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In the last fifty years, the Fermi–Pasta–Ulam
(FPU) [1] system has represented a privileged
model for investigating problems in nonlinear dy-
namics (see [2], [3] for recent reviews).
The FPU [1] β chain with a number N of oscil-

lators and periodic boundary conditions possesses
exact one–mode solutions (OMSs) [4–7] corre-
sponding to the values of the mode number
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such that, if only one of these modes is initially
excited, it evolves without transferring energy to
any other mode. The stability of the π–mode
(N/2 mode) has been extensively studied in sev-
eral papers [7,8,4,9,10].
The theoretical analysis of the stability of the

π/2–mode (N/4 mode) is much more challeng-
ing than that of the π–mode. This last case is
simpler because the differential equations of the
perturbed modes are all decoupled and can be
studied separately. For the π/2–mode, on the
contrary, one needs to study a system of coupled
linear differential equations with periodic coeffi-
cients.
In [11] the stability of this mode has been stud-

ied both numerically and analytically by means of
a Floquet analysis. The main result is that the
product | β | ǫt (where ǫt is the energy density
threshold and β is the nonlinearity parameter) de-
creases asymptotically with N as 2π2/3N2; when
β > 0 the product β ǫt N

2 decreases with N and
converges asymptotically to the value 2π2/3; for
β < 0, | β | ǫt N

2 increases with N towards the
same value.
In a recent paper [12] we have focused on

the statistical properties of the π–mode solution
for a large range of values of energy density,
from a regime where the solution is stable to a
regime where is unstable, first weakly and then
strongly chaotic. For carrying out this analysis,
we have introduced the ratio ρ (when it can be
defined) between the standard deviation and the
first moment of a given probability distribution.
This global indicator estimates the deviation of a
generic assigned distribution from the Gaussian
behaviour for any value of the excitation energy

density. It is a function of the dynamical variables
of the configuration space only and its usefulness
relies on the fact that is model–independent. We
have shown numerically that the transition be-
tween weak and strong chaos can be interpreted
as the symmetry breaking of a set of suitable dy-
namical variables.

Motivated by these results, we have extended
to the π/2–mode the analysis performed for the
π–mode. The main results of this analysis are the
following [13].
a) Differently from the π–mode, for the π/2–mode
the region of strong chaos is unexpectedly fol-
lowed, when increasing the energy density ǫ, by a
region where the nonlinear mode solution becomes
again stable. The transition from the irregular to
the stable behaviour is abrupt, i.e. is sensitive to
a variation of one unit on the fifth decimal digit of
the value of ǫ. The stability of the π/2–mode so-
lution, above this second threshold ǫst, has been
verified for very long integration times of the dif-
ferential equations of motion.

From our numerical analysis, we have not found
any evidence of the existence of an additional
stochasticity threshold, marking the evolution to
another irregular behaviour, although it appears
natural to postulate the relaxation to a fully
chaotic regime for extremely long times. There-
fore we prefer to use the terminology quasi–stable
state to denote this long time stable behaviour of
the π/2–mode above the second threshold.
b) The value of the second threshold depends
on N and tends asymptotically to a well defined
value, approximately equal to 0.14780, for large
values of N . We have verified this thermody-
namic limit up to N = 4096.
c) As for the π–mode, also for the π/2–mode the
transition between weak and strong chaos can be
interpreted as the symmetry breaking of a set of
dynamical variables.
d) We have also analyzed the OMS correspond-
ing to n = N/3 and in this case as well we have
verified the existence of two energy thresholds of
stability of the mode.

The quasi–stable state we have found possesses
some similarities with the quasi–stationary states
observed in the literature, although the contexts
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are quite different. For instance, for the Hamilto-
nian Mean Field model, introduced in [14] and de-
scribing a system of classical coupled rotors, it has
been found numerical evidence of the existence of
quasi–stationary states out–of–equilibrium, hav-
ing a lifetime that increases with the number of
particles N of the system [15]. A related analysis
has been performed in [16]. Also, in [17] this kind
of states has been recognized in weakly chaotic
regimes of several multi–dimensional hamiltonian
dynamics.
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