Self-consistent CRPA formalism with finite-range interaction
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Self-consistent Random Phase Approximation
(RPA) approaches which consider the continuum
have been proposed already in the second half of
the ’70s, but they are applicable only to zero-
range interactions. There are however various
drawbacks in the use of these forces, many of
them discussed already in Ref. [1] where the
D1 parameterization of the finite-range Gogny
interaction was proposed. Other drawback are
related to the fact that RPA calculations with
zero-range interactions produce more collectivity
with increasing value of the momentum trans-
fer than those done with finite-range interactions
[2]. In addition, finite-range interactions pro-
vide a better description of unnatural parity ex-
citations [3-5]. Finally, finite-range interactions
are more directly comparable with microscopic
nucleon-nucleon force. In the literature there are
few examples of CRPA calculations done with
finite-range interactions [6,7], and, to the best of
our knowledge, only a single case of self-consistent
Continuum RPA (CRPA) calculation [8].

We present a technique which treats, without
approximations, the continuum part of the exci-
tation spectrum in RPA calculations with finite-
range interactions [9]. The CRPA secular equa-
tions whose solution provides the values of the
RPA amplitudes X and Y can be written as
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In the above equations v and « contain the direct
and exchange interaction matrix elements, €, is
the single particle energy of particle or hole a and
w the excited state energy. Our method of solving
the CRPA equations consists in reformulating the
secular equations (1) and (2) with new unknown
functions which do not have an explicit depen-
dence on the continuous particle energy €,. The

new unknowns are the channel functions f and g
defined as:

i X2, (69) Rplrs€p) 3)
and

gnr) = X V() Rotries) ()
€p
where R is the radial part of the single particle
wave function obtained with Hartree Fock (HF)
calculations. In this way we write a new set of
CRPA secular equations with these unknowns:
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where we have defined
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and G7, is obtained from the above equation by
1ntercha.ng1ng the f and g channel functions. In
this equation U and V contain the interaction
matrix element.

With this procedure, we have changed a set of
algebraic equations with unknowns depending on
the continuous variable €, into a set of integro-
differential equations with unknowns depending
on the distance from the center of coordinates.
The solution of this problem requires to impose
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the proper boundary conditions. We call open
those channels where the particle is in the contin-
uum, i. e. it has positive energy, and closed the
other ones. After fixing the angular momentum
J and the parity II of the excited state, for each
value of the excitation energy w, we solve Egs. (5)
and (6) a number of times equal to the number of
the open channels. Every time we impose a dif-
ferent boundary condition, i.e. that the particle
is emitted only in a specific channel, which we call
elastic channel and label as pohg. For an open ph
channel, we impose that the outgoing asymptotic
behaviour of the channel function f;’,‘iho is
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where ) is a complex normalization constant and
H, (ep +w,r) is an ingoing Coulomb function or
a Hankel function in case of a proton or neutron
channel, respectively.

In the case of a closed channel, the asymptotic
behaviour is given by a decreasing exponential
function
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as in the case of the channel functions gz’)’;’bho,
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We solve the CRPA secular equations (5) and
(6) by using a procedure similar to that presented
in Ref. [7]. The channel functions f and g are ex-
panded on a basis of sturmian functions ®4 which
obey the required boundary conditions (8)-(10).
Each sturmian funciton is characterized by the
particle energy, the index p, and the number of
nodes p appearing at distances smaller than a
cut-off radius a. The expression of one of the
new CRPA secular equation is:

Z Z { lé”w‘shh’ (5/~w - ((@;+)*|Z,{|<I>Z+) +

u p'h!
((@y 1) IW|I94T)
+ ) Oiplei—en— w)((@Z+)*|Ri)((Ri)*|‘1’5+))
€;<e€F
(@) B Vi | Bn L")

Ht

(@) R V55 1Bt i) ) |

- (((ci;ﬂ*«ig,— U3 | Ry R

—((ByF)*@E UL, |Rh’Rh)) (cpin)” } =

= <($Z+)*Rho|vJ’dir |RhRP0(€P0)>

ph,poho

(@) Rho [Vt | Roo (690 ) i) (11)

where the unknowns are the sturmian function
expansion coefﬁcien‘cscﬁh. In the above expres-
sions, with the bra and ket integration conven-
tion we indicate integrations on radial variables
only. The number of these integrations is given
by the number of the functions inserted between
the bra and ket symbols. For this reason we have
inserted the symbol I indicating the identity func-
tion. The expression of the second CRPA equa-
tion for g is symmetric to Eq. (11).
Summarizing, we have transformed the CRPA
secular equations (1) and (2) into a set of alge-
braical equations whose unknowns are the expan-
sion coefficients c;‘h. These equations have a so-
lution for each value of the excitation energy w
above the nucleon emission threshold and can be
solved by using traditional diagonalization tech-
niques and used with finite range interactions.
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