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We present a model which describes the properties of odd-even nuclei with one nucleon more, or
less, with respect to the magic number. In addition to the effects related to the unpaired nucleon,
we consider those produced by the excitation of the closed shell core. By using a single particle basis
generated with Hartree-Fock calculations, we describe the polarization of the doubly magic-core with
Random Phase Approximation collective wave functions. In every step of the calculation, and for all
the nuclei considered, we use the same finite-range nucleon-nucleon interaction. We apply our model
to the evaluation of electric quadrupole and magnetic dipole moments of odd-even nuclei around
oxygen, calcium, zirconium, tin and lead isotopes. Our Random Phase Approximation description
of the polarization of the core improves the agreement with experimental data with respect to
the predictions of the independent particle model. We compare our results with those obtained
in first-order perturbation theory, with those produced by Hartree-Fock-Bogolioubov calculations
and with those generated within the Landau-Migdal theory of finite Fermi systems. The results of
our universal, self-consistent, and parameter free approach have the same quality of those obtained
with phenomenological approaches where the various terms of the nucleon-nucleon interaction are
adapted to reproduce some specific experimental data. A critical discussion on the validity of the
model is presented.

PACS numbers: 21.10.Ky ; 21.60.Jz

I. INTRODUCTION

The description of the angular momenta of odd-even nuclei is one of the greatest successes of the nuclear shell-model.
The angular momentum and the parity of the single particle (s.p.) level of the unpaired nucleon correspond to those
of the whole nucleus. This extreme shell model picture, where the s.p. properties are imposed to the whole interacting
many-body system, is weakened when observables which are not quantized are investigated. For example, the values
of electric quadrupole and magnetic dipole moments are rather different from those predicted by the extreme shell
model. For these quantities, the interaction between the unpaired nucleon and the other nucleons plays an important
role, strongly modifying the pure shell model predictions.

One expects that in odd-even nuclei around doubly-magic ones, the effects related to the extreme shell model
picture, which we shall name henceforth Independent Particle Model (IPM), are dominant with respect to those
induced by the two-body part of the nuclear hamiltonian, usually called residual interaction. This has induced the
development of various perturbative models [1, 2]. A class of these models is based on the straightforward application
of the traditional perturbation theory, which, however, has convergence problems, at least for the terms beyond those
of the first order [3].

Another perturbative approach consists in considering the residual interaction within the framework of the Random
Phase Approximation (RPA) theory. This approach is based on the extension of the Landau theory of quantum liquids
to finite Fermi systems (FFS) done by Migdal [4]. This theory has been applied with great success to describe the
properties of odd-even nuclei in the region of 2®Pb [5-7]. In these works the s.p. wave functions are generated
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by diagonalizing a Woods-Saxon well, and the residual interaction is a zero-range Landau-Migdal force [4]. More
recently, this approach has been extended to use the same interaction in the production of the s.p. wave functions and
in the RPA calculations [8-12]. Furthermore, also pairing effects have been considered. This self-consistent theory
of FF'S has been applied also to the tin and to the calcium isotopes. In these approaches, the use of the concept of
quasi-particles implies the definition of the effective charge which contains free parameters whose values are chosen
to have a good description of the data. In the phenomenological approach of Refs. [5-7] also the constants defining
the strength of the various channels of the Landau-Migdal nucleon-nucleon effective interaction have been used as
free parameters. In this case, the values of these parameters are related to the dimension of the s.p. configuration
space. The application of these methods to a different region of the nuclear chart, or, more simply, to a different
s.p. configuration space, requires a new selection of the free parameter values. The self-consistent FF'S approach of
Refs. [8-12] does not have cut-off problems in the RPA calculations, since it considers the full s.p. configuration
space, continuum included. The problems arise in the pairing calculations, where the free parameter is the value of
the cutoff energy used as regulator, in analogy to the renormalisation procedure adopted in effective field theories.

Inspired by these works, we propose here an extension of the RPA formalism to construct a fully self-consistent
approach. For each nucleus considered, we use a set of s.p. wave functions generated by a Hartree-Fock (HF)
calculation. The same, effective, nucleon-nucleon interaction used in HF is adopted in the RPA calculations, which
allows the evaluation of the odd-even nucleus observables. The parameters of the force, which we consider having
finite-range, have been chosen once forever in a global HF fit of properties mainly related to the ground state of a large
set of nuclei in all the regions of the nuclear chart [13]. The use of a finite-range interaction ensures the stability of our
results whose values, after convergence has been reached, do not depend any more on the size of the s.p. configuration
space.

The basic ideas of our work are relatively simple and straightforward. First, we use effective nucleon-nucleon
interactions whose parameters have been chosen to reproduce data which are not directly related to the observables
we investigate. Second, the chain of calculations needed to arrive at the final results does not contain any additional
free parameter, but they depend exclusively on the effective nucleon-nucleon interaction. To be sure of identifying
features related to the theory, and not to the specific choice of the interaction or to the nucleus investigated, we
carried out calculations with different nucleon-nucleon forces, for a set of nuclei in a large region of the nuclear chart.
We mainly concentrate our investigation on two observables, the electric quadrupole, @, and the magnetic dipole, p,
moments of a selected set of odd-even nuclei. The evaluation of these quantities requires, respectively, the description
of the 27 and 1T excitations of the even-even core nuclei which we obtain by using a RPA approach [14].

In Sec. IT we present the basic ideas our model. In this section we also specify the form of the electromagnetic
operators that we have adopted to describe Q and p. The expression of the operator for @ is simple and straight-
forward. More complex is the situation for p, where, in addition to the traditional one-body operator, we consider
also two-body currents generated by the exchange of charged pions. We shall refer to these latter currents as meson
exchange currents (MEC). In Sec. IIT we discuss some details of the calculations related to the specific applications of
the model. The results obtained for @) and u are presented in Sect. IV. In both cases we also study the excitation of
the even-even core nuclei for the two multipolarities involved. In Sec. V we summarize the main results of our study,
and we draw our conclusions.

II. THE MODEL

The starting point of our model is the construction of the basis of s.p. states |@o), which we generate by solving
the HF equations. We used the symbol « to indicate all the quantum numbers characterizing the s.p. state, i.e.
the principal quantum number n,, the orbital angular momentum [,, the total angular momentum j,, its third
component m,,, and the third component of the isospin ¢, = —1/2 for protons, and ¢, = 1/2 for neutrons.

In the IPM picture, all the s.p. states below the Fermi energy are completely occupied, and those above it are
empty. We indicate with |®g) the Slater determinant describing the IPM ground state of the doubly magic nucleus
composed by A nucleons. By definition, the RPA ground state of the doubly magic nucleus, which we indicate as
|Wo), contains correlations beyond the IPM.

The odd-even nuclei we want to describe are obtained by adding, or subtracting, one nucleon to the doubly-magic
A-nucleon system. We label the states of these nuclei as |A & 1; «), where the symbol « indicates the set of quantum
numbers characterizing the s.p. state of the added, or subtracted, nucleon.

We describe the response of the odd-even nucleus to the perturbation induced by an external operator B by
considering separately two effects. The first one is the action of the external operator on the unpaired nucleon, while
the doubly-magic core remains unperturbed. The second effect considers the interaction of the external probe with
one of the nucleons of the doubly magic core. In this case, the whole nucleus responds to the external perturbation
because the nucleon struck by the external probe interacts strongly with all the other nucleons, included the unpaired



one.
We express the expectation value of the external operator B between two states of the odd-even nucleus with one
nucleon more than the doubly-magic one as [4-7]

(A+La|BIA+1;8) = (PolaaBag [®o) + (Vo |aaaf ViesPaleas) B ¥o), (1)

where a™ and a are the usual creation and annihilation operators, V;es is the residual nucleon-nucleon interaction,
and P4 is a propagator which describes the excitation of the doubly magic core and depends on €,3 = €4 — €3, the
difference between the energies of the two states of the A+ 1 system. A similar equation can be written for the A — 1
nucleus by exchanging creation and annihilation operators.

In our approach, the excitation of the doubly magic core is described by using the RPA theory. In terms of an
excitation operator Q;F, we define the excited states of the A-nucleon system as

while the relation
Qv|¥o) =0 (3)

defines the ground state. The label v indicates all the quantum numbers needed to characterize the excited state.
The RPA excitation operator is defined as

Qf = (Xpafan — Viala,), (4)
ph

where the index p refers to s.p. states above the Fermi surface (particles) and h to s.p. states below it (holes). The
RPA propagator can be written as [4, 7, 15]
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where w,, is the excitation energy of the state | ¥, ). By using this propagator, we express the second term in the
r.hs. of Eq. (1) as
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where we have exploited Eq. (3) to insert the commutator [,] between operators, with the aim of using the quasi-
boson-approximation [16]:

(Yo |aa a; Vies ?ipA(eaﬁ) BlWy) =~ (7)
1 1
= 3 (] [ af Vies . QF | @ - o[ [Qu.B] | Do)
;< ol [aaag Q) | [0) P (@o| [Qv.B]|Po)

The operator describing the action of the external probe on the nuclear system can be expressed in terms of a
multipole expansion. Each term of this expansion, Bj,s, is characterized by the angular momentum J, and its
projection M on the quantization axis. In our calculations we consider the spherical symmetry of the problem. We
use a set of s.p. wave functions with the following angular momentum coupling structure:

1 .
Ga(r) = Ryt 1 5 (1) Y (Lo ftac g S| o o) Vi (60,0) X (8)
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where (7,0, ¢) are the usual polar coordinates, Y, are the spherical harmonics, x the Pauli spinor, and the symbol ()
indicates the Clebsch-Gordan coefficient. We calculate the matrix elements by applying the Wigner-Eckart theorem



with the phase conventions of Ref. [17], and we sum on all the possible values of m, and mg. For the matrix element
in Eq. (1) we obtain
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where the two kernels are defined as
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In Eq. (9) the double bars indicate that in the matrix elements between the two s.p. wave functions the angular part
is evaluated in terms of reduced matrix elements. The calculation of the radial integrals is understood.
The expression of the interaction terms v” is analogous to that of the RPA [15]
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In the above equation we used the Wigner 6-j symbol [17], and 3 = /27 + 1, where j is referred to an angular
momentum. The interaction Vs is described as

Vies = vi(rij) + va(ri) 7(i) - 7(j) + v3(riz) o(i) - o (j) + valrij) o(i) - o () 7(i) - 7(5) (14)
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where ¢, and Wy are real constants, v(ri;) are scalar functions of the distance between the two nucleons, and vooul (7i5)
is the Coulomb interaction acting between two protons. In the above equations o and 7 are the usual Pauli matrices
for the spin and isospin operators respectively, p is the nucleon density, S = [o(i) + o(5)]/2 and p, is the relative
momentum of the interacting pair with the arrows indicating the side on which the operator acts. It is worth pointing
out that the same effective nucleon-nucleon interaction is used in the HF and in all the RPA calculations.

The sum over v in Eq. (9) runs over all the excited states of the A-nucleon core with the same multipolarity and
parity of the transition operator. Eq. (9) is the basic expression of our model and is analogous to those obtained in
Refs. [5-7] within the FFS theory.

The results obtained by using the whole expression in Eq. (9) have been labelled as RPA. We compare them with
those of the IPM, i.e. those provided by the first term of Eq. (9). In addition we consider also the results obtained
within the framework of the traditional time-independent first order perturbation theory (FOPT), which we obtain
by calculating
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For nuclei with one nucleon less than the doubly magic ones we obtain equations similar to (9) and (15) with an
additional overall phase.



The first operator we consider in this paper is a one-body electric operator,

A
1
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i
where e is the elementary charge. We express the reduced s.p. matrix element of this operator as
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In the above expression we used the Wigner 3-j symbol [17], and (1) = 1 if I is even and zero otherwise. We have
indicated with J7/ 4p the integral
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ataa

(1) RyY, (1) (18)

Specifically, we calculate the electric quadrupole moment ) defined as
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The second operator we consider in this work is the magnetic operator, composed by one- and two-body terms. We
express the one-body (OB) part of the magnetic operator as

A
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where py is the nuclear magneton, and we have for the gyroscopic constants the values ¢g;=1 and 0, and g, = 2.793
and —1.913, for protons and neutrons, respectively. The expression for the s.p. matrix element is
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where we have defined

Kag = (la = Ja) (2ja +1) + (Ig — jp) (2jp +1). (22)
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Figure 1: Schematic representation of the MEC diagrams considered in this work. The wavy lines represent the external
electromagnetic probe, the dashed lines the exchanged charged pion, and the full lines the nucleons. The A diagram is normally
called seagull and the B diagram pionic.

In addition to the one-body operator, we consider two-body terms generated by the exchange of a single, charged
pion, the so-called seagull, M®, represented by the A diagram of Fig. 1, and pionic, M™, represented by the B diagram
of the same figure. We give in Appendix A the expressions of the matrix elements of these two MEC operators. In



the FFS theory, these MEC corrections to the OB operator are taken into account by considering the effective charge
of the quasi-particle and by including an effective tensor term.
Specifically, we calculate the magnetic dipole moment defined as

_ A (a1 ja , ,
H = ?<_jo¢ 0 ja)<A:|:1,Oé|M1|A:|:1,O[> ) (23)

where M; = M$B + MMEC In IPM calculations, by considering M; = M$B, we obtain the well known Schmidt
values [16, 18] which depend only on the angular momentum j of the s.p. level of the unpaired nucleon and are given

by:
1 ) 1
J=5) 9+ 9s| BN, forj =1+ 3,
HSch = j 3 . (24)
—— i+ = — s , forj=1-13.
T /0 P PR

A remarkable difference between our calculations and those based on the FFS theory is that we use bare, not
effective, electromagnetic operators, therefore we do not include free parameters in our theory. Furthermore, we
do not include in the magnetic operator (20) the tensor terms often added to take care of magnetic dipole Al = 2
transitions in the IPM picture [6, 8, 19].

III. SPECIFIC APPLICATIONS

As pointed out in the Introduction, we carried out our calculations by using two different parameterizations of the
finite-range density dependent Gogny interaction. These define the scalar functions v(r;;) of Eq. (15), and the values
of the t, and W, constants. We have chosen the traditional D1S force [20] and the more recent D1M one [21], which
improves the behavior of the neutron matter equation of state at high density values. We would like to emphasize
the fact that the parameters of these interactions have been chosen once forever in a fit process, described in detail
in Ref. [13], and they have not been modified in the present work. Since the effective nucleon-nucleon interaction is
the only input of our calculations, we may state that they are parameter free.

For each nucleus considered, the calculations of @ and p are carried out in three steps. In the first one we generate
the set of s.p. wave functions by means of a HF calculation. In the second step, for a selected multipole excitation
of angular momentum J and parity II, we solve the RPA equations. In the third step we calculate the expectation
value of the operators &2 and My by using the expression (9) or the ones for IPM and FOPT.

From the computational point of view, it is necessary to ensure the numerical convergence of each of these three
steps. In our calculations we use a set of s.p. wave functions with bound boundary conditions at the edge of an
r-space box. In this manner all the s.p. states are bound, even those with positive energy. In the common jargon
these are called discrete calculations. For the first two steps, the numerical stability of the results is related to the
dimensions of the r-space integration box and to the size of the s.p. configuration space used in the discrete RPA
calculations. We handle these problems by using the strategy described in Ref. [22], i.e. by choosing the size of the
integration boxes and the dimensions of the s.p. configuration spaces such as the centroid energies of the electric
giant dipole resonances do not change by more than 0.5 MeV if the value of any of the two parameters is increased.
In this respect, the most demanding calculations are those carried out for the 2°Pb nucleus where we have used a
box radius of 25 fm and a maximum s.p. energy of 100 MeV.

The stability of the results of the third step is related to the maximum value of the RPA excitation energy, Fmax,
which is the upper limit of the sum on v in Eq. (9) and of the sum on ph in Eq. (15). We carried out convergence
tests for each nucleus considered. An example of these tests is presented in Fig. 2, where we show the values of the
quantities |Q/e|/ZR?, with R = 1.2 A3 in the upper panel, and 1/ figcn, in the lower one, for the ground states of
various nuclei, as a function of E,,x. We observe that in Fig. 2 all the results have already converged at E,.x = 70
MeV, and this is the minimum value of F,.x we adopted in our calculations.

IV. RESULTS

We have applied the model presented in the previous sections to various nuclei in different regions of the nuclear
chart. The core nuclei have been selected to have closed shells and spherical symmetry, therefore, in these nuclei,
deformation and pairing effects do not play any role [23, 24]. We have identified isotopes of oxygen, calcium, zirconium,
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Figure 2: Convergence test of the stability of our results against Fmax, the upper limits of the sum on v in Eq. (9), for Q,
panel (a), and u, panel (b), as given by Egs. (19) and (23), respectively. The vertical lines indicate the 70 MeV values which
we have adopted as the value of Fpyax in our calculations.

tin and lead endowed with these characteristics. We have investigated the role of the pairing in these nuclei by carrying
out calculations in a HF plus Bardeen Cooper and Schrieffer framework [24]. The protons and neutrons energy gaps
between particle and hole states are so large that we did not find pairing effects. We found only one exception, the case
of the protons in °Zr, where the particle fluctuation number is not exactly zero. The evaluation of the occupation
probabilities of the single particle levels indicates deviations of few percent from that predicted by a sharp Fermi
distribution. Only the proton 2p, /, state, which in IPM does not contributes to the @, is sensitively affected by the
pairing with an occupation probability of 85%. This s.p. state does not contributes to the Q.
We first present the results obtained for @, and, in a second step, those related to p.

A. The 27 excitations and the Q values.

We show in Table I the excitation energies and the B(E2)1 values of the first 2% state obtained in our RPA
calculations for the various nuclei studied, and we compare them with the available experimental values taken from
the compilations of Refs. [25-27]. We notice a large difference between the RPA values and the experimental ones
in 10 and %°Ca nuclei. The experimental energies are smaller than those predicted by our calculations, and the
experimental B(E2)1 values much larger, especially in °Ca. Evidently, for **O and #°Ca, the lowest 27 states cannot
be properly described by the RPA approach since their structure is more complex than a simple combination of
one-particle one-hole excitations. In effect, the experimental excitation spectrum of '°O presents at least other six 2+
states up to 15 MeV, and that of “°Ca about fifty of them below 10 MeV [25, 26].

The situation for the other nuclei is different. We found reasonable agreement with the available empirical data
in 48Ca, 132Sn and 20%Pb. The 2% states in these nuclei are dominated by particle-hole (ph) transitions between
bound s.p. states. The simplest case is that of the ¥*Ca nucleus where we found that the neutron (2ps 21 f7_/12)

transition is the dominant component of the first 2+ excited state. We identify analogous situations in 32Sn, with

the proton (2ds/o 199_/12) and neutron (2f7/2 1h1_11/2) transitions, and in ***Pb with the proton (2f7/s 1h1_11/2) and

(1hg /2 1h1_11/2) and neutron (2gg /2 12'1_31/2) transitions. In these nuclei, the 27 strength is concentrated in the s.p.
transitions above mentioned with little fragmentation produced by the coupling with the continuum and/or with
more complex excitations modes.

The role of the continuum in this type of calculations has been studied in Ref. [28] where a detailed discussion



w (MeV) B(E2)1 (e? fm?)
nucleus DIM DIS exp DIM DIS exp
60  17.61 18.13 6.92 16.76 22.85 40.64
220 2.34 265 3.19 15.84 14.72 28.12
240 410 3.97 4.95 4.50
40Ca  13.41 14.63 3.90 3.08 3.66 99.17
48Ca  3.80 4.04 3.83 91.65 87.91 95.32
60Ca  5.82 5.63 0.39 0.40
07zr  4.67 4.95 2.19 353.5 350.4 610.4
1008n 413 4.40 1950 2055
13280 4.26 5.08 4.04 1574 1444
208phL 491 5.05 4.09 4083 4244 3003

Table I: Excitation energies, w and B(E2)1 values of the lowest 2" state for the core nuclei considered. The results obtained
with the two interactions we have adopted are shown. The experimental values are taken from Refs. [25-27].

about the position of the centroid energies and the sum rule exhaustion of the 2% strength distribution is presented,
resulting compatible with the theoretical expectations [29]. There is a difference between the results of Ref. [28] and
those of the present work, since in these latter RPA calculations the spin-orbit and Coulomb terms of the effective
nucleon-nucleon interaction have been considered by using the procedure of Ref. [14]. We have verified that for the @
values, and also for those of u, the differences between the two types of calculations are of the order of few percents.

If we neglect the cases of the 0 and “°Ca nuclei, the average relative difference between our excitation energies
and the experimental ones is about 15%. Even though our RPA description of the low-lying 2% excitation of the core
nuclei is not satisfactory, we have to consider that, in the calculation of @ in the odd-even nearby nuclei, the relevant

core nucleus s.p. state DIM DI1S core nucleus s.p. state DIM DI1S
0 N 1py), 2.07 217 'S0 ¥In 195} 22.48 23.03
g 1ds /2 -4.50 -4.74 01Sb  1g7/2 -25.04 -25.32
70 1ds /2 -1.61 -1.55 998n 1g;/12 16.21 16.31
220 2IN 1;);/12 3.69 3.55 0180 1g7s -19.12 -18.95
BF O 1ds) -6.53 -6.35 '*2Sn lIn 19 18.61 17.70
240 23N 1;);/12 2.34 247 1338b  1g7/s -20.13 -23.02
BF O 1dg -4.58  -4.82 ¥Sn 1k, 1465 12.41
0Ca K 1dg), 4.33  4.51 %380 1hgsy  -16.45 -13.45
YK 1dg ), 551 5.75 2°Pb 20TT1 24y, 11.33 11.93
Sc 1fre -8.30 -8.78 2TTI® 1k}, 2562 27.08
18 1fs50 -10.80 -10.36 207b 2d;/12 15.59 16.45
39Ca 1d;/12 2.20 2.23 29Bi  1hg,s -27.71 -29.11
TCa  1fr -3.68 -3.66 2098 2f7 o -21.31 -22.28
BCa K 1d;/12 5.90 5.97 298P 1iy50 -29.27 -30.79
YK 1dg), 7.34  7.43 *TPb  2f, ) 11.62 11.40
OS¢ 1fr)s -10.32 -10.45 207ppa 31;7;/12 7.49  7.37
98¢ 1f50 -10.52 -10.63 207Tppt 1i;31/2 18.54 18.58
Ca  1f) 4.95 4.86 2TPbe 2 12.97 12.80
¥Ca  2pys -2.58  -2.40 207ppd 1}1;/12 19.53 19.80
80Ca 59K 1(1;/12 428 4.61 209Ph 2995 -14.42 -13.93
YK 1dg ), 5.67  6.08 27Pb 2f 11.62 11.40
61Sc  1f7/2 -8.17 -8.70 209Ph® 1iyy 0 -21.80 -21.58
61Sce  1fs5, -7.63 -8.16 209PKY 1415/ -20.11 -19.81
07r 9INb  1gg,s -15.55 -15.94
PzZr 1g5), 8.04 8.01
Nzr  1g7/0 -8.62 -8.48

Table II: Values of Qrpa, in e fm?, obtained in our model for the two interactions considered. We present the core nuclei, the
associated A + 1 nuclei and the s.p. states which characterize them. The upper latin letters indicate the excited states of the

isotope.



quantity to be considered is the global strength distribution. Our RPA calculations generate the expected amount of
27T strength, but it is not properly distributed. This may affect our @ results because the energy denominators of the
kernels (10) and (11) indicate that the low-lying excited states are more important than those with high energies in
the evaluation of the matrix element in Eq. (9). We have tested this sensitivity by artificially changing of the 10%
the values of the w, energies calculated with the D1M force. The largest deviations of the @) values we have identified
are of about 10%, much smaller in any case than the differences with the IPM values.

Around the core nuclei, listed in Table I, we have selected 48 states of several isotopes and isotones with one nucleon
more or less, which allow us to compare our results with the experimental data of the compilation of Ref. [30] and
also with the results of Ref. [5] obtained within the FFS theory.

In Table II, we show the RPA results obtained in our model by using the D1M and D1S nucleon-nucleon effective
interactions. In this table we indicate the core nuclei, the specific isotopes for which @) was calculated, and the s.p.
states characterizing them. In general, we have considered the states with lowest energy and @ # 0. For example,
the true ground states of 2°7T1 and 2°7Pb are a 1/2% and a 1/2~ states respectively, but both have @ = 0. For this
reason, in these two cases, we have indicated the 3/27 and 5/27 states, respectively. In the table, the states of the
same isotope with higher energy are indicated by a superscript latin letter.

Our calculations confirm the well known fact that the @ values of nuclei with one nucleon more than the doubly
closed shell core are negative, and those with a nucleon less are positive [19]. A first general remark about the results
of Table II, is that the values we have obtained by using the two different interactions are very similar. The average
relative difference between the RPA results calculated with D1M and D1S interactions is of few percent. Henceforth,
if not explicitly stated, we shall discuss only the results obtained with the D1M interaction.

We compare in Fig. 3 the results of the IPM, triangles, FOPT, squares, and RPA, circles, calculations. The four
panels show separately the results obtained for hole and particle-like states and for protons and neutrons. Since we
do not use effective charge, the IPM results for the neutron states are zero.
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Figure 3: Values of Q, in e fm? for RPA (circles), FOPT (squares), and IPM (triangles), calculated with the D1M interaction
for the various nuclei studied. The left (right) panels correspond to proton (neutron) states, while the upper (lower) panels
show the results for particle (hole) states. The lines have been drawn to guide the eyes. The latin upper indexes indicate
excited states following the nomenclature of Table II. The RPA values for the nuclei around the **Sn core, drawn as open
circles, have been multiplied by 0.25.

A first, general, remark is that, in absolute value, the RPA results are always larger than those obtained in the
other calculations. It is interesting to observe that, in the proton case, the FOPT results are very close to those of the
IPM, and, sometime, even smaller in absolute value. In general, the RPA results produce a relatively small correction
with respect to the IPM values.

We carried out an additional test of our model by comparing our results with those of other theoretical approaches,
the Hartree-Fock-Bogolioubov (HFB) and the FFS theory [7, 10-12]. This comparison is shown in Fig. 4. The HFB
calculations have been performed by using the technique developed by Robledo et al. [31], based on the gradient
method. In the minimization procedure both time-even and time-odd fields are considered in the calculation of the
energy functional and this allows us to avoid the equal filling approximation [32]. In the figure, we show the RPA and
HFB results obtained with the D1S interaction. The relevant point for the present study is the remarkable agreement
between the HFB and our RPA results.

The other comparison proposed in Fig. 4 is that with the results of FFS calculations. This last approach is
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Figure 4: Values of Q, in e fm?, obtained in our RPA calculations with D1S interaction (solid circles), compared to the FFS
results taken from Refs. [7, 10-12] (open squares) and to the HFB results found for D1S interaction (open circles).

rather similar to ours, and the differences are due to the use of different interactions, and s.p. bases. The results of
the nuclei around 2°8Pb taken from Ref. [7], have been obtained by fully exploiting the philosophy of the Landau-
Migdal approach. The s.p. wave functions have been generated by using a Woods-Saxon potential well, and the
RPA calculations have been conducted with a Landau-Migdal interaction whose parameters have been chosen to
reproduce at best the data. The results of nuclei lighter than 2°®Pb, are taken from Refs. [10-12], and have been
obtained by using a slightly different computational scheme. Skyrme interactions of different type have been used in
HF calculations to generate the s.p. basis wave functions and, in the second step, also to solve the RPA equations.
The zero-range characteristics of this type of interaction requires the use of a cutoff renormalisation parameter whose
value depends on the size of the s.p. configuration space used in the RPA calculations. The @ values obtained with
the FF'S approach are, in absolute value, larger than ours.

In Table IIT we compare our results with the experimental values taken from the compilation of Ref. [30] and with
those given in Ref. [33]. The RPA description of these experimental data is not particularly satisfactory. All the
experimental values are larger than our predictions. In heavier nuclei our calculations are able to account only for
about half of the observed @) values. This indicates that our approach is not fully able to describe the large collectivity
of the 27 excitations. On the other hand, the improvement with respect to the IPM predictions, and also with respect
to the FOPT predictions, is remarkable.

exp
core nucleus s.p. state IPM FOPT RPA Ref. [30] Ref. [33]
Y0 P 1ds,  -4.12 -3.74 -4.50  -5.80

70 1ds /2 0.0 -1.51 -1.61 -2.60
“Ca ¥K  1dy, 337 304 433 590
15 1fz;»  -7.01 -6.31 -8.30 -15.60
¥Ca  1dg), 0.0 178 220 3.60
MCa  1fr) 0.0 -3.17 -3.68 -9.00
¥Ca TCa  1f7; 0.0 243 495 210 8.46
YCa  2p3s 0.0 -1.24 -2.58 -3.63
07y N7Zr 2d5 /5 0.0 -3.15 -5.68 -17.60
208ph 209Bi  1hgs, -16.39 -13.84 -27.71 -51.60
*®Pb  2g9)0 0.0 -7.55-14.42 -30.00

Table III: Values of Q, in efm?, for IPM, FOPT and RPA, calculated with the D1M interaction, compared to the experimental
data taken from the compilation [30] and from Ref. [33]. The s.p. states refer to the corresponding doubly magic cores.
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B. The p and the 1T excitation.

We use the same set of even-even core nuclei adopted for the calculation of @ also for the investigation of the
magnetic dipole moment p. Around each core nucleus we calculate the p values for the four nuclei with one nucleon
more or less. We present our results by following the strategy adopted in the investigation of ). We first discuss
the features of the 17 excitation in the core nuclei and, after, we present the results of the calculation of ;1 and we
compare them with the experimental values.

We present in Table IV the excitation energies and the B(M1)1 values of the main low-lying 17 states, and we
compare them with the experimental values taken from Refs. [25, 26]. We indicate in the table also the dominant ph
transitions.

w (MeV) BMD1 (4%) main s.p. transitions
nucleus DIM DIS exp DIM DIS proton neutron
0 17.76 18.37 13.66 0.01 0.01  (2p3/5lp; )
20 835 897 581  5.18 (1ds/1dg ;)
240 850 9.06 9.50 5.75 5.13 (1d3/21dg/12)
10Ca  14.62 15.03 9.87 0.006 0.006  (2d5/51d5 ;)
®Ca 930 10.19 10.23 10.23 9.66 (1f5/21f;/12)
60Ca  6.73 6.76 0.04 0.04 (3P3/22D5 /)
907Zr  9.08 9.98 9.37 13.98 13.49 (1g7/21g;/12)
1005y 7.49 9.13 0.65 0.97 (1f5/21f;/12)
13280 6.78 8.00 6.05 9.84 (1f5/21f;/12)
205Phb  6.30 7.60 585 7.80 11.89  (linyjaliyg)y) (Lhealhy)y)

Table IV: Energies, w, and B(M1)1 values of the main low-lying 1" excited state obtained in our calculations for the core nuclei
considered, with the two interactions we have adopted. The experimental values are taken from Refs. [25, 26].

The table shows that the B(M1)1 values of the 0, 4°Ca and %°Ca nuclei, where all the spin-orbit partner levels
are occupied, are orders of magnitudes smaller than the other ones. This confirms the well known fact [19, 34] that
the M1 excitation is strongly excited in nuclei where ph transitions between spin-orbit partner levels are allowed. We
have presented in Ref. [35] a detailed discussion of the M1 strength distribution in oxygen and calcium isotopes.

The agreement with the experimental energies is reasonable for almost all the cases, but for 0 and “°Ca. We have
already pointed out the fact that in the first two nuclei the 17 excitation is rather weak because all the spin-orbit
partner levels are occupied. In these nuclei it is not easy to find out the 17 states to be compared with those predicted
by our model, since, experimentally, the M1 strength is rather fragmented. For example in “°Ca we found more than
twenty 17 states below 12 MeV [25, 26].

Our description of the 17 excitation is rather good in the situations where these excitations are dominated by a
few ph transitions. In these cases our approach works at its best. The main features of the transitions are already
well described within the IPM which is corrected by the RPA by including other, less important, ph transitions.

The ten doubly magic nuclei listed in Table IV have been considered as core nuclei where we add or remove one
nucleon at the time to form odd-even nuclei with magnetic dipole moment p. Before discussing the effects of the core
polarization, i.e. of the excitation of the even-even core, we clarify the role played by the MEC in the calculation of
1.
In Fig. 5 we adopt the usual representation of u [16] against the angular momentum j of the odd-even nucleus,
to show our results obtained with the DIM force. In the (a) and (b) panels the symbols represent the ppy values
obtained by considering the full electromagnetic operator M; = MY + MMEC while the lines indicate the Schmidt
values found for M{® (see Eq. (24)). The MEC produce relatively small changes with respect to the Schmidt
values, usually of the order of few percent up to a maximum value of about 10%. These changes have a consistent
behavior over all the various regions of the nuclear chart, and we did not observe remarkable differences between
nuclei characterized by a hole- (open squares) or a particle-like (solid circles) structure.

Another perspective to observe these results is given in Fig. 6 where we show the differences ppy — pisch as a
function of the mass number of the nuclei investigated. The results of panel (a) correspond to the odd-proton nuclei
while those of panel (b) are those obtained for the odd-neutron nuclei. In the odd-proton cases the MEC always
increase the u values with respect to the Schmidt ones, but for the 2!N and 23N nuclei. The results of panel (b)
show that the effect of the MEC on the odd-neutron nuclei consists in a lowering with respect to the Schmidt values,
without exceptions. It is possible to outline a general overall tendency of the MEC effects to increase with the mass
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Figure 5: Comparison between the values of pipwm, left panels, and purpa, right panels, expressed in nuclear magnetons, and
the Schmidt values, as a function of the angular momentum j of the odd-even nucleus. The results obtained with the full
electromagnetic operator, M; = M9 + MYEC are indicated by the symbols and the Schmidt values by the solid lines. Open
squares and solid circles represent the results obtained, respectively, for nuclei characterized by hole or particle-like s.p. states.
The calculations have been carried out with the D1M interaction.

number, even though there are quite a few exceptions.

The effects we have just described are consistent for all the nuclei, and, in terms of the agreement with the
experimental data implies two contrasting aspects. Since the experimental data are lying between the two Schmidt
lines, the inclusion of the MEC improves the agreement for odd-proton nuclei with j. = [ — 1/2, while they are
worsening it for odd-proton nuclei with j» = [+ 1/2. We have a similar situation also for the odd-neutron nuclei
where we observe an improvement in the case of j. and a worsening for j-.

In Table V we present the RPA results obtained with the two interactions we have adopted, and by using the
full electromagnetic operator which includes the MEC. We have considered those configurations which generate the

08 TT T T T T T T T TTTTTTTTTTTT
L@N" F K Sc Cu In SbTI Bi -
06 F Nb i
2 r protons ]
=1 04 -
|| = L i
— X
g 02 B
g R i
0.0 Erd
1523 23 39 59 49 89 99 101 207 2097
_02 S 1 N N T Y S Y U S O Y O I I |
' 21 17 25 47 41 61 91 131 133 209
Ol TTTTTTTTTTTTTTTTTTTTTTT
Hb) O Ca 7Zr  Sn Pb
0.0
2 -01 s
S8 o L
I 02
E = |l neutrons
= -0.3
= I 0O hole states
.0.4 | e particle states ]
L 17 23 25 41 49 61 91 101131°207207" 1
T T T T T A

-05 15 21 23 39 47 59 89 99 131 133207°209

A

Figure 6: Difference pipm — piseh, expressed in nuclear magnetons, for proton, panel (a), and neutron, panel (b), odd nuclei.
Open squares and solid circles represent the results obtained for nuclei characterized by hole or particle-like structure. The
calculations have been carried out with the D1M interaction.



13

core nucleus s.p. state D1IM DIS core nucleus s.p. state D1IM DIS

YO PN 1ppl <0137 <0142 Ze Y 2p;) -0.108 -0.152
TR 1ds5/2 4.884 4.885 9INb  1gg/o 6.727 6.996
PO 1pr, 0.638 0.638 ¥Zr  1gy),  -1.937 -1.813
170 1ds5 /o -2.088 -2.007 Mzr  2dgs -1.808 -1.715
20 %N 1pr, 0.001 -0.042 '%°Sn *In  1gg ) 6.559 6.593
2R 1ds5/2 4.397 4.779 1018b  2ds,0 4.448 4.476
2o 1dg),  -1.667 -1.487 Sn 1gg,  -1.638 -1.771
20 251 /9 -1.610 -1.485 101sn  2d5 5 -1.507 -1.614
20 BN 1p ), 0.013 -0.024 '*2Sn *'In 1g, 6.788 6.767
PR 1ds/o 4.444 4.801 1338b  1gr/ 2.579 2.546
Bo 2, -1.628 -1.482 Bisn 2dg ), 0.684 0.758
20 1dzye 0.842 0.841 ¥isn® 1hp!,  -1.520 -1.688
40Ca 39K 1d;/12 0.358 0.350 13380 lhgys 0.596 0.746
TSc 1fyye 5.971 5.972 29%pp 207T] 35;/12 2.528 2.538
¥Ca  1dg), 0.910 0.918 29Bi  1hg, 3.604 3.548
NCa  1fy )4 -2.096 -2.098 209Bi®  liyg,0 8.859
BCa K 287, 2.384 2.695 *"Pb  3py ), 0.437 0.463
S 1fyye 5.577 5.888 207ppa 2f;/12 0.764 0.857
Ca  1f ), -1.809 -1.664 27ppY tigl,  -1.655
¥Ca  2ps/s -1.709 -1.605 209py,  2g4 -1.635 -1.756
9Ca K 1d;, 0.347 0.338
S1Sc  1fy)n 6.146 6.147
*Ca  2p;),  -1.954 -1.951
SlCa  1gg/s -2.015 -2.011

Table V: Values of p, in nuclear magnetons, obtained in our RPA model with the full MLE + MMEC operator for the two
interactions considered. We present the core nuclei, the specific A + 1 nuclei and the s.p. states which characterise them. The
upper latin letters indicate the excited states of the isotope.

ground state of the odd-even nuclei, and some excited state of interest. In the table, our results are compared to the
available data taken from the compilation of Ref. [30].

With the exceptions of the 2!N, 23N, and '3'Sn cases, some of which we shall discuss in more detail, the relative
differences between the DIM and D1S results are of the order of 1%. This indicates that the effects we are discussing
are almost independent of the specific implementation of the interaction used.

The quantitative stability of our results can be observed by considering that, in our approach, the 230 nucleus
can be obtained by adding a neutron to the 220 core or subtracting one to 240. The differences between the two
procedures are related to the different s.p. states produced by the HF calculations and the results obtained for D1M
and D1S interactions show u values that differ on the third and fourth significant figures, respectively.

We compare the D1M results of Table V with the Schmidt values in the panels (¢) and (d) of Fig. 5. In general, the
urpa values are situated between the two Schmidt lines, as it is observed for the experimental values. The deviation
from the Schmidt values is particularly evident in the neutron case for the nuclei with j. above 5/2, which correspond
to the 207Pb® and '33Sn isotopes.

In Fig. 7 we compare the RPA, FOPT and IPM results. All the calculations have been carried out with the D1M
interaction, and by using the complete electromagnetic operator M; = M$PB + MMEC The results are shown as
relative difference with respect to the Schmidt values, Eq. (24). We observe the great similarity between our RPA
results and those obtained in FOPT. This indicates that the structure of the 1+ states is not as collective as that of
the 2% states, but it is rather dominated by single-particle excitations.

The FOPT and RPA results show very similar behaviors. In general, the FOPT deviate more from the Schmidt
values than the RPA ones. We remark that the FOPT approach, often utilized in the literature [3, 36-39], performs
much better in this case than for the electric quadrupole moment case, as it is shown in Fig. 4.

Our results agree with those of the non-relativistic calculations of Refs. [3, 38]. More precisely, and always with
respect to the Schmidt values, we observe that: (i) both MEC and RPA increase the p values in 2°°Bi; (ii) in 2°"T1 we
find an enhancement due to the MEC while the RPA effects produce a lowering of u; (iii) in 2°°Pb we have opposite
effects, and (iv) in 2°7Pb both MEC and RPA lower the i values.

The p values obtained in RPA show a remarkable difference with respect to the IPM results. The case of the
39K and °°K nuclei is particularly interesting since the three calculations provide very similar results and all of them



14

neutrons
T T
O Ca

protons
B o B Bt S Bl A S B St
F Sc Nb Sb = Bi

particle states T

05 T LN S S
Zr Sn Pb

0.5

M — HSch
HSch
.
i

M Us W'y

=

(@) 23 41 61 101 209
1 1 1 1 11 1 S T

057 25 a9 o1 13 2097
F 2 S i e s s e e s e
N K Cu In TI

2k ,

y hole states
1r 4
0 A ¢/ WVEREY VEI

HSch

M — HSch

hole states
1317 207°
1 207 207

Figure 7: Comparison between our RPA, circles, FOPT, squares, and IPM, triangles, results. The calculations have been
carried out with the DIM interaction and by using the full electromagnetic operator M; = MPE + MMEC. The lines have been
drawn to guide the eyes.

noticeably deviate from the Schmidt values. This is only due to the presence of MEC in the operator. This effect
should be investigated better, by considering also that the K nucleus does not present this feature.

A direct comparison between our results and the available experimental data taken from Ref. [30] is presented in
Table VI. In this table we also include the results of the FFS calculation of Ref. [8]. We observe that the effects
of the core polarisation become more important in the heavier nuclei. The differences between the results of IPM,
FOPT and RPA calculations are rather small in the nuclei around °0O and “°Ca.

In the great majority of the cases the RPA results are closer to the experimental values than the other ones,
indicating that the inclusion of the core polarization improves the agreement with the available experimental data.
However, this is not a universal behavior since there are very specific cases, where the IPM approach produce a better

core nucleus s.p. state Schmidt IPM FOPT RPA FFS exp
0 N 1pp), -0.264 -0.153 -0.133 -0.137  — -0.283
TR 1ds 2 4.793 4.896 4.882 4.884 — 4.721
PO 1py, 0.638 0.524 0.506 0.510 — 0.720
170 1ds5 /9 -1.913 -2.018 -2.003 -2.088 — -1.894
Ca K 1dg), 0.124 0.340 0.361 0.358 0.329 0.391
TSe 1fys 5.793 5.983 5.963 5.971 5.485 5.431
¥Ca  1dg), 1.148 0.928 0.910 0.910 0.888 1.022
MCa  1fy/0 -1.913 -2.109 -2.088 -2.096 -1.626 -1.595
BCa K 257, 2.793 3.011 2173 2.384 — 1.933
TCa 17 -1.913 -2.112 -1.732 -1.809 -1.556 -1.380
¥Ca  2ps/s -1.913 -1.954 -1.654 -1.709 -1.156
Nzr Y 2pl -0.264 -0.221 -0.114 -0.108 -0.125 -0.137
¥Zr gy, -1.913 -2.212 -1.872 -1.937 -1.304 -1.046
MZr  2dss -1.913 -2.022 -1.769 -1.808 -1.214 -1.304
13230 1338b  1gg/, 1.717 1.987 2.826 2.579 2.693 3.000
o 2dg), 1.148 1.029 0.601 0.684 0.681 0.747
1318n® 1hj}, -1.913 -2.191 -1.227 -1.520 — -1.276
298pb 20TTL 3s. 2.793 2.990 2.379 2.528 1.857 1.876
209Bi  1hg,s 2.624 3.025 3.827 3.604 3.691 4.110
*"Pb  3p; ), 0.638 0.549 0.472 0.437 0.473 0.593
2Tpbe 26 1.366 1.159 0.677 0.764 0.720 0.800
209ph  2g4 /0 -1.913 -2.110 -1.486 -1.635 -1.337 -1.474

Table VI: Comparison between p values, expressed in nuclear magnetons,
complete electromagnetic operator MO +MMEC with the Schmidt values (24), the FFS results of Ref. [8] and the experimental

data of Ref. [30].

calculated in IPM, FOPT and RPA by using the
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nucleus interaction Schmidt IPM FOPT RPA
2IN D1M -0.264 -0.341 0.030 0.001

D1S -0.264 -0.339 0.003 -0.042
2N D1M -0.264 -0.323 0.025 0.013
D1S -0.264 -0.322 -0.002 -0.024

Table VII: Values of p, in nuclear magnetons, of the !N and 23N nuclei. The Schmidt values are compared to those found
within IPM, FOPT and RPA approaches with the full MPB + MMEC gperator.

description of the observed p values. As expected the FFS results, which use effective electromagnetic operators, are
in general closer to the experimental values that ours.

We conclude this section by analyzing in detail the cases of the 2!N and 23N nuclei. In Table VII we show the pu
values for these two nuclei calculated by using different approximations. We observe that the Schmidt values have
negative sign. The inclusion of the MEC in the IPM calculations gives a negative contribution, further lowering these
values. The core polarization plays an important role as the results of two last columns indicate. In both nuclei, the
effect of the residual interaction has opposite sign with respect to the contribution of the MEC. This effect is larger
in the FOPT than in RPA results. In RPA calculations, the effects of the D1M force are large enough to change the
sign of u with respect to the Schmidt value. Experimental p values for these two nuclei are not available. In any case,
our RPA results follow the trend of the know experimental values of lying between the Schmidt values.

V. CONCLUSIONS

In this work, we have presented the results of a parameter free theoretical approach which describes the properties
of odd-even nuclei with one nucleon more, or less, than a doubly magic one. The convergence of the energy sum in Eq.
(9), the fundamental equation of our model, is ensured by the use of finite-range nucleon-nucleon effective interaction.
The use of zero-range interactions, as it is done for example in Refs. [5-7], requires the inclusion of additional free
parameters. The universality of our approach allows us to apply it in each region of the nuclear chart, from light to
heavy nuclei.

We have considered two parameterizations of the finite-range effective Gogny nucleon-nucleon interaction taken from
the literature, the D1S and D1M. Our calculations are fully self-consistent, meaning that all results have been obtained
by using the same interaction in each of the three steps of the calculation: the generation of the s.p. configuration
space by means of a HF procedure, the solution of the RPA equations and, finally, the evaluation of the response of
the odd-even nucleus to the external probe. In each step of the calculation the complete interaction has been used,
including the spin-orbit and the Coulomb terms, commonly neglected in RPA.

We have tested the validity of our approach by calculating the values of the electric quadrupole moment, @, of 48
different states, and the magnetic dipole moment, p, of 44 states, in various regions of the nuclear chart. We have used
the traditional one-body operator for the calculation of @), while for the y we have considered also the contribution
of MEC. We use bare electromagnetic operators whose coupling constants are those of free nucleons.

In absolute value, the results obtained by considering the MEC are always larger than the Schmidt values, implying
an improvement of the agreement with experimental data for odd-proton nuclei with j. and with odd-neutron nuclei
with js, and a worsening for the other type of nuclei.

The differences between the results obtained with the two forces are small, negligible if compared to the differences
between RPA and IPM results. This indicates that the quantitative description of the core polarisation effects in our
calculations is more related to the theoretical approach, rather than to the use of a specific interaction.

Our calculations require the description of the excitation of 2% and 1% states in doubly closed shell nuclei, in the
framework of the RPA theory. We observe that our model describe better the 1% excitations than the 2% ones.
This occurs because the most important 17 states, those where the largest part of the strength is concentrated, are
dominated by a single ph transition. In this case, our approach works at its best, by correcting the main ph transition
with the presence of other one-particle one-hole transitions. On the other hand, the structure of many of the 27 states
is very collective, and a good description of it requires to go beyond the linear combination of one-particle one-hole
transitions which is what the RPA considers.

This difference in the description of the two multipolarities is reflected in the results we have obtained for the values
of @ and p. The description of the magnetic dipole moments is certainly better than that of the electric quadrupole
moments. The similarity between our results and those obtained in FOPT is a further indication of the perturbative
structure of the 11 excitations. In any case, we have to point out that our results show a remarkable improvement of
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the description of the experimental values with respect to the IPM predictions, and also with respect to the FOPT
for Q.

We found a good agreement between our results and those of the FFS theory given in the literature [5-12]. The basic
theoretical hypotheses of the two approaches are rather similar. More remarkable is the agreement with the @) values
obtained in the HFB calculations. Our approach and the HFB treat the core polarisation in a completely different
manner, but they produce similar results. In our approach the IPM response is corrected by the core polarisation
described in terms of particle-hole excitations. Alternatively the HFB theory corrects the IPM by considering the
effects of the pairing force. These two alternative visions of effects beyond the IPM picture generate very similar
quantitative results. It would be interesting to identify specific observables which allow us to disentangle the two
effects.

Despite the limitations we have pointed out, we think that our parameter free, self-consistent approach is adequate
to make predictions of the properties of odd-even nuclei nearby the doubly magic-ones in regions of the nuclear chart
not yet experimentally explored.

Appendix A: MEC matrix elements

In this appendix we give the explicit expressions of the matrix elements of the MEC inserted in Eq. (9) to calculate
the values of . We have considered the contribution of the two diagrams indicated in Fig. 1 and called them seagull
and pionic. We give here the final results of a calculation which describes these contributions in terms of Feynman’s
diagrams, makes a non-relativistic reduction, a multipole expansion and the use of s.p. wave functions with the
angular coupling indicated in Eq. (8).

We call ¢ the modulus of the momentum that the photon is exchanging with the nucleus, and w the photon energy.
In the specific case under study we have w = e,3 and ¢ = w/(hc).

The contribution of the seagull term is given by

. . /Ta’.\j .a . J
(G IV [160) = € +15 +J +1) (—1)ie=1/2 _Jode_ (]1 h )

JJ+1) \3 30

< [Gla.w) = GYaw] [ drr?islan) 550, 0),

where GL and GY are, respectively, the proton and neutron electromagnetic form factors, and we have defined

2 -~
T0ha0) = 2 5 G b ) Y

T h<ep

2
~ 'a y L
v Zg(za+zh+L1+1>L%(ﬁ " ;) v Tan(L1,7) Ba(r) Ro(r)
L, 2 2

2
~ j p L
+ Z f(lb +l+La+1) Lg <j1h Jb 02 ) Kab ‘Ihb(L%T) Ra(r) Rh(r) )
Lo

where f2 = (0.079 is the pion-nucleon coupling constant, m, is the pion mass,  is defined in Eq. (22), (1) = 1 if [ is
even and zero otherwise, R(r) is the radial part of the s.p. wave function (8), and T is defined as

Tup(L,z) = /OOO dr 2 {(% + ““b+2> Ra(r)Rb(r)}

r

X / h kK22 v (K, €qp) 70 (k) ip (k) . (A2)
0 T

In the above equations we have indicated with v, the pion propagator

1

Uﬂ(kue) = 7k2 —62—|—m3r .

The contribution of the pionic term is

(6|23 10} = €0l +15+ T + DT T Ferfas) [ drs® islar) 553, (r), (A1)
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where
Frr () . (45)
s yw) =
T TR @ =W my
is the electromagnetic form factor of the pion, with m, = 776.0 MeV the p-meson mass, and
(m) ;1 ki 2
‘rfa,b,J(T) =4 m_7r2 - Z (=1)7" %7 53 [6ab,pOn,n — SabnOn.p] (A6)
7'r h<er
X 3 Ella+1n+ Lo+ 1) €0y +1n + Lo+ 1) L3 L3
LiL;

« Ly Ly J Ja Jn In Jn gy Lo Ly J Lo
Jb Ja Jn i -3 0 i -3 0 1 -1 0

x+/La(Lo 4+ 1) Tan(L1,7) Tpe (L1, 7).
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