations, states based on models or approximated
solutions of the Schrödinger equations are used.

For example, for the RPA theory it is possible to derive the following relation

2
∑
ν

(Eν − E0)
∣∣∣〈ν|F̂ |ν0〉

∣∣∣2 = 〈Φ0|
[
F̂ ,
[
Ĥ, F̂

]]
|Φ0〉 , (10.47)

which, formally, is not a true sum rule since in the left hand side there are RPA states, both ground and
excited states, while in the right hand side there is a mean-field ground state. The demonstration of Eq.
(10.47) is presented in detail in Ref. [Tho61].

When the residual interaction is neglected, one obtains mean-field excited states |Φph〉 , i.e. single
Slater determinants with particle-hole excitations. In this case, Eq. (10.46) is verified since all these
mean-field states are eigenstate of the unperturbed hamiltonian Ĥ0

2
∑
ph

(εp − εh)
∣∣∣〈Φph|F̂ |Φ0〉

∣∣∣2 = 〈Φ0|
[
F̂ ,
[
Ĥ0, F̂

]]
|Φ0〉 , (10.48)

where the excitation energies of the full system are given by the difference between the single-particle
energies of the particle-hole excitation.

Since in the RPA the full hamiltonian Ĥ = Ĥ0 + V̂res is considered, by inserting this expression in Eq.
(10.47) we obtain

2
∑
ν

(Eν − E0)
∣∣∣〈ν|F̂ |ν0〉

∣∣∣2 = 〈Φ0|
[
F̂ ,
[
Ĥ0, F̂

]]
|Φ0〉+ 〈Φ0|

[
F̂ ,
[
V̂res, F̂

]]
|Φ0〉 . (10.49)

For operators F̂ which commute with V̂res the IPM and RPA sum rules coincide.

10.3.6 The RPA ground state

We have already indicated that the RPA ground state is not a mean-field state but it contains effects
beyond it, correlations, expressed in terms of hole-particle excitations. A more precise representation
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of the RPA ground state comes from a theorem demonstrated by D. J. Thouless [Tho61] leading to an
expression of the RPA ground state of the type [Rin80]:

|ν0〉 = NeŜ |Φ0〉 , (10.50)

where N is a normalization constant and the operator Ŝ is defined as

Ŝ ≡ 1

2

∑
ν,minj

sν,minj â
+
mâiâ

+
j ân . (10.51)

The sum considers all the particle-hole â+
mâi and hole-particle â+

j ân pairs, and the index ν runs on all
the possible angular momentum and parity combinations allowed by the particle-hole, and hole-particle,
quantum numbers. We indicated with sν,minj an amplitude weighting the contribution of each pair.

Starting from the above expression it is possible to calculate the sν,minj from the knowledge of the
RPA Xν

ph e Y νph amplitudes [Suh07]. What is relevant is that by using these expressions the expectation
value of a one-body operator with respect to the RPA ground state can be expressed as

〈ν0|F̂ |ν0〉 = 〈ν0|
∑
µµ′

〈µ|f |µ′〉 â+
µ âµ′ |ν0〉

=
∑
h

〈h|f |h〉
[

1− 1

2

∑
ν

∑
p

|Y νph|2
]

+
∑
p

〈p|f |p〉
[

1

2

∑
ν

∑
h

|Y νph|2
]

. (10.52)

This clearly shows that the Y νph amplitudes modify the value with respect to the MF result.

10.3.7 Application of the RPA

The RPA formulation implies, in the definition of the excitation operator (10.28), a sum running on all
the particle-hole pairs. The hole states are well defined: all the states below the Fermi surface. On the
other hand, the number of particle states is infinite, since they are all the states above the Fermi surface.
From the operative point of view a truncation of the sum is required, which implies the use of a limited
set of particle states. This defines the so-called configuration space.

The selection of the configuration space is usually done by defining a maximal energy of the single
particle states. The mean-field problem is solved by obtaining single particle wave functions and energies
up to a selected maximum value. After the configuration space has been chosen, all the particle-hole
pairs compatible with the values of the angular momentum and parity of the excited states under study
are selected. At this point it is possible to calculate the A and B matrix elements defined in Eq. (10.31),
and, finally, to carry out the diagonalization of the RPA matrix.

The result, as already pointed out in the TDA case, is a number of eigenstates and eigenvalues
identical to the number of particle-hole pairs identified. In absence of residual interaction, the eigenvalues
correspond to the difference between the energies of the particle and hole states ων = εp−εh. The residual
interaction modifies these values of the energy. In some situation the effect of the residual interaction is
relevant and the values of the RPA eigenstates are very different from those of the mean-field model. In
this cases, the eigenstates are described by a remarkable mixing of the particle-hole excitations. This fact
is indicated by values of the Xν

ph which are similar for various particle-hole pairs. These are collective
excitation of the system.

On the opposite side there are excited states which essentially single particle excitations characterized
by a single Xν

ph ' 1, while the other amplitudes are negligible. In this case the RPA eiegenvalue is rather
close to the particle-hole energy difference of the dominant pair.

Examples of this type of RPA results are given in Tables 10.1 and 10.2 where we present a selection
of the results obtained for the Jπ = 3− and Jπ = 14− states of the 208Pb. In both tables we show only
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208Pb 3− ω = 3.689 MeV
protons

p h εp − εh MeV X Y
2f7/2 3s1/2 5.8168 0.364778 -0.076573
1h9/2 2d3/2 5.8038 0.425067 -0.096266
1i13/2 1h11/2 8.8699 0.252087 -0.097650

neutrons
p h εp − εh MeV X Y

1i11/2 2f5/2 7.2150 0.326432 -0.101974
2g9/2 3p3/2 6.0838 0.410392 -0.096913
1j15/2 1i13/2 8.8621 0.277879 -0.110192

Table 10.1: Exctracted from the results of a RPA calculation for the Jπ = 3− state of the 208Pb
nucleus. The RPA eigenvalue is 3.689 MeV, a number quite distant from the energies of the single
particle excitations εp− εh. The calculation considered 1284 particle-hole pairs, and here only those with
amplitude greater than 0.1 are shown.

208Pb 14− ω = 9.098 MeV
neutrons

p h εp − εh MeV X Y
1j15/2 1i13/2 8.8699 -0.999661 0.012288

Table 10.2: The same as Table 10.1 for the state Jπ = 14− of the 208Pb nucleus. The RPA energy
eigenvalue is 9.098 MeV rather close to the energy of the dominant particle-hole pair.

the particle-hole transitions whose Xν
ph amplitude is greater than 0.1. In the tables the single-particle

states are identified in the usual nuclear shell-model scheme [Rin80].
In the calculation of the 3− state, the chosen configuration space predicted 1284 particle-hole pairs,

which is also the number of the obtained solutions. The results we show in Tab. 10.1 is that with the
smallest energy eigenvalue, ω = 3.69 MeV. It is worth to remark that the minimal value of the particle-
hole energy is 5.80 MeV. This indicates that the residual interaction acts by strongly modifying the energy
values. There are 6 particle-hole pairs with Xν

ph > 0.1. This indicates a high degree of collectivity.

The situation shown in Tab. 10.2 regarding the state 14−, is completely different. Also in this case we
show the results for the lowest energy eigenvalue. The chosen configuration space selected 306 particle-
hole pairs in this case, and only one Xν

ph > 0.1, and its contribution is about the 99 % of the RPA
eigenstate. The RPA energy eigenvalue is 9.10 MeV to be compared with the 8.87 MeV of the dominant
particle-hole configuration. This is the typical single-particle excited state. In this case the contribution of
the residual interaction is very small. The RPA is able to describe within the same theoretical framework
both collective and single-particle excitations of the many-body system.

We presented results of RPA calculations where all the configuration space is described by discrete
single-particle states, even when the single-particle energy is grater than zero. The choice of these
configuration spaces is done to make stable the solution for the first, discrete, excited sates. It is a good
approximation for the discrete states, but it has many failures when one wants to describe excitations
in the continuum. This implies that the system is fragmented because it looses one of its elements. It
is possible to formulate the RPA to consider the fact for εp > 0 the particle is in the continuum, and
therefore the excited states describe a system which is loosing a particle, in the atomic case an electron
which is in the ionisation condition.

In Fig. 10.1 we show the results of a RPA calculation which consider particle-hole excitations in the
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Figure 10.1: Results of RPA calculations which consider the excitations in the continuum (CRPA) compared to
the IPM results. The acronyms D1S and D1M indicate two different effective interactions. In the panels (a) and
(b) the cross sections of photo-absorption for electric dipole (a) and quadrupole (b) are shown. In the panel (a)
also the experimental data are shown [Ahr75]. In the lower panels the value of the integrals of the above cross
sections are shown as a function of the upper limit of the energy integration. The horizontal lines are estimates
of the sum rule values done in nuclear matter for the two interactions considered [Don11].

continuum. [Don11]. In the upper panels we show the total photoabsorption cross sections for the 16O
nucleus. In the left panel (a), there is the electric dipole excitation Jπ = 1−, in the right panel the
electric quadrupole transition Jπ = 2+. The calculations have been carried out by using two different
residual interactions, identified with the names D1S and D1M. Together with the RPA results, also the
IPM results are presented.

In the panel (a) also the experimental data are presented. It is evident an increase of the cross section
around 23 MeV. This effect is known to be present in all nuclei with more than 10 nucleons since 30’s of
the last century. This excitation has been called giant resonance. The first descriptions of this resonance
were based on hydrodynamical model which described the nucleus as liquid drop. This specific case was
treated as a two drops, one for protons and one for neutrons, oscillating out of phase. A description
in terms of IPM is unable to describe the presence of the resonance, as it is evident in the panel (a).
The RPA which takes care of the residual interaction effect, predicts the collective motion of the giant
resonance. The contribution of the 2+ to the total cross section is negligible, as it can be seen by observing
the differences in the scales of the (a) and (b) panels.

The lower panels show the value of the integral

SR(ω) =

∫ ω

0

dω′σ(ω′) .
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The behaviour of the curves related to the RPA results is rather similar to those of the experimental data,
and for ω = 60 MeV the values are rather close. This means that the total strength of the transition is
well described by the RPA. These results indicate that the RPA is able to reproduce the position of the
giant resonance. As it is shown in the panel (a) the maximum values of the RPA cross sections coincide
with those of the experimental data. Also the total RPA strengths coincide with the experimental one.
The distribution of the width of the resonance is not properly described. The comparison with the sum
rules calculated with the IPM shows that in Eq. (10.28) the contribution of the term which does not
commute with the hamiltonian is very important.

Probably the reason of the failure of the RPA in reproducing the experimental width is related to
the fact that in the assumptions on the Q̂+

ν operators (10.28) only one-particle one-hole, and one-hole
one-particle, pairs are considered. The inclusion of two-particle two-hole pairs would produce an increase
of the width which would lower the peak value since the total strength would remain the same.



Chapter 11

Green’s function

Up to now we avoided the use of that theoretical entity introduced in Quantum Field Theory and in
Many-Body Theories and know as Green’s function. In reality, we mentioned the Green’s function in
Sect. 8.4 as the resolvent of a differential equation. The mathematical expressions of the Green’s function
we introduce in this chapter and that of Sect. 8.4 are identical, but their interpretation is completely
different.

The Green’s function is extremely useful in the description of the many-body systems for the calcu-
lation of observable quantities, included the energy of the system. The Green’s function contains general
aspects of the many-body system independently of the specific observable under investigation.

The Green’s function is not uniquely defined since its definition depends on the number of field
operators which are considered. In this chapter we first present the one-body Green’s function, we give
the physical interpretation, we show how to use it to calculate observables and we related it to the Green’s
function of Sect. 8.4. After that, we define the two-body Green’s function At the end of the chapter we
present a set of linked equations which give a relation between Green’s functions defined for any number
of particles. The difficulties in solving this set of coupled equations pushes to the formulation of an
alternative technique of calculating Green’s functions, a technique based on perturbative theory. This
will be the subject of Chapter 12.

11.1 One-body Green’s functions

The fermionic field operator in Heisenberg representation is defined as

ψ̂H,α(x, t) = e
i
~ Ĥtψ̂α(x)e−

i
~ Ĥt (11.1)

where the sub-index H indicates Heisenberg while Ĥ is the system hamiltonian. With α we indicated
all the quantum numbers different from space and time which characterize the particle, for example spin
and isospin.

The one-body Green’s function for a fermion system is defined as

iGαβ(x, t,x′, t′) =
〈Ψ0|T̂

[
ψ̂H,α(x, t)ψ̂+

H,β(x′, t′)
]
|Ψ0〉

〈Ψ0|Ψ0〉
(11.2)

In the above expression |Ψ0〉 indicates the ground state of the system in Heisenberg representation

Ĥ|Ψ0〉 = E|Ψ0〉 (11.3)

123
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and T̂ indicates the time-ordering operator

T̂
[
ψ̂H,α(x, t)ψ̂+

H,β(x′, t′)
]

=

{
ψ̂H,α(x, t)ψ̂+

H,β(x′, t′) t > t′

− ψ̂+
H,β(x′, t′)ψ̂H,α(x, t) t < t′

(11.4)

The one-body Green’s functions can be related to the following observable quantities:

• expectation value od a one-body operator with respect to the system ground state,

• energy of the ground state,

• excitation spectrum of the system for single particle excitations.

Henceforth, to simplify the writing, we shall not explicitly write the quantum numbers α e β, under-
standing their sum each time that we indicate an integration on the coordinates.

Assuming that the hamiltonian Ĥ is time independent we can write the Green’s function (11.2) as

iG(x, t,x′, t′) =


e
i
~E(t−t′) 〈Ψ0|ψ̂(x)e−

i
~ Ĥ(t−t′)ψ̂+(x′)|Ψ0〉
〈Ψ0|Ψ0〉

t > t′

− e−
i
~E(t−t′) 〈Ψ0|ψ̂+(x′)e

i
~ Ĥ(t−t′)ψ̂(x)|Ψ0〉
〈Ψ0|Ψ0〉

t < t′

. (11.5)

For the calculation of the expectation value of a one-body operator on the ground state of the system,
we use the expression of one-body operator in terms of field operators

ÔI =

∫
d3x ψ̂+(x)Ô(x)ψ̂(x) . (11.6)

We can write its expectation value with respect to the ground state as

〈ÔI〉 =

∫
d3x
〈Ψ0|ψ̂+(x)Ô(x)ψ̂(x)|Ψ0〉

〈Ψ0|Ψ0〉
=

∫
d3x lim

x′→x
Ô(x)

〈Ψ0|ψ̂+(x′)ψ̂(x)|Ψ0〉
〈Ψ0|Ψ0〉

. (11.7)

where the limit x′ → x has been inserted to allow the commutation of Ô(x) with ψ̂+(x′). By using the
second equation (11.5), and indicating with t+ a time greater than t, we obtain

〈ÔI〉 = −i lim
t′→t+→t

∫
d3x lim

x→x′
Ô(x)G(x, t,x′, t′) . (11.8)

Let’s make an example of this kind of calculation by considering the number density operator. The
operator related the number of particles of the system can be expressed as a function of the density
operator

ρ̂(x) =

∫
d3x′δ(x− x′) (11.9)

as

N̂ ≡
∫
d3x ψ̂+(x)ρ̂(x− x′)ψ̂(x) =

∫
d3x

∫
d3x′δ(x− x′) ψ̂+(x) ψ̂(x) =

∫
d3x ψ̂+(x) ψ̂(x) . (11.10)

The expectation value of this operator with respect to the ground state of the system is:

〈N̂〉 = −i lim
t′→t+

∫
d3x lim

x→x′
ρ̂(x)G(x, t,x′, t′)

= −i lim
t′→t+

∫
d3x lim

x→x′
G(x, t,x′, t′)

= −i
∫
d3xG(x, t,x, t) =

∫
d3x
〈Ψ0|ψ̂+(x)ψ̂(x)|Ψ0〉

〈Ψ0|Ψ0〉
(11.11)
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In the case of non-interacting fermions we have |Ψ0〉 = |Φ0〉 and we obtain

〈N̂〉 =

∫
d3x
〈Φ0|ψ̂+(x)ψ̂(x)|Φ0〉

〈Φ0|Φ0〉
(11.12)

By using the representation of the field operators in terms of creation and destruction operators, Eqs.
(5.50) and (5.51), we have

〈N̂〉 =

∫
d3x

∑
α,α′

φ∗α(x)φα′(x)〈Φ0|â+
α âα′ |Φ0〉

=

∫
d3x

εF∑
α,α′=1

φ∗α(x)φα′(x)δα,α′ =

∫
d3 x

εF∑
α=1

|φα(x)|2 , (11.13)

where we have assumed the orthonormality of the single particle wave functions φα and that the many-
body state |Φ0〉 is normalized to 1. We indicated with εF the Fermi energy. The final expression under the
integration symbol is the traditional expression of the density for a system of non interacting particles.

The ground state energy of the system is related to the one-body Green’s function by the expression

E0 =
〈Ψ0|T̂ |Ψ0〉
〈Ψ0|Ψ0〉

+
〈Ψ0|V̂ |Ψ0〉
〈Ψ0|Ψ0〉

= − i
2

∫
d3r lim

r′→r
lim
t′→t

[
i~
∂

∂t
+

(
−~2∇2

r

2m

)]
G(r, t, r′, t′) . (11.14)

We show here below how to obtain the above expression.

WE shall use the following expressions of the commutators of 3 operators:

[Â, B̂Ĉ] = ÂB̂Ĉ − B̂ĈÂ = ÂB̂Ĉ − B̂ĈÂ+ B̂ÂĈ − B̂ÂĈ (11.15)[
Â, B̂Ĉ

]
= {Â, B̂}Ĉ − B̂{Â, Ĉ} (11.16)[

Â, B̂Ĉ
]

= [Â, B̂]Ĉ − B̂[Ĉ, Â] , (11.17)

and also

{Â, B̂Ĉ} = {Â, B̂}Ĉ − B̂[Â, Ĉ] . (11.18)

We consider the commutator of the hamiltonian

Ĥ = T̂ + V̂ =

∫
d3x ψ̂+(x)

(
−~2∇

2
x

2m

)
ψ̂(x)

+
1

2

∫
d3x d3y ψ̂+(x)ψ̂+(y)V̂ (x,y)ψ̂(y)ψ̂(x) , (11.19)

with the operator ψ̂(r). I first evaluate the commutator with the kinetic energy term

[ψ(r), T̂ ] =

ψ̂(r)︸︷︷︸
Â

,

∫
d3x ψ̂+(x)︸ ︷︷ ︸

B̂

(
−~2∇

2
x

2m

)
ψ̂(x)︸ ︷︷ ︸

Ĉ

 . (11.20)
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We apply Eq. (11.16)

[ψ̂(r), T̂ ] =

∫
d3x {ψ̂(r), ψ̂+(x)}︸ ︷︷ ︸

δ(x−r)

(
−~2∇

2
x

2m
ψ̂(x)

)
−
∫
d3x ψ̂+(x)

(
−~2∇

2
x

2m

)
{ψ̂(r), ψ̂(x)}︸ ︷︷ ︸

0

=

∫
d3x δ(x− r)

(
−~2∇

2
x

2m
ψ̂(x)

)
= −~2∇2

r

2m
ψ̂(r) . (11.21)

For the interaction term we consider

[ψ̂(r), V̂ ] =
1

2

∫
d3x d3y

ψ̂(r)︸︷︷︸
Â

, ψ̂+(x)︸ ︷︷ ︸
B̂

ψ̂+(y)V̂ (x,y)ψ̂(y)ψ̂(x)︸ ︷︷ ︸
Ĉ

 . (11.22)

By applying Eq. (11.16) we obtain

[ψ̂(r), V̂ ] =
1

2

∫
d3x d3y

{ψ(r), ψ+(x)}︸ ︷︷ ︸
δ(r−x)

Ĉ − ψ̂+(x)

ψ̂(r)︸︷︷︸
Â′

, ψ̂+(y)︸ ︷︷ ︸
B̂′

V̂ (x,y)ψ̂(y)ψ̂(x)︸ ︷︷ ︸
Ĉ′




=
1

2

∫
d3y ψ̂+(y)V̂ (r,y)ψ̂(y)ψ̂(r)

+
1

2

∫
d3x d3y

(
−ψ̂+(x)

){
ψ̂(r), ψ̂+(y)

}
︸ ︷︷ ︸

δ(r−y)

V̂ (x,y) ψ̂(y)ψ̂(x)︸ ︷︷ ︸
−ψ̂(x)ψ̂(y)

− 1

2

∫
d3x d3y

(
−ψ̂+(x)

)
ψ̂+(y)V̂ (x,y) [ψ̂(r), ψ̂(y)ψ̂(x)]︸ ︷︷ ︸

0

=
1

2

∫
d3y ψ̂+(y)V̂ (r,y)ψ̂(y)ψ̂(r) +

1

2

∫
d3x ψ̂+(x)V̂ (x, r)ψ̂(x)ψ̂(r) . (11.23)

where we used Eq. (11.18) and the anti-commutation rules of the field operators. For the symmetry
of the potential V̂ (x,y) = V̂ (y,x), the two terms of the last expression are equal, therefore

[ψ̂(r), V̂ ] =

∫
d3x ψ̂+(x)V̂ (r,x)ψ̂(x)ψ̂(r) . (11.24)

Putting together Eqs. (11.21) and (11.24) we obtain

[ψ̂(r), Ĥ] = −~2∇
2
r

2m
ψ̂(r) +

∫
d3x ψ̂+(x)V̂ (r,x)ψ̂(x)ψ̂(r) . (11.25)

We use this expression in the equation of motion for the field operator in Heisenberg representation

i~ ∂
∂t
ψ̂H(r, t) =

[
ψ̂H(r, t), Ĥ

]
= e

i
~ Ĥt

[
ψ̂(r), Ĥ

]
e−

i
~ Ĥt

= −~2∇
2
r

2m
ψ̂H(r, t) +

∫
d3x ψ̂+

H(x, t)V̂ (r,x)ψ̂H(x, t)ψ̂H(r, t) . (11.26)

We multiply on the left by the operator ψ̂+
H(r′, t′), then we evaluate the expectation value on the

ground state |Ψ0〉 and divide it by its norm[
i~ ∂
∂t
−
(
−~2∇

2
r

2m

)]
〈Ψ0|ψ̂+

H(r′, t′)ψ̂H(r, t)|Ψ0〉
〈Ψ0|Ψ0〉

=
1

〈Ψ0|Ψ0〉

∫
d3x 〈Ψ0|ψ̂+

H(r′, t′)ψ̂+
H(x, t)V̂ (r,x)ψ̂H(x, t)ψ̂H(r, t)|Ψ0〉 . (11.27)
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We take the limit for r′ → r e t′ → t and after we integrate on d3r,∫
d3r lim

r′→r
lim
t′→t

[
i~ ∂
∂t
−
(
−~2∇

2
r

2m

)] [
−iG(r, t, r′, t′)

]
= 2
〈Ψ0|V̂ |Ψ0〉
〈Ψ0|Ψ0〉

, (11.28)

where the factor 2 is due to the definition of V̂ given by Eq. (11.19).

We use Eq. (11.7) to calculate the expectation value of the kinetic energy operator

〈Ψ0|T̂ |Ψ0〉
〈Ψ0|Ψ0〉

= −i
∫
d3r lim

r′→r
lim
t′→t

(
−~2∇

2
r

2m

)
G(r, t, r′, t′) . (11.29)

Combining these two equations, by adding 2T̂ on the left and right hand sides, we can eliminate the
potential term from the energy expectation value and than we obtain Eq. (11.14).

11.1.1 System of non-interacting fermions

In this section, we obtain an expression of the one-body Green’s function for an infinite system of non-
interacting fermions. This result is the starting point of the perturbative calculation of the Green’s
function describing a system of interacting particles.

The system of non-interacting particle is defined by the fact that it is described by a MF hamiltonian

Ĥ ≡ Ĥ0 =
∑
α

ĥα (11.30)

where ĥα are single particle hamiltonians of which |φα〉 are the eigenstates. In this case, all the operators
in the Heisenberg picture correspond to those expressed in the interaction picture

ÔH ≡ e
i
~ ĤtÔe−

i
~ Ĥt = e

i
~ Ĥ0tÔe−

i
~ Ĥ0t ≡ ÔI . (11.31)

To simplify the writing we assume normalized to 1 the many-body states |Φ0〉. By definition, the one-body
Green’s function can be expressed as

iG0(x, t,x′, t′) = 〈Φ0|T̂
[
ψ̂I(x, t)ψ̂

+
I (x′, t′)

]
|Φ0〉

= 〈Φ0|ψ̂I(x, t)ψ̂
+
I (x′, t′)|Φ0〉Θ(t− t′)− 〈Φ0|ψ̂+

I (x′, t′)ψ̂I(x, t)|Φ0〉Θ(t′ − t) , (11.32)

where Θ(x) is the step function.
Let’s consider the field operators in the interaction picture and express them in terms of creation and

destruction operators

ψ̂I(x, t) =
∑
k

âI,k(t)φk(x) and ψ̂+
I (x, t) =

∑
k

â+
I,k(t)φ∗k(x) , (11.33)

therefore

iG0(x, t,x′, t′) = 〈Φ0|
∑
k

φk(x)âke
−iωkt

∑
k′

φ∗k′(x
′)â+

k′e
iωk′ t

′ |Φ0〉Θ(t− t′)

− 〈Φ0|
∑
k′

φ∗k′(x
′)â+

k′e
iωk′ t

′∑
k

φk(x)âke
−iωkt|Φ0〉Θ(t′ − t)

=
∑
k k′

φk(x)φ∗k′(x
′)e−iωkteiωk′ t

′

[
〈Φ0|âkâ+

k′ |Φ0〉Θ(t− t′)− 〈Φ0|â+
k′ âk|Φ0〉Θ(t′ − t)

]
, (11.34)
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where we defined ωk = Ek/~.

By definition of |Φ0〉 the following relations hold

〈Φ0|âkâ+
k′ |Φ0〉 = δk k′Θ(k′ − kF ), and 〈Φ0|â+

k′ âk|Φ0〉 = δk k′Θ(kF − k) . (11.35)

In an infinite, and homogeneos, system the expression of the single-particle wave function is

φk(x) =
1√
V
e−ik·x , (11.36)

where spin and isospin dependent terms have been neglected. The unperturbed Green’s function (11.34)
assumes the expression

iG0(x, t,x′, t′) =
1

V

∑
k

e−ik·(x−x
′)e−iωk(t−t′) [Θ(k − kF )Θ(t− t′)−Θ(kF − k)Θ(t′ − t)] . (11.37)


-i η


Figure 11.1: Integration contour for the integral (11.41).

We remember that, for an infinite system, we have to substitute the sums in integrals following the
prescription ∑

k

→ V

(2π)3

∫
d3 k . (11.38)

By using the integral representation of the step function

Θ(x) = − lim
η→0

∫ ∞
−∞

dk

(
1

2π i

)
e−ikx

k + iη
, (11.39)

we can write

iG0(x, t,x′, t′) =
1

(2π)3

∫
d3k e−ik·(x−x

′)e−iωk(t−t′)[
−
∫ ∞
−∞

dω′

2π i

e−iω
′(t−t′)

ω′ + iη
Θ(k − kF )−

∫ ∞
−∞

dω′

2π i

e−iω
′(t−t′)

ω′ − iη Θ(kF − k)

]
. (11.40)
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Let’s show the validity of Eq. (11.39) by exploiting the residue theorem.∫ ∞
−∞

dk
1

2π i

e−ikx

k + iη
= − lim

k→−iη
2π i

1

2π i
(k + iη)

e−ikx

k + iη
= −e−ηx , (11.41)

where the overall minus sign is due to the direction of the integration contour for x > 0. In the case
x < 0 the integration contour will be closed without considering the pole, therefore the integral will
be zero. At this point one has that

lim
η→0
−e−ηx = −1 . (11.42)

from which Eq. (11.39) .

Putting everything together and multiplying by −i, we obtain

G0(x, t,x′, t′) =
1

(2π)4

∫
d3k e−ik·(x−x

′)

∫ ∞
−∞

dω′e−iω
′(t−t′)e−iωk(t−t′)[

Θ(k − kF )

ω′ + iη
+

Θ(kF − k)

ω′ − iη

]
. (11.43)

We define a new variable ω = ω′ + ωk and rewrite the above equation as

G0(x, t,x′, t′) =
1

(2π)4

∫
d3k e−ik·(x−x

′)

∫ ∞
−∞

dω e−iω(t−t′)
[

Θ(k − kF )

ω − ωk + iη
+

Θ(kF − k)

ω − ωk − iη

]
, (11.44)

From the above expression we extract the definition of the unperturbed one-body Green’s function de-
pending on the energy and on the momentum

G̃0(k, ω) ≡
[

Θ(k − kF )

ω − ωk + iη
+

Θ(kF − k)

ω − ωk − iη

]
. (11.45)

11.1.2 Lehmann representation

Let’s consider the full Green’s function, i. e. that of the system of interacting particles, and, to simplify
the writing, let’s assume that the ground state is normalized to unity 〈Ψ0|Ψ0〉 = 1. We rewrite the
expression of the Green’s function by inserting a complete set of eigenstates of the hamiltonian Ĥ

iG(x, t,x′, t′) = 〈Ψ0|T̂
[
ψ̂H(x, t)ψ̂+

H(x′, t′)
]
|Ψ0〉

=
∑
n

〈Ψ0|ψ̂H(x, t)|Ψn〉〈Ψn|ψ̂+
H(x′, t′)|Ψ0〉Θ(t− t′)

−
∑
n′

〈Ψ0|ψ̂+
H(x′, t′)|Ψn′〉〈Ψn′ |ψ̂H(x, t)|Ψ0〉Θ(t′ − t) (11.46)

The eigenstates |Ψn〉 and |Ψn′〉 of Ĥ contain different number of particles. Specifically, the |Ψn〉 multi-
plying Θ(t− t′) have A+ 1 particles, while |Ψn′〉 multiplying Θ(t′ − t) have A− 1 particles.

Let’s indicate with A the number of particles, eigenvalue of the particle number operator

N̂ =

∫
d3x ψ̂+(x)ψ̂(x) . (11.47)
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We calculate the commutator

[N̂, ψ̂(z)] =

∫
d3x[ψ̂+(x)ψ̂(x), ψ̂(z)] =

∫
d3x [ψ̂+(x)ψ̂(x)ψ̂(z)− ψ̂(z)ψ̂+(x)ψ̂(x)]

=

∫
d3x [ψ̂+(x)ψ̂(x)ψ̂(z)− ψ̂+(x)ψ̂(x)ψ̂(z)− ψ̂(z)δ(x− z)] = −ψ̂(z) .

From the operator point of view we can write

[N̂, ψ̂] = −ψ̂ , N̂ψ̂ − ψ̂N̂ = −ψ̂ , N̂ψ̂ = ψ̂(N̂ − 1) (11.48)

therefore

N̂ψ̂|Ψ0〉 = ψ̂(N̂ − 1)|Ψ0〉 = ψ̂(A− 1)|Ψ0〉 = (A− 1)ψ̂|Ψ0〉 , (11.49)

which indicates that the states of the second term of Eq. (11.46) have a particle less than the states
|Ψ0〉.

We use in Eq. (11.46) the field operators in the Schrödinger picture.

ÔH = e
i
~ ĤtÔSe

− i
~ Ĥt , (11.50)

iG(x, t,x′, t′) =
∑
n

Θ(t− t′)e− i
~ (En−E0)(t−t′)〈Ψ0|ψ̂(x)|Ψn〉〈Ψn|ψ̂+(x′)|Ψ0〉

−
∑
n′

Θ(t− t′)e i~ (En′−E0)(t−t′)〈Ψ0|ψ̂+(x′)|Ψn′〉〈Ψn′ |ψ̂(x)|Ψ0〉 . (11.51)

By substituting the expressions of the field operators

ψ̂(x) =
∑
k

âkφk(x) and ψ̂+(x) =
∑
k

â+
k φ
∗
k(x) (11.52)

we obtain

iG(x, t,x′, t′) =
∑
n

Θ(t− t′)e− i
~ (En−E0)(t−t′)

∑
k,k′

φk(x)φ∗k′(x
′)〈Ψ0|âk|Ψn〉〈Ψn|â+

k′ |Ψ0〉

−
∑
n′

Θ(t′ − t)e i~ (En′−E0)(t−t′)
∑
k,k′

φk(x)φ∗k′(x
′)〈Ψ0|â+

k′ |Ψn′〉〈Ψn′ |âk|Ψ0〉 .(11.53)

By considering that, for an infinite system, Eqs. (11.36) and (11.38) hold, we can write

iG(x, t,x′, t′) =∑
n

Θ(t− t′)e− i
~ (En−E0)(t−t′) 1

(2π)3

∫
d3k eik·(x−x

′)〈Ψ0|âk|Ψn〉〈Ψn|â+
k |Ψ0〉

−
∑
n′

Θ(t′ − t)e i~ (En′−E0)(t−t′) 1

(2π)3

∫
d3k eik·(x−x

′)〈Ψ0|â+
k |Ψn′〉〈Ψn′ |âk|Ψ0〉 . (11.54)

In the above equations we considered that |Ψn〉 is characterized by the momentum k, therefore

I =
∑
n

|Ψn〉〈Ψn| ≡
1

(2π)3

∫
d3k |k〉〈k′| = δk,k′ .
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By using the integral expression of the step function (11.39) we obtain

G(x, t,x′, t′) =
1

(2π)4

∫
d3k eik·(x−x

′)

∫
dωe−iω(t−t′)[∑

n

〈Ψ0|âk|Ψn〉〈Ψn|â+
k |Ψ0〉

ω − (En − E0)/~ + iη
+
∑
n′

〈Ψ0|â+
k |Ψn′〉〈Ψn′ |âk|Ψ0〉

ω + (En′ − E0)/~− iη

]
. (11.55)

We define the Fourier transform

G̃(k, ω) =

∫
d3(x− x′) e−ik·(x−x′)

∫
d(t− t′)eiω(t−t′)G(x, t,x′, t′)

=
∑
n

〈Ψ0|âk|Ψn〉〈Ψn|â+
k |Ψ0〉

ω − (En − E0)/~ + iη
+
∑
n′

〈Ψ0|â+
k |Ψn′〉〈Ψn′ |âk|Ψ0〉

ω + (En′ − E0)/~− iη . (11.56)

Let’s consider the denominator of the first term. The energy E0 is eigenvalue of |Ψ0〉 describing the
system with A particles, while En is eiegenvalue of |Ψn〉 which has A + 1 particles. We rewrite the
denominator indicating in round brackets the number of particles of the system which the energy refers
to.

~ω − En(A+ 1) + E0(A) = ~ω − En(A+ 1) + E0(A+ 1)− E0(A+ 1) + E0(A)

= ~ω − [En(A+ 1)− E0(A+ 1)]− [E0(A+ 1)− E0(A)] = ~ω − ~ωn(A+ 1)− µ .

In the above equations we call ωn(A + 1) the excitation energy of the system with A + 1 particles and
with µ the chemical potential defined as

µ =

(
∂E

∂A

)
V

≡
[
E0(A+ 1)− E0(A)

∆1

]
. (11.57)

where we indicated with ∆1 the variation of one unit of the number of fermions.
The Green’s function in Lehmann representation is

G̃(k, ω) =
∑
n

〈Ψ0|âk|Ψn〉〈Ψn|â+
k |Ψ0〉

ω − ωn − µ/~ + iη
+
∑
n′

〈Ψ0|â+
k |Ψn′〉〈Ψn′ |âk|Ψ0〉

ω + ωn′ − µ/~− iη
. (11.58)

The sign of the chemical potential in the second denominator is due to the definition (11.57) where
the derivative has positive sign when a particle is added to the system. It worth to remark that ωn in
the first term is refers to the system with A+ 1 particles, while ωn′ in the second term to a system with
A− 1 particles.

11.1.3 Physical interpretation

Let’s consider a state in the interaction picture and add a particle in the point x′, at the time t′

ψ̂+
I (x′, t′)|ΨI(t

′)〉 . (11.59)

This states propagates at the time t as

Û(t, t′)ψ̂+
I (x′, t′)|ΨI(t

′)〉 . (11.60)

We shall calculate the overlap with ψ̂+
I (x, t)|ΨI(t)〉 for t > t′.
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Let’s recall here below some property of the time propagation operator Û(t, t′)

Û(t, t′)Û(t′, t) = Û(t, t) = 1

|ΨH〉 = |ΨI(0)〉 = Û(0,−∞)|Φ0〉 = |Ψ0〉
Û(t, t0) = e

i
~ Ĥ0te−

i
~ (Ĥ0+Ĥ1)(t−t0)e−

i
~ Ĥ0t0

Û(t, 0) = e−
i
~ Ĥ1t ; Û(0, t) = e

i
~ Ĥ1t

ÔI(t) = e−
i
~ Ĥ1tÔH(t)e

i
~ Ĥ1t = Û(t, 0)ÔHÛ(0, t)

ÔH(t) = e
i
~ ĤtÔSe

− i
~ Ĥt ; ÔI(t) = e

i
~ Ĥ0tÔSe

− i
~ Ĥ0t

|ΨI(t
′)〉 = Û(t′,−∞)|Φ(0)〉 .

At the time t′ in the point x′, a particle is added to the system, the state propagates and, later on, at
the time t, in the position x the particle is eliminated. This process can be described as

〈Ψ(t)|ψ̂I(x, t)Û(t, t′)ψ̂+
I (x′, t′)|Ψ(t′)〉 =

〈Φ0|Û(∞, t)
[
Û(t, 0)ψ̂H(x, t)Û(0, t)

]
Û(t, t′)

[
Û(t′, 0)ψ̂+

H(x′, t′)Û(0, t′)
]
Û(t′,−∞)|Φ0〉 ={

〈Φ0|Û(∞, t)Û(t, 0)
}
ψ̂H(x, t)

[
Û(0, t)Û(t, t′)Û(t′, 0)

]
ψ̂+

H(x′, t′)
{
Û(0, t′)Û(t′,−∞)|Φ0〉

}
=

〈Ψ0|ψ̂H(x, t)ψ̂+
H(x′, t′)|Ψ0〉

The last expression is that of the one-body Green’s function for t > t′. The Green’s function is the
probability amplitude that a particle created in the point x′ at the time t′ is destroyed in the point x at
the time t.

11.2 Two-body Green’s function

Also in this section, to simplify the writing, we assume 〈Ψ0|Ψ0〉 = 1. The two-body Green’s function is
defined as

(−i)2G(x1, t1,x2, t2,x3, t3,x4, t4) ≡ 〈Ψ0|T̂[ψ̂H(x1, t1)ψ̂H(x2, t2)ψ̂+
H(x3, t3)ψ̂+

H(x4, t4)]|Ψ0〉 , (11.61)

For the one-body Green’s function it has been necessary to consider two cases, t > t′ and viceversa. For
the two-body Green’s function there are 4! = 24 cases. In reality for the symmetry properties

G(1234) = −G(2134) = −G(1243) = G(2143) , (11.62)

there are only 6 independent cases. Out of these 6 cases only 3 have physically interesting properties.

1. t1, t2 > t3, t4. This case implies

(−i)2G(x1, t1,x2, t2,x3, t3,x4, t4) ≡ 〈Ψ0|ψ̂H(x1, t1)ψ̂H(x2, t2)ψ̂+
H(x3, t3)ψ̂+

H(x4, t4)|Ψ0〉 , (11.63)

and describes the evolution of a state to which, at the times t3 and t4, two particles have been
added.

2. t1, t2 < t3, t4. This case implies

(−i)2G(x1, t1,x2, t2,x3, t3,x4, t4) ≡ 〈Ψ0|ψ̂+
H(x3, t3)ψ̂+

H(x4, t4)ψ̂H(x1, t1)ψ̂H(x2, t2)|Ψ0〉 , (11.64)

and describes the evolution of a state to which, at the times t1 and t2, two holes have been created.



11.2. TWO-BODY GREEN’S FUNCTION 133

3. t1, t3 > t2, t4. This case implies

(−i)2G(x1, t1,x2, t2,x3, t3,x4, t4) = −〈Ψ0|ψ̂H(x1, t1)ψ̂+
H(x3, t3)ψ̂H(x2, t2)ψ̂+

H(x4, t4)|Ψ0〉 , (11.65)

and describes the time evolution of a particle-hole pair.

This latter case is that of major interest to us and it is the only case treated in this section.
Since we work in non-relativistic framework the creation, and also the destruction, of a particle-hole

pair is instantaneous, we have that

t1 = t3 = t′ e t2 = t4 = t . (11.66)

For this case, we express the two-body Green’s function in terms of creation and destruction operators

G(x1, t
′,x2, t,x3, t

′,x4, t) =∑
ν1ν2ν3ν4

φν1(x1)φ∗ν3(x3)φν2(x2)φ∗ν4(x4)〈Ψ0|T̂[âν1(t′)â+
ν3(t′)âν2(t)â+

ν4(t)]|Ψ0〉

=
∑

ν1ν2ν3ν4

φν1(x1)φν2(x2)φ∗ν3(x3)φ∗ν4(x4)G(ν1, t
′, ν2, t, ν3, t

′, ν4, t) . (11.67)

where it is understood that all the creation and destruction operators are expressed in the Heisenberg
picture. The previous equation defines a two-body Green’s function depending on the quantum numbers
ν characterizing the single-particle states.

We define the retarded part of the Green’s function by considering the t′ > t case

GR(ν1, t
′, ν2, t, ν3, t

′, ν4, t) = 〈Ψ0|âν1(t′)â+
ν3(t′)âν2(t)â+

ν4(t)|Ψ0〉
= 〈Ψ0|e

i
~ Ĥt

′
âν1e

− i
~ Ĥt

′
e
i
~ Ĥt

′
â+
ν3e
− i

~ Ĥt
′
e
i
~ Ĥtâν2e

− i
~ Ĥte

i
~ Ĥtâ+

ν4e
− i

~ Ĥt|Ψ0〉
= 〈Ψ0|âν1 â+

ν3e
− i

~ (Ĥ−E0)(t′−t)âν2 â
+
ν4 |Ψ0〉 , (11.68)

where we made explicit the expression of the creation and destruction operators in the Heisenberg picture,
and we used Ĥ|Ψ0〉 = E0|Ψ0〉. In analogous manner we define the advanced part of the Green’s function
for the t′ < t case,

GA(ν1, t
′, ν2, t, ν3, t

′, ν4, t) = 〈Ψ0|âν2 â+
ν4e

+ i
~ (Ĥ−E0)(t′−t)âν1 â

+
ν3 |Ψ0〉 (11.69)

We can express the two-body Green’s function as

G(ν1, ν2, ν3, ν4, τ) =

{
GA(ν1, t

′, ν2, t, ν3, t
′, ν4, t) per τ = t′ − t < 0

GR(ν1, t
′, ν2, t, ν3, t

′, ν4, t) per τ = t′ − t > 0
. (11.70)

11.2.1 Lehmann representation

We define the energy dependent two-body Green’s function as

G̃(ν1, ν2, ν3, ν4, E) =

∫ ∞
−∞

dτ G(ν1, ν2, ν3, ν4, τ) e
i
~Eτ , (11.71)

where τ = t′ − t. We consider the retarded part

G̃R(ν1, ν2, ν3, ν4, E) = 〈Ψ0|âν1 â+
ν3

∫ ∞
0

dτ e−
i
~ (Ĥ−E0−E)τ âν2 â

+
ν4 |Ψ0〉 . (11.72)
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We can express the value of the time integral as

lim
η→0

∫ ∞
0

dτ e
i
~ (−Ĥ+E0+E+iη)τ = lim

η→0

e
i
~ (E−Ĥ+E0)τe−ητ

i
~ (E − Ĥ + E0 + iη)

∣∣∣∞
0

= lim
η→0

i~
E − Ĥ + E0 + iη

, (11.73)

therefore

G̃R(ν1, ν2, ν3, ν4, E) = ~〈Ψ0|âν1 â+
ν3

i

E − Ĥ + E0 + iη
âν2 â

+
ν4 |Ψ0〉 . (11.74)

With an analogous calculation we obtain for the advanced part

G̃A(ν1, ν2, ν3, ν4, E) = 〈Ψ0|âν2 â+
ν4

∫ 0

−∞
dτ e

i
~ (Ĥ−E0+E)τ âν1 â

+
ν3 |Ψ0〉 , (11.75)

lim
η→0

∫ 0

−∞
dτ e

i
~ (Ĥ−E0+E−iη)τ = lim

η→0

e
i
~ (E+Ĥ−E0)τeητ

i
~ (E + Ĥ − E0 − iη)

|0−∞ = lim
η→0

−i~
E + Ĥ − E0 − iη

, (11.76)

G̃A(ν1, ν2, ν3, ν4, E) = (−1)~〈Ψ0|âν2 â+
ν4

i

E + Ĥ − E0 − iη
âν1 â

+
ν3 |Ψ0〉 , (11.77)

therefore

− i
~
G̃(ν1, ν2, ν3, ν4, E) = − i

~
(G̃R + G̃A) = 〈Ψ0|âν1 â+

ν3

1

E − Ĥ + E0 + iη
âν2 â

+
ν4 |Ψ0〉

− 〈Ψ0|âν2 â+
ν4

1

E + Ĥ − E0 − iη
âν1 â

+
ν3 |Ψ0〉 . (11.78)

By inserting the completeness of the eigenfunctions of Ĥ,
∑
n |Ψn〉〈Ψn| = 1, and considering Ĥ|Ψn〉 =

En|Ψn〉 we obtain the expression

− i
~
G̃(ν1, ν2, ν3, ν4, E)

=
∑
n

[ 〈Ψ0|âν1 â+
ν3 |Ψn〉〈Ψn| âν2 â+

ν4 |Ψ0〉
E − (En − E0) + iη

− 〈Ψ0|âν2 â+
ν4 |Ψn〉〈Ψn|âν1 â+

ν3 |Ψ0〉
E + (En − E0)− iη

]
. (11.79)

In this expression, the states |Ψn〉 have the same particle number of the ground state. The energy values
related to the poles, E = En − E0, represent the excitation energies of the A particle system.

11.3 Linear response

Let’s consider the situation where the many-body system is subject to an external perturbation. We
express the total hamiltonian describing the perturbed system as sum of the hamiltonian Ĥ describing the
system in absence of the perturbation, and we indicate its eigenstates as |Ψ〉. The external perturbation
is described by the term Ĥext(t)

Ĥtot = Ĥ + Ĥext(t) = Ĥ + B̂F (t) , (11.80)

where B̂ is the operator describing the action of the external perturbation on the system. For example
the perturbation can be generated by photons, electrons, hadrons, etc. . The function F (t) describes how
the perturbation acts on the time, and it is defined such as F̂ (t) = 0 for t < t0 = 0. This means that the
perturbation is switched on after a specific time, t0 which we define as zero time.
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We assume that, under the action of the external perturbation, the many-body system reacts with time
much faster than the time needed to the perturbation to switch on and off. Then, when the perturbation
is totally switched on the hamiltonian is Ĥtot = Ĥ + B̂. In this case we can treat B̂ as a perturbative
term of the total time-dependent hamiltonian. For this reason, we can consider the equation of motion
in the interaction picture (see Chapter 6)

i~
∂

∂t
|ΨI(t)〉 = B̂I(t)|ΨI(t)〉 , (11.81)

where
B̂I(t) = e

i
~ ĤtB̂e−

i
~ Ĥt e |ΨI(t)〉 = e

i
~ Ĥt|Ψ(t)〉 . (11.82)

In this section we use the convention that states and operators without sub-indexes are expressed in the
Schrödinger picture. We integrate Eq. (11.81)

i~
∫ t

−∞
dt′

∂

∂t′
|ΨI(t

′)〉 =

∫ t

−∞
dt′ B̂I(t

′)|ΨI(t
′)〉

i~
[
|ΨI(t)〉 − |ΨI(−∞)〉

]
=

∫ t

−∞
dt′ B̂I(t

′)|ΨI(t
′)〉

|ΨI(t)〉 = |ΨI(−∞)〉 − i

~

∫ t

−∞
dt′ B̂I(t

′)|ΨI(t
′)〉 . (11.83)

Since the perturbation is off when t = −∞ we have that |ΨI(−∞)〉 = |Ψ0〉. We can express the above
equation in perturbative terms by iterating the presence of |ΨI(−∞)〉

|ΨI(t)〉 = |Ψ0〉 −
i

~

∫ t

−∞
dt′ B̂I(t

′)|Ψ0〉 + · · · (11.84)

We call D̂ the operator which describe how the system reacts to the external perturbation induced
by the operator B̂. The expectation value of this operator is given by

〈ΨI(t)|D̂I(t)|ΨI(t)〉

=

{
〈Ψ0|+

i

~

∫ t

−∞
dt′ B̂I(t

′)〈Ψ0| + · · ·
}
D̂I(t)

{
|Ψ0〉 −

i

~

∫ t

−∞
dt′ B̂I(t

′)|Ψ0〉 + · · ·
}

= 〈Ψ0|D̂I(t)|Ψ0〉+
i

~

∫ t

−∞
dt′〈Ψ0|[B̂I(t

′), D̂I(t)]|Ψ0〉 + · · · (11.85)

We define the response function as

R(t′ − t) =

{
0 per t′ < t
i

~
〈Ψ0|[B̂I(t

′), D̂I(t)]|Ψ0〉 per t′ > t
. (11.86)

This definition implies causality. The system cannot respond before that the perturbation is switched
on.

By making explicit the time dependence of B̂I(t
′) and D̂I(t),

B̂I(t
′) = e

i
~ Ĥt

′
B̂e−

i
~ Ĥt

′
; D̂I(t) = e

i
~ ĤtD̂e−

i
~ Ĥt , (11.87)

we can express the response as

R(t′ − t) =
i

~
〈Ψ0|B̂e

i
~ (Ĥ−E0)(t−t′)D̂|Ψ0〉 −

i

~
〈Ψ0|D̂e−

i
~ (Ĥ−E0)(t−t′)B̂|Ψ0〉 , (11.88)
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and, since it depends only on the time difference τ = t− t′, by using the definition of Fourier transform,
we obtain

R(E) =

∫ ∞
−∞

dτ R(τ) e
i
~Eτ

=
i

~
〈Ψ0|B̂

∫ ∞
−∞

dτe
i
~ (Ĥ−E0+E)τ D̂|Ψ0〉 −

i

~
〈Ψ0|D̂

∫ ∞
−∞

dτe−
i
~ (Ĥ−E0−E)τ B̂|Ψ0〉

= −〈Ψ0|B̂(Ĥ − E0 + E + iη)−1D̂|Ψ0〉 − 〈Ψ0|D̂(Ĥ − E0 − E − iη)−1B̂|Ψ0〉 . (11.89)

We insert the completeness
∑
n |Ψn〉〈Ψn| = 1 and obtain

R(E) =
∑
n

[
〈Ψ0|D̂|Ψn〉〈Ψn|B̂|Ψ0〉
E − (En − E0) + iη

− 〈Ψ0|B̂|Ψn〉〈Ψn|D̂|Ψ0〉
E + (En − E0) + iη

]
. (11.90)

The poles of R(E) correspond to the excitation energies of the system. For each positive pole there is a
negative pole, equal in absolute value to the positive one.

We consider the Dirac expression

1

x′ − x± iη = P
1

x′ − x ∓ iπδ(x− x
′) , (11.91)

where P indicates the principal part, therefore

δ(x− x′) = − 1

π
=
(

1

x′ − x± iη

)
, (11.92)

with the symbol = indicating the imaginary part.
We assume D̂ = B̂, as it usually happens, and consider only positive energies. The transition proba-

bility from the ground state to an excited state is given by

S(E) = − 1

π
=
(
R(E)

)
=
∑
n

|〈Ψ0|B̂|Ψn〉|2δ
(
E − (En − E0)

)
. (11.93)

This is the traditional expression obtained by applying the time-dependent perturbation theory [Mes61].
Assuming that B̂ is a one-body operator

B̂ =
∑
ν1ν2

Bν1ν2 âν1 â
+
ν2 and Bν1ν2 =

∫
d3r φ∗ν1(r) B̂(r)φν2(r) , (11.94)

we obtain

R(E) =
∑
ν1ν2

∑
ν3ν4

∑
n

[
Bν1ν2B

∗
ν3ν4

〈Ψ0|âν1 â+
ν2 |Ψn〉〈Ψn|âν3 â+

ν4 |Ψ0〉
E − (En − E0) + iη

− Bν3ν4B
∗
ν1ν2

〈Ψ0|âν3 â+
ν4 |Ψn〉〈Ψn|âν1 â+

ν2 |Ψ0〉
E + (En − E0) + iη

]
, (11.95)

Since B̂ is hermitian, Bν1ν2 = B∗ν2ν1 and the indexes ν are dummy, we can write

R(E) =
∑
ν1ν2

∑
ν3ν4

Bν1ν2B
∗
ν3ν4

∑
n

[ 〈Ψ0|âν1 â+
ν2 |Ψn〉〈Ψn|âν3 â+

ν4 |Ψ0〉
E − (En − E0) + iη

− 〈Ψ0|âν3 â+
ν4 |Ψn〉〈Ψn|âν1 â+

ν2 |Ψ0〉
E + (En − E0) + iη

]
=

∑
ν1ν2

∑
ν3ν4

Bν1ν2B
∗
ν3ν4(−i)G̃(ν1, ν3, ν2, ν4, E) , (11.96)
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where, in the last step, we considered the expression (11.79) of the two-body Green’s function in Lehmann
representation. The transition probability is given by

S(E) = − 1

π
=
(
R(E)

)
=
∑
ν1ν2

∑
ν3ν4

Bν1ν2B
∗
ν3ν4

=
π

(
i~G̃(ν1, ν3, ν2, ν4, E)

)
. (11.97)

11.4 Equation of motion

In this section we shall obtain a set of equation describing the time evolution of the Green’s functions.
Let’s consider the total hamiltonian as sum of one-body term Ĥ0 and a two-body term Ĥ1.

Ĥ = Ĥ0 + Ĥ1 =

∫
d3x ψ̂+(x)ĥ(x)ψ̂(x)

+
1

2

∫
d3x d3y ψ̂+(x)ψ̂+(y)V̂ (x,y)ψ̂(y)ψ̂(x) , (11.98)

where ĥ(x), in addition to the kinetic energy term, can also contain a MF, one-body, potential term. By
using the techniques adopted to obtain (11.21) and (11.24), we have

[ψ̂(r), Ĥ0] = ĥ(r)ψ̂(r) (11.99)[
ψ̂(r), Ĥ1

]
=

∫
d3x ψ̂+(x)V̂ (r,x)ψ̂(x)ψ̂(r) (11.100)[

ψ̂+(r), Ĥ0

]
= −ψ̂+(r)ĥ(r) (11.101)[

ψ̂+(r), Ĥ1

]
= −

∫
d3x ψ̂+(r)ψ̂+(x)V̂ (r,x)ψ̂(x) (11.102)

From the definition of one-body Green’s function we obtain

i
∂

∂t
G(x, t,x′, t′) = 〈Ψ0|ψ̂H(x, t)ψ̂+

H(x′, t′)|Ψ0〉
∂ θ(t− t′)

∂t

− 〈Ψ0|ψ̂+
H(x′, t′)ψ̂H(x, t)|Ψ0〉

∂ θ(t′ − t)
∂t

+ 〈Ψ0|
∂ψ̂H(x, t)

∂t
ψ̂+

H(x′, t′)|Ψ0〉θ(t− t′)

− 〈Ψ0|ψ̂+
H(x′, t′)

∂ψ̂H(x, t)

∂t
|Ψ0〉θ(t′ − t) .

By considering the equations of motion in the Heisenberg picture

i~
∂

∂t
ψ̂ = [ψ̂, Ĥ] , (11.103)

we can write

i
∂

∂t
G(x, t,x′, t′) = 〈Ψ0|ψ̂H(x, t)ψ̂+

H(x′, t′)|Ψ0〉δ(t− t′)

− 〈Ψ0|ψ̂+
H(x′, t′)ψ̂H(x, t)|Ψ0〉 (−δ(t− t′))

+ (−i)〈Ψ0|[ψ̂H(x, t), Ĥ]ψ̂+
H(x′, t′)|Ψ0〉θ(t− t′)~−1

− (−i)〈Ψ0|ψ̂+
H(x′, t′)[ψ̂H(x, t), Ĥ]|Ψ0〉θ(t′ − t)~−1 .
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The first two terms can be written as anti-commutator between ψ̂ and ψ̂+

〈Ψ0|ψ̂H(x, t)ψ̂+
H(x′, t′) + ψ̂+

H(x′, t′)ψ̂H(x, t)|Ψ0〉 = 〈Ψ0|
{
ψ̂H(x, t), ψ̂+

H(x′, t′)
}
|Ψ0〉 = δ(x− x′) . (11.104)

By considering the commutators between hamiltonian and field operators written above we have

i
∂

∂t
G(x, t,x′, t′) = δ(x− x′)δ(t− t′) + ĥ(x)〈Ψ0|T̂[ψ̂H(x, t)ψ̂+

H(x′, t′)]|Ψ0〉(−i)~−1

+ 〈Ψ0|T̂
[
[ψ̂H(x, t), H1]ψ̂+

H(x′, t′)
]
|Ψ0〉(−i)~−1 , (11.105)

where, as usual, T̂ indicates the time-ordering operator.
The factor at the second term is the definition of one-body Green’s function, therefore[
i~
∂

∂t
− ĥ(x)

]
G(x, t,x′, t′) = ~δ(x− x′)δ(t− t′)− i〈Ψ0|T̂

[
[ψ̂H(x, t), Ĥ1]ψ̂+

H(x′, t′)
]
|Ψ0〉 . (11.106)

By considering Eq. (11.100) the last term can be written as

〈Ψ0|T̂
[∫

d3y ψ̂+
H(y, t)V̂ (x,y)ψ̂H(y, t)ψ̂H(x, t)ψ̂+

H(x′, t′)

]
|Ψ0〉

=

∫
d3y V̂ (x,y)〈Ψ0|T̂

[
ψ̂H(y, t)ψ̂H(x, t)ψ̂+

H(y, t)ψ̂+
H(x′, t′)

]
|Ψ0〉

=

∫
d3y V̂ (x,y)(i)2G(y, t,x, t,y, t,x′, t′) , (11.107)

where the definition of the two-body Green’s function has been used. The ambiguity in the choice of the
time to be associated to y and x is clarified by considering that the three field operators, depending on
these variables, are part of a single block defined at the time t. The equation of motion can be written as[

i~
∂

∂t
− ĥ(x)

]
G(x, t,x′, t′) = ~δ(x− x′)δ(t− t′) + i

∫
d3y V̂ (x,y)G(y, t,x, t,y, t,x′, t′) . (11.108)

For a system of non-interacting particles V̂ (x,y) = 0 therefore we can write[
i~
∂

∂t
− ĥ(x)

]
G0(x, t,x′, t′) = ~δ(x− x′)δ(t− t′) . (11.109)

This expression shows that, for a system of non interacting particles, the Green’s function defined in
this chapter coincide with the resolvent of the Schrödinger equation [Mes61], as it has been defined in
Chapter 6.

The integral expression of the equation of motion (11.108) is

G(x, t,x′, t′) = G0(x, t,x′, t′) +
i

~

∫
d3y d3z G0(x, t,y, t) V̂ (y, z)G(z, t,y, t, z, t,x′, t′) . (11.110)

A test of the validity of this expression can be done by inserting it in Eq. (11.108) and, by using Eq.
(11.109).

The equation of motion of the one-body Green’s function contains the two-body Green’s function in
both its differential (11.108) or integral (11.110) expressions. In general, it is possible to define a n-body
Green’s function as

(i)nGn(x1, t1, · · · ,xn, tn; x′1, t
′
1, · · · ,x′n, t′n)

≡
〈Ψ0|T̂

[
ψ̂H(x1, t1) · · · ψ̂H(xn, tn)ψ̂+

H(x′1, t
′
1) · · · ψ̂+

H(x′n, t
′
n)
]
|Ψ0〉

〈Ψ0|Ψ0〉
. (11.111)
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The equation of motion for a n body Green’s function requires the information on the n+1 body Green’s
function. [

i~
∂

∂t1
− h(x1)

]
Gn(x1, t1, · · · ,xn, tn; x′1, t

′
1, · · · ,x′n, t′n)

= ~
n∑
i=1

δ(x1 − xi)δ(t1 − ti)(−1)n−iGn−1(x1, t1, · · · ,xn−1, tn−1; x′1, t
′
1, · · · ,x′n−1, t

′
n−1)

+ i

∫
d3y V̂ (x,y)Gn+1(x1, t1, · · · ,xn+1, tn+1; x′1, t

′
1, · · · ,x′n+1, t

′
n+1) . (11.112)

This is a system of coupled equations connecting Green’s functions with different numbers of particles.
This problem is very difficult to solve since it is necessary to have the information on a Green’s func-

tion of a number of particles larger than that one is interested. The problem is formulated with a set of
equations which become always more complicated. If it would be possible to break the hierarchy by mak-
ing an assumption on the n-body Green’s function, then one could calculate the Green’s functions with a
smaller number of particles. From the operative point of view is in any case a very complicated procedure,
and normally it is preferred to use a pertubative procedure such as that described in Chapter 12.
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Chapter 12

Perturbative description of the
Green’s function

The perturbation theory developed in Chapter 6 can be used for the calculation of the Green’s functions.
We first consider the case of the one-body Green’s function and then, at the end of the chapter, the
two-body Green’s function.

We recall some relations presented in Sect. 11.1.3.

Û(t, 0) = e−
i
~ Ĥ1t ; Û(0, t) = e

i
~ Ĥ1t (12.1)

ÔH(t) = e
i
~ Ĥ1tÔI(t)e

− i
~ Ĥ1t = Û(0, t)ÔIÛ(t, 0) (12.2)

|ΨH〉 = |ΨI(0)〉 = |ΨS(0)〉 = Ûε(0,−∞)|Φ0〉 = |Ψ0〉 . (12.3)

where Ô is a generic operator, and the meanings of the other symbols is the same as those used in Chapter
6.

We express the expectation value of an operator Ô in the Heisenberg picture by exploiting the tech-
nique of the adiabatic switch on of the interaction

〈Ψ0|ÔH(t)|Ψ0〉
〈Ψ0|Ψ0〉

= lim
ε→0

〈Φ0|Ûε(+∞, 0)
[
Ûε(0, t)ÔI(t)Ûε(t, 0)

]
Ûε(0,−∞)|Φ0〉

〈Φ0|Ûε(∞,−∞)|Φ0〉

= lim
ε→0

〈Φ0|Ûε(+∞, t)ÔI(t)Ûε(t,−∞)|Φ0〉
〈Φ0|Ûε(+∞,−∞)|Φ0〉

.

Since

Ûε(+∞, t) ÔI(t) Ûε(t,−∞) =
∞∑
n=0

(−i)n 1

n!

∫ ∞
t

dt1 · · ·
∫ ∞
t

dtn e
−ε(|t1|+···|tn|) T̂

[
ĤI,1(t1) · · · ĤI,1(tn)

]
ÔI(t)

∞∑
m=0

(−i)m 1

m!

∫ t

−∞
dt′1 · · ·

∫ t

−∞
dtm e

−ε(|t′1|+···|t
′
m|) T̂

[
ĤI,1(t′1) · · · ĤI,1(t′m)

]
, (12.4)

we can rewrite the one-body Green’s function as

iG(x, y) =

∞∑
µ=0

(−i)µ 1

µ!

∫ ∞
−∞

dt1 · · ·
∫ ∞
−∞

dtµ
〈Φ0|T̂

[
ĤI,1(t1) · · · ĤI,1(tµ)ψ̂I(x)ψ̂+

I (y)
]
|Φ0〉

〈Φ0|Û(∞,−∞)|Φ0〉
, (12.5)

141
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where we used the symbol x ≡ (x, tx), and analogously for y. In the above expression we have already
carried out the limit for ε → 0. Furthermore, we have considered that Ĥ1 is hermitian, therefore the
expression (12.4) is valid for both ÔI(t) and for Ô+

I (t).
We consider an instantaneous interaction

Û(x, x′) ≡ V̂ (x,x′)δ(t− t′) , (12.6)

therefore we can express the perturbative term of the hamiltonian as

ĤI,1(t, t′) =
1

2

∫
d3x

∫
d3x′ψ̂+

I (x)ψ̂+
I (x′)V̂ (x,x′)δ(t− t′)ψ̂I(x

′)ψ̂I(x) . (12.7)

The numerator of Eq. (12.5) can be expressed as

iGnum(x, y) = 〈Φ0|T̂
[
ψ̂I(x)ψ̂+

I (y)
]
|Φ0〉

+ (−i)
∫ ∞
−∞

dt1〈Φ0|T̂
[
ĤI,1(t1)ψ̂I(x)ψ̂+

I (y)
]
|Φ0〉+ · · · ,

The first term of this expression is the one-body Green’s function of a system of non-interacting particles,
which we call G0. The presence of δ(t1− t′1) allows us to insert an integral on t′1. Therefore, we can write

iGnum(x, y) = iG0(x, y) + (−i)
∫ ∞
−∞

dt1〈Φ0|T̂
[1

2

∫
d3x1

∫
d3x′1ψ̂

+
I (x1)ψ̂+

I (x′1)

V̂ (x1,x
′
1)δ(t1 − t′1)ψ̂I(x

′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)
]
|Φ0〉+ · · ·

= iG0(x, y)

+ (−i)1

2

∫
d4x1

∫
d4x′1 V (x1,x

′
1)δ(t1 − t′1)

〈Φ0|T
[
ψ̂+

I (x1)ψ̂+
I (x′1)ψ̂I(x

′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)
]
|Φ0〉+ · · · . (12.8)

The evaluation of the above equation is done by using the techniques presented in the Chapter 6. In
order to use the Wick’s theorem it is necessary to define the contraction between two field operators. This
is quite straightforward since the field operators can be expressed in terms of creation and destruction
operators. We have shown that for these operators the anti-commutation properties are preserved in each
picture. In the specific case of the interaction picture we have

âI,k(t) = âke
−iωkt ; â+

I,k(t) = â+
k e

iωkt . (12.9)

The field operators are expressed in terms of creation and destruction operators as

ψ̂+
I (x) =

∑
k

φ∗k(x)â+
I,k ; ψ̂I(x) =

∑
k

φk(x)âI,k . (12.10)

where the φk(x) is a single-particle wave function. We can express the contraction as

ψ̂+
I (x)ψ̂I(y) =

∑
k

∑
k′

φ∗k(x)φk′(y)â+
I,k(tx)âI,k′(ty)

=
∑
k

∑
k′

φ∗k(x)e−iωktxφk′(y)eiωk′ ty â+
k âk′

=
∑
k

∑
k′

φ∗k(x)e−iωktxφk′(y)eiωk′ ty
{
T̂[â+

k âk′ ]− N̂[â+
k âk′ ]

}
= T̂[ψ̂+

I (x)ψ̂I(y)]− N̂[ψ̂+
I (x)ψ̂I(y)] ,
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therefore

ψ̂I(x)ψ̂+
I (y) = 〈Φ0|ψ̂I(x)ψ̂+

I (y)|Φ0〉
= 〈Φ0|T̂[ψ̂I(x)ψ̂+

I (y)]|Φ0〉 − 〈Φ0|N̂[ψ̂I(x)ψ̂+
I (y)]|Φ0〉

= 〈Φ0|T̂[ψ̂I(x)ψ̂+
I (y)]|Φ0〉 = iG0(x, y) . (12.11)

The calculation of Eq. (12.8) requires the use of the Wick’s theorem, therefore the calculation of
contractions which, as we have shown above, can be expressed in terms of unperturbed Green’s function.
This means that the Green’s function of an interacting system can be expressed as perturbative expansion
in terms of Green’s functions of non-interacting particles.

12.1 Goldstone-Feynman diagrams

We consider the perturbative expansion (12.8) of the numerator of the one-body Green’s function trun-
cated at the first order

iG(1),num(x, y) = iG0(x, y) +

(−i)1

2

∫
d4x1

∫
d4x′1 Û(x1, x

′
1)〈Φ0|T̂

[
ψ̂+

I (x1)ψ̂+
I (x′1)ψ̂I(x

′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)
]
|Φ0〉 .

Let’s apply the Wick’s theorem

〈Φ0|T̂
[
ψ̂+

I (x1)ψ̂+
I (x′1)ψ̂I(x

′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)
]
|Φ0〉 (12.12)

= 〈Φ0|ψ̂+
I (x1)ψ̂+

I (x′1)ψ̂I(x
′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)|Φ0〉

+ 〈Φ0|ψ̂+
I (x1)ψ̂+

I (x′1)ψ̂I(x
′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)|Φ0〉

+ 〈Φ0|ψ̂+
I (x1)ψ̂+

I (x′1)ψ̂I(x
′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)|Φ0〉

+ 〈Φ0|ψ̂+
I (x1)ψ̂+

I (x′1)ψ̂I(x
′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)|Φ0〉

+ 〈Φ0|ψ̂+
I (x1)ψ̂+

I (x′1)ψ̂I(x
′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)|Φ0〉

+ 〈Φ0|ψ̂+
I (x1)ψ̂+

I (x′1)ψ̂I(x
′
1)ψ̂I(x1)ψ̂I(x)ψ̂+

I (y)|Φ0〉 .

In terms of unperturbed Green’s function the above equation can be written as

iG(1),num(x, y) = iG0(x, y) + (−i)1

2

∫
d4x1

∫
d4x′1 Û(x1, x

′
1){

[iG0(x, y)][−iG0(x1, x1)][−iG0(x′1, x
′
1)]

− [iG0(x, y)][−iG0(x1, x
′
1)][−iG0(x′1, x1)]

+ [−iG0(x, x1)][−iG0(x1, x
′
1)][iG0(x′1, y)]

− [−iG0(x, x1)][−iG0(x′1, x
′
1)][iG0(x1, y)]

+ [−iG0(x, x′1)][−iG0(x′1, x1)][iG0(x1, y)]

− [−iG0(x, x′1)][−iG0(x1, x1)][iG0(x′1, y)]
}
. (12.13)
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Figure 12.1:

Also in this case the use of a graphical representation is convenient. The unperturbed one-body
Green’s function G0(x, y) is represented by an oriented line going from y to x, since tx > ty. The
interaction is represented by a dashed line. The various terms of the perturbative expansion (12.13) are
described by the diagrams presented in Fig. 12.1.

The A and B terms of Fig. 12.1 are sub-units composed by unlinked diagrams. The numerator of the
Green’s function can be described as indicated in Fig. 12.2, i.e. by the product of two blocks of different
kinds of diagrams. The first kind is composed by all the linked diagrams containing the points x and y.
These diagrams are represented in the left bracket of the figure and they are multiplied by those contained
in the right bracket where the x and y points do not appear. This latter set of terms is identical to that


+
 
+
 
1

+
 
+


Figure 12.2:

of the denominator which does not contain the x and y points. For this reason the Green’s function can
be expressed only in terms of linked diagrams containing the x e y coordinates. Diagrams topologically
equal, for example C and E as well as D and F, in Fig. 12.1, give identical contribution.
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The one-body Green’s function in configuration space depends on two coordinated. For translationally
invariant systems it is convenient to use the Fourier transform of this function, defined in the momentum-
energy space, since it depends on a single, four-dimensional, variable.

G(x, y) =
1

(2π)4

∫
d4k eik·(x−y)G̃(k, ω) , (12.14)

G̃(k) =

∫
d4(x− y) e−ik·(x−y)G(x, y) . (12.15)

where we defined d4k ≡ d3k dω and k · x = ωt − k · x. We obtain an analogous expression for G0.
For instantaneous interactions depending only on the difference between the coordinates of the two

interacting particles, we obtain

Û(x, y) =
1

(2π)4

∫
d4k e−ik·(x−y) ˜̂

U(k) =
1

(2π)3

∫
d3k e−ik·(x−y) ˜̂

V (k)δ(tx − ty) . (12.16)

By inserting these definitions in the expression of the Green’s function it is possible to define the
Fourier transform of expressions which can be viewed as Goldstone-Feynman diagrams. The interesting
feature of this representation in momentum space is that the momentum is conserved at each vertex.

12.2 Dyson’s equation and Self-energy

The expression (12.5) indicates that the Green’s function of the interacting system is composed by the
unperturbed Green’s function plus all the linked diagrams which can be inserted between the coordinates
x e y. The mathematical expression of the above observation is

G(x, y) = G0(x, y) +

∫
d4x1

∫
d4x′1G

0(x, x1)Σ̂(x1, x
′
1)G0(x′1, y) , (12.17)

which defines the quantity Σ̂ called self-energy.
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Figure 12.3: Graphical representation of the self-energy.

The graphical representation of this expression is given in Fig. 12.3. The thicker oriented line indicates
the Green’s function G of the interacting system, while the thinner lines indicates the Green’s function
G0 of the non-interacting system. The blob represents the self-energy Σ̂.

From the point of view of the calculation it is more convenient to use the proper self-energy. In the
perturbative expansions there are diagrams which can be separated by cutting a line representing G0. For
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Figure 12.4: The proper insertions of the interaction lines are those of the C and D diagrams.

example, these are the diagrams A and B of Fig. 12.4. There are diagrams which cannot be separated
in autonomous parts, as example the C and D diagrams of the figure.

The proper self-energy is defined as the sum of all the diagrams which cannot be separated. Clearly
the self-energy can be obtained by summing all the possible proper self-energy insertions. In Fig. 12.5
the blob with two sets of dashed lines indicates the full self-energy, while the blobs with a set of single
dashed lines the proper self-energies. The mathematical expression of this idea is expressed as

Σ̂(x1, x
′
1) = Σ̂(x1, x

′
1) +

∫
d4x2

∫
d4x′2 Σ̂(x1, x2)G0(x2, x

′
2)Σ̂(x′2, x

′
1)

+

∫
d4x2

∫
d4x′2

∫
d4x3

∫
d4x′3 Σ̂(x1, x2)G0(x2, x

′
2)Σ̂(x′2, x3)G0(x3, x

′
3)Σ̂(x′3, x

′
1) + · · · .

By inserting this definition of proper self-energy in Eq. (12.17) we obtain

G(x, y) = G0(x, y) +

∫
d4x1

∫
d4x′1G

0(x, x1)Σ̂(x1, x
′
1)G0(x′1, y)

+

∫
d4x1

∫
d4x′1

∫
d4x2

∫
d4x′2G

0(x, x1)Σ̂(x1, x
′
1)G0(x′1, x2)Σ̂(x2, x

′
2)G0(x′2, y)

+ · · · . (12.18)
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Figure 12.5: The self-energy can be rewritten as a sum of terms of proper self-energy insertions.
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Figure 12.6: Graphical representation of the Dyson’s equation.

This expression can be written as

G(x, y) = G0(x, y) +

∫
d4x1

∫
d4x′1G

0(x, x1)Σ̂(x1, x
′
1)G(x′1, y) . (12.19)

and it is known in the literature as Dyson’s equation. Its graphical representation is shown in Fig.
12.6.

In this equation it is possible to carry out perturbative expansion of both Green’s function and also
of the self-energy. The possibility is evident for the Green’s function. For Σ̂, it is worth to consider the
C diagram of Fig. 12.4. In this diagram the first order in the interaction contains a single loop; the
complete diagrams is at the second order.

The Dyson’s equation assumes a simpler expression when it is referred to a infinite and homogeneous
system of fermions. In this case, we can define

G(x, y) =
1

(2π)4

∫
d4ke−ik·(x−y)G̃(k) and Σ̂(x, y) =

1

(2π)4

∫
d4ke−ik·(x−y) ˜̂

Σ(k) . (12.20)
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By inserting these expressions in the Dyson’s equation (12.19), and by using the conservation of the
four-momentum k, we obtain

G(x, y) =
1

(2π)4

∫
d4ke−ik·(x−y)

[
G̃0(k) + G̃0(k)

˜̂
Σ(k)G̃(k)

]
, (12.21)

therefore, the expression of the Dyson’s equation in momentum space is

G̃(k) =
[
G̃0(k) + G̃0(k)

˜̂
Σ(k)G̃(k)

]
, (12.22)

from which

G̃(k) =
G̃0(k)

1− G̃0(k)
˜̂
Σ(k)

=
1

[G̃0(k)]−1 − ˜̂
Σ(k)

. (12.23)

Since

G̃0(k, ω) =

[
Θ(k − kF)

ω − ωk + iη
+

Θ(kF − k)

ω − ωk − iη

]
, (12.24)

we obtain

[G̃0(k)]−1 = ω − ωk , (12.25)

and then

G̃(k) =
1

ω − ωk − ˜̂
Σ(k)

. (12.26)
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Figure 12.7:

In analogy to what we have done to obtain the Dyson’s equation we can treat the interaction. Fig.
12.7 shows how it is possible to consider the interaction between two generic particle, or hole, lines by
defining the polarization operator Π̂

Û(x, y) = Û0(x, y) +

∫
d4x1

∫
d4x′1 Û0(x, x1)Π̂(x1, x

′
1)Û0(x′1, y) . (12.27)

The above equation indicates that the interaction between two particles in the medium is composed by
the bare interaction, that in vaccuum Û0, plus all the terms related to the medium polarization, which
we describe in terms of virtual particle-hole excitations. The polarization operator Π̂ contains all these
excitations.

We present in Fig. 12.8 two of the possible diagrams contained in the polarization operator Π̂. The
diagram A belongs to the kind of diagrams defined as proper diagrams since they cannot be separated
by cutting an interaction line. The diagram B has three interaction lines, but it is possible to cut the
second line and separate it in proper diagrams.
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A
 
B


Figure 12.8:

In analogy to what we have done for the self-energy, we can describe the interaction in terms of proper
diagrams, by defining a proper polarization operator Π̂ as the one containing only proper diagrams

Π̂(x1, x
′
1) = Π̂(x1, x

′
1) +

∫
d4x2

∫
d4x′2 Π̂(x1, x2)Û0(x2, x

′
2)Π̂(x′2, x

′
1)

+

∫
d4x2

∫
d4x′2

∫
d4x3

∫
d4x′3 Π̂(x1, x2)Û0(x2, x

′
2)Π̂(x′2, x3)Û0(x3, x

′
3)Π̂(x′3, x

′
1) + · · ·

= Π̂(x1, x
′
1) +

∫
d4x2

∫
d4x′2 Π̂(x1, x2)Û0(x2, x

′
2)Π̂(x′2, x

′
1) . (12.28)

Therefore

Û(x, y) = Û0(x, y) +

∫
d4x1

∫
d4x′1 Û0(x, x1)Π̂(x1, x

′
1)Û0(x′1, y)

+

∫
d4x1

∫
d4x′1

∫
d4x2

∫
d4x′2 Û0(x, x1)Π̂(x1, x2)Û0(x2, x

′
2)Π̂(x′2, x

′
1)Û0(x′1, y) + · · ·

= Û0(x, y) +

∫
d4x1

∫
d4x′1 Û0(x, x1)Π̂(x1, x

′
1)Û(x′1, y) . (12.29)

which is the analogous of the Dyson’s equation for the interaction.

Also in this case, for translational invariant systems, therefore infinite and homogeneous, it is conve-
nient to define the Fourier transforms of Û and Π̂ which we indicate simply by inserting the dependence
on the four-vector k:

Û(k) = Û0(k) + Û0(k)Π̂(k)Û0(k) (12.30)

Û(k) = Û0(k) + Û0(k)Π̂(k)Û(k) . (12.31)

From the second equation, above, we obtain an expression for Û(k)

Û(k) =
Û0(k)

1− Û0(k)Π̂(k)
≡ Û0(k)

K̂(k)
, (12.32)

where the last expression defines the dielectric function K̂ which modifies the bare interaction Û0 for the
presence of the medium.
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12.3 Hartree - Fock
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Figure 12.9: First order of the perturbation expansion of the Green’s function described in terms of the Dyson’s
equation.

The first step to the solution of the Dyson’s equation (12.19) consists in considering only the insertion
of a single interaction line. Diagrammatically this approximation is described in Fig. 12.9. A slightly
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Figure 12.10: Self-energy insertions in the diagrams of Fig. 12.9.

more elaborated approximation consists in considering all the possible self-energy insertions in the Green’s
function lines of the two terms of Fig. 12.9. The results of this infinite number of self-energy insertions
is graphically represented in Fig. 12.11.

Let’s consider the Dyson’s equation (12.19)

G(x, y) = G0(x, y) +

∫
d4x1

∫
d4x′1G

0(x, x1)Σ̂(x1, x
′
1)G(x′1, y) .

In the approximation presented in Fig. 12.9 the self-energy can be expressed as

~Σ̂(I)(x1, x
′
1) = −i

[
δ4(x1 − x′1)

∫
d4x2Û(x1, x2)G0(x2, x2)− Û(x1, x

′
1)G0(x1, x

′
1)

]
. (12.33)
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Figure 12.11: Representation of the HF approximation in the Dyson’s equation.

and, in the approximationn of Fig. 12.11 as

~Σ̂(II)(x1, x
′
1) = −i

[
δ4(x1 − x′1)

∫
d4x2Û(x1, x2)G(x2, x2)− Û(x1, x

′
1)G(x1, x

′
1)

]
. (12.34)

The HF approximation does not include diagrams such as those presented in Fig. 12.12. As usual, the
hamiltonian Ĥ has been separated in Ĥ0 and Ĥ1. The unperturbed Green’s function G0 is defined with
respect to the Ĥ0 eigensates. If the hamiltonian Ĥ is time independent, the interaction Û can be written
as:

Û(x1, x
′
1) = V̂ (x1,x

′
1)δ(t1 − t′1) .

We define the Fourier transforms about the time variable

G(xt,x′t′) =
1

2π

∫
dωe−iω(t−t′)G̃(x,x′, ω) , (12.35)

G0(xt,x′t′) =
1

2π

∫
dωe−iω(t−t′)G̃0(x,x′, ω) , (12.36)

Σ̂(xt,x′t′) = Σ̂(x,x′)δ(t− t′) =
1

2π

∫
dωe−iω(t−t′)Σ̂(x,x′) . (12.37)

The Dyson’s equation in mixed representation is

G̃(x,y, ω) = G̃0(x,y, ω) +

∫
d3x1

∫
d3x′1 G̃

0(x,x1, ω)Σ̂(x1,x
′
1)G̃(x′1,y, ω) . (12.38)

In the approximation (II) the self-energy becomes

~Σ̂(II)(x1, x
′
1) = ~Σ̂(II)(x1,x

′
1)δ(t1 − t′1) = −iδ(t1 − t′1)

×
[
δ3(x1 − x′1)

∫
d4x2V̂ (x1 − x2)

1

2π

∫
dωe−iω(t2−t

+
2 )G̃(x2,x2, ω)

−V̂ (x1 − x′1)
1

2π

∫
dωe−iω(t1−t

+
1 )G̃(x1,x

′
1, ω)

]
. (12.39)
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Figure 12.12: Example of diagrams not contained in the HF approximation.

In the above equation t+ > t. We shall use this property to properly define the step function.

As usual, the symbol φ0
j (r) is used to indicate the single particle wave functions of the one-body

hamiltonian Ĥ0

Ĥ0 =
∑
j

hj ; ĥjφ
0
j (r) =

[
−~2∇2

2m
+ Ŵ(r)

]
φ0
j (r) = εjφ

0
j (r) , (12.40)

where Ŵ(r) is the MF potential. We use the basis formed by these single-particle states to express
the field operators in the interaction picture

ψ̂I(x, t) =
∑
k

âI,k(t)φ0
k(x) ; ψ̂+

I (x, t) =
∑
k

â+I,k(t)(φ0
k(x))∗ . (12.41)

Therefore

iG0(xt,x′t′) = 〈Φ0|T̂
[
ψ̂I(x, t)ψ̂

+
I (x′, t′)

]
|Φ0〉

= 〈Φ0|
∑
k

âke
−iωktφ0

k(x)
∑
k′

â+k′e
iωk′ t

′
(φ0
k′(x

′))∗|Φ0〉Θ(t− t′)Θ(ωk − εF)

−〈Φ0|
∑
k′

â+k′e
iωk′ t

′
(φ0
k′(x

′))∗
∑
k

âke
−iωktφ0

k(x)|Φ0〉Θ(t′ − t)Θ(εF − ωk)

=
∑
k

φ0
k(x)(φ0

k(x′))∗e−iωk(t−t
′) [Θ(t− t′)Θ(ωk − εF)−Θ(t′ − t)Θ(εF − ωk)

]
, (12.42)

where we defined ωk = εk/~, and used

〈Φ0|âkâ+k′ |Φ0〉 = δk′kΘ(ωk − εF) ; 〈Φ0|â+k′ âk|Φ0〉 = δk′kΘ(εF − ωk) . (12.43)

By considering the integral representation of Θ(t− t′), see Eq. (11.45), we obtain

G̃0(x,x′, ω) =
∑
k

φ0
k(x)(φ0

k(x′))∗
[

Θ(εk − εF)

ω − ωk + iη
+

Θ(εF − εk)

ω − ωk − iη

]
. (12.44)

With the φ0 obtained from Eq. (12.40), we can calculate the G0 which can be used to activate an
iterative procedure implying the Dyson’s equation (12.38) and the self-energy equation (12.39).

It possible to search for G an expression analogous to that of Eq. (12.44) where the φ0 are substituted
by generic φ eigenstates of a new hamiltonian and related to the previous single-particle wave functions
by a unitary transformation (see the discussion in Sect. 9.2.2). The Green’s function has the following
expression

G̃(x,x′, ω) =
∑
k

φk(x)φ∗k(x′)

[
Θ(εk − εF)

ω − ωk + iη
+

Θ(εk − εF)

ω − ωk − iη

]
. (12.45)
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By inserting this expression in Eq. (12.39) we encounter integrals of the type

1

2πi

∫
dω

eiω|t−t
+|

ω − ωk + iη
= 0 ;

1

2πi

∫
dω

eiω|t−t
+|

ω − ωk − iη
= Θ(−|t− t+|) , (12.46)

therefore we obtain the expressions

Σ̂(II)(x1, x
′
1) = Σ̂(II)(x1,x

′
1)δ(t1 − t′1) (12.47)

~Σ̂(II)(x1,x
′
1) = −i

[
δ3(x1 − x′1)

∫
d3x2V̂ (x1 − x2)i

∑
k

φk(x2)φ∗k(x2)Θ(εF − εk)

−iV̂ (x1 − x′1)
∑
k

φk(x1)φ∗k(x′1)Θ(εF − εk)

]
= δ3(x1 − x′1)

∫
d3x2V̂ (x1 − x2)ρ(x2)− V̂ (x1 − x′1)

∑
k

φk(x1)φ∗k(x′1)Θ(εF − εk) ,(12.48)

where we used the expression of the expression of the density in the MF model

ρ(x) =

εF∑
k

φk(x)φ∗k(x) . (12.49)

We define the operator

L̂ ≡ ~ω − Ĥ0 = ~ω +
~2∇2

2m
− Ŵ(x) , (12.50)

and we apply it to the unperturbed Green’s function

L̂ G̃0(x1,x
′
1, ω) =

∑
k

(~ω − ε0k)φ0
k(x1)φ0,∗

k (x′1)

[
Θ(ε0k − ε0F)

ω − ωk + iη
+

Θ(ε0F − ε0k)

ω − ωk − iη

]
= ~

∑
k

φ0
k(x1)φ0,∗

k (x′1)
[
Θ(ε0k − ε0F) + Θ(ε0F − ε0k)

]
= ~δ3(x1 − x′1) ,(12.51)

where we used the completeness of the φ0, and ωk = ε0k/~. The previous expression indicates that
the action of the operator L̂ is analogous to the multiplication by (G̃0)−1. I apply this operator to
the Dyson’s equation

L̂ G̃(x1,x
′
1, ω) = L̂ G̃0(x1,x

′
1, ω) +

∫
d3x2

∫
d3x′2 L̂ G̃0(x1,x2, ω)Σ̂(x2,x

′
2) G̃(x′2,x

′
1, ω)

= ~δ3(x1 − x′1) +

∫
d3x′2Σ̂(x1,x

′
2) G̃(x′2,x

′
1, ω) . (12.52)

By making explicit the expression of L̂ we obtain[
~ω +

~2∇2
1

2m
− Ŵ(x1)

]∑
k

φk(x1)φ∗k(x′1)

[
Θ(εk − εF)

ω − ωk + iη
+

Θ(εF − εk)

ω − ωk − iη

]
= ~δ3(x1 − x′1) +

∫
d3x2 Σ̂(x1,x2)

∑
k

φk(x2)φ∗k(x′1)

[
Θ(εk − εF)

ω − ωk + iη
+

Θ(εF − εk)

ω − ωk − iη

]
.(12.53)

By multiplying by φj(x
′
1) and integrating on x′1, for the orthonormality properties of the φk the sum

disappear and we obtain the equation[
~ω +

~2∇2
1

2m
− Ŵ(x1)

]
φj(x1)

[
Θ(εj − εF)

ω − ωj + iη
+

Θ(εF − εj)
ω − ωj − iη

]
= ~φj(x1) +

∫
d3x2 Σ̂(x1,x2)φj(x2)

[
Θ(εj − εF)

ω − ωj + iη
+

Θ(εF − εj)
ω − ωj − iη

]
. (12.54)



154 CHAPTER 12. PERTURBATIVE DESCRIPTION OF THE GREEN’S FUNCTION

By multiplying by ω − ωj ≡ ω − εj/~ we obtain[
−~2∇2

1

2m
+ Ŵ(x1)

]
φj(x1) +

∫
d3x′2 Σ̂(x1,x

′
2)φj(x2) = εjφj(x1) , (12.55)

and by inserting Eq. (12.48)[
−~2∇2

1

2m
+ Ŵ(x1)

]
φj(x1) +

∫
d3x2 V̂ (x1 − x2)ρ(x2)φj(x1)

−
∫
d3x2 V̂ (x1 − x2)

∑
k

φk(x1)φ∗k(x2)φj(x2)Θ(εF − εk) = εjφj(x1) . (12.56)

which is the traditional form of expressing the HF equations, (see Sect. 9.2.2).

12.4 Bethe-Salpeter equation

In the calculation of the Green’s function with the Dyson equation as indicate in Fig. 12.13, each single
term of the perturbative sum remains finite only if the potential remains finite. In general, the presence
of a strongly repulsive core in the bare interaction between two particles makes each term of the sum
much greater than the value which has to be evaluated. This is the same kind of problem discussed in
Chapter 8 for the calculation of the energy of the system, tackled by using the Bruekner’s theory.

Each thin line of Fig. 12.13 indicates the Green’s function G0, which can be described in terms
of single-particle wave functions φk, as indicated by the Eqs. (12.44) and (12.45). This means that
each intersection between a dashed and a continuous line implies the product V̂ φk between microscopic
interaction and unperturbed wave function. As discussed in Chapter 8 this product is not finite for
potentials going to infinity. By using a strategy analogous to that presented in Chapt. 8, we build an
effective interaction by summing an infinite set of diagrams such as the product V̂ effφk is finite.
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Figure 12.13:

We consider all the interactions linking the particle lines. This approximation, called of ladder dia-
grams is presented, for the first three terms in Fig. 12.14. We remark that the ladder approximation
sums all the, infinite, interaction terms linked to the particle line. This restriction is necessary since in
the interaction process the fermion modifies its state. Since the hole states are all occupied the use of
the particle state avoids problems with the Pauli exclusion principle.

We consider the interaction term between two particles as represented by the diagrams in the higher
part of Fig. 12.15, and indicate it as Σ̂L where with sub-index L, we indicate the ladder approximation.
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Figure 12.14:

The expression of the interaction can be written as

Σ̂L(x1, x
′
1) = Û(x1, x

′
1) + Û(x1, x

′
1)

∫
d4x2

∫
d4x′2G

0(x1, x2)Û(x2, x
′
2)G0(x′2, x

′
1)

+ Û(x1, x
′
1)

∫
d4x2

∫
d4x′2

∫
d4x3

∫
d4x′3

G0(x1, x2)Û(x2, x
′
2)G0(x2, x3)Û(x3, x

′
3)G0(x′3, x

′
2)G0(x′2, x

′
1) + · · ·

= Û(x1, x
′
1)
{

1 +

∫
d4x2

∫
d4x′2G

0(x1, x2)Û(x2, x
′
2)
[
1 +∫

d4x3

∫
d4x′3G

0(x2, x3)Û(x3, x
′
3)
(

1 + · · ·
)
G0(x′3, x

′
2)
]
G0(x′2, x

′
1)
}
. (12.57)

The above expression iterates the same integration kernel. By considering the expansion at all the orders,
we obtain the expression

Σ̂L(x1, x
′
1) = Û(x1, x

′
1)

[
1 +

∫
d4x2

∫
d4x′2G

0(x1, x2)Σ̂L(x2, x
′
2)G0(x′2, x

′
1)

]
, (12.58)

whose graphical representation is given by the diagrams of the lower part of Fig. 12.15. Eq. (12.58)
is known as Bethe-Salpeter equation even though, in reality, is the ladder approximation of the
Bethe-Salpeter equation.

Also in this equation there are products between the microscopic, bare, potential Û and the non-
interacting Green’s function G0. However, these terms are multiplied by Σ̂L which make the integrand
finite.

The above the Bethe-Salpeter equation is expressed in terms of G0, but it is possible to use a G
obtained by a HF calculation.

12.5 Random Phase Approximation

It is possible to formulate an equation similar to the Dyson’s equation (12.19) also for the two-body
Green’s function. We consider here only the two-body Green’s functions describing the time evolution of
a particle-hole pair. For this situation, the analogous to the Dyson’s equation is:

G(x1, x2, x3, x4) = G0(x1, x2, x3, x4)

+

∫
d4y1 d

4y2 d
4y3 d

4y4G
0(x1, x2, y1, y2)K̂(y1, y2, y3, y4)G0(y3, y4, x3, x4) , (12.59)
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Figure 12.15:

where the term K̂ contains all the linked diagrams which can be inserted between particle and hole lines.

Also in this case it is possible to define proper, irreducible, diagrams. In Fig. 12.17 the diagram A is
reducible since it is possible to cut the external particle and hole lines generating two diagrams already
present in the perturbative expansion of the two-body Green’s function. On the contrary, this is not
possible for the B diagram which is called irreducible, or proper. By considering the insertion of only
proper diagrams Eq. (12.59) can be formally rewritten as

G(x1, x2, x3, x4) = G0(x1, x2, x3, x4)

+

∫
d4y1 d

4y2 d
4y3 d

4y4G
0(x1, x2, y1, y2)K̂(y1, y2, y3, y4)G(y3, y4, x3, x4) , (12.60)

where the kernel K̂ contains the insertion of all the irreducible diagrams.
The Random Phase Approximation (RPA) consists in considering, in the previous equation, instead

of the K̂ the interaction Û depending only by two coordinates

K̂RPA(y1, y2, y3, y4) = Û(y1, y4) [δ(y1 − y2)δ(y3 − y4)− δ(y1 − y3)δ(y2 − y4)] , (12.61)

therefore

GRPA(x1, x2, x3, x4) = G0(x1, x2, x3, x4)

+

∫
d4y1 d

4y2G
0(x1, x2, y1, y1)Û(y1, y2)GRPA(y2, y2, x3, x4)

−
∫
d4y1 d

4y2G
0(x1, x2, y1, y2)Û(y1, y2)GRPA(y1, y2, x3, x4) , (12.62)

where we separated the direct and the exchange terms. The graphical representation of the above equation
is given Fig. 12.19.
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Figure 12.16: Graphical representation of Eq. (12.59). The dashed part represents the kernel K.

Let’s consider the expression of the two-body Green’s function in Lehmann representation Eq. (11.79).
Since |Ψn〉 and 〈Ψn| indicate the same excited state the terms

〈Ψ0|ak1a+
k2
|Ψn〉〈Ψn|ak3a+

k4
|Ψ0〉 ,

imply
δk2,k3θ(k2 − kF )δk4,k1θ(k4 − kF ) .

For this reason it is possible to define the Fourier transforms of the two-body Green’s function, and also
of the interaction kernel, depending on two momenta

G(x1, x2, x3, x4) = (2π)−8

∫
d4k1 d

4k2e
−ik1(x1−x4)eik2(x2−x3)G̃(k1, k2) , (12.63)

K̂(x1, x2, x3, x4) = (2π)−8

∫
d4k1 d

4k2e
−ik1(x1−x4)eik2(x2−x3) ˜̂

K(k1, k2) . (12.64)

By inserting these definitions in Eq. (12.60), and using the RPA assumption (12.62) on the kernel,
we obtain an expression of the Dyson’s equation for the RPA in momentum space. A long calculation,
even though does not present difficulties, shows that by considering the direct term only of Eq. (12.62),
the equation assumes a purely algebraic aspect

G̃RPA,D(k1, k2) = G̃0(k1, k2) + G̃0(k1, k2)
˜̂
U(k1 − k2 = q)G̃RPA,D(k1, k2) . (12.65)

The exchange term cannot be factorized in a simple algebraic expression.
By considering only the direct term, the RPA assumes the so-called ring diagrams approximation,

and the expression of the two-body Green’s function in this approximation is

G̃RPA,D(k1, k1 + q) = G̃0(k1, k1 + q) + G̃0(k1, k1 + q)
˜̂
U(q)G̃RPA,D(k1, k1 + q) (12.66)
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Figure 12.17: The A diagram is reducible while the B diagram is irreducible (proper).

G̃RPA,D(k1, k1 + q)
[
1− G̃0(k1, k1 + q)

˜̂
U(q)

]
= G̃0(k1, k1 + q) (12.67)

G̃RPA,D(k1, k1 + q) =
G̃0(k1, k1 + q)

1− G̃0(k1, k1 + q)
˜̂
U(q)

(12.68)

This expression is commonly used to calculated the linear response to an external probe for infinite
fermion systems.

The RPA obtained by using the two-body Green’s function seems to be a completely different theory
with respect that presented in Chapter 10. As it has been done for HF theory, also in this case it is
possible to obtain the RPA formulae presented in Chapter 10 starting from Eq. (12.62). The calculation
is quite long and cumbersome. The key point which allows the identification of the two-formulations of
the RPA is the following correspondences between the X and Y RPA amplitudes of Sect. 10.3.2 and
the transition amplitudes of the two-body Green’s function in Lehmann representation Eq. (11.79). The
relations are:

Xmi = 〈Ψ0|âmâ+
i |Ψn〉 ; X∗mi = 〈Ψn|âiâ+

m|Ψn〉 (12.69)

Ymi = 〈Ψ0|âiâ+
m|Ψn〉 ; Y ∗mi = 〈Ψn|âmâ+

i |Ψ0〉 (12.70)

(12.71)

where |Ψn〉 and |Ψ0〉 are, respectively, RPA excited and ground states.
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Figure 12.18: Graphical representation of Eq. (12.60). The doubly dashed part represent the proper kernel K̂.
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Figure 12.19:
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Figure 12.20: Graphical representation of the ring diagrams approximation of the RPA.
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Chapter 13

Correlated Basis Function theory

13.1 Introduction

In the previous chapters we have pointed out that, in the description of many-body systems, a naif
application of perturbation theories has to be avoided because of the strongly repulsive core of the bare
particle-particle interaction.

In part III, by using language and terminology inspired to Quantum Field Theory, we have shown
how this problem can be tackled. The interaction between particles in medium is modified with respect
to that in vacuum. The Brueckner’s theory, Chapter. 8, is a typical example how to produce this kind
of effective interaction which is defined by Eq.(8.2).

A different approach to the many-body problem comes from the Statistical Mechanics. In this case
the focus is not on the interaction, but rather on the wave function describing the relative motion of the
interacting pair of particles. The situation is exemplified in Fig. 8.1, where φ indicates the unperturbed
wave function of the two interacting particles whose overlap with the potential produces the large values
of the matrix elements which hinder the application of the perturbation theory. By multiplying φ by a
function, called correlation function, which prevents the two particles to get too close, it is possible to
avoid the problem of the strongly repulsive core. This is the basic idea of the Correlated Basis Function
(CBF). The language is completely different from that used in Part III. The treatment is the correlation
function.

The starting point of the CBF theory is the search for solutions of the many-body Schrödinger equation
by using the variational principle (see Appendix A). The equation to be solved is

δE[ΨT] = δ
< ΨT|Ĥ|ΨT >

< ΨT|ΨT >
= 0 , (13.1)

where Ĥ is the hamiltonian describing the system of interacting particles, and |ΨT〉 is a many-body trial
wave function. In the specific case of the CBF theory, the search for the minimum is carried out on all
the wave functions which can be expressed as

ΨT(1, ..., A) = F (1, ..., A)Φ(1, ...., A) , (13.2)

where |Φ〉 is the state describing the system of non-interacting particles. In the fermionic case |Φ〉 is a
Slater determinant, while for bosonic systems is a symmetrized product of single particle wave functions.

The second assumption of the theory, usually called Jastrow’s anstatz, is that the many-body corre-
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lation function F can be written as a product of two-body correlation functions

F (1, ...., A) =

A∏
j>i=1

f(rij) , (13.3)

where f̂(rij) is a function of the distance between the i and j particles composing the system.
These assumptions are the same adopted in the VMC approach presented in Sect. 4.2. The difference

between these two theories is in methods used to calculate the expectation value of the hamiltonian in Eq.
(13.1). In the case of VMC the expectation value is obtained by using the Monte Carlo multidimensional
integration techniques, see Chapter 4. In the CBF case it used a cluster expansion proposed by Mayer and
Mayer to describe liquids within the traditional statistical Mechanics [May40]. The particles, correlated
by the function f , generates clusters. The CBF theory, after a topological study of the various clusters
succeed in formulating a set of integral equation which sum in closed form all the clusters of a certain
type. For bosonic systems this set of equations is called Hypernetted Chain (HNC). The extension of the
theory to the fermionic case is far from being trivial and has been formulated at the beginning of the 70’s
of the last century [Fan74].

Even though our interest is in fermion systems, we introduce first the CBF theory for the bosonic case
where the formulation is simpler and it will be used to clarify the essential points of the theory. After
that, we shall discuss the extension to fermionic system which has to account for the Pauli exclusion
principle.

13.2 Bosons

Let’s consider a system of A bosons, with zero spin for simplicity, contained in a volume V. The ther-
modynamics limit is obtained by considering both A and V going to infinity but maintaining finite the
particle density ρ = A/V. The system is homogeneous and has translational invariance, therefore the
particle density is a constant. The wave function describing this system can be expressed as

Φ(x1, x2, . . . , xA) = Ŝ
(
φ1(x1) · · ·φA(xA)

)
, (13.4)

where Ŝ is an operator which symmetrizes the total wave function for the exchange of two particles. In
the previous equation, φi(xi) indicates the single particle wave functions generated by a translational
invariant mean-field model. We called xi the generalized coordinates of the i-th particle, that is in
addition to the space coordinates also spin, and eventually isospin and other quantum numbers which
can characterize the particle.

In this description of the system ground state, all the bosons occupy the same single particle state,
that of minimal energy. In analogy to the case presented in Sect. 2.3, the single particle wave functions
are eigenstates of the momentum p = ~k, and they can be expressed as:

φj(xj) =
1√
V
eikj ·rj . (13.5)

In this case, the generalized coordinate x corresponds to r. The density of the system can be obtained
by using the equations (13.4) and (13.5),

ρ0(x) = Aφ∗(x)φ(x) =
A

V
= ρ . (13.6)

which is a constant, as expected.



13.2. BOSONS 165

As we have already anticipated the idea is to solve the Schrödinger equation by using the variational
principle with the trial wave function (13.2) where the correlation function is given by the expression
(13.3).

In the calculation of the energy functional (13.1) it is very convenient the use of a quantity called
two-body distribution function (TBDF) defined as:

g(x1, x2) =

A(A− 1)

∫
dx3 . . . dxAΨ∗T(x1, x2, . . . , xA)ΨT(x1, x2, . . . , xA)

ρ2

∫
dx1dx2 . . . dxAΨ∗T(x1, x2, . . . , xA)ΨT(x1, x2, . . . , xA)

=

A(A− 1)

∫
dx3 . . . dxAF

2(x1, x2, . . . , xA)|Φ(x1, x2, . . . , xA)|2

ρ2

∫
dx1dx2 . . . dxAF

2(x1, x2, . . . , xA)|Φ(x1, x2, . . . , xA)|2
, (13.7)

where the fact that F is a real scalar function has been used. The expectation value of every two-body
operator, such as the interaction, is given by integrating the product of the operator and the TBDF on
the two coordinates x1 e x2:

< Ô >=
1

2
ρ2

∫
dx1dx2 g(x1, x2) Ô(x1, x2) . (13.8)

The use of the TBDF allows us to separate the evaluation of the many-body effects independently of the
operator O(x1, x2) which has to be considered. In case of a bosonic system we have that

|Φ|2 =

A∏
i=1

φ∗(xi)φ(xi) =
ρ0(x1)

A

ρ0(x2)

A
· · · ρ0(xA)

A
=
ρA

AA
(13.9)

where in the last equivalence we used the fact that the system is homogeneous.
By using the equations (13.4), (13.5), (13.6) and the expressions (13.2) and (13.3), the numerator and

the denominator of Eq. (13.7) can be written, respectively, as

N = (A− 1)
ρA−2

AA−1

∫
dx3dx4...dxA

∏
i<j

f2(rij) , (13.10)

where we also included the term 1/ρ2, and

D =
ρA

AA

∫
dx1dx2...dxA

∏
i<j

f2(rij) . (13.11)

The cluster expansion is obtained by defining an new function h(rij)

f2(rij) = 1 + h(rij) . (13.12)

and inserting it in the Jastrow’s ansatz of the many-body correlation function,∏
i<j

f2(rij) =
∏
i<j

(1 + h(rij)) = (1 + h(r12))(1 + h(r13)) · · · (1 + h(r23)) · · · (13.13)

The cluster expansion consists in grouping the terms containing the same number of h-functions

∏
i<j

f2(rij) = 1 +

A∑
i<j

h(rij) +
∑

i<j,k<l

h(rij)h(rkl) + · · · (13.14)
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A convenient method to analyze the structure of the various terms of Eq. (13.14) consists in using the
graphical representation introduced by Mayer [May40]. In this representation, the coordinates x which
are integrated are called internal points and are they are represented by black circles. The h-functions
are indicated by dashed lines.
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Figure 13.1: Graphical representation of some terms contributing to Eq. (13.15). The dashed lines indicate the
h-functions, the black points indicate the internal points which are intergrated.

Let’s first consider the denominator D, Eq. (13.11), which can be written as

D =
ρA

AA

∫
dx1dx2...dxA

[
1 +

∑
i<j

h(rij) + 3
∑
i<j<k

h(rik)h(rjk)

+
∑

i<j<k<l

h(rij)h(rkl) + . . .
]
. (13.15)

The first sum of Eq. (13.15) is represented by the diagram A of Fig. 13.1. A single h-function relating
the i and j points.

The second sum of Eq. (13.15) is represented by the diagram B. In this case the point k is shared
with the two h-functions of the sum. The total contribution of this term is:

1

2

(A− 1)(A− 2)

A2
ρ3

∫
dxidxjdxkh(rik)h(rjk) , (13.16)

where the factor (A− 1)(A− 2) takes care of the fact that, in the sums, the indexes i, j and k are limited
by the condition i < k < j.

The third sum of Eq. (13.15) contains two h-functions, as the second one, but these functions involve
four different points. The contribution of this term is represented by the C diagram of Fig. 13.1, and it
is given by the expression

A!

4!(A− 4)!

ρ4

A4

∫
dxidxjdxkdxlh(rij)h(rkl) . (13.17)

The global contribution of this equation is given by the product of two separated integrals, a first one on
xi and xj and a second one on xk and xl.
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Figure 13.2: Graphical representation of some terms contributing to Eq. (13.18).

Let’s consider now the numerator, defined in Eq. (13.10). In this case, there is no integration on
two coordinates, which have been identified with the 1 and 2 indexes. In the product of the correlation
functions it is convenient to factorize the f2(r12) term outside the integral. By using the expansion
(13.12) we obtain the expression

N = f2(r12)
(A− 1)

A

[
1 + 2

ρ

A
(A− 2)

∑
j>2

∫
dxjh(r1j)

+
(A− 2)(A− 3)

2

ρ2

A2

∑
j>i>2

∫
dxidxjh(rij) + . . .

]
. (13.18)

For the description of the numerator a new graphical symbol has to be included. The points 1 and 2
which are not integrated, called external points, are indicated by white circles as it is shown in Fig.
13.2, where the terms of lower order in the expansion of Eq. (13.18) are represented.

The uncorrelated term is represented by the A diagram. In the equation a correlation function f2(r12)
is present, and it is unserstood in the graphical representation. The B diagram represents the first sum
of Eq. (13.18), where the h-function connects an external point with an internal one. Also the second
sum of the Eq. (13.18) contains a single h-functions, but, in this case, it connects only internal points.
The contribution of this term is represented by the C diagram of Fig. 13.2. The points 1 and 2 can be
interchanged and this produces the factor 2 of the second term, and, in general, doubles the contribution
of each kind of diagram.

The numerator and denominator of the TBDF (13.7) are expressed by the Eqs. (13.15) and (13.18) as
sum of terms characterized by the number of the h-functions and by that of internal and external points.
Each term of these sums forms a cluster of particles, linked by the h-functions of the correlation, and it
can be described by a diagram.

Let’s make a topological classification of the various diagrams.

a) Linked and unliked diagrams
From the graphical point of view the unlinked diagrams are easily identified since they are composed by
separated parts, as, for example, the diagrams C of Figs. 13.1 and 13.2. From the mathematical point of
view, we have already seen that the contribution of this type of diagrams is obtained by multiplying the
integrals which describe by the separated parts of the diagrams. For example, for the diagram C of Fig.
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13.1 we have that

A!

4!(A− 4)!

ρ4

A4

∫ ∫
dridrjdrkdrlh(rij)h(rkl) =

1

4!
(1− 6

A
+

11

A2
− 6

A3
)ρ2

∫
dridrjh(rij) · ρ2

∫
drkdrlh(rkl) .

The linked diagrams cannot be expressed as products of independent parts, for example the diagram B
of Fig.13.1.

The parts of the unlinked diagrams which do not contain the two external points are present in the
set of the diagrams of the denominator.
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Figure 13.3: Examples of reducible diagrams in the numerator of the TBDF, Eq. (13.18).

b) Reducible diagrams
The linked diagrams of Fig.13.3 have the property of being reducible. From the graphical point of
view these type of diagrams are characterized by the presence of, at least, one internal point linking
the part of the diagram containing the external points with a part containing only internal point. For
the translational invariance of the system, the contribution of these two parts can be factorized. In
bosonic systems the unlinked diagrams and also the reducible ones can be expressed as products of a
term containing external points time one, or more, terms containing only internal points.

The factorized part of these diagrams which does not contain external points can be simplified, up to
1/A order by the diagrams of the denominator. The proof of this property is presented in Ref. [Fan74].

By summarizing the situation, we can state that in the expression (13.7) of the TBDF, the diagrams
of the denominator cancel the factorized contributions of the unlinked and reducible diagrams present in
the numerator. For this reason the TBDF can be expressed as sum of linked and irreducible diagrams,
all containing the external points 1 and 2:

g(r12) = f2(r12)
∑

all orders

Yirr(r12) = f2(r12) (1 + S(r12) + C(r12)) . (13.19)

The translational invariance of the system implies that the TBDF depends only on the relative distance
of the two external points r12.

In Eq. (13.19) we have already made explicit the fact that the irreducible diagrams can be further
classified in simple and composite which have been, respectively, indicated with S(r12) and C(r12).
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IRREDUCIBLE

SIMPLE

ELEMENTARYNODALS

COMPOSITE

Figure 13.4: Examples of irreducible diagrams, classified as composite and simple. The latter ones are classified
as nodal and elementary.

c) Simple and composite diagrams
The composite diagrams are formed by parts which are connected only trough the two external points,
as indicated in Fig. 13.4. These composite diagrams can be expressed in terms of simple diagrams. Since
there is not integration on the external points, the contribution of a composite diagram is given by the
product of the simple diagrams connected to the external points.

Let’s call S2(r12) the contribution given by the sum of all the composite diagrams formed by the
product of only two simple diagrams, as in the case of the composite diagrams of Fig. 13.4. Since the
exchange of all the particles of a sub-diagram with those of the other one produces the same composite
diagram it is necessary to multiply S2(r12) by a factor 1/2 to avoid double counting. In the box it is
clarified how this 1/2 factor comes out by considering the diagrams of Fig. (13.5).
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Figure 13.5: Example of formation of composite diagrams starting from simple diagrams.
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Let’s suppose to build composite diagrams with the two α and β diagrams of Fig. 13.5. The
contribution of the diagrams obtained by iterating twice α e β is given by (α+ β)2 = α2 + β2 + 2αβ.
The diagrams α2 and β2 have symmetry 1/2. In the evaluation of the numerator (13.18) it necessary
to insert this factor since by interchanging the i and j indexes one obtains the same contribution. On
the other hand, the sums of Eq. (13.18) are limited with j > i and this implies that only one of the
two topologically identical terms appears. The same idea is valid for the β2 diagram. For example
the expression for α2 is∑

i>j

∫
dxih(r1i)h(ri2)

∫
dxjh(r1j)h(rj2) =

1

2

∑
i,j

∫
dxih(r1i)h(ri2)

∫
dxjh(r1j)h(rj2) .

Also the sum in the last two diagrams must be multiplied by 1/2 since the limits on the sums require
that only one of the two diagram contributes.

The same reasoning can be repeated for every composite diagram formed by two simple diagrams.

The same procedure can be used to build composite diagrams with n simple diagrams. The symmetry
properties used to obtain the 1/2 factor for S2(r12) are valid for each Sn(r12) and require the presence
of a 1/n! factor to avoid double counting. The total sum of the composite diagrams can be expressed in
terms of simple diagrams as:

C(r12) =
S2(r12)

2!
+
S3(r12)

3!
+
S4(r12)

4!
+ . . . . (13.20)

By using this result, the TBDF, Eq. (13.19), can be rewritten as:

g(r12) = f2(r12)

[
1 + S(r12) +

S2(r12)

2!
+
S3(r12)

3!
+ . . .

]
= f2(r12) exp[S(r12)] , (13.21)

where the lst equality appears since the system has an infinite number of particles.
The above equation expresses the TBDF only in terms of simple diagrams which can be classified as

nodal or elementary, sometime called bridge, diagrams.

d) Nodal and elementary (bridge) diagrams
In a nodal diagram there is at least one point where all the paths going from one external point to the
other ones have to pass. These special internal points are called nodes. Diagrams without nodes are
called elementary. Some example of nodal and elementary diagrams is presented in Fig. 13.4.

The situation of the calculation of the TBDF can be summarized by stating that there is no contribu-
tion of unliked and reducible diagrams, while that of the composite diagrams can be expressed as infinite
sum of simple diagrams as indicated by Eq. (13.21). By calling N(r12) the contribution of all the nodal
diagrams, and E(r12) that of the elementary diagrams, the TBDF can be expressed as:

g(r12) = f2(r12) exp[N(r12) + E(r12)] (13.22)

= [1 + h(r12)] [1 +N(r12) + E(r12) + . . .]

= 1 +N(r12) +X(r12) . (13.23)

This equation defines the diagrams contained in X(r12), which are normally called non-nodal since they
do not have nodes.
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Figure 13.6: Example of nodal diagram. The contribution of the part of the diagram to the left hand side of the
node k is called a(r1k) and that to the right hand side as b(rk2).

A nodal diagram can be considered as composed by parts which are connected in the nodal point. For
this reason, each nodal diagram can be obtained by integrating the two, or more, functions representing
the contributions of the various parts of the diagram. Let’s consider, as example, the nodal diagram of
Fig. 13.6 which has 1 and 2 as external points and k as a node. The contributions of the two parts of the
diagrams are called a(r1k) and b(rk2) and the total contribution to the TBDF (13.19) of this diagram is:∫

drka(rik)b(rkj)ρ(rk) = ρ

∫
drka(rik)b(rkj) ≡

(
a(rik)

∣∣∣ρ(rk)b(rkj)
)
, (13.24)

where the density ρ(rk) has been associated to the integration point rk to have the correct normalization.
Because of the homogeneity and the translational invariance property of the bosonic system we are
considering the density is constant, therefore it has been factorized outside the integral. The last term

defines the symbol
( ∣∣∣ ) which indicate the folding product on the rk point.

The global contribution N(r12) of all the nodal diagrams between the points 1 and 2 can be obtained
as folding product in the node rk of all the irreducible diagrams which can be built between 1 and k and
between k and 2:

N(r12) =
(
X(r1k)

∣∣∣ρ(rk)[N(rk2) +X(rk2)]
)
. (13.25)

Each nodal diagram has, at least, one node, and every path between the external points 1 and 2 must go
through all the nodes of the diagram. The above equation indicates that the part of the diagram between
1 and the first node k, which is a non-nodal diagram, must be folded in rk with
i) a non-nodal diagram, and this generates a diagram with a single node,
ii) a nodal diagram, and this produces a diagram with more than one node.
The folding of N(rik) with N(rkj) would generate diagrams already present in N(rij) and, therefore, it
is not considered.

The set of equations (13.22), (13.23) and (13.25) are known as HyperNetted Chain equations (HNC).
Eq. (13.22) expresses the TBDF in terms of simple diagrams by summing, in closed form, the composite
diagrams, and Eq. (13.25) calculates the contribution of all the nodal diagrams. No closed expression to
calculate the elementary diagrams is available. They have to be included one by one. The calculations
of TBDM without the contribution of the of the elementary diagrams are called HNC/0. When the
contribution of the simplest elementary diagram, that shown in Fig. 13.4, is included the calculation of
the TBDF is named HNC/4, since this diagram involves four particles.
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The HNC equation are solved by using an iterative procedure. The input required by the calculation
is the correlation function f(r12). Starting from the ansatz N(r12) = E(r12) = 0, which implies X(r12) =
f2(r12) − 1, one obtains a new set of nodal diagrams by using Eq. (13.25). With this new set of nodal
diagrams one calculates g(r12) with Eq. (13.22) which allows the evaluation of the non-nodal X(r12)
diagrams by means of Eq. (13.23) which are used again in Eq. (13.25) to calculate a new set of nodal
diagrams. The procedure continues up to when convergence is reached.

The solution of the HNC provides the TBDF which is used to obtain the energy value (13.1) with the
l’hamiltonian

Ĥ = −
A∑
i=1

~2

2m
∇2
i +

A∑
i<j=1

V̂ij . (13.26)

The expectation value of the energy is calculated by using the trial wave function

ΨT(1, . . . , A) = F (1, . . . , A)Φ(1, . . . , A) = S
(∏
i<j

fij

)
Φ(1, . . . , A) . (13.27)

The calculation of the contribution of the two-body potential term Vij is straightforward, as indicated
by Eq. (13.8). The evaluation of the kinetic energy term is more involved. The procedure commonly
adopted separates the contribution in three parts

〈T 〉 ≡ Tφ + TF − Tc.m. . (13.28)

The first part is a term where the derivatives act on the mean-field wave function Φ

Tφ ≡ −
~2

4m

(
< Φ∗F 2

A∑
i=1

∇2
iΦ > − <

A∑
i=1

(∇iΦ∗) · F 2∇iΦ) >

)
, (13.29)

the second part is a term where the derivatives act on the correlation function

TF ≡ −
~2

4m
< Φ∗

[
F
( A∑
i=1

∇2
iF
)
−

A∑
i=1

(∇iF )2
]
Φ > , (13.30)

and the third part is a term giving the center of mass contribution:

Tc.m. = − ~2

2mA
< Ψ∗T

( A∑
i=1

∇i
)2

ΨT > . (13.31)

In the previous equations the symbol <> indicates

< X >=

∫
dx1, . . . , dxAX(x1, . . . , xA)

< ΨT|ΨT >
. (13.32)

The term TF is handled in analogous manner of the two-body term of the interaction V̂ij and inserted
in Eq. (13.8). The evaluation of the other terms is more complicated, but it does not present special
problems.
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13.3 Fermions

In the description of a fermionic system it is necessary to consider the Pauli exclusion principle. The
extension of the theory HNC to these systems is called Fermi HyperNetted Chain (FHNC). In this case,
the mean-field wave function Φ (13.2) is a Slater determinant of single particle wave functions φa.

The expression of the TBDF (13.7) contains the squared module of the uncorrelated wave function.
The |Φ|2 can be expressed as:

|Φ(1, 2, . . . , A)|2 =

ρ0(x1, x1) ρ0(x1, x2) . . . ρ0(x1, xA)
ρ0(x2, x1) ρ0(x2, x2) . . . ρ0(x2, xA)

...
...

. . .
...

ρ0(xA, x1) ρ0(xA, x2) . . . ρ0(xA, xA)

, (13.33)

were the elements of the above determinant have been defined as:

ρ0(xi, xj) =
∑
a

φ∗a(xi)φa(xj) . (13.34)

The sum is carried out on all the occupied single-particle states, which for the ground state are all the
states below the Fermi surface. Eq. (13.34) defines the uncorrelated One-Body Density Matrix (OBDM)
which is the basic ingredient of the calculation od the TBDF in fermionic system.

A fundamental property of the OBDM, due to the orthonormality of the single-particle wave functions,
is: ∫

dxjρ0(xi, xj)ρ0(xj , xk) = ρ0(xi, xk) , (13.35)

where the integral sign indicates the integration on the space coordinate and also the sum on the third
components of spin, and eventually, of isospin.

The sub-determinants are defined as:

∆p(1, ..., p) =

ρ0(x1, x1) ρ0(x1, x2) . . . ρ0(x1, xp)
ρ0(x2, x1) ρ0(x2, x2) . . . ρ0(x2, xp)

...
...

. . .
...

ρ0(xp, x1) ρ0(xp, x2) . . . ρ0(xp, xp)

p ≤ A . (13.36)

For the property (13.35) of the OBDM, the sub-determinants have the following property∫
dxp+1∆p+1(1, ...., p+ 1) = (A− p)∆p(1, ..., p) , (13.37)

and, by iterating ∫
dxp+1...dxA∆A(1, ...., A) = (A− p)!∆p(1, ..., p) . (13.38)

This implies that:
∆p = 0 , if p > A . (13.39)

As example, we show these propertied in the ∆3 case.

∆3(1, 2, 3) =
ρ0(x1, x1) ρ0(x1, x2) ρ0(x1, x3)
ρ0(x2, x1) ρ0(x2, x2) ρ0(x2, x3)
ρ0(x3, x1) ρ0(x3, x2) ρ0(x3, x3)
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= ρ(x1, x1)
ρ0(x2, x2) ρ0(x2, x3)
ρ0(x3, x2) ρ0(x3, x3)

− ρ(x1, x2)
ρ0(x2, x1) ρ0(x2, x3)
ρ0(x3, x1) ρ0(x3, x3)

+ ρ(x1, x3)
ρ0(x2, x1) ρ0(x2, x2)
ρ0(x3, x1) ρ0(x3, x2)

.

For the normalization of the OBDM and the property (13.35) we obtain∫
d3r3 ∆3(1, 2, 3) = ρ(x1, x1)ρ(x2, x2)A− ρ(x1, x1)ρ(x1, x2)

− ρ(x1, x2)ρ(x2, x1)A+ ρ(x1, x2)ρ(x2, x1)

+ ρ(x2, x1)ρ(x1, x2)− ρ(x1, x1)ρ(x2, x2)

= (A− 1)ρ(x1, x1)ρ(x2, x2)− (A− 1)ρ(x2, x1)ρ(x1, x2)

= (A− 1)
ρ0(x1, x1) ρ0(x1, x2)
ρ0(x2, x1) ρ0(x2, x2)

The property (13.39) is extremely useful in the application of the cluster expansion techniques in finite
fermionic systems. It is worth to remark that these properties of the OBDM and of the sub-determinants
depend only on the orthonormality of the single-particle wave functions, and not on their expression. For
this reason they are valid for both infinite and finite fermion systems.

Also in the fermionic case the cluster expansion is analyzed in terms of diagrams. It is necessary to
include a new graphical symbol to consider the fact that particles of the system are correlated not only
by the h(rij)-function, which takes into account the so-called dynamical correlation, but also by the Pauli
exclusion principle, usually referred to as statistical correlation. This last fact is inserted in the OBDM
ρ0(xi, xj) which, in the calculation of the TBDF, forms closed loops which do not overlap. The graphical
symbol adopted to indicate the OBDM is an oriented line joining the xi and xj points.

As in the bosonic case there is no limit for the number of dynamical correlation lines which can join
a single point. On the contrary, the Pauli exclusion principle implies that a point can be reached by
two statistical lines or by none. Only the external points have a possibility of being reached by a single
statistical line.

By using the trial wave function (13.2) with the Jastrow ansatz (13.3) and the definition (13.12) of
the h-function the TBDF (13.7) can be written as:

g(x1, x2) =

A(A− 1)

∫
dx3....dxA(1 +

∑
i<j

hij +
∑
i<j<k

hijhjk + ....)|Φ(x1, ...., xA)|2

ρ2

∫
dx1....dxA(1 +

∑
i<j

hij +
∑
i<j<k

hijhjk + ....)|Φ(x1, ...., xA)|2
, (13.40)

where hij ≡ h(rij).
By using the definition of sub-determinant (13.36) the numerator, N, and the denominator, D, of the

previous equation can be expressed as sums of terms characterized by the number of h-functions:

N =
A(A− 1)

ρ2
f2(r12)

∫
dx3....dxA

1 +
∑
i<j

hij +
∑
i<j<k

hijhjk + ....

∆A , (13.41)

D =

∫
dx1....dxA

1 +
∑
i<j

hij +
∑
i<j<k

hijhjk + ....

∆A . (13.42)
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The expressions of N and D can be rewritten by grouping the terms with the same number of points p,
this set of term is indicated by X(p)(1, 2, 3, .., p). For example,

X(3)(1, 2; i) = h1i + h2i + h1ih2i .

By using this convention, the TBDF can be written as

g(x1, x2) = =
A(A− 1)

ρ2
f2(r12)

∫
dx3...dxA∆A

[
1 +

A∑
p=3

(A− 2)!

(p− 2)!(A− p)!X
(p)(1, 2; . . . , p)

]
[∫

dx1...dxA∆A

(
1 +

A∑
p=2

A!

p!(A− p)!X
(p)(1, . . . , p)

)]−1

.

The factorial terms multiplying the X(p) functions take care of the fact that each permutation of the
internal points do not modify the value of the diagram.

By using the property (13.38) it is possible to integrate the above expression of the TBDF on all
the coordinates which are not reached by the correlations, i.e. those which are not present in the X(p)

functions. This procedure leads to the following expressions of numerator and denominator of the TBDF

N = A!
f2(r12)

ρ2

A∑
p=2

1

(p− 2)!

∫
dx3...dxpX

(p)(1, 2; ..., p)∆p(1, ..., p) , (13.43)

D = A!

A∑
p=0

1

p!

∫
dx1...dxpX

(p)(1, ..., p)∆p(1, ..., p) . (13.44)

It is possible to formally extend up to infinity the upper limits of the two sums of the previous expressions
by using the property (13.39) of the sub-determinants.

In analogy to the bosonic case, at this point of the calculation a topological classification of the various
diagrams contained in N and D is required.

a) Linked and unlinked diagrams
The definition of linked and unlinked diagrams is analogous to that used for the bosonic case, with
the novelty that now the links to the external point can be obtained either by a dynamical correlation
line (a dashed line) or by a statistical correlation line (a continuous oriented line). The mathematical
expression of the unlinked diagram show a factorization of the integrals containing the external points
and those without them. The sum of this latter type of diagrams is exactly the sum of the diagrams of
the denominator which simplify. The TBDF can be expressed by considering only the linked diagrams
Ln(1, 2, i3, ..., in)

g(x1, x2) = g(r12) =
f2(r12)

ρ2

[
∆2(1, 2) +

∞∑
p=3

1

(p− 2)!

∫
dx3...dxpLp(1, 2; ..., p)

]
. (13.45)

b) Reducible diagrams
In the bosonic systems the contribution of the reducible diagrams is canceled by the denominator up
to 1/A factor. In the fermionic system this contribution is exactly zero in infinite systems. The point
is illustrated in Fig. 13.7. The two reducible diagrams shown in the upper part of the diagram differ
only for the presence of a statistical loop in the right diagrams. In an infinite system the statistical
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− =0

+ =

Figure 13.7: Example of cancellation of two FHNC reducible diagrams The statistical loop in the higher part
introduces a minus sign and, therefore, the total contribution of the two diagrams is zero.

loop contributes with a -1 factor. Therefore, the contribution of the diagram with an additional loop is
identical to that of the other diagram but with a different global sign. As indicated in lower part of the
figure the total contribution is zero. In an infinte system to each reducible diagram is associated another
diagram with an additional statistical loop.

In finite fermionic systems the contribution of the reducible diagrams is not zero. The sum of the
parts which develop out of the reduction point produces a factor which is the correlated one-body density
of system. By including this vertex correction in the reduction points the reducible diagrams are included
in the counting of the simple diagrams.

c) Simple and composite diagrams
As in the case of the bosonic system, the composite diagrams are construced by joining simple diagrams
in the external points. Of course, one has to consider the role of the statistical correlations, but also
in this case the contribution of the composite diagrams is obtained by summing the simple diagrams
classified in nodal and elementary.

d) Nodal and elementary
The definition of nodal and elementary diagrams is analogous to that of the bosonic case, but both
dynamical and statistical correlations are considered. The presence of statistical correlation does not
allows the formulation of a single integral equation for the calculation of all the nodal diagrams, as it
happened in Eq. (13.25). It is, however, possible to formulate a system of linked integral equations which
describe the contributions of the nodal diagrams classified by the type of correlation reaching the external
points.

The graphical examples of the various types of diagrams required to obtain the different integral
equations are shown in Fig. 13.8. In the A and B diagrams, the external points are reached by dynamical
correlations only. For this reason they are identified with the dd (dynamical-dynamical) sub-indexes.
The C and D diagrams have dynamical correlations reaching the point 1 and two statistical correlations
reaching the point 2. The sub-indexes identifying the diagrams are de (dynamical-exchange). The E and
F diagrams are indicated as ee (exchange-exchange) since in both cases the external points are reached
by statistical lines. It convenient to define diagrams which are reached by a statistical correlation starting
from 1 and arriving to 2 and forming an open ring. These diagrams are called cc (cyclic-cyclic) and do
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Figure 13.8: The variou tyopes of nodal diagrams required by the FHNC equations. The sub-indexes classify
the diagrams with respect to the type of correlation reaching the external points 1 and 2.

not directly contribute to the calculation of the TBDF.

As in the bosonic case, see Eq. (13.25), also in the present case, the total contribution of the nodal
diagrams can be obtained by carrying out a folding integral of the various terms of the diagrams in
the nodal point. In the fermionic systems the Pauli exclusion principle prohibits the folding between
diagrams of the same type. For example a diagram of e type can be folded only by diagrams of type d in
that point.

Let’s indicate with N the sum of all the nodal diagrams and with X that of the non-nodal irreducible
ones. Clearly, N e X are identified by the sub-indexes dd, de, ee e cc. For the nodal diagrams it is possible
to write the following set of equations

Ndd(r12) =
(
Xdd(r13) +Xde(r13)|ρ(r3)[Ndd(r32) +Xdd(r32)]

)
+

(
Xdd(r13)|ρ(r3)[Ned(r32) +Xed(r32)]

)
,

Nde(r12) =
(
Xdd(r13) +Xde(r13)|ρ(r3)[Nde(r32) +Xde(r32)]

)
+

(
Xdd(r13)|ρ(r3)[Nee(r32) +Xee(r32)]

)
,

Nee(r12) =
(
Xed(r13) +Xee(r13)|ρ(r3)[Nde(r32) +Xde(r32)]

)
+

(
Xed(r13)|ρ(r3)[Nee(r32) +Xee(r32)]

)
,
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Ncc(r12) =
(
Xcc(r13)|ρ(r3)[Ncc(r32) +Xcc(r32)− `(kF r32)/ν]

)
. (13.46)

The equations for the non-nodal diagrams are:

Xdd(r12) = gdd(r12)−Ndd(r12)− 1 ,

Xde(r12) = gdd(r12)[Nde(r12) + Ede(r12)]−Nde(r12) ,

Xee(r12) = gdd(r12){Nee(r12) + Eee(r12) + [Nde(r12 + Ede(r12)]2

−ν[Ncc(r12) + Ecc(r12)− 1

ν
`(kF r12)]2} −Nee(r12) ,

Xcc(r12) = gdd(r12)[Ncc(r12) + Ecc(r12)− 1

ν
`(kF r12)]

− Ncc(r12) +
1

ν
`(kF r12) . (13.47)

The partial definitions of the TBDF are:

gdd(r12) = f2(r12)eNdd(r12)+Edd(r12) ,

gde(r12) = Nde(r12) +Xde(r12) ,

ged(r12) = gde(r12) ,

gee(r12) = Nee(r12) +Xee(r12) ,

gcc(r12) = Ncc(r12) +Xcc(r12)− 1

ν
`(kF r12) . (13.48)

The total TBDF is obtained by summing the partial terms

g(r12) = gdd(r12) + ged(r12) + gde(r12) + gee(r12) (13.49)

Figure 13.9: Four-points elementary diagram.

The system of Eqs. (13.46), (13.47), (13.48) and (13.49) form the Fermi HyperNetted Chain (FHNC)
equations. As in the case of the bosonic HNC equations, also the FHNC allows the calculation of all the
composite and nodal diagrams in closed form. Also in this case, the elementary diagrams, such as that
of Fig. 13.9, are excluded and they have to be calculated one by one.

Also in this case the FHNC equations are solved by using an iterative procedure analogous to that
adopted for the solution of the HNC equations. After the TBDF has been obtained the energy of the
system is calculated following the same paths outlined for the bosonic case.
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Figure 13.10: Examples of the FHNC/SOC diagrams. The wavy lines represent operator dependent correlations.

The FHNC theory has been applied to the fermionic liquid helium. It is the case where the helium
atoms are composed by 3He nuclei and not 4He. The properties of the fermionic liquid helium are rather
different from those of the bosonic case, since the two liquids follows two different quantum statistics.
The interaction in both cases is the purely scalar Coulomb interaction as discussed in Sect. 3.4.

The nuclear interaction is much more complex, as discussed in Sect. 3.3, the FHNC approach presented
so far is not adequate to handle all the different aspects of the problem. For this reason in nuclear systems
the Jastrow’s ansatz (13.3) is modified by adding correlation terms depending on the operators used to
describe the nuclear hamiltonian (3.1)

F(1, ..., A) = S
( A∏
j>i=1

Fij

)
= S

( A∏
j>i=1

6∑
p=1

fp(rij)Ô
p
ij

)
. (13.50)

with the operators defined as

Ôp=1,6
ij = Î, τ̂ i · τ̂ j , σ̂i · σ̂j , (σ̂i · σ̂j)(τ̂ i · τ̂ j), Ŝij , Ŝij(τ̂ i · τ̂ j) . (13.51)

The step (13.12) defining the h-function had a universal value because the correlation was a scalar
function. Now it is necessary to consider that the various terms of the correlation do not necessarily
commute with the terms of the hamiltonian and neither between them. This fact does not allow the
formulation of equations which sum in closed form all the diagrams of a certain type. It is necessary to
introduce an approximation.

It is possible to sum in a closed form diagrams containing chains of operator-dependent correlations
which have only one correlation between two points, as in the diagrams of Fig. 13.10. This approximation
is called of Single Operator Chain (SOC). The FHNC/SOC theory with the inclusion of the elementary
diagram of Fig. 13.9 is the most elaborated theory of CBF type used in nuclear physics. This theoretical
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framework is adequate to treat hamiltonians with two-body interactions only. The insertion of three-
body forces is not included in the diagrammatic expansion scheme of the FHNC, but, analogously to the
elementary diagrams, is inserted by considering the single diagrams.
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Figure 13.11: Correlations obtained in variational FHNC/SOC in the various operator channels for various
doubly magic nuclei [Ari07].

We show in Fig. 13.11 the correlation functions fp obtained in a variational FHNC/SOC calculations
for some doubly-magic nuclei. The different panels present the correlation functions of the various
operator channels. The most important correlations are the scalar ones which are, usually, one order
of magnitude larger than those in the other channels.

13.3.1 Infinite nuclear matter

As example of application of the CBF theory we discuss here some results obtained for nuclear matter.
The system under study has translational invariance and constant nucleonic density defined by the sum
ρ = ρp + ρn of the, constant, proton and neutron densities. The energy per nucleon e = E/A is
traditionally written in power expansion with respect to the asymmetry parameter δ = (ρn − ρp)/ρ, i.e.

e(ρ, δ) = e(ρ, 0) + esym(ρ) δ2 + O(δ4) . (13.52)

Around the minimum of symmetric nuclear matter, δ = 0, at the saturation density ρ0, the two
coefficients are expanded in powers of the parameter ε = (ρ− ρ0)/(3 ρ0).
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exp AFDMC CBF D1M SLy5 DDME2
ρ0 0.16 ± 0.01 0.16 0.16 0.16 0.16 0.15
e(ρ0, 0) -16.0 ± 0.1 -16.00 -16.00 -16.01 -15.98 -16.13
B 220 ± 30 276 269 217 228 278
esym(ρ0) 30-35 31.3 33.94 29.45 32.66 33.20
L 88 ± 25 60.10 58.08 25.41 48.38 54.74

Table 13.1: Properties of infinite nuclear matter obtained with different types of calculations. The saturation
density ρ0 is expressed in fm−3. All the other quantities in MeV. The Monte Carlo results are those of Ref.
[Gan10], those of the CBF theory from Ref. [Akm98]. The other results from [Co12].

For the symmetric nuclear matter we obtain

e(ρ, 0) = aV +
1

2
KV ε

2 + . . . , (13.53)

where the term of first order in ε, related to te first derivative with respect to ρ, is zero since e(ρ, 0) has
a minimum for ρ = ρ0. In the quadratic term, related to the second derivative, the coeffient, defined as

B = 9ρ2
0

∂2e(ρ, 0)

∂ρ2

∣∣∣∣
ρ=ρ0

(13.54)

is called compression modulus, see Eq. (2.60).
The second coefficient of Eq. (13.52), called symmetry energy, is expanded as

esym(ρ) = asym + L ε + . . . . (13.55)

with the coefficient

L = 3ρ0
∂esym(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

. (13.56)

Table 13.1 shows the values of these quantities calculated with different theories at the value of the
saturation density ρ0. The comparison is done with empirical values (exp). The values obtained with the
CBF theory [Akm98] are compared with those obtained by a calculation of Auxiliary Field Diffusion Monte
Carlo (AFDMC) [Gan10], both of them are using the same microscopic interaction of phenomenological
type. The other results are obtained in HF calculations with different effective interactions.

The values of the saturation densities and of the minimal energy agree within variation of 2% and
0.4%, respectively. Other variables have similar values in other calculations. The major differences are
present in the values of L.

The equation of state for pure neutronic matter (a), symmetric nuclear matter (b), and symmetry
energy (c) are shown in Fig. 13.12. All the calculations show a good agreement at the saturation point
of symmetric nuclear matter. There are remarkable differences away from this point.

What it is interesting is the close similarity between the CBF e AFDMC results.
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Figure 13.12: Equation of state for pure neutron matter (a), symmetric neutron matter (b) and symmetry
eneregy The black points show the CBF results [Akm98], the black lines those of the AFDMC [Gan10] and the
other lines different HF results [Co12].



Chapter 14

Unitary correlation operator method

Around the 90’s of the last century, mainly in the framework of the theoretical nuclear physics, and
more in general, in that of the many-body problem, a great attention on the short-range correlations
has been addressed. Among the various proposals of treating these type of correlation it is particularly
interesting the Unitary Correlation Operator Method (UCOM) [Fel98] which emphasizes the duality in
the interpretation of the correlations.

14.1 The Unitary Correlation Operator

Let’s consider the Schrödinger equation with the full hamiltonian containing a microscopic interaction
(Cap. 3),

Ĥ |Ψn〉 = En |Ψn〉 . (14.1)

Let’s define an operator Ĉ such as its action on a MF state generates the eigenstate of the hamiltonian
Ĥ,

|Ψn〉 = Ĉ(Ĥ, {Φ}) |Φn〉 , (14.2)

where we made explicit the dependence of the Ĉ operator on both the hamiltonian Ĥ and also on the
single-particle wave functions generated by a MF hamiltonian and forming the Slater determinant |Φn〉.

Since both the set of |Φn〉 states and also that of the eigenstates of Ĥ, |Ψn〉, form complete bases, the
Ĉ(Ĥ, {Φ}) operator can be formally expressed as

Ĉ(Ĥ, {Φ}) =
∑
k

|Ψk〉 〈Φk| (14.3)

showing that Ĉ is a unitary operator which diagonalizes the hamiltonian Ĥ. In fact we can write

〈Ψk|Ĥ|Ψn〉 = 〈Φk|Ĉ+ĤĈ|Φn〉 = 〈Φk|
∑
i

|Φi〉 〈Ψi| Ĥ
∑
j

|Ψj〉 〈Φj |Φn〉

=
∑
ij

〈Φk|Φi〉Eiδij 〈Φj |Φn〉 =
∑
ij

Eiδijδikδjn = Enδkn . (14.4)

Since the Ĉ is unitary, the correlated state |Ψn〉 (14.2) has the same normalization of the MF state
|Φn〉. The structure of the equations (14.2) and (13.2) defining the correlations respectively in UCOM
and in CBF is the same. However the Jastrow’s ansatz (13.3) on the expression of the correlation in CBF
does not produce a unitary operator, for this reason it is necessary a specific treatment to obtain the

183
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proper normalization of the wave function. On the contrary, the correlation in UCOM is defined such as
to ensure the unitarity property.

The second step of Eq. (14.4) can be viewed as a change of the eigenstate of Ĥ, or as a change of the
operator Ĥ

〈Ψk|Ĥ|Ψn〉 = 〈Φk|Ĉ+ĤĈ|Φn〉 = 〈Φk|Ĥeff |Φn〉 , (14.5)

with the obvious definition of the effective hamiltonian Ĥeff . This is what we meant in the introduction
of the chapter with duality in the interpretation of the correlation effects.

We pointed out how the unitarity of the correlation operator is an essential requirement of the model.
A unitary operator can be described as

Ĉ = e−iĜ (14.6)

where Ĝ is a hermitian operator whose properties are listed here below. Since we are considering a
fermionic system the number of particles is conserved by the action of the operator. The Ĝ is invariant
for the exchange of two-particles since the antisymmetry is present in the Slater determinant |Φ〉. In
addition, G must be at least a two-body operator, or more complicated, since a one-body operator
would produced a unitary transformation of the set of single-particle states generating another Slater
determinant completely equivalent for what concerns the calculation of observables.

The operator Ĝ can be expressed as

Ĝ =
∑
i<j

ĝ(i, j) + · · · , (14.7)

where ĝ(i, j) is an operator acting on the fermions i and j, and · · · indicates the eventual presence of
operators acting on more than two particles. Each correlated operator

B̂ = Ĉ+B̂Ĉ = Ĉ−1B̂Ĉ = eiĜB̂e−iĜ , (14.8)

is an overlap of zero-, one-, two-, three- . . . A−body operators.
It is convenient the use of a notation which allows the identification of a n−body operator which

cannot be written as a sum of simpler operators, for this reason called irreducible:

B̂
[n]
A =

A∑
i1<···<in

b̂[n](i1, i2, · · · , in) , (14.9)

where b̂[n](i1, i2, · · · , in) is an operator acting on n of the A particles forming the system. If n > A then

b̂
[n]
A = 0. In this notation, the hamiltonian composed by the kinetic energy and by a two-body potential

is expressed as

Ĥ ≡ ĤA = T̂
[1]
A + V̂

[2]
A =

A∑
i

t̂[1](i) +

A∑
i<j

v̂[2](i, j) . (14.10)

The absence of the upper index [n] indicates that the operator is sum of operators acting on different
numbers of particles.

The expression of a correlated operator in terms of irreducible operators can be written as

B̂ ≡ B̂A = Ĉ−1
A B̂AĈA =

A∑
n=1

B̂
[n]
A , (14.11)

where

B̂
[n]

A =

A∑
i1<···<in

b̂
[n]

(i1, i2, · · · , in) . (14.12)
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From the above definitions we obtain the expression

b̂
[n] ≡ B̂n −

n−1∑
k=1

B̂
[k]

n = Ĉ−1
n B̂nĈn −

n−1∑
k=1

n∑
i1<···<ik

b̂
[k]

(i1, · · · , ik) . (14.13)

The first b̂
[n]

term different from zero, is related to the number of particles connected by the B̂ operator.
For one-body operators n = 1, for two-body operators n = 2, etc. .

We shall consider, henceforth, a generator Ĝ composed by two-body operators only. This means that
we neglect the terms indicated by the points in the expression (14.7).

The kinetic energy term is described as

T̂A ≡ Ĉ+
A T̂AĈA =

A∑
n=1

T̂
[n]

A . (14.14)

The first term, n = 1, is the MF kinetic energy

T̂
[1]

A =

A∑
i

t̂
[1]

(i) =

A∑
i

t̂[1](i) = T̂
[1]
A . (14.15)

The second term, n = 2, is obtained by considering Eq. (14.12),

T̂
[2]

A =
∑
i<j

t̂
[2]

(i, j) , (14.16)

where
t̂
[2]

(i, j) = ĉ(i, j)−1
(
t̂[1](i) + t̂[1](j)

)
ĉ(i, j)−

(
t̂[1](i) + t̂[1](j)

)
, (14.17)

with
ĉ(i, j) = exp{−iĝ[2](i, j)} . (14.18)

This means that, for each pair i and j, the two-body part is the difference between the correlated term
and uncorrelated one.

For the third term of Eq. (14.14), n = 3, we have that

T̂
[3]

A =
∑
i<j<k

t̂
[3]

(i, j, k) , (14.19)

where

t̂
[3]

(i, j) = ĉ(i, j, k)−1
(
t̂[1](i) + t̂[1](j) + t̂[1](k)

)
ĉ(i, j, k)

−
(
t̂
[2]

(i, j) + t̂
[2]

(i, k) + t̂
[2]

(j, k)
)
−
(
t̂[1](i) + t̂[1](j) + t̂[1](k)

)
, (14.20)

with the definition
ĉ(i, j, k) = exp

{
− i
(
ĝ[2](i, j) + ĝ[2](i, k) + ĝ[2](j, k)

)}
. (14.21)

Also in this case, the correlated contribution is obtained by subtracting the uncorrelated two-body and
one-body terms.

We use the same approach to descrive the two-body interaction term. In this case te first term different
from zero is n = 2, therefore

V̂ A ≡ Ĉ+
A V̂AĈA =

A∑
n=2

V̂
[n]

A , (14.22)
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where

V̂
[2]

A =
∑
i<j

v̂[2](i, j) , (14.23)

with
v̂[2](i, j) = ĉ(i, j)−1v̂[2](i, j)ĉ(i, j) , (14.24)

and

V̂
[3]

A =
∑
i<j<k

v̂[3](i, j, k) , (14.25)

where we defined

v̂[3](i, j) = ĉ(i, j, k)−1
(
v̂[2](i, j) + v̂[2](i, k) + v̂[2](j, k)

)
ĉ(i, j, k)

−
(
v̂[2](i, j) + v̂[2](i, k) + v̂[2](j, k)

)
(14.26)

14.2 Representation as coordinates transformation

We express here the action of the operator ĉ(i, j) in coordinate space. The relative coordinate and
momentum of the identical fermions i and j are defined as

r = r(i)− r(j) and q̂ =
1

2
(p̂(i)− p̂(j)) . (14.27)

where the momenta are operators in coordinate space. The generator ĝ(i, j) ≡ ĝ(r, q̂), Eq. (14.7), can
be defined with a symmetric and hermitian form as

ĝ(r, q̂) =
1

2

{(
q̂ · r

r

)
s(r) + s(r)

(r

r
· q̂
)}

with r ≡ |r| , (14.28)

where s(r) is s suitable scalar function. The unitary operator ĉ(r,q) moves the relative position of the
interacting pair of particles from r at about r + s(r)r/r. The idea is that of defining the function s(r)
such as the particles remains always far from the region of the strongly repulsive core of the potential.

In coordinate representation, by expressing q̂ in operator terms, the action of the generator g(r, q̂)
on the wave function 〈r|φ〉 describing the relative motion of the two-independent particles is

1

~
〈r|ĝ|φ〉 = −i

(
1

2

∂s(r)

∂r
+
s(r)

r
+ s(r)

∂

∂r

)
〈r|φ〉 = −i 1

r
√
s(r)

s(r)
∂

∂r
r
√
s(r) 〈r|φ〉 . (14.29)

For the correlation operator we obtain

1

~
〈r|ĉ|φ〉 = exp

(
−1

r
√
s(r)

s(r)
∂

∂r
r
√
s(r)

)
〈r|φ〉 =

1

r
√
s(r)

exp

(
−s(r) ∂

∂r

)
r
√
s(r) 〈r|φ〉 . (14.30)

The last step can be verified by making a power expansion of the exponential.

It is convenient to make a change of variables

s(r)
∂

∂r
→ ∂

∂y
. (14.31)

We call the transformations between y e r, and viceversa, as Y (r) and R(y) respectively

r
Y−→ y = Y (r) ; y

R−→ r = R(y) , (14.32)
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and, by construction

R
(
Y (r)

)
= r ; Y

(
R(y)

)
= y . (14.33)

From the definition (14.31) we obtain the following equations

∂

∂r
Y (r) =

1

s(r)
;

∂

∂y
R(y) = s

(
R(y)

)
; y =

∫ R(y) dξ

s(ξ)
. (14.34)

We rewrite Eq. (14.30) in terms of y and R(y)

〈R(y)
r

r
|c|φ〉 =

1

R(y)

√
s
(
R(y)

) exp

(
− ∂

∂y

)
R(y)

√
s
(
R(y)

)
〈R(y)

r

r
|φ〉

=
R(y − 1)

R(y)

√√√√√s
(
R(y − 1)

)
s
(
R(y)

) 〈R(y − 1)
r

r
|φ〉 . (14.35)

The action of the exponential term consists in exchanging y → y−1 and in maintaining the direction
of r. We rewrite this transformation in terms of r

〈r|c|φ〉 =
R(Y (r)− 1)

r

√√√√s
(
R(Y (r)− 1)

)
s(r)

〈R(Y (r)− 1)
r

r
|φ〉 , (14.36)

and it inverse relation

〈r|c−1|φ〉 =
R(Y (r) + 1)

r

√√√√s
(
R(Y (r) + 1)

)
s(r)

〈R(Y (r) + 1)
r

r
|φ〉 . (14.37)

Since the transformations appear only as R(Y (r)± 1) we define the symbol

R±(r) ≡ R
(
Y (r)±

)
; R′±(r) =

∂

∂r
R±(r) =

s
(
R±(r)

)
s(r)

. (14.38)

therefore

〈r|ĉ|φ〉 =
R−(r)

r

√
R′−(r) 〈R−(r))

r

r
|φ〉 ; 〈r|ĉ−1|φ〉 =

R+(r)

r

√
R′+(r) 〈R+(r))

r

r
|φ〉 . (14.39)

The correlated relative distance can be expressed as

r = ĉ−1 r ĉ = R+(r)
r

r
. (14.40)

Analoguosly, the radial part of the momentum transforms as

q̂
r

= ĉ−1 q̂r c =
1√
R′+(r)

1

r
q̂rr

1√
R′+(r)

. (14.41)

with

〈r|q̂r|φ〉 = 〈r|r
r
· q̂|φ〉 = −i~ ∂

∂r
〈r|φ〉 . (14.42)

The correlated angular momentum is the same as the uncorrelated one

l̂ = ĉ−1 l̂ ĉ = ĉ−1 (r× q̂) ĉ = l̂ . (14.43)
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Figure 14.1: Example of transformation of coordinates R+(r) and of its inverse R−(r) due to the short-range
correlations. The uncorrelated transformation is indicated by the dotted line which is diagonal.

From the transformation presented above, it is possible to deduce the fact that, in coordinate space,
the action of every correlated operator b̂(r) can be described as that of uncorrelated operator evaluated
at a different distance

b̂(r) ≡ ĉ+ b̂(r) ĉ = ĉ−1 b̂(r) ĉ = b̂
(
R+(r)

r

r

)
(14.44)

This general description must be adapted to the physical situation under study. This means to find
a convenient coordinate transformation to describe the physical problem under investigation. There are
properties which R+(r) must have: it has to increase monotonically and must be differentiable in the full
dominion. Since the repulsive core of the potential is limited to short relative distances, the effect of the
short-range correlation is that of modifying the structure of the uncorrelated wave functions only in the
surroundings of the repulsive core. For a nuclear system, Fig. 14.1 shows that R+(r) is larger than the
diagonal, the correlated case, up to about 1.5 fm. After that distance the two transformations coincide.
This indicates that the effect of the transformation is that of moving away the interacting particles when
they are at relative distances within the repulsive core.

14.3 The correlated hamiltonian

We use the expression of the correlation operators in the coordinate space to write the various terms
of the correlated hamiltonian. The easiest term is the two-body term (14.24). In case of purely scalar
two-body interaction we obtain

v̂[2](i, j) = v
(
R+(rij)

)
, (14.45)

where rij is the distance between the i and j particles.
For the kinetic energy, there is a contribution of the uncorrelated term, as indicated by Eq. (14.15)

t̃[1](i) = t[1](i) (14.46)

The calculation of the two-body term (14.15) of the kinetic energy is presented here below
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The total kinetic energy of the fermion pair i e j is given by

t̂(i) + t̂(j) =
q̂2
ij

m
+

1

4m

(
p̂(i) + p̂(j)

)2
with q̂ij =

1

2

(
p̂(i)− p̂(j)

)
. (14.47)

Since the correlation term ĝ[2](i, j) commutes with the center of mass, only the term related to the
relative momentum is correlated

ĉ−1
(
t̂(i) + t̂(j)

)
ĉ =

1

m
ĉ−1q̂2

ij ĉ+
1

4m

(
p̂(i) + p̂(j)

)2
. (14.48)

We separate q̂ij in a radial and angular part

q̂2
ij = q̂+r ji q̂r ji +

l̂2ij
r2ij

, where q̂r =
r

r
· q and the angular momentum , l̂ = r× q̂ . (14.49)

By using the expressions (14.41) and (14.43) we obtain

ĉ−1q̂2
ij ĉ =

rij√
R′+(rij)

q̂+r ji
1

r2ijR
′
+(rij)

q̂r ji
rij√
R′+(rij)

+
l̂2ij(

R+(rij)
)2

≡ q̂+r ji
1(

R′+(rij)
)2 q̂r ji +

l̂2ij(
R+(rij)

)2 +mû[2](i, j) (14.50)

with the definition

û[2](i, j) ≡ 1/m(
R′+(rij)

)2
[

2
R′′+(rij)

rijR′+(rij)
− 5

4

(
R′′+(rij)

R′+(rij)

)2

+
1

2

R′′′+ (rij)

R′+(rij)

]
(14.51)

By considering terms up to the second order in the correlation we can express the hamiltonian as

Ĥ
[1]

+ Ĥ
[2]

=

A∑
i

t(i)

+

A∑
i<j

[
q+
r ij

1

2µr(rij)
qr ij +

l2ij
2µr(rij)r2

ij

]

+

A∑
i<j

[
ũ[2](i, j) + ṽ[2](i, j)

]
(14.52)

The first term is the uncorrelated kinetic energy, followed by a two-body term depending on the
relative momentum of the two interacting particles. The last term of the expression includes a two-body
part coming from the kinetic energy and by the correlated interaction. The latter ones is modified in a
way that does not present any more the strongly repulsive core.

The calculation continues by evaluating the minimum of the expectation value of this hamiltonian
following the variational principle

E(Φ, R±) = 〈Φ|Ĉ+(R−)ĤĈ(R−)|Φ〉 ' 〈Φ|Ĥ [1]
+ Ĥ

[2]|Φ〉 (14.53)

The variational quantities in the search for the minimum of the energy functional are the coordinate
transformation R±, and the set of single-particle wave functions defining the IPM state |Φ〉.
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The symbol ' in Eq. (14.53) is due the fact that we considered terms up to two-body in the expression
of the correlated hamiltonian. Since the definition of Ĉ (14.7) involves the presence of operators of any
order, up to A, this truncation implies an approximation in the use of the variational principle. Formally,
the search for the minimum is a sub-space of the Hamilton space, leads to an energy value greater
than the exact eigenvalue of the chosen hamiltonian (see Appendix A). However, in the present case,
the hamiltonian is modified, since some part is neglected. The contribution of the neglected parts can
increase or decrease the energy eiegenvalue, which is not any more an upper limit to the results.

Clearly, it is possible to go beyond the limit of two-body terms by considering terms od higher order,
for example tree-body terms

Ĉ = exp

−i∑
i<j

ĝ[2](i, j)− i
∑
i<j<k

ĝ[3](i, j, k)

 . (14.54)

All the procedure must be reconsidered by including the new term. The equations are rather compli-
cated, and usually the three-body terms are approximated.

14.4 Spin, and isospin, dependent correletions

All the presentation done so far has used purely scalar expressions of the correlation. The complexity
of the nuclear interaction requires that the correlations depend also by the spin and the isospin of the
interacting nucleons. For this purpose the generator of the unitary correlation operator is decomposed
in four different channels.

ĝ[2]
(
r, q̂, σ̂(i), σ̂(j), τ̂ (i), τ̂ (j)

)
=

{0,1}∑
ST

ĝ
[2]
ST (r, q̂)Π̂S ⊗ Π̂T , (14.55)

where we indicated with the symbol Π̂ the spin and isospin projection operators

Π̂S=0 =
1

4

(
1− σ̂(i) · σ̂(j)

)
; Π̂S=1 =

1

4

(
3 + σ̂(i) · σ̂(j)

)
(14.56)

Π̂T=0 =
1

4

(
1− τ̂ (i) · τ̂ (j)

)
; Π̂T=1 =

1

4

(
3 + τ̂ (i) · τ̂ (j)

)
. (14.57)

The unitary correlation operator is

ĈA = exp

−i∑
i<j

ĝ[2](rij , q̂ij , σ̂(i), σ̂(j), τ̂ (i), τ̂ (j)

 . (14.58)

Also in this case, a truncation to the two-body terms is adopted ĉ ≡ Ĉ2, therefore

ĉ = exp

−i {0,1}∑
ST

ĝ
[2]
ST (r, q̂)Π̂S ⊗ Π̂T

 =

{0,1}∑
ST

exp
(
−iĝ[2]

ST (r, q̂)
)

Π̂S ⊗ Π̂T . (14.59)

By using the projectors Π̂S,T it is possible to express the correlation operator as a sum of four, commuting,
correlation operators, one for each channel. With respect to the case of purely scalar correlation, there
are four correlation functions R+(r) to be determined. Usually the R±(r) are expressed by functions
containing parameters, and the search for the minimum is done by changing the values of these parameters.

In nuclear physics, UCOM has been applied by using relatively simple two-body potentials. For some
nuclei, Fig. 14.2 compares the results obtained with UCOM with those obtained with other microscopic
calculations, these latter ones are indicated by the arrows.
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Figure 14.2: Energie per nucleon obtained with UCOM for some nuclei by using a spin dependent potential.
The results on the left hand sides are obtained without correlations, while those on the right hand sides with
correlations. The red lines indicate the kinetic energies, the green ones the potential energies and the blues
lines the total energies. The values indicated by the arrows show the results obtained with other microscopic
calculations, Yakubowski for 4He and CBF for other nuclei.
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Chapter 15

The Coupled Cluster Method

We presented the CBF theory in Chapt. 13 and the UCOM in Chapt. 14, where the solution of the
problem of the strongly repulsive core of the microscopic interactions is concentrated on the definition
of the short-range correlation. The language used in these two theories is completely different from that
proposed in the Part III of these notes. From the linguistic point view, the Coupled Cluster Method
(CCM) is a bridge between the two languages used so far. From the physics point of view it is an
approach strictly related to the Statistical Mechanics even though it adopts the concepts of particle and
hole states taken from Field Theory. The essential point is that, also in this case, the basic quantity of
the theory is the correlation function, which in this case, is described in terms of particle-hole excitations.

15.1 The many-body state in the CCM

In the description of the many-body system, each eigenstate |Ψ〉 of the total hamiltonian Ĥ can be
expressed as linear combination of Slater determinants formed by single-particle states obtained in the
IPM framework (Cap. 2). By using the language presented in Chapter 5, each Slater determinant is
characterized by a certain number of particle-hole (p− h) excitations. Obviously, the Slater determinant
describing the IPM ground state does not have any excitation of this type. There are Slater determinant
containing one-particle one-hole (1p − 1h) excitations, states with (2p − 2h), and so on, up to consider
excitations with Ap−Ah.

A way of describing this situation is that of defining operators indicating the number of p-h excitations.
For example, for 1p− 1h we have the operator

Ŝ1 =
∑
ph

Zphâ
+
p âh , (15.1)

for 2p− 2h the operator

Ŝ2 =
1

(2!)2

∑
p1h1p2h2

Zp1h1p2h2
â+
p1 â

+
p2 âh2

âh1
(15.2)

and for 3p− 3h the operator

Ŝ3 =
1

(3!)2

∑
p1h1p2h2

Zp1h1p2h2p3h3 â
+
p1 â

+
p2 â

+
p3âh3 âh2 âh1 (15.3)

and so on. The determination of the values of the Z coefficients is the aim of the CCM which uses the
variational principle.

193
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Since the hamiltonian includes the two-body interaction term, the simplest type of excitation induced
by the hamiltonian is given by the action of Ŝ2 on the IPM ground state |Φ0〉. This action produces
a Ŝ2 |Φ〉 component of the eigenstate |Ψ〉 of the total hamiltonian Ĥ. This component considers those
states where the two fermions occupying the h1 and h2 states below the Fermi surface are promoted such
as to occupy the p1 and p2 states above the Fermi surface. It is possible to conceive states where this
happens without the intervention of the residual interaction of the hamiltonian. This means that the
excitations of 2p − 2h pairs is done independently one of the other one. The simplest case of this type
is that of a Slater determinant with 4p − 4h excitations where the two pairs of 2p − 2h excitations are
not related among them. In general, the components of the total wave function described by excitations
of this type are described by applying m-times the Ŝ2 operator. In this case, the component of the total
wave function is

1

m!
Ŝm2 |Φ0〉 ,

where the 1/m! term takes care of the double counting. The total contribution of 2m-particles and
2m−holes is:

∞∑
m=0

1

m!
Ŝm2 |Φ0〉 = eŜ2 |Φ0〉 . (15.4)

Obviously, for m > A/2 there are not excitations, therefore the sum is, in fact, truncated. However, it
is convenient to formally express the contribution of the various p − h excitations by using exponential
expressions.

The contribution to the total wave function of 3p− 3h independent excitations is

1

p!
Ŝp3 |Φ0〉 .

The contribution of a set of m 2p− 2h and p 3p− 3h excitations all independent of each other is

1

m!p!
Ŝp3 Ŝ

m
2 |Φ0〉 .

Since the excitations are independent of each other, the operators Ŝ2 and Ŝ3 commutes. This means that
all the indexes p and h identifying the creation and destruction operators are different from each other.
By expressing everything in terms of infinite sums we obtain for the total contribution the expression

eŜ2+Ŝ3 |Φ0〉 ,

and systematically continuing with np− nh excitations we arrive to the expression

eŜ2+Ŝ3+···+ŜA |Φ0〉 .

In the interaction between the various particle clusters it is possible to excite also 1p− 1h states. For
this reason, it is possible to write

|Ψ〉 = eŜ |Φ0〉 with Ŝ =

A∑
n=1

Ŝn . (15.5)

A different method to describe the same kind of physics is that of expressing the Ĥ eigenstate as

|Ψ〉 =

(
1 +

A∑
n=1

F̂n

)
|Φ0〉 , (15.6)
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with the definition

F̂n ≡
1

(n!)2

∑
p1···pn,h1···hn

Λp1···pn,h1···hn â
+
p1 · · · â+

pn âhn · · · âh1 , (15.7)

where the amplitudes Λ are numbers.
The two operators Ŝn and F̂n describe the same state in terms excitations of np − nh type. The

relation between these two pictures is

F̂1 = Ŝ1

F̂2 = Ŝ2 +
1

2
Ŝ2

1

F̂3 = Ŝ3 + Ŝ2Ŝ1 +
1

6
Ŝ3

1

F̂4 = Ŝ4 + Ŝ3Ŝ1 +
1

2
Ŝ2

2 +
1

2
Ŝ2Ŝ

2
1 +

1

24
Ŝ4

1

F̂5 = · · ·

These expressions clarify the difference between these two types of operators. The operators Ŝn describe
connected clusters of np − nh excitations, while the operators F̂n describe all the possible np − nh
excitations, also those induced by non-connected excitations clusters.

15.2 The CCM equations

We obtain here a set of equations which allows the determination of the amplitudes Z of the equations
(15.1, 15.2, 15.3). We write the Schrödinger equation, and express the wave function by using Eq. (15.5)

E0 |Ψ0〉 = Ĥ |Ψ0〉 = ĤeŜ |Φ0〉 . (15.8)

We consider the overlap of this equation on states of the type

〈Φ0| â+
h1
âp1

〈Φ0| â+
h2
â+
h1
âp1 âp2

〈Φ0| â+
h3
â+
h2
â+
h1
âp1 âp2 âp3 . (15.9)

It is convenient to rewrite the Ŝ operators by using the expression

Ŝ =
∑
n 6=0

SnĈ
+
n (15.10)

where the Sn are numbers, and the Ĉ+
n operator represents the set of the n pairs of creation and destruc-

tion operators which characterize it

Ĉ+
n = â+

p1 · · · â+
pI âhI · · · âh1

. (15.11)

Let’s multiply the Schrödinger equation, on the left hand side, by e−Ŝ

e−ŜĤeŜ |Φ0〉 = e−ŜĤ |Ψ0〉 = e−ŜE0 |Ψ0〉 = e−ŜE0e
Ŝ |Φ0〉 = E0 |Φ0〉 , (15.12)

and, therefore, by projecting on the 〈Φ0| state we have

E0 = 〈Φ0|e−ŜĤeŜ |Φ0〉 = 〈Φ0|ĤeŜ |Φ0〉 . (15.13)
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The last equality has been obtained by considering that

〈Φ0| e−Ŝ = 〈Φ0|
∞∑
n=0

(Ŝn)n

n!
= 〈Φ0| Ŝ0 = 〈Φ0| , (15.14)

because Ŝn>0 contains creation operators above the Fermi surface such as 〈Φ0| â+
p = 0.

By projecting the eiegenvalue equation (15.12) on states containing particles and holes, such as those
indicated in Eq. (15.9), we encounter equations of the type

〈Φ0|Ĉne−ŜĤeŜ |Φ0〉 = 0 with n > 0 . (15.15)

The expressions (15.15) indicates a set of connected equations related to different number of particle-hole
excitations, indicated by the operator Ĉn.

It is possible to express the operator term of Eq. (15.12) as a set of connected commutators

e−ŜĤeŜ = Ĥ + [Ĥ, Ŝ] +
1

2!

[
[Ĥ, Ŝ], Ŝ

]
+

1

3!

[[
[Ĥ, Ŝ], Ŝ

]
, Ŝ
]

+ · · ·

= Ĥ +
∑
n

Sn[Ĥ, Ĉ+
n ] +

1

2

∑
n,m

SnSm
[
[Ĥ, Ĉ+

n ], Ĉ+
m

]
+ · · · (15.16)

This expression inserted in Eq. (15.15) generates a system of equations whose unknown are the amplitudes
Sn.

The expression (15.16) has an infinite number of terms. In reality one has to realize that, in the
calculation of the expectation value with respect to |Φ0〉 there is a truncation of the sum. This can be
understood by considering that the Ĉ+

n commutes [Ĉ+
n , Ĉ

+
m] = 0. This implies that, in the evaluation of

the contractions only those indexes relating the free indexes of the hamiltonian with the fixed ones of the
C+
n operators, are different from zero. For this reason the series is naturally truncated. For example, for a

hamiltonian containing only two-body terms, i.e. a two-body interaction, the sum ends with commutators
up to the fourth order:

〈Φ0|ĈnĤ|Φ0〉+
∑
m

Sm 〈Φ0|Ĉn[Ĥ, Ĉm]|Φ0〉

+
1

2!

∑
m,p

SmSp 〈Φ0|Ĉn
[
[Ĥ, Ĉ+

m], Ĉ+
p

]
|Φ0〉

+
1

3!

∑
m,p,q

SmSpSq 〈Φ0|Ĉn
[[

[Ĥ, Ĉ+
m], Ĉ+

p

]
, Ĉ+

q

]
|Φ0〉

+
1

4!

∑
m,p,q,r

SmSpSqSr 〈Φ0|ĈI
[[[

[Ĥ, Ĉ+
m], Ĉ+

p

]
, Ĉ+

q

]
, Ĉ+

r

]
|Φ0〉 = 0 (15.17)

This because the two-body term of the hamiltonian contains four creation and destruction operators, and
it is necessary a Ĉ+ to saturate the creation and destruction operators of the Ĉ applyed to 〈Φ0|.

Once the number of p−h excitations defining the bra state, that is ĈI , has been defined, the expression
(15.17) indicates a closed, and finite, set of connected equations whose unknows are the Sn, strictly related
to the Z amplitudes of Eqs. (15.1, 15.2, 15.3).

15.3 Approximations

The computational scheme presented in the previous sections requires the calculation of Eq. (15.13) to
obtain the ground state energy. This calculation can be done by solving Eqs. (15.17) which give the Sn



15.4. EXCITED STATES 197

amplitudes. If in Eq. (15.10) only the Ĉ1 and Ĉ2 operators are chosen, then the following equations must
be solved ∑

ph

〈Φ0|â+
h âpe

−ŜĤeŜ |Φ0〉 = 0 , (15.18)

and ∑
p1h1p2h2

〈Φ0|â+
h2
â+
h1
âp2 âp1e

−ŜĤeŜ |Φ0〉 = 0 . (15.19)

The computational cost of this calculation scales as the square of the number of the hole states and the
fourth power of the particle states. The solutions obtained in this manner are not satisfactory, and it is
necessary to improve the approximation inserted in the truncation of the sum of Eq. (15.10). On the
other hand, the use of C3 requires a very heavy computational cost scaling with the cube of the number
of hole states, and the fifth power of the particle states.

For this reason, in actual calculation it is adopted a different strategy. Let’s define an eigenvalue
problem related to the bra state as

〈Φ0| Λ̂e−ŜĤeŜ = E0 〈Φ0| Λ̂ , (15.20)

where Λ̂ is an operator, called of de-excitation, defined as:

Λ̂ = Î +
∑
I>0

Λ̂IĈI = Î +
∑
ph

λphâ
+
h âp +

∑
p1h1p2h2

λp1p2h1h2
â+
h2
â+
h1
âp2 âp1 · · · , (15.21)

where the λ are numbers. Since
〈Φ0|ĈI>0|Φ0〉 = 0 ,

the result of Eq. (15.20) is trivial

〈Φ0|Λe−ŜĤeŜ = 〈Φ0| e−ŜĤeŜ = 〈Φ0|E0 = E0 〈Φ0|Λ .

The idea is to consider the eigenvalue equation (15.20) and to project it on Ĉ+
n |Φ0〉 states

〈Φ0|Λ(e−ŜĤeŜ − E0)Ĉ+
n |Φ0〉 = 0 with n > 0 . (15.22)

At this point, the problem is solved in two steps. First the CCM equations (15.17) are solved, and
then the (15.18) and (15.19) in case of truncation up to C2. Once the aplitudes S1 and S2 have been
obtained, the Eqs. (15.22) are solved to obtain the Λn, in the present case one has to consider Λ1 and
Λ2 only.

15.4 Excited states

The most common application of the CCM concern the ground state of the many-body system. On the
other hand, it is possible to consider, in the CCM framework, a set of equations which describe the excited
states. Essentially, it is matter of reformulating the CCM equations in such a way to rewrite them as the
equation of motion described in Chapter (10.1). In analogy to what has been done there, let’s define an
operator Q̂+

ν which generates the excited states of the system.

|Ψν〉 = Q̂+
ν |Ψ0〉 = Q̂+

ν e
Ŝ |Φ0〉 , (15.23)

where ν indicates the quantum numbers which identify the excited state. The Schrödinger equations
which must be satisfied are:

Ĥ |Ψν〉 = ĤQ̂+
ν |Ψ0〉 = ĤQ̂+

ν e
Ŝ |Φ0〉 = Eν |Ψν〉 = EνQ̂

+
ν e

Ŝ |Φ0〉 (15.24)

Ĥ |Ψ0〉 = ĤeŜ |Φ0〉 = E0e
Ŝ |Φ0〉 . (15.25)
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Let’s multiply by e−Ŝ the first equation

e−ŜĤ |Ψν〉 = e−ŜĤQ̂+
ν e

Ŝ |Φ0〉 e−ŜEνQ̂+
ν e

Ŝ |Φ0〉 = EνQ̂
+
ν e
−ŜeŜ |Φ0〉 = EνQ̂

+
ν |Φ0〉 ,

and by Q̂+
ν e
−Ŝ the second equation

Q̂+
ν e
−ŜĤ |Ψ0〉 = Q̂+

ν e
−ŜĤeŜ |Φ0〉 = E0Q̂

+
ν e
−ŜeŜ |Φ0〉 = E0Q̂

+
ν |Φ0〉 ,

where we used the fact that [Q̂+
ν , S] = 0. By subtracting the second equation from the first one, and

using the commutation between Q̂+
ν and Ŝ, we obtain(

e−ŜĤeŜQ̂+
ν − Q̂+

ν e
−ŜĤeŜ

)
|Φ0〉 = (Eν − E0)Q̂+

ν |Φ0〉 . (15.26)

Eq. (15.26) can be rewritten as

[Ĥeff , Q̂
+
ν ] |Φ0〉 ≡

[
e−ŜĤeŜ , Q̂+

ν

]
|Φ0〉 = (Eν − E0)Q̂+

ν |Φ0〉 ≡ ωνQ̂+
ν |Φ0〉 (15.27)

with the obvious definition of the effective hamiltonian Ĥeff and of the excitation energy ων . This equation
is analogous to Eq. (10.3) which is the base of the equation of motion.

15.5 Applications

The CCM calculations are very complicated, also from the numerical point of view. The application of
the method are limited to relatively simple systems, with very well defined simmetries.

The parameters to be considered to define the problems are the choice of Cn, i.e. the number of
p−h to be considered. This choice sets the configuration space, specifically the number of particle states,
those above the Fermi surface. On the basis of these choices the CCM calculations are catalogued with
different acronyms. Unfortunately each research field has its own way of making this catalogue, and this
create some problem in comparing calculations carried out in different fields.

We summarize here below some important points of the results obtained which are, in any case, in
continuous evolution, this is also related to the advances of the computer facilities.

Systems interacting with Coulomb interaction
In this case the hamiltonian is well defined and it contains only the two-body scalar term of Coulomb
type. The electronic properties of simple atoms and molecules are evaluated. The results obtained
by restricting to the Ĉ2 choice compare well with to those obtained with the GFMC. The differences
between binding energies, and also ionization energies, of some molecules studied are of 1-2 %. The
comparison with the experimental value has differences of the same order of magnitude.

Nuclear systems
The comparison between CCM results and those obtained with other microscopic calculations has
been done for spherical systems and for nuclear interactions which exclude tensor and spin-orbit
terms. For the few-body system 4He the differences between the binding energies calculated with
GFMC and with CCM with approximations related to Ĉ2, are of about 6% circa. The other system
studied is the 16O nucleus. In this case the theoretical results of reference is obtained with FHNC-
1. The differences are strictly related to the approximations used to deal the Ĉ2 choice. With an
approximation there are differences of about 20%, with another approximation the differences are
even smaller than 1%. This only means that FHNC-1 and the approximation chosen for the CCM
calculations describe the same physics. There are recent calculations for Ca isotopes carried out
with microscopic interactions taken from effective field theories which are extremely promising in
the comparison with experimental data.
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He atoms drops
A very useful system to verify the validity of the many-body theories is that of the He drops. Is is
matter of constructing many-body systems where the fundamental particles are helium atoms. The
system can be bosonic in case the nuclei of the helium atoms are 4He, or fermionic in case they are
3He. The interaction is purely scalar and contains a repulsive core, as discussed in Chapter 3.4. It
is interesting to study how these system get bound as a function of the particle numbers.

N VMC CCM

He4 20 - 30.44 - 32.73
40 - 93.44 - 98.17

He3 20 4.12 3.44
40 - 1.44 - 2.55

Table 15.1: Binding energies in K, for bosonic systems, He4, and fermionic systems, He3, of helium atoms.
Adapted from [Nav02].

We show in Tab. 15.1 the comparison between the CCM results and those obtained with VMC. The
relative differences between the results of the two calculations are smaller for the bosonic than for
the fermionic systems. The bosonic system are more bound than the fermionic ones. The fermionic
system with 20 atoms is not bound while it is bound that with 40 particles.
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Chapter 16

Effective theories

The aim of the theories so far presented was the solution of the Schrödinger equation with microscopic
hamiltonians, those presented in Chapter 3 which contain interaction tailored to reproduce the properties
of two-body, and, eventually, also three-body, systems. Since these interactions have a strongly repulsive
core at small interacting distances, these theories developed different non-perturbative methods to handle
this feature of the interaction.

In the theories inspired to the Quantum Field Theory, the approach consists in transforming the
microscopic interaction and build another interaction where the repulsive core is not present any more.
For example, in Brueckner’s theory this goal is acheived by summing all the ladder diagrams, see Chapter
8. In theories inspired to the Statistical Mechanics, such as CBF, the problem of the repulsive core is
tackled by using a correlation functions which inhibits the two interacting particles to get too close to
each other. In all these approaches the hamiltonian is a quantity external to the theory which is developed
independently of its form.

The effective theories tackle the many-body problem by using a different point of view. The idea is to
find an effective hamiltonian which, working on a sub-space of the full Hilbert space, is able to reproduce
the same eigenvalues of the true hamiltonian. This means that the equation

Ĥ|Ψn〉 = En|Ψn〉 , (16.1)

is substituted by the equation
Ĥeff |Ψeff

n 〉 = En|Ψeff
n 〉 . (16.2)

Formally, we can find the relation between Ĥ and Ĥeff by using the separation of the hamiltonian in
two parts Ĥ = Ĥ0 + Ĥ1, and by considering the projection operator P̂ on the Ĥ0 eigenstates, and the
operator Q̂ which is its complement

P̂ 2 = P̂ ; Q̂2 = Q̂ ; Q̂ = Î− P̂ ; P̂ Q̂ = 0 , (16.3)

where
Ĥ0P̂ |Ψn〉 = E0

nP̂ |Ψn〉 ⇒ P̂ Ĥ0|Ψn〉 = E0
nP̂ |Ψn〉 , (16.4)

since P̂ and Ĥ0 commute. Eq. (16.1) can be rewritten as

Ĥ1|Ψn〉 = (En − Ĥ0)|Ψn〉 , (16.5)

and by multiplying to the left hand side P̂ , we obtain

P̂ Ĥ1|Ψn〉 = P̂ (En − Ĥ0)|Ψn〉 = (En − Ĥ0)P̂ |Ψn〉
P̂ Ĥ1(P̂ + Q̂)|Ψn〉 = (En − Ĥ0)P̂ |Ψn〉

P̂ Ĥ1Q̂|Ψn〉 = (En − Ĥ0 − P̂ Ĥ1)P̂ |Ψn〉 . (16.6)
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Working in analogous manner, and by multiplying on the left hand side by Q̂, we have

Q̂Ĥ1P̂ |Ψn〉 = (En − Ĥ0 − Q̂Ĥ1)Q|Ψn〉 . (16.7)

By using the properties of these two operators, we can rewrite the two equations as

(P̂ Ĥ1Q̂)Q̂|Ψn〉 = (En − Ĥ0 − P̂ Ĥ1P̂ )P̂ |Ψn〉 (16.8)

(Q̂Ĥ1P̂ )P̂ |Ψn〉 = (En − Ĥ0 − Q̂Ĥ1Q̂)Q̂|Ψn〉 . (16.9)

We obtain Q|Ψn〉 from Eq. (16.9) and we substitute it in Eq. (16.8), the result is

(P̂ Ĥ1Q̂)
1

En − Ĥ0 − Q̂Ĥ1Q̂
(Q̂Ĥ1P̂ )P̂ |Ψn〉 = (En − Ĥ0 − P̂ Ĥ1P̂ )P̂ |Ψn〉[

Ĥ0 + P̂

(
Ĥ1 + Ĥ1Q̂

1

En − Ĥ0Q̂Ĥ1Q̂
Q̂Ĥ1

)
P̂

]
P̂ |Ψn〉 = EnP̂ |Ψn〉 . (16.10)

This equation has the structure of Eq. (16.2) and it is possible to identify the effective interaction with
the term

V̂ eff = P̂

(
Ĥ1 + Ĥ1Q̂

1

En − Ĥ0Q̂Ĥ1Q̂
Q̂Ĥ1

)
P̂ . (16.11)

A first consideration is that the effective interaction depends on the energy En. A second consideration,
more important in the present context, is that the effective interaction depends on P̂ , or how the hamil-
tonian is separated. The effective interaction is strictly related to the theory where it is used. Every
theory has its own effective interaction.

The derivation presented above has a purely formal value to show how, in principle, it is possible to
rigorously define the effective theories and relate them to the microscopic theories. From the practical
point of view, finding the solution of these equations is as complicated as to solve directly the original
Schrödinger equation.

The problem is tackled with phenomenological approaches, by using interactions containing parame-
ters whose values are chosen such that the theory can reproduce selected empirical data of the many-body
system under investigation. Clearly the aim of the theory is to make predictions on different quantities
whit respect to those used to define the interaction. These phenomenological effective interactions have
different characteristics with respect to the microscopic ones, especially they do not have the strongly
repulsive core at short distances. In general, the effective theories tackle, and solve, the many-body
problem in a much simpler manner than the microscopic theories. For this reason they are widely used in
the comparison with the experimental data, especially if the systems to be described are very complex,
that is without evident symmetries. Effective interactions are widely used in mean-field approaches such
as HF and DFT. The connection between effective and microscopic theories is a very active research field.



Chapter 17

The Fermi liquid theory

17.1 Introduction

One of the effective theories of major success is that of the Fermi liquids formulated by L. V. Landau at
the end of the 50’s of last century and perfected by other authors, mainly of the Russian school. The basic
idea is that a system of interacting particles can be described by a set of non-interacting quasi-particles.
This step is far from being trivial. It is possible to add a particle to a set of non-interacting quasi-particles
with the only condition that the state of the new particle must be above the Fermi surface. This system
will remain stable. When the interaction is switched on the added fermion can induce particle-hole (p−h)
excitations which will conduct the system to decay in a new ground state. Also the energy of the added
fermion will be modified, and this case can be interpreted as the state of the added fermion is unstable
and decays. The idea that all the states of non-interacting fermions can be transformed in quasi-particle
states, i.e. dressed by the interaction, is wrong. On the other hand, if the energy of the added fermion is
very closed to the Fermi energy, the Pauli exclusion principle blocks the possibility of decaying since the
density of the accessible final states is very small, if not even zero. Therefore, it is plausible to assume
that those states closed to the Fermi surface can be described in terms of quasi-particle states.

The theory of the Fermi liquids was originally formulated by Landau to describe infinite fermionic
systems, especially the fermionic liquid helium, composed by fermionic atoms since their nuclei are those
of the isotope 3He. The Landau theory is an excellent example of effective theory and its success pushed
towards its extension to treat finite systems and atomic nuclei.

17.2 Adiabatic continuity

The basic idea of the Fermi liquid theory is the possibility of transforming a many-body system of non-
interacting particles in a system of interacting particles by adiabatically switching on the interaction. We
have already used this trick in Sect. 6.4 as a theoretical-mathematical expedient to link the two systems.
In the case of Fermi liquid theory the assumption has a more phenomenological ground, therefore it
deserves a deeper discussion in order to define better the validity and its limits.

To clarify better the situation, we consider a one-dimensional toy model, where the particles interact
with a potential which allows a factorization of the time and space dependent terms

V̂ (x, t) = −V0(t)Vx(x) , (17.1)

The depth of the potential changes with the time between the initial value V0(1) and the final one V0(2).
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The single-particle Schrödinger equation is

i~
∂

∂t
φ(x, t) = Ĥ(t)φ(x, t) =

(
− ~2

2m

∂2

∂x2
+ V̂ (x, t)

)
φ(x, t) . (17.2)

If we assume that V0(t) changes its value in a sensitive manner with respect to the initial value, and also
with respect to the kinetic energy, much more slowly of the changes of the particle the wave function, we
can search for an adiabatic solution which consider V0(t) as a constant

φadia(x, t) ' φV0(t)(x)e−
i
~EV0(t)t , (17.3)

where EV0(t) is the eigenvalue of the time independent Schrödinger equation of which φV0(t)(x) is eigenstate

Ĥ(t)φV0(t)(x) = EV0(t) φV0(t)(x) . (17.4)

By inserting the expression (17.3) in Eq. (17.2) we obtain

i~
∂

∂t
φadia(x, t) = Ĥ(t)φadia(x, t) = EV0(t) φadia(x, t) + i~

(
∂φadia(x, t)

∂V0(, t)

)(
∂V0(t)

∂t

)
. (17.5)

The assumption that the expression (17.3) is eigenstate of the hamiltonian becomes more valid the smaller
becomes the second term of the expression, in other words, when the derivative of V0(t) with respect to
the time becomes small. If the rate of changes of V (t) is sufficiently small with respect to the times
involved in the study, it is possible to reach the final value V0(2) by making small changes of the solution,
starting from V0(1) up to when the new value is reached. The essential point is that this procedure does
not allows discontinuities. For example, if the initial state is a bound state, also the final one must be
a bound state. There is no possibility to reach a final state which contains particles in the continuum,
a ionized atomic state, for example. The same can be said for the phase transitions, which cannot be
described by this procedure.

17.3 The concept of quasi-particle

The properties of fermionic system with translational invariance, called Fermi gas, have been presented in
Sect. 2.3. The single-particle wave functions are plane waves characterized by a wave number k related
to momentum by the relation p = ~k, Eq. (2.40). The eigenstates of this system are Slater determinant
formed by plane waves. In order to define the eigenstate of this system it is sufficient to indicate which
eigenstates of k are occupied. For this reason, it is convenient to use the distribution function n(k), which
indicates the probability density of finding a fermion with module of k between k and k+dk. The distribu-
tion function depends only on the module of the wave vector for the isotropy of the medium. In the ground
state the distribution function is n(k) = Θ(kF−k) where kF is the Fermi wave number and Θ the step func-
tion.


k

kF



n



1


Figure 17.1: Distribution function n(k) for the
Fermi gas ground state.

The distribution function n(k) for the ground state of the
Fermi gas is shown in Fig.17.1.

By using the language of Chapter 5, we can say that
the excited states of this system are generated by the
creation of particle-hole, (p − h), pairs. The description
of excited states whose excitation energies are smaller
with respect to the total energy of the system is done by
considering small fluctuations δn(k) of the distribution
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n(k) of the ground state. The ground state energy is
modified by these fluctuations by the value

δE =
∑
k

~2k2

2m
δn(k) . (17.6)

The single particle energy is obtained as functional
derivative of the energy δE/δn(k) = ~2k2/2m. Since removing a particle, i.e. creating a hole state,
reduces the value of the total energy, then δn(k) must be negative. Obviously, the contrary is valid for
the creation of a particle.

These are considerations referred to a gas of non-interacting fermions. The situation is more com-
plicated when the interaction between fermions becomes active. The idea of Landau is to go from the
description of a system of non-interacting fermions, which we shall call Fermi gas henceforth, to that of
interacting fermion system, which we shall call real system, by adiabatically switching on the interaction.
In this procedure there is the assumption that the evolution of the Fermi gas ground state leads to the
ground state of the real system. It is worth to notice that this assumption does not exclude that in the
real system some states can be formed, but they disappear when the interaction is switched off.

Let’s add to the Fermi gas a particle with k > kF, and then let’s switch on the interaction. In this
way a state of the real system has been obtained. We can say that we added a quasi-particle with wave
number k to the ground state of the real system. In analogy, we call quasi-hole of wave number k < kF

the situation where a fermion is removed by the Fermi gas and then the interaction is activated.

There are properties of the system described by operators which commute with the hamiltonian and
they are the same in the Fermi gas and the real system; for example the number of particles, the electric
charge, the current, the spin. For this reason, the quasi-particles can be characterized by quantum
numbers indicating the particles momentum p, spin, electric charge, etc.

The description of the excitations of a real system in terms of creation and destruction of quasi-
particles is restricted to a limited time window. The times of these excitations must be shorter than
those required by the system to return in its ground state. Since this latter effect is due to the elastic
scattering of the quasi-particles, we can say that the time required by the excitation of a quasi-particle
pair must be smaller of the typical time required by the elastic scattering of the quasi-particles. On the
other hand, these times must be sufficiently long to ensure that the quasi-particle has a defined energy
in agreement with the energy-time relation ∆E∆t ≥ ~.

For what we have outlined above, the quasi-particles conserve all the particle quantum numbers,
therefore also the feature of being fermions. For this reason, the quasi-particle momentum distribution
in the real system is represented by Fig. 17.1, and the notion of Fermi surface remains valid also for the
quasi-particles. The excitation of the system is measured by the deviation

δn(k) = n(k)− n0(k) (17.7)

where n0(k) indicates the quasi-particle distribution of the ground state, represented in Fig. 17.1.

The notion of quasi-particle is valid only when the values of δn(k) are remarkably different from zero
for k ' kF. The statement that the real system is composed by quasi-particles filling all the states up to
the Fermi surface, is wrong. The quasi-particles is an elementary excitation of the real system for states
which are close to the ground state. This means that the excitation energy is much smaller than the
binding energy. The Fermi liquid theory does not provide information on the system ground state but it
aims to a description of small fluctuation around it.

In this theory, the energy of the system E is assumed to be a functional of the momentum distribution
function n(k). In the Fermi gas this energy is the sum of the kinetic energies of the single particle, as it
is described by Eq. (17.6). For a real system the situation is more complicated. If n0(k) is modified by
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a quantity δn(k), the variation of the energy up to the first order is given by

δE =
∑
k

εk δn(k) , (17.8)

this expression defines
εk = δE/δn(k) . (17.9)

For k > kF, εk this is the variation of the energy when a particle is added, therefore it is the energy of the
quasi-particle. The definition of εk is related to the energy fluctuation of the total energy of the system.
In this theory, it is not possible to obtain information on the total energy of the system which is not
the sum of the quasi-particle energies. This because, once a particle with k is added, the energy of the
system changes, and the energy of a new particle εk′ cannot be obtained by using (17.9) whose variation
is done with respect to the old state which did not contain the particle k.

For k = kF, εk is the energy acquired by adding one particle to the Fermi surface. The new state is
the ground state of the system with A+ 1 particles. We can write the equation

εkF = E0(A+ 1)− E0(A) ≡ µ , (17.10)

where µ = ∂E0/∂A is, by definition, the chemical potential.
The expression of the energy variation (17.8) is valid up to the first order. This allows a description

of situations dominated by excitations of a single quasi-particle. In general, this is not sufficient since
the density of quasi-particle is so large that it is not possible to neglect their interaction. This indicates
the need to go beyond the first order, and to consider also the second one

δE =
∑
k

ε0k δn(k) +
1

2

∑
k

∑
k′

f(k, k′)δn(k)δn(k′) . (17.11)

where the f(k, k′) term which describes the interaction between the quasi-particles is defined as the
second functional derivative, with the property f(k, k′) = f(k′, k). We called ε0k the quasi-particle energy
in absence of interaction.

Up to now, we did not considered the presence of quasi-particle spin. The quasi-particles have the
fermion characteristics, and we treat the spin 1/2 case, by indicating with s its third component. In
this case, the system is not any more homogeneous since the spin orientation defines a direction in the
space. For this reason all the quantities which we have previously defined as dependent on k only, must
be considered dependent on k and s, and the sums on k becomes sums on k and s = ±1/2. Specifically,
we have that f(k, k′)→ f(k, s; k′, s′) and the symmetry properties become

f(k, s; k′, s′) = f(−k,−s;−k′,−s′) = f(k,−s; k′,−s′) = f(k′, s′; k, s) . (17.12)

Once k and k′ have been defined, the only differences between the f functions are due to the fact that
the directions of the spins of the two interacting particles are parallel or anti-parallel. For this reason, it
is convenient to define symmetric and antisymmetric terms of the interaction as

f(k, s; k′, s) = fs(k,k′) + fa(k,k′) , (17.13)

f(k, s; k′,−s) = fs(k,k′)− fa(k,k′) . (17.14)

The fa and fs terms depend only on the k and k′ vectors, which means on the modules of the two vectors
and on the relative angle. For this reason, they can be expanded in power of Legendre polynomials Pl:

fs(a)(k,k′) = fs(a)(k, k′, cosθ) =
∑
l

f
s(a)
l (k, k′)Pl(cos θ) . (17.15)
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Since the quasi-particles are defined on the Fermi surface one has k = k′ = kF, therefore it is possible to
eliminate the dependence on modules of the wave numbers in the fl. The dimensions of these coefficients
are those of an energy. It is common practice the use of dimensionless coefficients obtained by multiplying
the fl by the density of states at the Fermi surface

Fl ≡ ρε(εF)fl =
VD

2π2

kF

~2
m∗fl , (17.16)

where we used the expression (2.64) of the density of states

ρε(εF) =
VD

4π2

(
2m∗

~2

)3/2

ε
1/2
F =

VD

2π2

m∗

~2
kF . (17.17)

The quantities V and D, defined in Chapter 2.3, are, respectively, the volume of the system and the
fermions degeneration, which in this chapter we consider to be only that due to the spin, therefore
D = 2. Since we are talking of quasi-particles we indicated with m∗ their effective mass.

The usefulness of the theory is due to the fact that only few Fl are required to obtain a good description
of the fermionic system under study. The values of Fl are determined by reproducing few empirical data.
With these few parameters the theory provides predictions on other independent observables.

17.4 Equilibrium properties

17.4.1 Effective mass and specific heat

The velocity of the quasi-particle can be defined by using analogies with the free particles. In the latter
case the single-particle energies are the kinetic energies mv2/2. In this analogy, we can define one cartesian
component, α, of the velocity as

(vk)α =
1

~
∂εk
∂kα

, (17.18)

and, therefore, for an isotropic system, we have that

|vk| ≡ vk =
~k
m∗

(17.19)

In principle m∗ depends on k, but, as we have already discussed, the quasi-particles are defined on the
Fermi surface, therefore m∗ has a single, well defined value. The empirical datum used to select the value
of m∗ is the specific heat per unit of volume, defined as variation of the internal energy of the system
with respect to the temperature, Eq. (2.72), divided by the volume

cv =
1

V
Cv =

1

V

∂E

∂T
. (17.20)

We consider temperature variations such as T/TF � 1. The energy fluctuations of the energy can be
expressed as

δE =
∑
k,s

εk,sδn(k, s) . (17.21)

An increase of the temperature generates an increase of the quasi-particle number above the Fermi surface
of the order δn(k, s). In principle there is also an increase of the energy E due to the interaction between
quasi-particles but this is of the order of (T/TF )3 and, by the assumption done above, it is negligible.

Because of Eq. (17.21), we can calculate the specific heat of a real system can be calculated as that of
system of non-interacting quasi-particles. The calculation of Sect. 2.3 is repeated keeping in mind that
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we are handling quasi-particles, instead of particles, therefore, the effective mass m∗ has to be considered.
We use the expression (2.74) and obtain

cv =
1

V
Cv =

1

V
k2

BTρε(εF)
π2

3
=

1

2
D
m∗kF

3
k2

BT (17.22)

where we considered the expression (17.17) of the density of states. The value of the effective mass of
the quasi-particles can be obtained by measuring the specific heat of a system of interacting fermions.

17.4.2 Sound speed and compressibility

In the appendix C.3 we show that the relation between speed of sound vs in a fluid and the compression
modulus B is

vs =

√
B

mρ
. (17.23)

We calculate the compression modulus by using the definition of Eq. (2.60)

B =
1

K
= −V∂P

∂V
. (17.24)

Since the pressure is related to the variation of the energy with respect to the variation of the volume, it
is necessary to calculate the energy variations. We assume that the ground state energy E depends on a
function F of the particle density as

E = VF(ρ) = VF

(
A

V

)
. (17.25)

Since
∂ρ

∂V
= A

(−1

V2

)
=
−1

V
ρ , (17.26)

the pressure can be expressed as

P = −∂E
∂V

= −
[
F − ρ∂F

∂ρ

]
, (17.27)

and, therefore, the variation of the pressure becomes

∂P

∂V
= −

[
∂F

∂ρ

∂ρ

∂V
− ∂ρ

∂V

∂F

∂ρ
− ρ ∂

∂ρ

(
∂F

∂ρ

)
∂ρ

∂V

]
= −ρ

2

V

∂2F

∂ρ2
, (17.28)

and the compression modulus is

B = ρ2 ∂
2F

∂ρ2
. (17.29)

I use the expression (17.25) in the definition of chemical potential

µ =
∂E

∂A
=

∂

∂A
[VF] =

∂F

∂ρ
. (17.30)

The variation of the chemical potential is

∂µ

∂A
=

∂

∂ρ

(
∂F

∂ρ

)
∂ρ

∂A
=
∂2F

∂ρ2

1

V
. (17.31)
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By using the expression of the second derivative of F in the expression (17.29) we obtain

B = Aρ
∂µ

∂A
, (17.32)

and for the sound speed

v2
s =

B

mρ
=
A

m

∂µ

∂A
. (17.33)

The Fermi liquid theory provides the expression of ∂A/∂µ. In the box here below we show that A is
related to the variation of n(k) by the expression

dA =
∑
k,s

δn(k, s) =
∑
k,s

δ(εk − µ) ~vk dk . (17.34)

Let’s derive Eq. (17.34).

δn(k, s) = −dn
0(k, s)

dεk

∂εk
∂k

dk . (17.35)

At the end the calculation of the variation we shall make the limit k → kF.

The variation of the single-particle energy can be written as

dεk = d

(
~2k2

2m

)
= ~~k

m
dk = ~mvk

m
dk = ~vkdk . (17.36)

Let’s consider now the variation of nT (k, s) for an excited state, and for T > 0. Since the system is
composed by fermions, the expression of nT (k, s) is that of a Fermi-Dirac distribution

nT (k, s) =

[
exp

(
ε− µ
kBT

)
+ 1

]−1

, (17.37)

therefore
dnT (k, s)

dε
=
− 1

kBT
exp [(ε− µ)/(kBT )]

{exp [(ε− µ)/(kBT )] + 1}2
. (17.38)

In the limit T → 0, therefore for the ground state, the Fermi-Dirac distribution becomes a step
function Θ. For the property of the Dirac distribution δ, dΘ/dx = δ(x), we can write

lim
T→0

dnT (k, s)

dε
= −δ(ε− µ) , (17.39)

therefore, on the Fermi surface the expression is

δn(kF, s) = δ(εF − µ)~vkFdkF . (17.40)

A quasi-particle added to the system on top to the new Fermi energy must have an energy ε(µ+ dµ)
satisfying

dµ = ε(µ+ dµ)− ε(µ) = ~vkFdkF +
∑
k′,s′

f(k, s; k′, s′)δn(k′, s′) (17.41)

By using the expression (17.40) we have that

∂µ

∂µ
= 1 = ~vkF

∂kF

∂µ
+
∑
k′,s

f(k, s; k′, s)δ(εk′ − µ)~vk′
∂k′

∂µ
. (17.42)

The calculation of the sum on k′ and s′ is presented in the box.
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The sum on k′ is transformed by using the conventions presented in Sect. 2.3.∑
k′,s′

f(k, s; k′, s′)δ(εk′ − µ)~vk′
∂k′

∂µ

=
∑
s′

V

(2π)3

∫
d3k′ f(k, s; k′, s′)δ(εk′ − µ)~vk′

∂k′

∂µ

=
V

(2π)3

∑
s′

∫
dk′k′2

∫ 1

−1

d(cos θ)

∫ 2π

0

dφf(k, s; k′, s′)δ(εk′ − µ)~vk′
∂k′

∂µ
.

Since the variation between εkF and µ is very small, we can write, by considering that we are describing
a system of quasi-particles of effective mass m∗

εk − µ|k=kF ' dεk|k=kF = d

(
~2k
2m∗

)
k=kF

=
~2kF
m∗

dkF '
~2kF
m∗

(k − kF) ,

for the properties of Dirac’s δ distribution

δ(ax) =
1

|a|δ(x) ,

we can substitute in the integral

δ(ε′k − µ) =
m∗

~2kF
δ(k′ − kF) ,

which becomes ∑
k′,s′

f(k, s; k′, s′)δ(εk′ − µ)~vk′
∂k′

∂µ

=
V2π

(2π)3

∑
s′

∫
dk′k′2

∫ 1

−1

d(cos θ)f(k, s; k′, s′)
m∗

~2kF
δ(k′ − kF)~vk′

∂k′

∂µ

=
V

4π2

m∗kF
2

~2kF
~vkF

∂kF
∂µ

∫ 1

−1

d(cos θ) [f(kF, s; kF, s) + f(k, s; kF,−s)] .

Let’s use the expressions (17.13) and (17.14) of the f function and consider that, since on the Fermi
surface the interaction depends only on the angle between k e k′ whose modules are kF, we can use
the expansion in Legendre polynomials (17.15). We obtain the equation

∑
k′,s′

f(k, s; k′, s′)δ(εk′ − µ)~vk′
∂k′

∂µ

=
V

4π2

m∗

~2
kF~vkF

∂kF
∂µ

∫ 1

−1

d(cos θ) 2
∑
l

fsl (kF, kF)Pl(cos θ) .

Because of the orthogonality of the Legendre polynomials∫ 1

−1

dxPl(x) = 2δl,0 ,

we obtain ∑
k′,s′

f(k, s; k′, s′)δ(εk′ − µ)~vk′
∂k′

∂µ
=

V

π2

m∗ kF
~2

~vkF
∂kF
∂µ

fs0 (kF, kF) .
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We insert the result of the box in Eq. (17.42) and use the expression (17.17) of the density of states,
and the definition (17.16) of the dimensionless Landau coefficients

1 = ~vkF
∂kF

∂µ
+

V

π2

m∗ kF

~2
~vkF

∂kF

∂µ
fs0 (kF, kF)

= ~vkF
∂kF

∂µ
+ ρε(εF)fs0 (kF, kF)~vkF

∂kF

∂µ
= ~vkF

∂kF

∂µ
[1 + F s0 ] . (17.43)

From Eq. (17.34) we obtain
∂A

∂µ
=
∑
k,s

δ(εk − µ) ~vk
∂k

∂µ
(17.44)

Let’s use the definition (17.33) of speed of sound and consider that the sum on δ(εk−µ) is the density
of states ρε. We have that

A

mv2
s

=
ρε(εF)

1 + F s0
, (17.45)

from where

v2
s =

A

m

π2~2

Vm∗kF
(1 + F s0 ) =

π2~2

mm∗kF
ρ (1 + F s0 ) =

π2~2

mm∗kF

(
kF

3

3π2

)
(1 + F s0 ) =

~2kF
2

3mm∗
(1 + F s0 ) . (17.46)

It is remarkable the simultaneous presence of two masses, the mass of the particle m and that of the
quasi-particle m∗. The former mass is inserted because of the definition of mass density of the fluid, as
in traditional Statistical Mechanics. The latter one is the quasi-particle effective mass which takes care
that the interaction between particles modifies the density of states. Clearly, the particle interaction
enters in the expression of the speed of sound also with the term F s0 . When all the other variables are
kept constant, if the interaction is repulsive, i.e. F s0 > 0, the speed of sound increases. On the other
hand, values of F s0 < −1 generate imaginary sound speeds. In this case, the density fluctuations sums
and generate instability in the system.

17.4.3 Magnetic susceptibility

Another observable used to determine the values of the free parameters of the Fermi liquid theory is
the magnetic suscettibility χM . In presence of a magnetic field H, a particle modifies its energy by the
quantity −gµBs|H|, where g is the Landé factor, which we take equal to 2, and µB = e~/mc the Bohr
magneton. We call s = 1/2 the case where the fermion spin is parallel to the direction of the magnetic
field H, and s = −1/2 the opposite case.

In a real gas, the change of the energy implies also a change of the momentum distribution n(k, s).
In the system there are particles with both values of s. If the system is in equilibrium, the value of the
chemical potential µ has to be the same for all the particles, independently of the value of s, or, in other
words, the energy required to add a particle has to be the same. Since the particles with s = −1/2 have
acquired energy in presence of the magnetic field H the value of the Fermi energy is lowered by a factor
δkF with respect to the case without magnetic field. For the particles s = 1/2 the situation changes with
opposite sign, there is an increase of δkF of the Fermi surface.

Taking care of the isotropy of the system, therefore n(k, s) = n(k, s), the variation of the momentum
distribution is given by

δn(k, s) = −
(
∂n(k, s)

∂k

)
k=kF

δkF = − [−δ(k − kF)] (2s)δkF . (17.47)

The Dirac δ distribution is generated by the fact that, in the ground state, n(k, s) is a step function of k,
and, therefore, its derivative is the δ of Dirac (see the box in Sect.17.4.2). The term 2s = ±1 takes care
of the increase, or of the lowering, of the Fermi surface due to the presence of the magnetic field.
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Figure 17.2: Variation of the Fermi surface due
to the presence of the magnetic field H.

The variation of the quasi-particle energy is given by

δεkF = −gµBs|H|+ (2s)
∑
k′,s′

f(k, s; k′, s′)δn(k′, s′) ,

(17.48)
the term 2s = ±1 is inserted since s = 1/2 and s = −1/2
give different contributions. Let’s search for a solution of
the type

δεkF = −ηs|H| , (17.49)

where η is a constant to be defined. We consider that

dεk
d|k| =

~2|k|
m∗

, (17.50)

therefore

δkF =

∣∣∣∣ dεkd|k|

∣∣∣∣−1

k=kF

|δεkF | =
m∗

~2kF
η

1

2
|H| , (17.51)

for s = 1/2.
We sum on k′ and s′, and we have to consider that

the momentum distributions n(k, s) (17.47) are different
for the fermions with spin parallel or antiparallel to the

magnetic field direction. The calculation is done with the same strategy used for the evaluation of the
speed of sound. In the present case, we use the definition of the antisymmetric interaction of Eqs. (17.13)
and (17.14), and the expansion in Legendre polynomials (17.15). In this manner, we obtain the following
expressions

(2s)
∑
k′,s′

f(k, s; k′, s′)δn(k′, s′)

= (2s)
∑

s′=±1/2

V

(2π3)

∫
d3k′f(k, s,k′, s′)δ(k′ − kF)(2s′)

[
m∗

~2kF
η

1

2
|H|
]

=
V

(2π3)
(2π)(2s)

∫
dk′k′2δ(k′ − kF)

∫ 1

−1

d(cos θ)2fa(k, k′, cos θ)

[
m∗

~2kF
η

1

2
|H|
]

=
V

2π2
s

[
m∗

~2kF
η|H|

]
kF

2

∫ 1

−1

d(cos θ)
∑
l

fal (k, k′)Pl(cos θ)

=
V

2π2
s
m∗

~2kF
η|H|kF

2fa0 2 = F a0 sη|H|

By using this result in Eq. (17.48) we obtain

δεkF = −ηs|H| = −gµBs|H|+ F a0 sη|H| , (17.52)

from which we have

η [1 + F a0 ] = gµB ; η =
gµB

1 + F a0
. (17.53)

The magnetization energy per unit of volume is given by the product of the magnetic suscettibility
χM and the module of he magnetic field |H|. This corresponds to the sum of the variations of the
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quasi-particle energies which have magnetic field gsµB, due to the change of the momentum distribution
n(k, s).

M =
1

V
χM|H| =

1

V

∑
k,s

gsµBδn(k, s)

=
1

V
gµB

∑
s

s
V

(2π3)

∫
d3kδ(k − kF)

[
m∗

~2kF
(2s)η

1

2
|H|
]

= gµB
1

4π2

m∗kF

~2
η|H| .

The magnetic suscettibility per unit of volume is

1

V
χM =

M

|H| =
m∗kF

4π2~2

(gµB)2

1 + F a0
(17.54)

The values of the fundamental parameters of the theory of Landau, effective mass, scalar and spin-
dependent parts of the interaction f , are selected by using their relations with empirical quantities, specific
heat, speed of sound, magnetic suscettibility. There is the possibility to relate these parameters to more
fundamental properties of the hamiltonian [Pin66, Abr75, Gro91, Bru04]. In any case, the main interest
of the theory is to make predictions on phenomena not directly related to the observable quantities used
to determine the effective mass and the interaction.

17.5 Excitations

17.5.1 Transport equation

In this section, we shall present a description of the response of fermionic fluid excited by compression
waves, in the framework of the Fermi liquid theory.

Let’s consider a system containing some non homogeneous parts which are treated as small units in
local equilibrium. These parts are small in comparison with the total dimensions of the system, but
they are sufficiently large to contain a number of fermions sufficient to define a momentum distribution
function nk,s(r, t), where r is the vector defining the position of the sub-unit.

The presence of a quantity defined by the precise knowledge of the mometum ~k and of the position
r violates the Heisenberg uncertainty principle. The present description is valid only if the phenomena
under study are macroscopic. In other words, energy and momenta of the excitation must be much
smaller than those characterizing the particles, as well as the distances into play are much larger than
those between the basic particles composing the system. For example in the treatment of liquid helium
phenomena these assumptions are verified since the typical helium binding energies are much smaller of
the excitation energies of the helium atoms.

Let’s assume that the external perturbation which, locally, changes the density of the system has a
harmonic behaviour with frequency ~ω and transfers to the system a momentum q. The momentum
distribution of the fermion system subject to this perturbation can be expressed as

nk,s(r, t) = n0
k,s + δnk,s(r, t) = n0

k,s + δnk,s(q, ω)ei(q·r−~ωt) , (17.55)

where n0
k,s is the momentum distribution of the system in absence of perturbation. The approach is valid

for energy much smaller than the chemical potential ω << µ. We can express the energy fluctuations at
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the time t as

E(t) = E0 +
∑
k,s

∫
d3r εk,s δnk,s(r, t)

+
1

2

∑
k,s,k′,s

∫ ∫
d3rd3r′f(r,k, s; r′,k′, s′)δnk,s(r, t)δnk′,s(r

′, t) . (17.56)

We make some assumption on the properties of the interaction between the particles. A first one, already
used in the previous expression, is that the interaction does not depend on the time. The second one, is
related to the Galilean invariance: we assume that the interaction depends only on the distance r − r′

between the particles. Finally, we assume that the interaction is short-ranged, in the sense presented in
Chapter 3. This last assumption is not valid for the Coulomb interaction. The charged Fermi liquid must
be treated differently [Pin66].

Let’s consider an extremely short-ranged interaction by assuming

f(r,k, s; r′,k′, s′) = f(k, s; k′, s′)δ(r− r′) , (17.57)

therefore, the second term of Eq. (17.56) can be written as∫ ∫
d3rd3r′f(r,k, s; r′,k′, s′)δnk,s(r, t)δnk′,s′(r

′, t) =

∫
d3rf(k, s; k′, s′)δnk,s(r, t)δnk′,s′(r, t) ,

(17.58)
and

E(t) = E0 +

∫
d3rδE(r, t) , (17.59)

with

δE(r, t) =
∑
k,s

εk,sδnk,s(r, t) +
1

2

∑
k,s,k′,s

f(k, s; k′, s′)δnk,s(r, t)δnk′,s′(r, t) . (17.60)

The local excitation energy of the quasi-particle is defined as

ε̃k,s(r, t) ≡
∂E(r, t)

∂nk,s(r, t)
= εk,s +

∑
k′,s′

f(k, s; k′, s′)δnk′,s′(r, t) . (17.61)

In the approach of Landau the gas of quasi-particle gas is considered as a classic gas following the
Maxwell-Boltzmann statistics. Each particle, whose energy is ε̃k,s, is described by a classical hamiltonian.
Let’s consider a volume dr dk in the six-dimensional phase space and apply to the nk,s(r, t) distribution
the transport equation (D.24)

I(nk,s(r, t)) =
∂nk,s(r, t)

∂t
+∇rnk,s(r, t) · ∇pε̃k,s(r, t)−∇pnk,s(r, t) · ∇r ε̃k,s(r, t) . (17.62)

This expression is immediately identifiable with Eq. (D.24) by considering that ∇pε̃k,s = vk,s and
−∇rε̃k,s(r, t) = F. Let’s explicitly write Eq. (17.62) by using Eqs. (17.55) and (17.61)

I(nk,s(r, t)) =
∂nk,s(r, t)

∂t
+∇rδnk,s(r, t) · ∇pε̃k,s(r, t)

−

∇p[n0
k,s + δnk,s(r, t)] · ∇r[εk,s +

∑
k′,s′

f(k, s; k′, s′)δnk′,s′(r, t)]


=

∂nk,s(r, t)

∂t
+∇rδnk,s(r, t) · vk,s −

[
∇pn

0
k,s +∇pδnk,s(r, t)

]
·
∑
k′,s′

f(k, s; k′, s′)∇rδnk′,s′(r, t)

' ∂nk,s(r, t)

∂t
+∇rδnk,s(r, t) · vk,s −∇pn

0
k,s ·

∑
k′,s′

f(k, s; k′, s′)∇rδnk′,s′(r, t) (17.63)
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where we considered that ∇rεk,s = 0 since εk,s is constant and, in the last step, we neglected the second
order terms in δnk. The first two terms describe a flux of quasi-particles which move independently from
each other. The last term, which includes the interaction, can be though as the flux of the particles of the
ground state drifted by the interaction with the non homogeneous parts of the system. Without these
non homogeneous parts, δn would be constant, therefore, this term would be zero.

17.5.2 Continuity equation

Let’s consider the case when the collision integral I is negligible. This implies that the number of quasi-
particle collisions which brings them out of the counting of nk,s is very small. At zero temperature we
have that

∇pn
0
k,s = −vk,sδ(εk,s − µ) , (17.64)

and we remember that the values of p = ~k which have to be considered are closed to the Fermi surface.
By inserting this expression in Eq. (17.63) we obtain

∂nk,s(r, t)

∂t
+ vkδ(εk,s − µ) · ∇r

δnk,s(r, t) +
∑
k′,s′

f(k, s; k′, s′)δnk′,s′(r, t)

 = 0 . (17.65)

An equation describing the motion of all the particles of the system is obtained by summing on all the
values of k and s.

∑
k,s

∂nk,s(r, t)

∂t
+
∑
k,s

vk,s · ∇r

δnk,s(r, t) + δ(εk,s − µ)
∑
k′,s′

f(k, s; k′, s′)δnk′,s′(r, t)


=

∂

∂t

∑
k

nk,s(r, t) +
∑
k,s

∇rδnk,s(r, t) · vk,s +
∑

k,s,k′,s′

δ(εk,s − µ)f(k, s; k′, s′)∇rδnk′,s′(r, t) · vk,s

=
∂

∂t

∑
k,s

nk,s(r, t) +
∑
k,s

∇rδnk,s(r, t) · vk,s +
∑

k,s,k′,s′

δ(εk′,s′ − µ)f(k, s; k′, s′)∇rδnk,s(r, t) · vk′,s′

=
∂

∂t

∑
k

nk,s(r, t) +∇r ·
∑
k,s

δnk,s(r, t)

vk,s +
∑
k′,s′

δ(εk′,s′ − µ)f(k, s; k′, s′)vk′,s′


=

∂ρ(r, t)

∂t
+∇ · J(r, t) = 0 , (17.66)

where we have defined

ρ(r, t) =
∑
k,s

nk,s(r, t) , (17.67)

and

J(r, t) =
∑
k,s

δnk,s(r, t)

vk,s +
∑
k′,s′

δ(εk′,s′ − µ)f(k, s; k′, s′)vk′,s′

 ≡∑
k,s

δnk,s(r, t)jk,s . (17.68)

In the above calculation the properties f(k, s; k′, s′) = f(k′, s′; k, s) and |δnk′,s′(r, t)| = |δnk,s(r, t)| have
been taken into account. We also have to considered that the variations are always done on the Fermi
surface, therefore, |k| = |k′| = kF.



218 CHAPTER 17. THE FERMI LIQUID THEORY

Eq. (17.66) is evidently a continuity equation, and describes the conservation of the number of
particles of the system. The current generated by the quasi-particle motion is

jk,s = vk,s +
∑
k′,s′

f(k, s; k′, s′)δ(εk′,s′ − µ)vk′,s′ (17.69)

In absence of interaction, the current would correspond to vk,s as it would be in a classical treatment.
The second term appears since we are describing an interacting system. Adding a particle to the system,
in addition to the trivial contribution of the current generated by vk,s, there is the contribution due to
the interaction of the quasi-particle with all the other ones. This second terms, is sometime called drag
current as to describe the fact that the medium is dragged by the quasi-particle added to the system.

In an infinite system, with translational invariance, we can use the relation (17.19) in Eq. (17.69) to
relate the effective mass of the quasi-particle to the bare mass

~k
m

=
~k
m∗

+
∑
k′,s′

f(k, s; k′, s′)δ(εk,s − µ)vk′,s′ (17.70)

The calculation of the sum is presente in the box.

In this calculation the sum is transformed into an integral by using the conventions presented in Sect.
2.3. We consider the z-axis parallel to k without losing in generality We indicate with θ the angle
between k and k′ and vk,s = |vk|,s.∑

k′,s′

f(k, s; k′, s′)δ(εk′ − µ)vk′,s′ cos θ

=
∑
s′

V

(2π)3

∫
d3k′ f(k, s; k′, s)

m∗

~2k
δ(k′ − kF)vk′,s′ cos θ

=
V

(2π)3

∑
s′

∫
dk′k′2

∫ 1

−1

d(cos θ)

∫ 2π

0

dφ f(k, s; k′, s)
m∗

~2k
δ(k′ − kF)vk′,s′P1(cos θ)

=
V

(2π)3
(2)(2π)

m∗

~2kF
kF

2vkF

∫ 1

−1

d(cos θ)
∑
l

fsl Pl(cos θ)P1(cos θ)

=
Vm∗kF

2π2

∑
l

fsl

∫ 1

−1

dxPl(x)P1(x) = F s1
1

2

2

3
δl,1vk =

1

3
vkF

s
1

where we have considered that vkF,1/2 = vkF,−1/2 = vkF

~k
m

=
~k
m∗

+
1

3
F s1 vk =

~k
m∗

(
1 +

F s1
3

)
(17.71)

therefore
m∗

m
= 1 +

F s1
3

(17.72)

Since the value of m∗ is related to the specific heat, see Sect. 17.4.1, this relation gives new information
on the interaction f(k, s; k′, s′). We remark that for F s1 ≤ −3 the system becomes unstable since negative
masses would be obtained.
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17.5.3 Collective excitations

The external perturbation of the system is harmonic ad has momentum q and energy ω. The variation
(17.55) of the distribution can be expressed as

nk,s(r, t) = n0
k,s + δnk,s(q, ω)ei(q·r−~ωt) (17.73)

By inserting this expression in the transport equation (17.63) we obtain

∂

∂t

[
δnk,s(q, ω)ei(q·r−ωt)

]
+∇r

[
δnk,s(q, ω)ei(q·r−ωt)

]
· vk,s

− ∇pn
0
k,s ·

∑
k′,s′

f(k, s; k′, s′)∇r

[
δnk′,s′(q, ω)ei(q·r−ωt)

]
= 0 . (17.74)

and therefore

(q · vk,s − ω)δnk,s(q, ω)−∇pn
0
k,s · q

∑
k′,s′

f(k, s; k′, s′)δnk′,s′(q, ω) = 0 . (17.75)

and also
(q · vk,s − ω)δnk,s(q, ω) + vk,s · q

∑
k′,s′

f(k, s; k′, s′)δnk′,s′(q, ω) = 0 . (17.76)

Since for Eq. (17.64) δ(εp − µ) = δ(k − kF)m∗/~2kF we can rewrite the variation δnk,s as

δnk,s(q, ω) = δ(k − kF)vkFuk,s , (17.77)

and, then, we obtain the equation

(q · vk,s − ω)uk,s(q, ω) + vk,s · q
∑
k′,s′

f(k, s; k′, s′)uk′,s′(q, ω) = 0 . (17.78)

Without loss of generality, we defined the z in the direction of q. We indicate with θ the angle between
q and k and with θ′ the angle between k′ and q. We use the symbols q, k, k′ to indicate the modules of
the relative vectors. Since everything happens at the Fermi surface k = k′ = kF, the interaction depends
only on the angle between the two vectors k and k′, therefore

f(k, s; k′, s′) ≡ f [cos(θ − θ′); s, s′] =
π2~2

Vm∗
F [cos(θ − θ′); s, s′] , (17.79)

where we used the definition (17.64) of F . We transform the sums in Eq. (17.78) as integrals following
the conventions of Sect. 2.3, and obtain

(qvkF,s cos θ − ω)u(θ, φ, σ) + qvkF,s
cos θ

8π

∑
s′

∫ 2π

0

dφ′
∫ 1

−1

d(cos θ′)F [cos(θ − θ′); s, s′]u(θ′, φ′, σ′) = 0 .

(17.80)
In analogy to what has been done for the interaction in the Eqs. (17.13) and (17.14) we separate u in a
symmetric and antisymmetric parts of the spin

u(θ, φ,±1/2) = us(θ, φ)± ua(θ, φ) . (17.81)

We insert these definitions in Eq. (17.80), we divide by qvkF,s and by using the new variable ξ ≡ ω/qvkF,s
we obtain two independent equations for the unknowns us and ua.

(cos θ − ξ)us(θ, φ) +
cos θ

4π

∫ 2π

0

dφ′
∫ 1

−1

d(cos θ′)F s[cos(θ − θ′)]us(θ′, φ′) = 0 (17.82)

(cos θ − ξ)ua(θ, φ) +
cos θ

4π

∫ 2π

0

dφ′
∫ 1

−1

d(cos θ′)F a[cos(θ − θ′)]ua(θ′, φ′) = 0 (17.83)
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A formal solution of these equations can be obtained by expanding the us,a(θ, φ) in spherical harmonics
Yl,µ(θ, φ). The independence of the known terms of the angle φ indicates that one obtains independent
equations each of them characterized by the quantum number µ. This means that it is possible to classify
the solutions by following the value of µ. Longitudinal solutions are those for µ = 0, transverse solutions
are those for µ = 1, quadrupole solutions those for µ = 2, etc. .

The most interesting excitation mode is the longitudinal one for the symmetric solution. This situation
describe a density compression mode which propagates in the q direction and which involves all the
particles independently of their spin direction. It is an excitation mode very similar to that of the
traditional sound propagation in classical systems. For this reason it is called zero sound opposite to the
first sound which is that traditional mode described in the hydrodynamical regime.

Qe present here a simple model to describe the zero sound. Let’s assume that the interaction is
independent of θ and θ′, therefore, in expansion in terms of Lagrange polynomials F s[cos(θ − θ′)], only
the term F s0 remains. By inserting this interaction in Eq. (17.82), and working out the integrals we
obtain

(cos θ − ξ)us(θ, φ) +
cos θ

2
F s0

∫ 1

−1

d(cos θ′)us(θ′, φ′) = 0 . (17.84)

We search for a solution of type

us(θ, φ) = C
cos θ

ξ − cos θ
(17.85)

where C is a constant. By inserting this solution in Eq. (17.84) we obtain

ξ

2
log

ξ + 1

ξ − 1
=

1

F s0
(17.86)

The integral to be calculated is ∫ 1

−1

d(cos θ)
cos θ

ξ − cos θ
.

Since ∫
dx

x

ξ − x = − [x+ ξ log(x− ξ)] + costante ,

Eq. (17.84) becomes

(cos θ − ξ)C cos θ

ξ − cos θ
+

cos θ

2
F s0C {ξ[log(ξ + 1)− log(ξ − 1)]} = 0 ,

from which we obtain Eq. (17.86).

In case of a repulsive interaction F s0 > 0 there is always a real solution with ξ > 1. This corresponds to
a wave without damping. The phase velocity is greater than vkF . If there is a weak attraction between the
quasi-particles −1 < F s0 < 0, Eq. (17.86) has a complex solution which represents a damped oscillation.
If F s0 < −1 the zero sound oscillation is unstable, i. e. it is not formed.

It is relevant to analyze the differences between zero and first sound in order to clarify their physics
content. There are two aspects to be considered. The first one is the interaction between the particles,
and the second one their elastic collisions. Both effects are present in a realistic description of the system.
The zero sound appears when the interaction dominates, while the first sound is present when the role
of the elastic collisions becomes dominant.

The first sound propagates since the perturbation, due to a local change of the density, has an
oscillation frequency ~ω much smaller than that of the elastic collisions between quasi-particles. Since



17.5. EXCITATIONS 221

the number of these collisions is large for each oscillation, it is possible to reach a local thermal equilibrium
in a macroscopic part of the system, large if compared to the interparticle distance, but localized. This
perturbation moves in the systems as a consequence of the particle collisions, phenomenon which quenches
the amplitude since it transfers energy from the localized region to the full system. If the temperature
increases also the propagation speed increases since it increases the number of elastic collisions. Also the
effect of the quenching increases. From the mathematical point of view this situation is described by the
transport equation (17.63) where the collision integral plays an important role.

The opposite physical conditions are those which allows the formation, and propagation, of the zero
sound. The oscillation frequency ~ω is much larger of the frequency of the elastic collisions between the
particles. In this situation the interaction between quasi-particles, which is active at times much smaller
than ω−1, and to the typical average times of elastic collisions, dominates. The zero sound propagates
since the particles are correlated by their interaction. The number of elastic collisions is relatively small
for each oscillation and the perturbation is not damped. In the zero temperature limit there are not
elastic collisions and the zero sound propagates indefinitely. In obtaining the solution for the zero sound
propagation we used the transport equation (17.63) by neglecting the collision integral.

The transition between these two collective modes of sound propagation happens in a situation where
~ω is comparable with the frequency of the elastic collisions. In this case, there is no zero sound since the
collisions are numerous enough to immediately damp the oscillation. On the other hand, the collisions
are too few to thermalize and produce a collective motion. There is no first sound propagation.

The existence of zero sound was predicted by Landau at the end of the 50’s of the last century, and
experimentally identified in 1966 in the fermionic liquid helium [Abe66]. The experiment was carried
out by analyzing the absorption of sound waves with different frequencies at a fixed temperature, and by
identifying the presence of the three physical regimes above described, first sound, transition region and
zero sound.
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Appendix A

Variational principle

Let’s consider a system composed by many fermions and described by the hamiltonian Ĥ. The corre-
sponding Schrödinger equation is

Ĥ|Ψ〉 = E|Ψ〉 , (A.1)

where |Ψ〉 is the eigenstate describing the system. We consider only the ground state of the system. We
shall show that, by considering the energy of the system as functional of Ψ, the search for its minimum,
i.e. the solution of the equation

δE[Ψ] = δ
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 = 0 , (A.2)

corresponds to the solution of the Schrödinger equation (A.1).
The definition of energy (A.2) can be written as

E[Ψ] 〈Ψ|Ψ〉 = 〈Ψ|Ĥ|Ψ〉 , (A.3)

By doing the variation we obtain

δE[Ψ]〈Ψ|Ψ〉 + E[Ψ]δ (〈Ψ|Ψ〉) = δ
(
〈Ψ|Ĥ|Ψ〉

)
δE[Ψ]〈Ψ|Ψ〉 = δ

(
〈Ψ|Ĥ|Ψ〉

)
− E[Ψ]δ (〈Ψ|Ψ〉)

δE[Ψ] =
1

〈Ψ|Ψ〉
[
δ
(
〈Ψ|Ĥ|Ψ〉

)
− E[Ψ]δ (〈Ψ|Ψ〉)

]
= 0 .

This term is zero if the part between squared brackets is zero

δ
(
〈Ψ|Ĥ|Ψ〉

)
− E[Ψ]δ (〈Ψ|Ψ〉) = 0 , (A.4)

and, since E is a number,

〈δΨ|Ĥ − E|Ψ〉+ 〈Ψ|Ĥ − E|δΨ〉 = 0 . (A.5)

Since Ψ is a complex function, the variation of 〈Ψ| is independent of that of |Ψ〉. This because the real
and the imaginary parts of |Ψ〉 vary independently from each other. This can be seen by substituting in
(A.5) |iδΨ〉 to |δΨ〉.

−i〈δΨ|Ĥ − E|Ψ〉+ i〈Ψ|Ĥ − E|Ψδ〉 = i
[
−〈δΨ|Ĥ − E|Ψ〉+ 〈Ψ|Ĥ − E|Ψδ〉

]
= 0 . (A.6)
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Since the equations (A.5) and (A.6) must be verified at the same time, one has

〈δΨ|Ĥ − E|Ψ〉 = 0 e 〈Ψ|Ĥ − E|δΨ〉 = 0 . (A.7)

Since |δΨ〉 is arbitrary the previous equations are always satisfied if

[H − E] |Ψ〉 = 0 , (A.8)

which is the Schrödinger equation (A.1).

Let’s consider now a trial wave function |Φ〉

|Φ〉 =

∞∑
n=0

Dn|Ψn〉 (A.9)

expressed as linear combination of eaigenstates of Ĥ

Ĥ|Ψn〉 = En|Ψn〉 (A.10)

where the Dn are complex numbers.
The energy functional can be expressed as

E[Φ] =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 =

∑
n,n′

〈Ψn′ |D∗n′ĤDn|Ψn〉∑
n,n′

〈Ψn′ |D∗n′Dn|Ψn〉

=

∑
n,n′

D∗n′Dn〈Ψn′ |Ĥ|Ψn〉∑
n,n′

D∗n′Dn〈Ψn′ |Ψn〉
=

∑
nn′

D∗n′DnEnδn,n′∑
n

|Dn|2
≥

∑
n

|Dn|2E0∑
n

|Dn|2
= E0 . (A.11)

This inequality shows how the energy obtained by searching for the minimum of the energy functional in
a subspace of trial wave functions gives an energy value larger than the correct ground state eigenvalue
of the Ĥ hamiltonian.



Appendix B

Creation and destruction operators
in angular momentum coupling

In this appendix, we consider the definition of fermion creation and destruction operators in case one it
is concerned to exploit the spherical symmetry of the system.

In case of a one-body hamiltonian with spherical symmetry and spin-orbit interaction, the quantum
numbers characterizing the single particle wave function are: the principal quantum number n, the
quantum number l related to orbital angular momentum, j related to the total angular momentum and
also m, the projection of j on the quantisation axis z. In the following we shall not explicitly write the
dependence on n and l.

The action of the creation operators is:

â+
j,m|0〉 = |jm〉 (B.1)

which indicates that the â+
j,m puts a particle on the |jm〉 state. All the states with the same j have the

same energy this is 2j + 1 degeneracy. For this reason it is necessary to specify also m.

The 2j+1 components of â+
j,m behave such as to form an irreducible spherical tensor [Edm57] satisfying

the equations [
Ĵz, â

+
j,m

]
= mâ+

j,m (B.2)[
Ĵ±, â

+
j,m

]
= [j(j + 1)−m(m± 1)]

1/2
â+
j,m±1, (B.3)

where we indicated with J± and Jz the spherical components of the generalized angular momentum of
the system.

One of the properties characterizing the irreducible spherical tensor of rank k is that its 2k + 1
components transform in those of its hermitian conjugate as:(

T̂ kq

)+

=
(
T̂ k−q

)
(−)q . (B.4)

This means that the conjugate of â+
j,m, i.e. âj,m, is not a component of an irreducible spherical tensor,

while the operator
˜̂aj,m = (−)j+maj,−m , (B.5)

satifies this requirement.
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It is useful to use operators which are irreducible spherical tensor in the description of system with
rotational invariance. For this reason, the use of ˜̂aj,m is preferred with respect to âj,m. The anticommu-
tation properties are: {

â+
j,m, â

+
j,m′

}
= 0

{
˜̂aj,m, ˜̂aj′,m′

}
= 0 (B.6){

˜̂aj,m, â
+
j′,m′

}
= (−)j+mδj,j′δ−m,m′ (B.7)

It is possible to create a state composed by many particles by iteratively apply a+
j,m to the vacuum

state and by using the rules of the angular momentum coupling. For example, the creation operator of
two particles becomes:

Â+(j1j2; JM) =
1

(1 + δj1j2)
1/2

[
â+
j1
⊗ â+

j2

]J
M

(B.8)

where we have defined: [
â+
j1
⊗ â+

j2

]J
M

=
∑
m1m2

〈j1m1j2m2|JM〉â+
j1,m1

â+
j2,m2

(B.9)

where 〈j1m1j2m2|JM〉 is a Clebsch-Gordan coefficient. The destruction operator for a particle pair
becomes:

˜̂
A(j1j2; JM) = (−)J+M

[
Â+(j1j2; J −M)

]+
= − 1

(1 + δj1j2)
1/2

[
˜̂aj1 ⊗ ˜̂aj2

]J
M

(B.10)

and the operator creating a particle-hole pair is:

Û(j1j2; JM) = [â+
j1
⊗ ˜̂aj2 ]JM (B.11)

When j1 = j2, the two particles are identified by m1 6= m2 therefore, since the above equations include
a sum on the m1 and m2 it is necessary to divide by

√
2 since there is a double counting of identical

configurations. For example, the configuration where the the particle 1 has m1 and that of particle 2 m2,
is identical to that where the particle 1 has m2 and particle 2 m1.



Appendix C

Speed of sound in fluids

In this appendix, we obtain the expression for the speed of sound in a classical fluid. The derivation is
quite standard [Blu06]. We consider classical fluids, non quantum fluids, and combine continuity and
Euler equations.

We call u(r, t) the local velocity of an infinitesimal mass of fluid, and ρm the mass density, related to
the number density by the relation ρm = mρ where m is the mass of the particle whose ρ represents the
probability that it is present in a unitary volume.

C.1 Continuity equation

The mass of a fluid which, in the unit of time, goes out from a closed surface S is given by∫
S

ρm u · dS . (C.1)

This is a surface integral and the direction of dS is given by a vector orthogonal to plane touching
the infinitesimal surface element. The loss of flux implies a lowering of the fluid density in the volume
contained by the surface S ∫

S

ρm u · dS = − ∂

∂t

∫
V

ρm dV (C.2)

where the integral in the right hand side is a volume integral.
This is the continuity equation expressed in the integral form. We obtain a differential expression of

this equation by applying the divergence theorem to the term of left hand side∫
S

ρm u · dS =

∫
V

ρm∇ · udV = −
∫
V

∂ρm

∂t
dV , (C.3)

where we have inverted the order of the integration and differentiation operations in the last integral. By
equating the two integrands we obtain

∇ · (ρmu) = −∂ρm

∂t
, (C.4)

where ρmu is commonly called current density. The one-dimensional expression is

∂(ρmu)

∂x
= −∂ρm

∂t
. (C.5)
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C.2 Euler equation

In a fluid, the rate of change of a vector property X(r, t) depending on the position and on the time t is
described by a convective derivative which is a total derivative with respect to the time.

DX

Dt
=
∂X

∂t
+

3∑
i=1

∂X

∂xi

∂xi
∂t

=
∂X

∂t
+ (u · ∇)X . (C.6)

We consider an infinitesimal element of the fluid. The external force acting on this element is given
by the convective derivative of the velocity u. This force induce a gradient on the pressure generated by
the considered element on the other parts of the fluid. The pressure gradient per mass units is given by
the equation

Du

Dt
= − 1

ρm
∇P , (C.7)

where the − sign is due the fact that the force is external to the volume considered and a positive force
induces a negative pressure gradient.

By writing the explicit expression of the convective derivative we obtain

− 1

ρm
∇P =

∂u

∂t
+ (u · ∇)u , (C.8)

and in one dimension we have

− 1

ρm

∂P

∂x
=
∂u

∂t
+ u

∂u

∂x
. (C.9)

C.3 Velocity of the sound

Let’s consider a situation where the sound propagates in a specific direction. We use the one-dimensional
expressions of the continuity and Euler equations. The latter one can be written as

u
∂ρm

∂x
+ ρm

∂u

∂x
= −∂ρm

∂t
. (C.10)

We divide by ρm and use the variable s = (δρm)/ρm

u
∂s

∂x
+
∂u

∂x
= −∂s

∂t
. (C.11)

We consider sound waves with small amplitudes. This means that the density changes are on small
distance scale with repect to the fluid dimensions, and therefore those of the sound propagation. The
quadratic terms in u are negligible, and also the term where the fluid velocity u multiplies the density
variation δs/δx. By using these approximations, the previous equation becomes

∂u

∂x
= −∂s

∂t
(C.12)

and the Euler equation

− 1

ρm

∂P

∂x
=
∂u

∂t
(C.13)

By using the definition of compression modulus (2.60) we have

B = −V∂P
∂V

= − A

ρm

∂P(
− V
ρm
∂ρm

) = ρm
∂P

∂ρm
, (C.14)
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from which δP = Bδs, We can express the equation (C.13) as

∂u

∂t
= − B

ρm

∂s

∂x
. (C.15)

We insert the expression of δu obtained by this equation in (C.12), and obtain

B

ρm

∂2s

∂x2
=
∂2s

∂t2
. (C.16)

Possible solutions of this equation are
s ∝ ei(kx−ωt) , (C.17)

which inserted in (C.16) gives the relation

B

ρm
k2 = ω2 . (C.18)

Therefore, the speed of propagation of the sound wave is

vs =
ω

k
=

√
B

ρm
. (C.19)
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Appendix D

Boltzmann transport equation

In this appendix we provide a derivation of the classical transport equation of Boltzmann. In this
derivation the the motion of a single particle is described by the three components of its position r and
by the three components of its velocity v. The goal is to find the variations of the distribution function
f(r,v, t). The number of particles which, at the time t, are in the infinitesimal volume dV of the six
dimensional phase space described by r and v is given by f(r,v, t). In other words, is if A is the particle
number, the probability of finding a particle in the volume dV at the time t is given by (1/A)f(r,v, t).

The distribution function defines completely the state of the system. For example, the particle local
density ρ(r, t), whatever is their velocity, is obtained by integrating on the velocities

ρ(r, t) =

∫
d3v f(r,v, t) . (D.1)

Let’s consider the case where there are not collisions among the particles. External forces, whose
vector sum, at the time t, is given by F(r, t), are acting on the system. The time variation of position
and velocity of the individual particle is given by

r′ = r(t+ dt) = r(t) + v(t)dt , (D.2)

v′ = v(t+ dt) = v(t) +
F(r, t)

m
dt . (D.3)

The distribution function describing, at the time t, the system in a volume dV evolves at the time
t+dt both because it explicitly depends on time, but also because of the variation of r e v. We can write
the new distribution function as

f(r′,v′, t+ dt) = f(r′,v′, t)dt+
∂f

∂t
dt+

3∑
i=1

∂f

∂xi
ẋidt+

3∑
i=1

∂f

∂vi
v̇idt , (D.4)

where the dot on the letter indicates the time partial derivative. We can define the total derivative as

Df

Dt
=
∂f

∂t
+

3∑
i=1

∂f

∂xi
ẋi +

3∑
i=1

∂f

∂vi
v̇i , (D.5)

or in vector form
Df

Dt
=
∂f

∂t
+ v · (∇rf) +

1

m
F · (∇vf) , (D.6)

where the subscripts indicate that the gradients are calculated with respect to the coordinates or to the
velocities.
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In a collisionless situation and for conservative external forces, i.e. independent of the velocities,
there is a conservation of the particle flux in the volume dV. This statement can be expressed in terms
of current conservation

∂f

∂t
+∇(fv) = 0 , (D.7)

which in the six-dimensional r v space becomes

∂f

∂t
+

3∑
i=1

∂(fẋi)

∂xi
+

3∑
i=1

∂(fv̇i)

∂vi
= 0 . (D.8)

Therefore

∂f

∂t
+

3∑
i=1

[
∂f

∂xi
ẋi + f

∂ẋi
∂xi

]
+

3∑
i=1

[
∂f

∂vi
v̇i + f

∂v̇i
∂vi

]
= 0 , (D.9)

and

Df

Dt
+ f

3∑
i=1

(
∂ẋi
∂xi

+
∂v̇i
∂vi

)
= 0 . (D.10)

Since the hamiltonian is conservative, the Hamilton equations are valid

ẋi =
∂H

∂pi
=

∂H

m∂vi
, (D.11)

−ṗi = −mv̇i =
∂H

∂xi
, (D.12)

∂ẋ

∂xi
=

∂

∂xi

[
∂H

m∂vi

]
=

1

m

[
∂2H

∂vi∂xi

]
=

∂

∂vi

[
1

m

∂H

∂xi

]
= −∂v̇i

∂vi
. (D.13)

Therefore
Df

Dt
= 0 . (D.14)

The presence of collision between the particle modifies Eq. (D.14) as

Df(r,v, t)

Dt
= ∆+ −∆− , (D.15)

where we indicated with ∆− the lowering of the value of f because of the particles that, in the physical
volume dV = dr, after the collision have a velocity different from v, and with ∆+ the increase of the
value of f because of the particle which have initially a value of the velocity different from v, and then,
after collision have a velocity between v and v + dv values. All this changes happen in the unit of time.

Let’s make some assumptions to evaluate these two terms.

1. The mean free path of each particle is much larger than its dimensions.

2. Short-range interactions.

3. Binary collisions. Collisions betwee three, or even more particles are negligible.

4. Only elastic collisions.
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We evaluate first ∆−. Let’s consider a particle with velocity v having a collision with another particle
of initial velocity w. We call v′ and w′ the velocities after the collision. Since we assumed that the
collision is elastic, because of the momentum and kinetic energy conservation we obtain,

v + w = v′ + w′ (D.16)

v2 + w2 = (v′)2 + (w′)2 . (D.17)

The modules of the relative velocities V = v −w e V′ = v′ −w′ do not change

|V| = |V′| . (D.18)

We call σv,w→v′,w′ the elastic cross section of this collision which is invariant under time reversal, t→ −t,
therefore,

σv,w→v′,w′ = σv′,w′→v,w , (D.19)

this means that, once the relative velocity value is selected |V| the cross section depends only on the
incoming and outgoing directions, in other words on the solid angle Ω where the particles are scattered.
In the specific case of unpolarized particles, such as those without spin, the cross section depends only
on the angle θ between incoming and outgoing directions. Therefore, we have∫

d3v′d3w′σv,w→v′,w′ =

∫
dΩσ(Ω) . (D.20)

The number of molecules that, because of the collisions, in the unit of time, goes from (v,w) to
(v′,w′) is proportional to the cross section and also the flux, therefore to the relative speed v−w, and to
the joint probability of finding a particle with velocity v and another one with velocity w. We make now
a new assumption: the joint probability is the product of the two individual probabilities. This means
to neglect the correlations, i.e. to consider the motion of each particle independent of the presence of the
other particles. This probability is, therefore, the product of f(r,v, t) times f(r,w, t) wich we write as
fvfw. Putting together all the assumptions we obtain

∆− =

∫
d3w d3v′ d3w′ |v −w|σv,w→v′,w′fvfw . (D.21)

The path to obtain ∆+ is similar. One has to substitute v and w with v′ and w′ respectively

∆+ =

∫
d3w d3v′ d3w′ |v′ −w′|σv′,w′→v,wfv′fw′ . (D.22)

By considering the invariance of the relative velocity module (D.18) the time reversal invariance
(D.19), the relation (D.20) between cross section, we can write the transport equation (D.15) as

Df

Dt
=

∫
d3w d3dv′ d3w′ |v −w|σv′,w′→v,w(fv′fw′ − fvfw)

=

∫
d3w dΩ |v −w|σ(Ω)(fv′fw′ − fvfw) , (D.23)

and in the more extended expression

∂f

∂t
+ v · (∇rf) +

1

m
F · ∇vf =

∫
d3w dΩ |v −w|σ(Ω)(fv′fw′ − fvfw) . (D.24)

The right hand side of this equation is usually called collision integral, I(f).
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Appendix E

Acronyms

AFDMC Auxilary Field Diffusion Monte Carlo (Sect. 4.4)
CCM Coupled Cluster Method (Chapter 15)
CBF Correlated Basis Function (Chapter 13)
DFT Density Functional Theory (Sect. 9.3)
FG Fermi Gas (Chapter 2.3)
FHNC Fermi Hypernetted Chain (Sect. 13.3)
GFMC Green Function Monte Carlo (Chapter 4.3)
HF Hartree-Fock (Sect. 12.3 e 9.2)
HNC Hypernetted Chain (Sect. 13.2)
IPM Independent Particle Model (Chapter 2)
KS Khon-Sham (Sect. 9.3.2)
MF Mean-Field (Chapter 2)
QBA Quasi Boson Approximation (Sect. 10.3.2)
OBDM One-body density matrix (Sect. 13.3)
ONR Occupation number representation (Chapter 5)
QBA Quasi Boson Approximation (Sect. 10.3)
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
RPA Random Phase Approximation (Sect. 12.5 e Cap. 10)
TBDF Two-body distribution function (Sect. 13.2)
TDA Tamm Dankoff Approximation (Sect. 10.2)
VMC Variational Monte Carlo (Chapter 4.2)
UCOM Unitary Correlation Operator Method (Chapter 14)
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Appendix F

Symbols

This is a list of symbols whose meaning is the same in all the chapters of the book

â , â+ Creation and destruction operators (Chapter 5)
A Number of particles
E Energy of the interacting particles system
E Energy of the non-interacting particles system
G Green’s function (Chapters 8 and 11 )
G Effecttive interaction from Brueckner’s theory (Chapter 8)

ĥ Single-particle hamiltonian (Chapter 2)

Ĥ Total hamiltoniana (Chapter 2)

Ĥ0 One-body hamiltonian, of mean-field (Chapter 2)

Ĥ1 Perturbative term, interaction term, of the hamiltonian H (Chapter 2)

Î The identity operator.

N̂ Normal ordered product operator (Chapter 5)

T̂ Kinetic energy operator of the hamiltonian (Chapter 2)

T̂ Time ordered product operator (Chapter 5)

V̂ Interaction Potential (Chapter 2)
V Volume of the system (Chapter 2)
Ylm Spherical harmonics (Chapter 2)
Yljm Spin spherical harmonics (Chapter 2)

Φ Eigenstate of H0, mean-field state, Slater determinant for fermions (Chapter 2)
φi Single-particle wave function eigenstate of h (Chapter 2)
Ψ Eigenstate of H (Chapter 2)

ψ , ψ+ Field operators (Chapter 5)
ρ Number density of the particles (Chapter 2)
ρε Density of states (Chapter 2)
Σ Self-energy (Chapter 12).
Ω Polar angular coordinates (Chapter 2)
Z atomic number
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