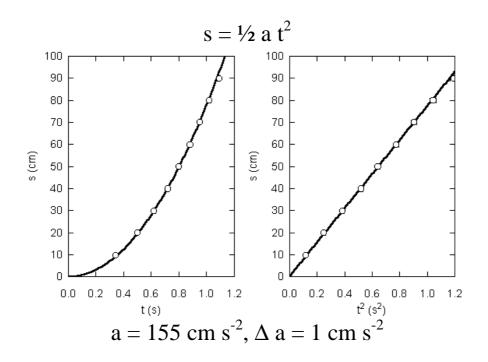
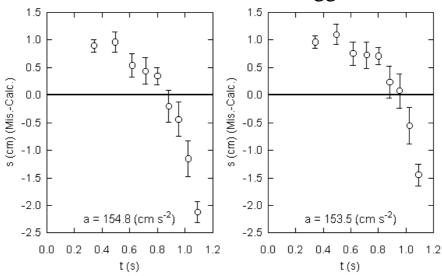

Misure in Fisica Classica

Il Metodo Sperimentale

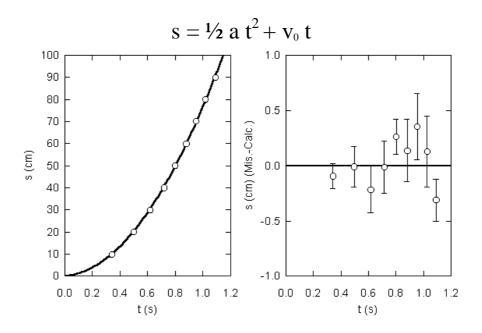

Una Semplice Applicazione

Misure (tempi al centesimo di secondo)

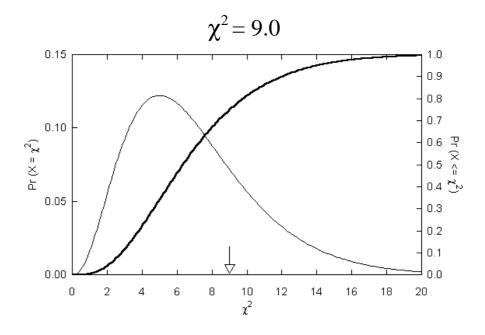
t (s)	s (cm)	$\Delta t (s)$	Δs (cm)
0.34	10.0	0.01	0.1
0.50	20.0	0.01	0.1
0.62	30.0	0.01	0.1
0.72	40.0	0.01	0.1
0.80	50.0	0.01	0.1
0.88	60.0	0.01	0.1
0.95	70.0	0.01	0.1
1.02	80.0	0.01	0.1
1.09	90.0	0.01	0.1


Legge Fisica

Misure (tempi al millesimo di secondo)


<t>(s)</t>	s (cm)	$\Delta < t > (s)$	Δs (cm)
0.343	10.0	0.001	0.1
0.496	20.0	0.002	0.1
0.617	30.0	0.002	0.1
0.715	40.0	0.002	0.1
0.801	50.0	0.001	0.1
0.882	60.0	0.002	0.1
0.954	70.0	0.002	0.1
1.024	80.0	0.002	0.1
1.091	90.0	0.001	0.1

Falsificazione della Legge



Una Nuova Legge Fisica

 $a = 142.6 \text{ cm s}^{-2}, \Delta a = 0.8 \text{ cm s}^{-2}$ $v_0 = 5.0 \text{ cm s}^{-1}, \Delta v_0 = 0.3 \text{ cm s}^{-1}$ $v(s=0.05 \text{ cm}) = 3.8 \text{ cm s}^{-1}$

Il Gioco Continua

Come dipende l'accelerazione dalla massa appesa?

Un modello ingenuo suggerirebbe:

$$a= m/(M+m) g$$
.

Si verifica che e` falso, le accelerazioni misurate sono considerevolmente piu` piccole: c'e` l'attrito!

Puo` l'attrito essere descritto come una forza, costante, che si oppone al moto?

In questo caso l'accelerazione dovrebbe seguire la legge:

$$a = (m-m_a)/(M+m) g$$
.

Accelerazioni determinate con misure di tempi al centesimo di secondo confermerebbero questa legge. Misure piu` accurate la falsificano.

Possiamo trascurare la natura non puramente traslazionale del moto?

L'accelerazione dovrebbe seguire la legge:

$$a = (m-m_a)/(M+m+m') g$$
,

con m' dipendente dai momenti di inerzia delle ruote e della carrucola. La correzione va nella direzione giusta, ma non basta!

L'attrito non potrebbe dipendere dalle condizioni di 'carico' ?

Assumiamo una dipendenza lineare dalla massa appesa e...ci siamo!

Prima Morale della Favola

Utilizzando il **metodo scientifico** per analizzare un semplice fenomeno abbiamo:

- 1) **osservato** il moto di un carrello,
- 2) formulato le **ipotesi** che la sua accelerazione fosse costante, che partisse da fermo,
- 3) formulato la **predizione** della legge oraria del moto,
- 4) progettato un **esperimento** per la verifica della nostra ipotesi,
- 5) effettuato l'analisi dei risultati.

Utilizzando un cronometro al centesimo di secondo osserviamo una eccellente **riproducibilita**` dei risultati sperimentali, e l'**analisi** dei risultati dell'**esperimento** permette di verificare l'accordo, entro le incertezze sperimentali, dei risultati della misura con le **predizioni** della nostra **ipotesi**.

Utilizzando un cronometro al millesimo di secondo viene meno la **riproducibilita**` dei risultati sperimentali, e l'**analisi** dei risultati dell'**esperimento** richiede l'utilizzazione di tecniche statistiche.

In ambito statistico l'affermazione o la negazione di una ipotesi dipende esclusivamente dalla nostra disponibilità a rischiare la nostra reputazione affermando 'vera' una ipotesi 'falsa' o, quanto meno (in assenza di ipotesi alternative), dalla nostra propensione a non rigettare come 'falsa' una ipotesi che potrebbe essere 'vera'.

La decisione viene presa individuando almeno una variabile indicativa del disaccordo (della quale sappiamo 'calcolare' la densita` di probabilita` nel caso in cui la nostra ipotesi sia 'vera') ed assumendoci la responsabilita` di decidere se riteniamo 'ragionevole' il disaccordo che abbiamo osservato.

In questo contesto NON puo` fare scienza: se usa i nostri criteri di 'ragionevolezza' scarta ipotesi che noi consideriamo 'vere', se usa i suoi considera 'vere' tutte le ipotesi!

Seconda Morale della Favola

L'utilizzazione di strumenti piu` sofisticati permette di evidenziare inadeguatezze del **modello** utilizzato per rappresentare un sistema fisico.

Per misure di tempi al centesimo di secondo, il filo puo` essere considerato *perfettamente flessibile, inestensibile e privo di massa*, il contributo della dinamica delle rotazioni (della ruota e della carrucola) puo` essere ignorato, l'attrito puo` essere considerato non dipendente dalla massa appesa.

Misure al millesimo di secondo ci costringono a formulare un **modello** che tenga conto di questi fatti.

Misure ancora piu` precise potrebbero costringerci a tener conto di possibili oscillazioni trasversali del carrello, di oscillazioni della massa appesa, di oscillazioni della lunghezza del filo di trazione e del filo su cui poggiano le ruote del carrello, della deformazione di questo filo, di possibili deformazioni delle ruote e della puleggia, dell'isteresi dell'elettromagnete e ... chi piu` ne ha piu` ne metta!

Solo in linea di principio e` pensabile di poter formulare un **modello** che includa i gradi di liberta` necessari per descrivere tutti questi fatti. In misure piu` precise, alcuni di questi fatti potrebbero essere descrivibili nell'ambito di un **modello** semplice come contributi all'incertezza statistica dei tempi misurati, altri potrebbero evidenziare effetti sistematici la cui giustificazione potrebbe richiedere l'uso di **modelli** piu` sofisticati.

Il **modello** non e`, pertanto, una proprieta` del sistema fisico il cui comportamento vogliano descrivere. E` solo uno strumento interpretativo dei risultati delle misure che effettuiamo sul sistema, e predittivo del suo comportamento futuro in una ripetizione dell'esperimento. La complessita` del **modello** che utilizzeremo dipendera` dalla precisione delle misure effettuate, dal livello di accordo richiesto fra previsioni teoriche e risultati sperimentali e dalla natura dell'accordo richiesto.

Resta fermo che anche per i sistemi piu` semplici non saremo in condizione di fornire, nella maggior parte dei casi, nulla di piu` di un ragionevole accordo statistico fra i risultati previsti dal **modello** e quelli ottenuti dall'esperimento.