Three-body force in nuclear many-body systems
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Microscopic nuclear structure calculations re-
quire the presence of three-body forces in addi-
tion to the nucleon-nucleon interaction built to
reproduce the properties of two-body systems [1].
The simplest three-body forces given in the liter-
ature contain a term which involves the exchange
of two-pions with an intermediate excitation of a
virtual A. This term, represented by the diagram
A in Fig. 1, is attractive, therefore, in addition
to this term, a new phenomenological repulsive
term is added. This term is represented by the
diagram B of Fig. 1, and its parameters are cho-
sen to reproduce the binding energy of the 3H.
Since the use of only two-nucleon interactions un-
derbinds the triton, the three-nucleon interaction
produces a globally attractive contribution.
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Figure 1. Diagrams representing the two terms
which compose the three-body force.

The microscopic two- plus three-body interac-
tions have been used with success to calculate
binding energies of light nuclei up to 12C [2]. The
contribution of the three-body term is attractive
in all the cases considered.

These interactions constructed to reproduce
the properties of the two and three-body systems
have been also used to calculate the binding en-

ergy per nucleus of nuclear matter as a function
of the density of the systems [3]. In these cal-
culations the Schrédinger equations is solved by
making some approximations. In these calcula-
tions the Correlated Basis Function (CBF) theory
has been used. The theory is based on the Ritz’s
variational principle, and the energy functional is
defined as
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where |® > is a Slater determinant, H is the nu-
clear hamiltonian containing kinetic energy oper-
ator, two- and three-body interactions, and the
many-body correlation function F' is defined as
product of two-body state-dependent correlation
functions

i<j

where S is the symmetry operator,
6
p=1

and Of; corresponds to the first six channels in
the two-body interaction.

In nuclear matter calculations the Slater deter-
minant is constructed by using plane wave single
particle wave functions, therefore only the corre-
lation function contains variational parameters.
The many-body integral of Eq. (1) is calculated
by making an expansion based on the number of
the two-body correlation functions, f,. From a
topological analysis it turns out that all the di-
agrams of a certain type can be summed in a
closed form by solving a set of integral equations.
This method is called Fermi Hypernetted Chain
(FHNC) resummation techniques.

In nuclear matter calculations the contribution
of the three-body interaction is repulsive [3]. At
present there is no explanation of this discrep-
ancy with the few-body nuclei results. The ex-
planation commonly advocated claims that, since
in the few-body systems the density is relatively
lower than that of nuclear matter, the attrac-
tive term dominates. The situation is reversed



in nuclear matter. If this explanation is correct,
it should be possible, by analizing the binding
energy of various nuclei as a function of the nu-
cleon number, to identify the change of sign of
the three-body force.

In these years we have extended the CBF-
FHNC theory to describe finite nuclear sustems
[4], and we have reached an accuracy comparable
to that obtained by nuclear matter calculations.
We have calculated the binding energies of vari-
ous doubly magic nuclei. Our calculations have
been done with the Argonne V8 two-body in-
teraction plus the Urbana IX (UIX) three-body
interaction.

160 4OCa 480a 208Pb
E, -566 -6.83 -6.24 -5.80
Eys -480 -5.05 -4.62 -3.78

Table 1

Binding energies per nucleon in MeV.

In Tab. 1 we show the binding energies per
nucleon for some doubly-magic nuclei all over the
periodic table [4]. In the upper line of the table
we show the energies obtained by considering only
the two-body nucleon interaction. In the second
row of the table we show the results obtained by
considering also the three-body force. We observe
that the contribution of this interaction is always
repulsive, therefore we do not find the claimed
change of sign as a function of the nucleon num-
ber.

This change of sign could be present in nuclei
lighter than 160, therefore we have calculated the
4He binding energy. In this nucleus we can di-
rectly compare our results with those obtained
in Variational Monte Carlo approach (VMC). In
this approach the many-body integrals of Eq. (2)
are calculated with Monte Carlo techniques, a
method more accurate than the FHNC expansion.
At present, the Monte Carlo techniques are com-
putationally too expansive to be used in nuclei
heavier than those with A=12 [2].

FHNC VMC
By, 2378 -23.72
Eys -2049 -27.78

Table 2

Binding energies per nucleon of “He expressed in
MeV. E5 indicates the results obtained with the two-
body interaction only, E'3s those where also the tree-
body interactions have been used.

The FHNC and VMC results are compared
in Tab. 2. The agreement between the ener-
gies obtained with the two-body interaction only
is excellent. Clearly the inclusion of the tree-
body interaction produces wrong results in the
FHNC calculations. The work is still in progress
to understand which approximations done in the
FHNC calculations are responsible for the dis-
agreement. We think that the difference of behav-
ior is caused by the number of state-dependent
correlation functions included in the calculations.
In the FHNC ones, the diagrams calculated in-
clude only two state-dependent correlation func-
tions [3,4] respect to the six ones that may appear
in the external points. This makes that it nec-
essary to calculate several hundreds of spin and
isospin traces.
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