
ar
X

iv
:1

50
9.

02
32

1v
1 

 [
nu

cl
-t

h]
  8

 S
ep

 2
01

5

Electric quadrupole and magnetic dipole moments of odd nuclei

near the magic ones in a self-consistent approach

G. Co’
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and,
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We present a model which describes the properties of odd-even nuclei with one nucleon more, or
less, with respect to the magic number. In addition to the effects related to the unpaired nucleon,
we consider those produced by the excitation of the closed shell core. By using a single particle basis
generated with Hartree-Fock calculations, we describe the polarization of the doubly magic-core with
Random Phase Approximation collective wave functions. In every step of the calculation, and for all
the nuclei considered, we use the same finite-range nucleon-nucleon interaction. We apply our model
to the evaluation of electric quadrupole and magnetic dipole moments of odd-even nuclei around
oxygen, calcium, zirconium, tin and lead isotopes. Our Random Phase Approximation description
of the polarization of the core improves the agreement with experimental data with respect to
the predictions of the independent particle model. We compare our results with those obtained
in first-order perturbation theory, with those produced by Hartree-Fock-Bogolioubov calculations
and with those generated within the Landau-Migdal theory of finite Fermi systems. The results of
our universal, self-consistent, and parameter free approach have the same quality of those obtained
with phenomenological approaches where the various terms of the nucleon-nucleon interaction are
adapted to reproduce some specific experimental data. A critical discussion on the validity of the
model is presented.

PACS numbers: 21.10.Ky ; 21.60.Jz

I. INTRODUCTION

The description of the angular momenta of odd-even nuclei is one of the greatest successes of the nuclear shell-model.
The angular momentum and the parity of the single particle (s.p.) level of the unpaired nucleon correspond to those
of the whole nucleus. This extreme shell model picture, where the s.p. properties are imposed to the whole interacting
many-body system, is weakened when observables which are not quantized are investigated. For example, the values
of electric quadrupole and magnetic dipole moments are rather different from those predicted by the extreme shell
model. For these quantities, the interaction between the unpaired nucleon and the other nucleons plays an important
role, strongly modifying the pure shell model predictions.
One expects that in odd-even nuclei around doubly-magic ones, the effects related to the extreme shell model

picture, which we shall name henceforth Independent Particle Model (IPM), are dominant with respect to those
induced by the two-body part of the nuclear hamiltonian, usually called residual interaction. This has induced the
development of various perturbative models [1, 2]. A class of these models is based on the straightforward application
of the traditional perturbation theory, which, however, has convergence problems, at least for the terms beyond those
of the first order [3].
Another perturbative approach consists in considering the residual interaction within the framework of the Random

Phase Approximation (RPA) theory. This approach is based on the extension of the Landau theory of quantum liquids
to finite Fermi systems (FFS) done by Migdal [4]. This theory has been applied with great success to describe the
properties of odd-even nuclei in the region of 208Pb [5–7]. In these works the s.p. wave functions are generated
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by diagonalizing a Woods-Saxon well, and the residual interaction is a zero-range Landau-Migdal force [4]. More
recently, this approach has been extended to use the same interaction in the production of the s.p. wave functions and
in the RPA calculations [8–12]. Furthermore, also pairing effects have been considered. This self-consistent theory
of FFS has been applied also to the tin and to the calcium isotopes. In these approaches, the use of the concept of
quasi-particles implies the definition of the effective charge which contains free parameters whose values are chosen
to have a good description of the data. In the phenomenological approach of Refs. [5–7] also the constants defining
the strength of the various channels of the Landau-Migdal nucleon-nucleon effective interaction have been used as
free parameters. In this case, the values of these parameters are related to the dimension of the s.p. configuration
space. The application of these methods to a different region of the nuclear chart, or, more simply, to a different
s.p. configuration space, requires a new selection of the free parameter values. The self-consistent FFS approach of
Refs. [8–12] does not have cut-off problems in the RPA calculations, since it considers the full s.p. configuration
space, continuum included. The problems arise in the pairing calculations, where the free parameter is the value of
the cutoff energy used as regulator, in analogy to the renormalisation procedure adopted in effective field theories.
Inspired by these works, we propose here an extension of the RPA formalism to construct a fully self-consistent

approach. For each nucleus considered, we use a set of s.p. wave functions generated by a Hartree-Fock (HF)
calculation. The same, effective, nucleon-nucleon interaction used in HF is adopted in the RPA calculations, which
allows the evaluation of the odd-even nucleus observables. The parameters of the force, which we consider having
finite-range, have been chosen once forever in a global HF fit of properties mainly related to the ground state of a large
set of nuclei in all the regions of the nuclear chart [13]. The use of a finite-range interaction ensures the stability of our
results whose values, after convergence has been reached, do not depend any more on the size of the s.p. configuration
space.
The basic ideas of our work are relatively simple and straightforward. First, we use effective nucleon-nucleon

interactions whose parameters have been chosen to reproduce data which are not directly related to the observables
we investigate. Second, the chain of calculations needed to arrive at the final results does not contain any additional
free parameter, but they depend exclusively on the effective nucleon-nucleon interaction. To be sure of identifying
features related to the theory, and not to the specific choice of the interaction or to the nucleus investigated, we
carried out calculations with different nucleon-nucleon forces, for a set of nuclei in a large region of the nuclear chart.
We mainly concentrate our investigation on two observables, the electric quadrupole, Q, and the magnetic dipole, µ,
moments of a selected set of odd-even nuclei. The evaluation of these quantities requires, respectively, the description
of the 2+ and 1+ excitations of the even-even core nuclei which we obtain by using a RPA approach [14].
In Sec. II we present the basic ideas our model. In this section we also specify the form of the electromagnetic

operators that we have adopted to describe Q and µ. The expression of the operator for Q is simple and straight-
forward. More complex is the situation for µ, where, in addition to the traditional one-body operator, we consider
also two-body currents generated by the exchange of charged pions. We shall refer to these latter currents as meson
exchange currents (MEC). In Sec. III we discuss some details of the calculations related to the specific applications of
the model. The results obtained for Q and µ are presented in Sect. IV. In both cases we also study the excitation of
the even-even core nuclei for the two multipolarities involved. In Sec. V we summarize the main results of our study,
and we draw our conclusions.

II. THE MODEL

The starting point of our model is the construction of the basis of s.p. states |φα〉, which we generate by solving
the HF equations. We used the symbol α to indicate all the quantum numbers characterizing the s.p. state, i.e.
the principal quantum number nα, the orbital angular momentum lα, the total angular momentum jα, its third
component mα, and the third component of the isospin tα = −1/2 for protons, and tα = 1/2 for neutrons.
In the IPM picture, all the s.p. states below the Fermi energy are completely occupied, and those above it are

empty. We indicate with |Φ0〉 the Slater determinant describing the IPM ground state of the doubly magic nucleus
composed by A nucleons. By definition, the RPA ground state of the doubly magic nucleus, which we indicate as
|Ψ0〉, contains correlations beyond the IPM.
The odd-even nuclei we want to describe are obtained by adding, or subtracting, one nucleon to the doubly-magic

A-nucleon system. We label the states of these nuclei as |A± 1;α〉, where the symbol α indicates the set of quantum
numbers characterizing the s.p. state of the added, or subtracted, nucleon.
We describe the response of the odd-even nucleus to the perturbation induced by an external operator B by

considering separately two effects. The first one is the action of the external operator on the unpaired nucleon, while
the doubly-magic core remains unperturbed. The second effect considers the interaction of the external probe with
one of the nucleons of the doubly magic core. In this case, the whole nucleus responds to the external perturbation
because the nucleon struck by the external probe interacts strongly with all the other nucleons, included the unpaired
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one.
We express the expectation value of the external operator B between two states of the odd-even nucleus with one

nucleon more than the doubly-magic one as [4–7]

〈A+ 1;α |B |A+ 1;β 〉 = 〈Φ0 | aα B a+β |Φ0 〉 + 〈Ψ0 | aα a+β Vres PA(ǫαβ)B |Ψ0 〉 , (1)

where a+ and a are the usual creation and annihilation operators, Vres is the residual nucleon-nucleon interaction,
and PA is a propagator which describes the excitation of the doubly magic core and depends on ǫαβ = ǫα − ǫβ, the
difference between the energies of the two states of the A+1 system. A similar equation can be written for the A− 1
nucleus by exchanging creation and annihilation operators.
In our approach, the excitation of the doubly magic core is described by using the RPA theory. In terms of an

excitation operator Q+
ν , we define the excited states of the A-nucleon system as

|Ψν 〉 = Q+
ν |Ψ0 〉 , (2)

while the relation

Qν |Ψ0 〉 = 0 (3)

defines the ground state. The label ν indicates all the quantum numbers needed to characterize the excited state.
The RPA excitation operator is defined as

Q+
ν =

∑

ph

(
Xν

ph a
+
p ah − Y ν

ph a
+
h ap

)
, (4)

where the index p refers to s.p. states above the Fermi surface (particles) and h to s.p. states below it (holes). The
RPA propagator can be written as [4, 7, 15]

P
RPA
A (ǫαβ) =

∑

ν

Q+
ν |Ψ0 〉

(
1

ǫαβ − ων
− 1

ǫαβ + ων

)
〈Ψ0 |Qν , (5)

where ων is the excitation energy of the state |Ψν 〉. By using this propagator, we express the second term in the
r.h.s. of Eq. (1) as

〈Ψ0 | aα a+β Vres P
RPA
A (ǫαβ)B |Ψ0 〉 =

= 〈Ψ0 | aα a+β Vres

∑

ν

Q+
ν |Ψ0 〉

(
1

ǫαβ − ων
− 1

ǫαβ + ων

)
〈Ψ0 |Qν B |Ψ0 〉 (6)

=
∑

ν

〈Ψ0 |
[
aα a+β Vres , Q

+
ν

]
|Ψ0 〉

(
1

ǫαβ − ων
− 1

ǫαβ + ων

)
〈Ψ0 | [Qν ,B ] |Ψ0 〉 ,

where we have exploited Eq. (3) to insert the commutator [ , ] between operators, with the aim of using the quasi-
boson-approximation [16]:

〈Ψ0 | aα a+β Vres P
RPA
A (ǫαβ)B |Ψ0 〉 ≃ (7)

≃
∑

ν

〈Φ0 |
[
aα a+β Vres , Q

+
ν

]
|Φ0 〉

(
1

ǫαβ − ων
− 1

ǫαβ + ων

)
〈Φ0 | [Qν ,B ] |Φ0 〉 .

The operator describing the action of the external probe on the nuclear system can be expressed in terms of a
multipole expansion. Each term of this expansion, BJM , is characterized by the angular momentum J , and its
projection M on the quantization axis. In our calculations we consider the spherical symmetry of the problem. We
use a set of s.p. wave functions with the following angular momentum coupling structure:

φα(r) = Rtα
nαlαjα

(r)
∑

µαsα

〈 lα µα
1

2
sα | jα mα 〉Ylαµα(θ, φ)χsα , (8)

where (r, θ, φ) are the usual polar coordinates, Ylµ are the spherical harmonics, χ the Pauli spinor, and the symbol 〈|〉
indicates the Clebsch-Gordan coefficient. We calculate the matrix elements by applying the Wigner-Eckart theorem
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with the phase conventions of Ref. [17], and we sum on all the possible values of mα and mβ. For the matrix element
in Eq. (1) we obtain

〈A+ 1;α ||BJ ||A+ 1;β 〉 =

= 〈φα ||BJ ||φβ 〉 + δα,β
∑

h

〈φh ||BJ ||φh 〉 (9)

+
∑

ν

[
Dν

αβ

∑

ph

Aν
ph 〈φp ||BJ ||φh 〉 + Gν

αβ

∑

ph

(−1)jh+jp Aν
ph 〈φp ||BJ ||φh 〉

]
,

where the two kernels are defined as

D
ν
αβ =

∑

ph

vJαβph

(
Xν

ph

ǫαβ − ων
+ (−1)jh+jp

Y ν
ph

ǫαβ + ων

)
(10)

and

Gν
αβ =

∑

ph

vJαβhp

(
Xν

ph

ǫαβ + ων
+ (−1)jh+jp

Y ν
ph

ǫαβ − ων

)
, (11)

with

Aν
ph = Xν

ph + (−1)jh−jp Y ν
ph . (12)

In Eq. (9) the double bars indicate that in the matrix elements between the two s.p. wave functions the angular part
is evaluated in terms of reduced matrix elements. The calculation of the radial integrals is understood.
The expression of the interaction terms vJ is analogous to that of the RPA [15]

vJαβγδ =
∑

K

(−1)K+jβ+jδ K̂

{
jα jβ J
jδ jγ K

}

×
[
〈 jα jγ K ‖Vres ‖ jβ jδ K 〉 − (−1)jβ+jδ−K 〈 jδ jβ K ‖Vres ‖ jα jγ K 〉

]
. (13)

In the above equation we used the Wigner 6-j symbol [17], and ĵ ≡ √2j + 1, where j is referred to an angular
momentum. The interaction Vres is described as

Vres = v1(rij) + v2(rij) τ (i) · τ (j) + v3(rij)σ(i) · σ(j) + v4(rij)σ(i) · σ(j) τ (i) · τ (j) (14)

+ tρ [1− τ (i) · τ (j)] ρ1/3
(
ri + rj

2

)
δ(rij) + 2 iW0

[←−p ij × δ(rij)
−→p ij

]
· S+ vCoul(rij) ,

where tρ and W0 are real constants, v(rij) are scalar functions of the distance between the two nucleons, and vCoul(rij)
is the Coulomb interaction acting between two protons. In the above equations σ and τ are the usual Pauli matrices
for the spin and isospin operators respectively, ρ is the nucleon density, S = [σ(i) + σ(j)]/2 and p, is the relative
momentum of the interacting pair with the arrows indicating the side on which the operator acts. It is worth pointing
out that the same effective nucleon-nucleon interaction is used in the HF and in all the RPA calculations.
The sum over ν in Eq. (9) runs over all the excited states of the A-nucleon core with the same multipolarity and

parity of the transition operator. Eq. (9) is the basic expression of our model and is analogous to those obtained in
Refs. [5–7] within the FFS theory.
The results obtained by using the whole expression in Eq. (9) have been labelled as RPA. We compare them with

those of the IPM, i.e. those provided by the first term of Eq. (9). In addition we consider also the results obtained
within the framework of the traditional time-independent first order perturbation theory (FOPT), which we obtain
by calculating

〈A+ 1;α ||BJ ||A+ 1;β 〉FOPT = 〈φα ||BJ ||φβ 〉 + δα,β
∑

h

〈φh ||BJ ||φh 〉

+
∑

ph

vJαβhp

(
1

ǫαβ − ǫph
+

1

ǫαβ + ǫph

)
〈φp ||BJ ||φh 〉 . (15)

For nuclei with one nucleon less than the doubly magic ones we obtain equations similar to (9) and (15) with an
additional overall phase.
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The first operator we consider in this paper is a one-body electric operator,

EJM = e

A∑

i

[
1

2
− ti

]
rJi YJM (Ωi) , (16)

where e is the elementary charge. We express the reduced s.p. matrix element of this operator as

〈φα ‖EJ ‖φβ 〉 =
e√
4π

(
1

2
− tα

)
δtαtβ (−1)jα−1/2 ξ(lα + lβ + J) ĵα ĵβ Ĵ

(
jα J jβ
− 1

2 0 1
2

)
IJαβ . (17)

In the above expression we used the Wigner 3-j symbol [17], and ξ(l) = 1 if l is even and zero otherwise. We have
indicated with IJαβ the integral

IJαβ =

∫
dr rJ+2 Rtα

nαlαjα
(r)R

tβ
nβ lβjβ

(r) . (18)

Specifically, we calculate the electric quadrupole moment Q defined as

Q =

√
16π

5

(
jα 2 jα
−jα 0 jα

)
〈A± 1;α ‖E2 ‖A± 1;α 〉 . (19)

The second operator we consider in this work is the magnetic operator, composed by one- and two-body terms. We
express the one-body (OB) part of the magnetic operator as

MOB
JM = µN

A∑

i=1

[
2

J + 1
gl(ti) l(i) + gs(ti)σ(i)

]
· ∇i

[
rJi YJM (Ωi)

]
, (20)

where µN is the nuclear magneton, and we have for the gyroscopic constants the values gl=1 and 0, and gs = 2.793
and −1.913, for protons and neutrons, respectively. The expression for the s.p. matrix element is

〈φα ‖MOB
J ‖φβ 〉 =

1√
4π

δtαtβ (−1)jβ−1/2+J ξ(lα + lβ + J + 1) ĵα ĵβ Ĵ

(
jα jβ J
1
2 − 1

2 0

)

× (J − καβ)

[
gl(tα)

(
1 +

καβ

J + 1

)
− gs(tα)

]
I
J−1
αβ , (21)

where we have defined

καβ = (lα − jα) (2jα + 1) + (lβ − jβ) (2jβ + 1) . (22)

A B

γ

π π π′

γ

Figure 1: Schematic representation of the MEC diagrams considered in this work. The wavy lines represent the external
electromagnetic probe, the dashed lines the exchanged charged pion, and the full lines the nucleons. The A diagram is normally
called seagull and the B diagram pionic.

In addition to the one-body operator, we consider two-body terms generated by the exchange of a single, charged
pion, the so-called seagull, Ms, represented by the A diagram of Fig. 1, and pionic, Mπ, represented by the B diagram
of the same figure. We give in Appendix A the expressions of the matrix elements of these two MEC operators. In
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the FFS theory, these MEC corrections to the OB operator are taken into account by considering the effective charge
of the quasi-particle and by including an effective tensor term.
Specifically, we calculate the magnetic dipole moment defined as

µ =

√
4π

3

(
jα 1 jα
−jα 0 jα

)
〈A± 1;α ‖M1 ‖A± 1;α 〉 , (23)

where M1 = MOB
1 + MMEC

1 . In IPM calculations, by considering M1 = MOB
1 , we obtain the well known Schmidt

values [16, 18] which depend only on the angular momentum j of the s.p. level of the unpaired nucleon and are given
by:

µSch =





[(
j − 1

2

)
gl + gs

]
µN , for j = l + 1

2 ,

j

j + 1

[(
j +

3

2

)
gl − gs

]
µN , for j = l − 1

2 .

(24)

A remarkable difference between our calculations and those based on the FFS theory is that we use bare, not
effective, electromagnetic operators, therefore we do not include free parameters in our theory. Furthermore, we
do not include in the magnetic operator (20) the tensor terms often added to take care of magnetic dipole ∆l = 2
transitions in the IPM picture [6, 8, 19].

III. SPECIFIC APPLICATIONS

As pointed out in the Introduction, we carried out our calculations by using two different parameterizations of the
finite-range density dependent Gogny interaction. These define the scalar functions v(rij) of Eq. (15), and the values
of the tρ and W0 constants. We have chosen the traditional D1S force [20] and the more recent D1M one [21], which
improves the behavior of the neutron matter equation of state at high density values. We would like to emphasize
the fact that the parameters of these interactions have been chosen once forever in a fit process, described in detail
in Ref. [13], and they have not been modified in the present work. Since the effective nucleon-nucleon interaction is
the only input of our calculations, we may state that they are parameter free.
For each nucleus considered, the calculations of Q and µ are carried out in three steps. In the first one we generate

the set of s.p. wave functions by means of a HF calculation. In the second step, for a selected multipole excitation
of angular momentum J and parity Π, we solve the RPA equations. In the third step we calculate the expectation
value of the operators E2 and M1 by using the expression (9) or the ones for IPM and FOPT.
From the computational point of view, it is necessary to ensure the numerical convergence of each of these three

steps. In our calculations we use a set of s.p. wave functions with bound boundary conditions at the edge of an
r-space box. In this manner all the s.p. states are bound, even those with positive energy. In the common jargon
these are called discrete calculations. For the first two steps, the numerical stability of the results is related to the
dimensions of the r-space integration box and to the size of the s.p. configuration space used in the discrete RPA
calculations. We handle these problems by using the strategy described in Ref. [22], i.e. by choosing the size of the
integration boxes and the dimensions of the s.p. configuration spaces such as the centroid energies of the electric
giant dipole resonances do not change by more than 0.5 MeV if the value of any of the two parameters is increased.
In this respect, the most demanding calculations are those carried out for the 208Pb nucleus where we have used a
box radius of 25 fm and a maximum s.p. energy of 100 MeV.
The stability of the results of the third step is related to the maximum value of the RPA excitation energy, Emax,

which is the upper limit of the sum on ν in Eq. (9) and of the sum on ph in Eq. (15). We carried out convergence
tests for each nucleus considered. An example of these tests is presented in Fig. 2, where we show the values of the
quantities |Q/e|/ZR2, with R = 1.2A1/3, in the upper panel, and µ/µSch, in the lower one, for the ground states of
various nuclei, as a function of Emax. We observe that in Fig. 2 all the results have already converged at Emax = 70
MeV, and this is the minimum value of Emax we adopted in our calculations.

IV. RESULTS

We have applied the model presented in the previous sections to various nuclei in different regions of the nuclear
chart. The core nuclei have been selected to have closed shells and spherical symmetry, therefore, in these nuclei,
deformation and pairing effects do not play any role [23, 24]. We have identified isotopes of oxygen, calcium, zirconium,
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Figure 2: Convergence test of the stability of our results against Emax, the upper limits of the sum on ν in Eq. (9), for Q,
panel (a), and µ, panel (b), as given by Eqs. (19) and (23), respectively. The vertical lines indicate the 70 MeV values which
we have adopted as the value of Emax in our calculations.

tin and lead endowed with these characteristics. We have investigated the role of the pairing in these nuclei by carrying
out calculations in a HF plus Bardeen Cooper and Schrieffer framework [24]. The protons and neutrons energy gaps
between particle and hole states are so large that we did not find pairing effects. We found only one exception, the case
of the protons in 90Zr, where the particle fluctuation number is not exactly zero. The evaluation of the occupation
probabilities of the single particle levels indicates deviations of few percent from that predicted by a sharp Fermi
distribution. Only the proton 2p1/2 state, which in IPM does not contributes to the Q, is sensitively affected by the
pairing with an occupation probability of 85%. This s.p. state does not contributes to the Q.
We first present the results obtained for Q, and, in a second step, those related to µ.

A. The 2+ excitations and the Q values.

We show in Table I the excitation energies and the B(E2)↑ values of the first 2+ state obtained in our RPA
calculations for the various nuclei studied, and we compare them with the available experimental values taken from
the compilations of Refs. [25–27]. We notice a large difference between the RPA values and the experimental ones
in 16O and 40Ca nuclei. The experimental energies are smaller than those predicted by our calculations, and the
experimental B(E2)↑ values much larger, especially in 40Ca. Evidently, for 16O and 40Ca, the lowest 2+ states cannot
be properly described by the RPA approach since their structure is more complex than a simple combination of
one-particle one-hole excitations. In effect, the experimental excitation spectrum of 16O presents at least other six 2+

states up to 15 MeV, and that of 40Ca about fifty of them below 10 MeV [25, 26].
The situation for the other nuclei is different. We found reasonable agreement with the available empirical data

in 48Ca, 132Sn and 208Pb. The 2+ states in these nuclei are dominated by particle-hole (ph) transitions between
bound s.p. states. The simplest case is that of the 48Ca nucleus where we found that the neutron (2p3/2 1f

−1
7/2)

transition is the dominant component of the first 2+ excited state. We identify analogous situations in 132Sn, with
the proton (2d5/2 1g

−1
9/2) and neutron (2f7/2 1h

−1
11/2) transitions, and in 208Pb with the proton (2f7/2 1h

−1
11/2) and

(1h9/2 1h
−1
11/2) and neutron (2g9/2 1i

−1
13/2) transitions. In these nuclei, the 2+ strength is concentrated in the s.p.

transitions above mentioned with little fragmentation produced by the coupling with the continuum and/or with
more complex excitations modes.
The role of the continuum in this type of calculations has been studied in Ref. [28] where a detailed discussion



8

ω (MeV) B(E2)↑ (e2 fm4)

nucleus D1M D1S exp D1M D1S exp
16O 17.61 18.13 6.92 16.76 22.85 40.64
22O 2.34 2.65 3.19 15.84 14.72 28.12
24O 4.10 3.97 4.95 4.50
40Ca 13.41 14.63 3.90 3.08 3.66 99.17
48Ca 3.80 4.04 3.83 91.65 87.91 95.32
60Ca 5.82 5.63 0.39 0.40
90Zr 4.67 4.95 2.19 353.5 350.4 610.4
100Sn 4.13 4.40 1950 2055
132Sn 4.26 5.08 4.04 1574 1444
208Pb 4.91 5.05 4.09 4083 4244 3003

Table I: Excitation energies, ω and B(E2)↑ values of the lowest 2+ state for the core nuclei considered. The results obtained
with the two interactions we have adopted are shown. The experimental values are taken from Refs. [25–27].

about the position of the centroid energies and the sum rule exhaustion of the 2+ strength distribution is presented,
resulting compatible with the theoretical expectations [29]. There is a difference between the results of Ref. [28] and
those of the present work, since in these latter RPA calculations the spin-orbit and Coulomb terms of the effective
nucleon-nucleon interaction have been considered by using the procedure of Ref. [14]. We have verified that for the Q
values, and also for those of µ, the differences between the two types of calculations are of the order of few percents.
If we neglect the cases of the 16O and 40Ca nuclei, the average relative difference between our excitation energies

and the experimental ones is about 15%. Even though our RPA description of the low-lying 2+ excitation of the core
nuclei is not satisfactory, we have to consider that, in the calculation of Q in the odd-even nearby nuclei, the relevant

core nucleus s.p. state D1M D1S core nucleus s.p. state D1M D1S
16O 15N 1p−1

3/2
2.07 2.17 100Sn 99In 1g−1

9/2
22.48 23.03

17F 1d5/2 -4.50 -4.74 101Sb 1g7/2 -25.04 -25.32
17O 1d5/2 -1.61 -1.55 99Sn 1g−1

9/2
16.21 16.31

22O 21N 1p−1

3/2
3.69 3.55 101Sn 1g7/2 -19.12 -18.95

23F 1d5/2 -6.53 -6.35 132Sn 131In 1g−1

9/2
18.61 17.70

24O 23N 1p−1

3/2
2.34 2.47 133Sb 1g7/2 -20.13 -23.02

25F 1d5/2 -4.58 -4.82 131Sn 1h−1

11/2
14.65 12.41

40Ca 39K 1d−1

3/2
4.33 4.51 133Sn 1h9/2 -16.45 -13.45

39Ka 1d−1

5/2
5.51 5.75 208Pb 207Tl 2d−1

3/2
11.33 11.93

41Sc 1f7/2 -8.30 -8.78 207Tla 1h−1

11/2
25.62 27.08

41Sca 1f5/2 -10.80 -10.36 207Tlb 2d−1

5/2
15.59 16.45

39Ca 1d−1

3/2
2.20 2.23 209Bi 1h9/2 -27.71 -29.11

41Ca 1f7/2 -3.68 -3.66 209Bia 2f7/2 -21.31 -22.28
48Ca 47K 1d−1

3/2
5.90 5.97 209Bib 1i13/2 -29.27 -30.79

47Ka 1d−1

5/2
7.34 7.43 207Pb 2f−1

5/2
11.62 11.40

49Sc 1f7/2 -10.32 -10.45 207Pba 3p−1

3/2
7.49 7.37

49Sca 1f5/2 -10.52 -10.63 207Pbb 1i−1

13/2
18.54 18.58

47Ca 1f−1

7/2
4.95 4.86 207Pbc 2f−1

7/2
12.97 12.80

49Ca 2p3/2 -2.58 -2.40 207Pbd 1h−1

9/2
19.53 19.80

60Ca 59K 1d−1

3/2
4.28 4.61 209Pb 2g9/2 -14.42 -13.93

59Ka 1d−1

5/2
5.67 6.08 207Pb 2f−1

5/2
11.62 11.40

61Sc 1f7/2 -8.17 -8.70 209Pba 1i11/2 -21.80 -21.58
61Sca 1f5/2 -7.63 -8.16 209Pbb 1j15/2 -20.11 -19.81

90Zr 91Nb 1g9/2 -15.55 -15.94
89Zr 1g−1

9/2
8.04 8.01

91Zr 1g7/2 -8.62 -8.48

Table II: Values of QRPA, in e fm2, obtained in our model for the two interactions considered. We present the core nuclei, the
associated A± 1 nuclei and the s.p. states which characterize them. The upper latin letters indicate the excited states of the
isotope.
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quantity to be considered is the global strength distribution. Our RPA calculations generate the expected amount of
2+ strength, but it is not properly distributed. This may affect our Q results because the energy denominators of the
kernels (10) and (11) indicate that the low-lying excited states are more important than those with high energies in
the evaluation of the matrix element in Eq. (9). We have tested this sensitivity by artificially changing of the 10%
the values of the ων energies calculated with the D1M force. The largest deviations of the Q values we have identified
are of about 10%, much smaller in any case than the differences with the IPM values.
Around the core nuclei, listed in Table I, we have selected 48 states of several isotopes and isotones with one nucleon

more or less, which allow us to compare our results with the experimental data of the compilation of Ref. [30] and
also with the results of Ref. [5] obtained within the FFS theory.
In Table II, we show the RPA results obtained in our model by using the D1M and D1S nucleon-nucleon effective

interactions. In this table we indicate the core nuclei, the specific isotopes for which Q was calculated, and the s.p.
states characterizing them. In general, we have considered the states with lowest energy and Q 6= 0. For example,
the true ground states of 207Tl and 207Pb are a 1/2+ and a 1/2− states respectively, but both have Q = 0. For this
reason, in these two cases, we have indicated the 3/2+ and 5/2− states, respectively. In the table, the states of the
same isotope with higher energy are indicated by a superscript latin letter.
Our calculations confirm the well known fact that the Q values of nuclei with one nucleon more than the doubly

closed shell core are negative, and those with a nucleon less are positive [19]. A first general remark about the results
of Table II, is that the values we have obtained by using the two different interactions are very similar. The average
relative difference between the RPA results calculated with D1M and D1S interactions is of few percent. Henceforth,
if not explicitly stated, we shall discuss only the results obtained with the D1M interaction.
We compare in Fig. 3 the results of the IPM, triangles, FOPT, squares, and RPA, circles, calculations. The four

panels show separately the results obtained for hole and particle-like states and for protons and neutrons. Since we
do not use effective charge, the IPM results for the neutron states are zero.
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Figure 3: Values of Q, in e fm2, for RPA (circles), FOPT (squares), and IPM (triangles), calculated with the D1M interaction
for the various nuclei studied. The left (right) panels correspond to proton (neutron) states, while the upper (lower) panels
show the results for particle (hole) states. The lines have been drawn to guide the eyes. The latin upper indexes indicate
excited states following the nomenclature of Table II. The RPA values for the nuclei around the 116Sn core, drawn as open
circles, have been multiplied by 0.25.

A first, general, remark is that, in absolute value, the RPA results are always larger than those obtained in the
other calculations. It is interesting to observe that, in the proton case, the FOPT results are very close to those of the
IPM, and, sometime, even smaller in absolute value. In general, the RPA results produce a relatively small correction
with respect to the IPM values.
We carried out an additional test of our model by comparing our results with those of other theoretical approaches,

the Hartree-Fock-Bogolioubov (HFB) and the FFS theory [7, 10–12]. This comparison is shown in Fig. 4. The HFB
calculations have been performed by using the technique developed by Robledo et al. [31], based on the gradient
method. In the minimization procedure both time-even and time-odd fields are considered in the calculation of the
energy functional and this allows us to avoid the equal filling approximation [32]. In the figure, we show the RPA and
HFB results obtained with the D1S interaction. The relevant point for the present study is the remarkable agreement
between the HFB and our RPA results.
The other comparison proposed in Fig. 4 is that with the results of FFS calculations. This last approach is
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Figure 4: Values of Q, in e fm2, obtained in our RPA calculations with D1S interaction (solid circles), compared to the FFS
results taken from Refs. [7, 10–12] (open squares) and to the HFB results found for D1S interaction (open circles).

rather similar to ours, and the differences are due to the use of different interactions, and s.p. bases. The results of
the nuclei around 208Pb taken from Ref. [7], have been obtained by fully exploiting the philosophy of the Landau-
Migdal approach. The s.p. wave functions have been generated by using a Woods-Saxon potential well, and the
RPA calculations have been conducted with a Landau-Migdal interaction whose parameters have been chosen to
reproduce at best the data. The results of nuclei lighter than 208Pb, are taken from Refs. [10–12], and have been
obtained by using a slightly different computational scheme. Skyrme interactions of different type have been used in
HF calculations to generate the s.p. basis wave functions and, in the second step, also to solve the RPA equations.
The zero-range characteristics of this type of interaction requires the use of a cutoff renormalisation parameter whose
value depends on the size of the s.p. configuration space used in the RPA calculations. The Q values obtained with
the FFS approach are, in absolute value, larger than ours.
In Table III we compare our results with the experimental values taken from the compilation of Ref. [30] and with

those given in Ref. [33]. The RPA description of these experimental data is not particularly satisfactory. All the
experimental values are larger than our predictions. In heavier nuclei our calculations are able to account only for
about half of the observed Q values. This indicates that our approach is not fully able to describe the large collectivity
of the 2+ excitations. On the other hand, the improvement with respect to the IPM predictions, and also with respect
to the FOPT predictions, is remarkable.

exp

core nucleus s.p. state IPM FOPT RPA Ref. [30] Ref. [33]
16O 17F 1d5/2 -4.12 -3.74 -4.50 -5.80

17O 1d5/2 0.0 -1.51 -1.61 -2.60
40Ca 39K 1d−1

3/2 3.37 3.04 4.33 5.90
41Sc 1f7/2 -7.01 -6.31 -8.30 -15.60
39Ca 1d−1

3/2
0.0 1.78 2.20 3.60

41Ca 1f7/2 0.0 -3.17 -3.68 -9.00
48Ca 47Ca 1f−1

7/2
0.0 2.43 4.95 2.10 8.46

49Ca 2p3/2 0.0 -1.24 -2.58 -3.63
90Zr 91Zr 2d5/2 0.0 -3.15 -5.68 -17.60

208Pb 209Bi 1h9/2 -16.39 -13.84 -27.71 -51.60
209Pb 2g9/2 0.0 -7.55 -14.42 -30.00

Table III: Values of Q, in e fm2, for IPM, FOPT and RPA, calculated with the D1M interaction, compared to the experimental
data taken from the compilation [30] and from Ref. [33]. The s.p. states refer to the corresponding doubly magic cores.
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B. The µ and the 1+ excitation.

We use the same set of even-even core nuclei adopted for the calculation of Q also for the investigation of the
magnetic dipole moment µ. Around each core nucleus we calculate the µ values for the four nuclei with one nucleon
more or less. We present our results by following the strategy adopted in the investigation of Q. We first discuss
the features of the 1+ excitation in the core nuclei and, after, we present the results of the calculation of µ and we
compare them with the experimental values.
We present in Table IV the excitation energies and the B(M1)↑ values of the main low-lying 1+ states, and we

compare them with the experimental values taken from Refs. [25, 26]. We indicate in the table also the dominant ph
transitions.

ω (MeV) B(M1)↑ (µ2
N ) main s.p. transitions

nucleus D1M D1S exp D1M D1S proton neutron
16O 17.76 18.37 13.66 0.01 0.01 (2p3/21p

−1

1/2
)

22O 8.35 8.97 5.81 5.18 (1d3/21d
−1

5/2
)

24O 8.50 9.06 9.50 5.75 5.13 (1d3/21d
−1

5/2
)

40Ca 14.62 15.03 9.87 0.006 0.006 (2d5/21d
−1

3/2
)

48Ca 9.30 10.19 10.23 10.23 9.66 (1f5/21f
−1

7/2
)

60Ca 6.73 6.76 0.04 0.04 (3p3/22p
−1

1/2
)

90Zr 9.08 9.98 9.37 13.98 13.49 (1g7/21g
−1

9/2
)

100Sn 7.49 9.13 0.65 0.97 (1f5/21f
−1

7/2
)

132Sn 6.78 8.00 6.05 9.84 (1f5/21f
−1

7/2
)

208Pb 6.30 7.60 5.85 7.80 11.89 (1i11/21i
−1

13/2
) (1h9/21h

−1

11/2
)

Table IV: Energies, ω, and B(M1)↑ values of the main low-lying 1+ excited state obtained in our calculations for the core nuclei
considered, with the two interactions we have adopted. The experimental values are taken from Refs. [25, 26].

The table shows that the B(M1)↑ values of the 16O, 40Ca and 60Ca nuclei, where all the spin-orbit partner levels
are occupied, are orders of magnitudes smaller than the other ones. This confirms the well known fact [19, 34] that
the M1 excitation is strongly excited in nuclei where ph transitions between spin-orbit partner levels are allowed. We
have presented in Ref. [35] a detailed discussion of the M1 strength distribution in oxygen and calcium isotopes.
The agreement with the experimental energies is reasonable for almost all the cases, but for 16O and 40Ca. We have

already pointed out the fact that in the first two nuclei the 1+ excitation is rather weak because all the spin-orbit
partner levels are occupied. In these nuclei it is not easy to find out the 1+ states to be compared with those predicted
by our model, since, experimentally, the M1 strength is rather fragmented. For example in 40Ca we found more than
twenty 1+ states below 12 MeV [25, 26].
Our description of the 1+ excitation is rather good in the situations where these excitations are dominated by a

few ph transitions. In these cases our approach works at its best. The main features of the transitions are already
well described within the IPM which is corrected by the RPA by including other, less important, ph transitions.
The ten doubly magic nuclei listed in Table IV have been considered as core nuclei where we add or remove one

nucleon at the time to form odd-even nuclei with magnetic dipole moment µ. Before discussing the effects of the core
polarization, i.e. of the excitation of the even-even core, we clarify the role played by the MEC in the calculation of
µ.
In Fig. 5 we adopt the usual representation of µ [16] against the angular momentum j of the odd-even nucleus,

to show our results obtained with the D1M force. In the (a) and (b) panels the symbols represent the µIPM values
obtained by considering the full electromagnetic operator M1 = MOB

1 +MMEC
1 , while the lines indicate the Schmidt

values found for MOB
1 (see Eq. (24)). The MEC produce relatively small changes with respect to the Schmidt

values, usually of the order of few percent up to a maximum value of about 10%. These changes have a consistent
behavior over all the various regions of the nuclear chart, and we did not observe remarkable differences between
nuclei characterized by a hole- (open squares) or a particle-like (solid circles) structure.
Another perspective to observe these results is given in Fig. 6 where we show the differences µIPM − µSch as a

function of the mass number of the nuclei investigated. The results of panel (a) correspond to the odd-proton nuclei
while those of panel (b) are those obtained for the odd-neutron nuclei. In the odd-proton cases the MEC always
increase the µ values with respect to the Schmidt ones, but for the 21N and 23N nuclei. The results of panel (b)
show that the effect of the MEC on the odd-neutron nuclei consists in a lowering with respect to the Schmidt values,
without exceptions. It is possible to outline a general overall tendency of the MEC effects to increase with the mass
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the Schmidt values, as a function of the angular momentum j of the odd-even nucleus. The results obtained with the full
electromagnetic operator, M1 = MOB

1 +MMEC
1 , are indicated by the symbols and the Schmidt values by the solid lines. Open

squares and solid circles represent the results obtained, respectively, for nuclei characterized by hole or particle-like s.p. states.
The calculations have been carried out with the D1M interaction.

number, even though there are quite a few exceptions.
The effects we have just described are consistent for all the nuclei, and, in terms of the agreement with the

experimental data implies two contrasting aspects. Since the experimental data are lying between the two Schmidt
lines, the inclusion of the MEC improves the agreement for odd-proton nuclei with j< ≡ l − 1/2, while they are
worsening it for odd-proton nuclei with j> ≡ l + 1/2. We have a similar situation also for the odd-neutron nuclei
where we observe an improvement in the case of j< and a worsening for j>.
In Table V we present the RPA results obtained with the two interactions we have adopted, and by using the

full electromagnetic operator which includes the MEC. We have considered those configurations which generate the
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core nucleus s.p. state D1M D1S core nucleus s.p. state D1M D1S
16O 15N 1p−1

1/2
-0.137 -0.142 90Zr 89Y 2p−1

1/2
-0.108 -0.152

17F 1d5/2 4.884 4.885 91Nb 1g9/2 6.727 6.996
15O 1p−1

1/2
0.638 0.638 89Zr 1g−1

9/2
-1.937 -1.813

17O 1d5/2 -2.088 -2.007 91Zr 2d5/2 -1.808 -1.715
22O 21N 1p−1

1/2
0.001 -0.042 100Sn 99In 1g−1

9/2
6.559 6.593

23F 1d5/2 4.397 4.779 101Sb 2d5/2 4.448 4.476
21O 1d−1

5/2
-1.667 -1.487 99Sn 1g−1

9/2
-1.638 -1.771

23O 2s1/2 -1.610 -1.485 101Sn 2d5/2 -1.507 -1.614
24O 23N 1p−1

1/2
0.013 -0.024 132Sn 131In 1g−1

9/2
6.788 6.767

25F 1d5/2 4.444 4.801 133Sb 1g7/2 2.579 2.546
23O 2s−1

1/2
-1.628 -1.482 131Sn 2d−1

3/2
0.684 0.758

25O 1d3/2 0.842 0.841 131Sna 1h−1

11/2
-1.520 -1.688

40Ca 39K 1d−1

3/2
0.358 0.350 133Sn 1h9/2 0.596 0.746

41Sc 1f7/2 5.971 5.972 208Pb 207Tl 3s−1

1/2
2.528 2.538

39Ca 1d−1

3/2
0.910 0.918 209Bi 1h9/2 3.604 3.548

41Ca 1f7/2 -2.096 -2.098 209Bia 1i13/2 8.859
48Ca 47K 2s−1

1/2
2.384 2.695 207Pb 3p−1

1/2
0.437 0.463

49Sc 1f7/2 5.577 5.888 207Pba 2f−1

5/2
0.764 0.857

47Ca 1f−1

7/2
-1.809 -1.664 207Pbb 1i−1

13/2
-1.655

49Ca 2p3/2 -1.709 -1.605 209Pb 2g9/2 -1.635 -1.756
60Ca 59K 1d−1

3/2
0.347 0.338

61Sc 1f7/2 6.146 6.147
59Ca 2p−1

3/2
-1.954 -1.951

61Ca 1g9/2 -2.015 -2.011

Table V: Values of µ, in nuclear magnetons, obtained in our RPA model with the full MOB
1 + M

MEC
1 operator for the two

interactions considered. We present the core nuclei, the specific A± 1 nuclei and the s.p. states which characterise them. The
upper latin letters indicate the excited states of the isotope.

ground state of the odd-even nuclei, and some excited state of interest. In the table, our results are compared to the
available data taken from the compilation of Ref. [30].
With the exceptions of the 21N, 23N, and 131Sn cases, some of which we shall discuss in more detail, the relative

differences between the D1M and D1S results are of the order of 1%. This indicates that the effects we are discussing
are almost independent of the specific implementation of the interaction used.
The quantitative stability of our results can be observed by considering that, in our approach, the 23O nucleus

can be obtained by adding a neutron to the 22O core or subtracting one to 24O. The differences between the two
procedures are related to the different s.p. states produced by the HF calculations and the results obtained for D1M
and D1S interactions show µ values that differ on the third and fourth significant figures, respectively.
We compare the D1M results of Table V with the Schmidt values in the panels (c) and (d) of Fig. 5. In general, the

µRPA values are situated between the two Schmidt lines, as it is observed for the experimental values. The deviation
from the Schmidt values is particularly evident in the neutron case for the nuclei with j< above 5/2, which correspond
to the 207Pba and 133Sn isotopes.
In Fig. 7 we compare the RPA, FOPT and IPM results. All the calculations have been carried out with the D1M

interaction, and by using the complete electromagnetic operator M1 = MOB
1 + MMEC

1 . The results are shown as
relative difference with respect to the Schmidt values, Eq. (24). We observe the great similarity between our RPA
results and those obtained in FOPT. This indicates that the structure of the 1+ states is not as collective as that of
the 2+ states, but it is rather dominated by single-particle excitations.
The FOPT and RPA results show very similar behaviors. In general, the FOPT deviate more from the Schmidt

values than the RPA ones. We remark that the FOPT approach, often utilized in the literature [3, 36–39], performs
much better in this case than for the electric quadrupole moment case, as it is shown in Fig. 4.
Our results agree with those of the non-relativistic calculations of Refs. [3, 38]. More precisely, and always with

respect to the Schmidt values, we observe that: (i) both MEC and RPA increase the µ values in 209Bi; (ii) in 207Tl we
find an enhancement due to the MEC while the RPA effects produce a lowering of µ; (iii) in 209Pb we have opposite
effects, and (iv) in 207Pb both MEC and RPA lower the µ values.
The µ values obtained in RPA show a remarkable difference with respect to the IPM results. The case of the

39K and 59K nuclei is particularly interesting since the three calculations provide very similar results and all of them
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noticeably deviate from the Schmidt values. This is only due to the presence of MEC in the operator. This effect
should be investigated better, by considering also that the 47K nucleus does not present this feature.
A direct comparison between our results and the available experimental data taken from Ref. [30] is presented in

Table VI. In this table we also include the results of the FFS calculation of Ref. [8]. We observe that the effects
of the core polarisation become more important in the heavier nuclei. The differences between the results of IPM,
FOPT and RPA calculations are rather small in the nuclei around 16O and 40Ca.
In the great majority of the cases the RPA results are closer to the experimental values than the other ones,

indicating that the inclusion of the core polarization improves the agreement with the available experimental data.
However, this is not a universal behavior since there are very specific cases, where the IPM approach produce a better

core nucleus s.p. state Schmidt IPM FOPT RPA FFS exp
16O 15N 1p−1

1/2
-0.264 -0.153 -0.133 -0.137 — -0.283

17F 1d5/2 4.793 4.896 4.882 4.884 — 4.721
15O 1p−1

1/2
0.638 0.524 0.506 0.510 — 0.720

17O 1d5/2 -1.913 -2.018 -2.003 -2.088 — -1.894
40Ca 39K 1d−1

3/2
0.124 0.340 0.361 0.358 0.329 0.391

41Sc 1f7/2 5.793 5.983 5.963 5.971 5.485 5.431
39Ca 1d−1

3/2
1.148 0.928 0.910 0.910 0.888 1.022

41Ca 1f7/2 -1.913 -2.109 -2.088 -2.096 -1.626 -1.595
48Ca 47K 2s−1

1/2
2.793 3.011 2.173 2.384 — 1.933

47Ca 1f−1

7/2
-1.913 -2.112 -1.732 -1.809 -1.556 -1.380

49Ca 2p3/2 -1.913 -1.954 -1.654 -1.709 -1.156 —
90Zr 89Y 2p−1

1/2
-0.264 -0.221 -0.114 -0.108 -0.125 -0.137

89Zr 1g−1

9/2
-1.913 -2.212 -1.872 -1.937 -1.304 -1.046

91Zr 2d5/2 -1.913 -2.022 -1.769 -1.808 -1.214 -1.304
132Sn 133Sb 1g7/2 1.717 1.987 2.826 2.579 2.693 3.000

131Sn 2d−1

3/2
1.148 1.029 0.601 0.684 0.681 0.747

131Sna 1h−1

11/2
-1.913 -2.191 -1.227 -1.520 — -1.276

208Pb 207Tl 3s−1

1/2
2.793 2.990 2.379 2.528 1.857 1.876

209Bi 1h9/2 2.624 3.025 3.827 3.604 3.691 4.110
207Pb 3p−1

1/2
0.638 0.549 0.472 0.437 0.473 0.593

207Pba 2f−1

5/2
1.366 1.159 0.677 0.764 0.720 0.800

209Pb 2g9/2 -1.913 -2.110 -1.486 -1.635 -1.337 -1.474

Table VI: Comparison between µ values, expressed in nuclear magnetons, calculated in IPM, FOPT and RPA by using the
complete electromagnetic operator MOB

1 +M
MEC
1 with the Schmidt values (24), the FFS results of Ref. [8] and the experimental

data of Ref. [30].
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nucleus interaction Schmidt IPM FOPT RPA
21N D1M -0.264 -0.341 0.030 0.001

D1S -0.264 -0.339 0.003 -0.042
23N D1M -0.264 -0.323 0.025 0.013

D1S -0.264 -0.322 -0.002 -0.024

Table VII: Values of µ, in nuclear magnetons, of the 21N and 23N nuclei. The Schmidt values are compared to those found
within IPM, FOPT and RPA approaches with the full MOB

1 +M
MEC
1 operator.

description of the observed µ values. As expected the FFS results, which use effective electromagnetic operators, are
in general closer to the experimental values that ours.
We conclude this section by analyzing in detail the cases of the 21N and 23N nuclei. In Table VII we show the µ

values for these two nuclei calculated by using different approximations. We observe that the Schmidt values have
negative sign. The inclusion of the MEC in the IPM calculations gives a negative contribution, further lowering these
values. The core polarization plays an important role as the results of two last columns indicate. In both nuclei, the
effect of the residual interaction has opposite sign with respect to the contribution of the MEC. This effect is larger
in the FOPT than in RPA results. In RPA calculations, the effects of the D1M force are large enough to change the
sign of µ with respect to the Schmidt value. Experimental µ values for these two nuclei are not available. In any case,
our RPA results follow the trend of the know experimental values of lying between the Schmidt values.

V. CONCLUSIONS

In this work, we have presented the results of a parameter free theoretical approach which describes the properties
of odd-even nuclei with one nucleon more, or less, than a doubly magic one. The convergence of the energy sum in Eq.
(9), the fundamental equation of our model, is ensured by the use of finite-range nucleon-nucleon effective interaction.
The use of zero-range interactions, as it is done for example in Refs. [5–7], requires the inclusion of additional free
parameters. The universality of our approach allows us to apply it in each region of the nuclear chart, from light to
heavy nuclei.
We have considered two parameterizations of the finite-range effective Gogny nucleon-nucleon interaction taken from

the literature, the D1S and D1M. Our calculations are fully self-consistent, meaning that all results have been obtained
by using the same interaction in each of the three steps of the calculation: the generation of the s.p. configuration
space by means of a HF procedure, the solution of the RPA equations and, finally, the evaluation of the response of
the odd-even nucleus to the external probe. In each step of the calculation the complete interaction has been used,
including the spin-orbit and the Coulomb terms, commonly neglected in RPA.
We have tested the validity of our approach by calculating the values of the electric quadrupole moment, Q, of 48

different states, and the magnetic dipole moment, µ, of 44 states, in various regions of the nuclear chart. We have used
the traditional one-body operator for the calculation of Q, while for the µ we have considered also the contribution
of MEC. We use bare electromagnetic operators whose coupling constants are those of free nucleons.
In absolute value, the results obtained by considering the MEC are always larger than the Schmidt values, implying

an improvement of the agreement with experimental data for odd-proton nuclei with j< and with odd-neutron nuclei
with j>, and a worsening for the other type of nuclei.
The differences between the results obtained with the two forces are small, negligible if compared to the differences

between RPA and IPM results. This indicates that the quantitative description of the core polarisation effects in our
calculations is more related to the theoretical approach, rather than to the use of a specific interaction.
Our calculations require the description of the excitation of 2+ and 1+ states in doubly closed shell nuclei, in the

framework of the RPA theory. We observe that our model describe better the 1+ excitations than the 2+ ones.
This occurs because the most important 1+ states, those where the largest part of the strength is concentrated, are
dominated by a single ph transition. In this case, our approach works at its best, by correcting the main ph transition
with the presence of other one-particle one-hole transitions. On the other hand, the structure of many of the 2+ states
is very collective, and a good description of it requires to go beyond the linear combination of one-particle one-hole
transitions which is what the RPA considers.
This difference in the description of the two multipolarities is reflected in the results we have obtained for the values

of Q and µ. The description of the magnetic dipole moments is certainly better than that of the electric quadrupole
moments. The similarity between our results and those obtained in FOPT is a further indication of the perturbative
structure of the 1+ excitations. In any case, we have to point out that our results show a remarkable improvement of
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the description of the experimental values with respect to the IPM predictions, and also with respect to the FOPT
for Q.
We found a good agreement between our results and those of the FFS theory given in the literature [5–12]. The basic

theoretical hypotheses of the two approaches are rather similar. More remarkable is the agreement with the Q values
obtained in the HFB calculations. Our approach and the HFB treat the core polarisation in a completely different
manner, but they produce similar results. In our approach the IPM response is corrected by the core polarisation
described in terms of particle-hole excitations. Alternatively the HFB theory corrects the IPM by considering the
effects of the pairing force. These two alternative visions of effects beyond the IPM picture generate very similar
quantitative results. It would be interesting to identify specific observables which allow us to disentangle the two
effects.
Despite the limitations we have pointed out, we think that our parameter free, self-consistent approach is adequate

to make predictions of the properties of odd-even nuclei nearby the doubly magic-ones in regions of the nuclear chart
not yet experimentally explored.

Appendix A: MEC matrix elements

In this appendix we give the explicit expressions of the matrix elements of the MEC inserted in Eq. (9) to calculate
the values of µ. We have considered the contribution of the two diagrams indicated in Fig. 1 and called them seagull
and pionic. We give here the final results of a calculation which describes these contributions in terms of Feynman’s
diagrams, makes a non-relativistic reduction, a multipole expansion and the use of s.p. wave functions with the
angular coupling indicated in Eq. (8).
We call q the modulus of the momentum that the photon is exchanging with the nucleus, and ω the photon energy.

In the specific case under study we have ω = ǫαβ and q = ω/(~c).
The contribution of the seagull term is given by

〈φa ‖Ms
J ‖φb 〉 = ξ(lα + lβ + J + 1) (−1)ja−1/2 ĵaĵbĴ√

J(J + 1)

(
ja jb J
1
2 − 1

2 0

)

×
[
GP

E(q, ω) − GN
E (q, ω)

] ∫
dr r2 jJ(qr)F

(s)
a,b,J (r) ,

where GP
E and GN

E are, respectively, the proton and neutron electromagnetic form factors, and we have defined

F
(s)
a,b,J(r) = −2 f2

π

m2
π

∑

h<ǫF

ĵ2h [δab,pδh,n − δab,nδh,p] (A1)

×




∑

L1

ξ(la + lh + L1 + 1) L̂2
1

(
ja jh L1
1
2 − 1

2 0

)2

κab Tah(L1, r)Rh(r)Rb(r)

+
∑

L2

ξ(lb + lh + L2 + 1) L̂2
2

(
jh jb L2
1
2 − 1

2 0

)2

κab Thb(L2, r)Ra(r)Rh(r)



 ,

where f2
π = 0.079 is the pion-nucleon coupling constant, mπ is the pion mass, κ is defined in Eq. (22), ξ(l) = 1 if l is

even and zero otherwise, R(r) is the radial part of the s.p. wave function (8), and T is defined as

Tab(L, x) =

∫
∞

0

dr r2
{(

d

dr
+

κab + 2

r

)
Ra(r)Rb(r)

}

×
∫

∞

0

dk k2
2

π
vπ(k, ǫab) jL(kr) jL(kx) . (A2)

In the above equations we have indicated with vπ the pion propagator

vπ(k, ǫ) =
1

k2 − ǫ2 +m2
π

. (A3)

The contribution of the pionic term is

〈φa ‖Mπ
J ‖φb 〉 = ξ(lα + lβ + J + 1) ĵa ĵb Ĵ Fπγ(q, ω)

∫
dr r2 jJ (qr)F

(π)
a,b,J (r) , (A4)
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where

Fπγ(q, ω) =
1

1 + (q2 − ω2)/m2
ρ

(A5)

is the electromagnetic form factor of the pion, with mρ = 776.0MeV the ρ-meson mass, and

F
(π)
a,b,J(r) = 4

f2
π

m2
π

1

r

∑

h<ǫF

(−1)jh+jb ĵ2h [δab,pδh,n − δab,nδh,p] (A6)

×
∑

L1L2

ξ(la + lh + L1 + 1) ξ(lb + lh + L2 + 1) L̂2
1 L̂

2
2

×
{

L1 L2 J

jb ja jh

} (
ja jh L1
1
2 − 1

2 0

) (
jh jb L2
1
2 − 1

2 0

) (
L1 J L2

1 −1 0

)

×
√
L2(L2 + 1)Tah(L1, r)Thb(L1, r) .
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