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The Lipkin-Meshkov-Glick is a simple, but not trivial, model of a quantum many-body
system which allows us to solve the many-body Schrödinger equation without making

any approximation. The model, which in its unperturbed case is composed only by two
energy levels, includes two interacting terms. A first one, the V interaction, which promotes
or degrade pairs of particles, and a second one, the W interaction, which scatters one particle
in the upper and another in the lower energy level. In comparing this model with other
approximation methods, the W term interaction is often set to zero. In this paper, we show
how the presence of this interaction changes the global structure of the system, generates
degeneracies between the various eigenstates and modifies the energy eigenvalues structure.
We present analytical solutions for systems of two and three particles and, for some specific
cases, also for four, six and eight particles. The solutions for systems with more than eight
particles are only numerical but their behaviour can be well understood by considering the
extrapolations of the analytical results. Of particular interest it is the study of how the W
interaction affects the energy gap between the ground state and the first-excited state.
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I. IntroductionI. Introduction
The goal of the non relativistic many-body physics is to solve a Schrödinger equation which describes
a system composed by many particles [1, 2]. Since two and, eventually, three-particles systems are
used to define the effective interaction between the particles, in this context, ”many" means more than
three. The techniques to solve the many-body Schrödinger equation without approximations are rather
involved and, usually, limited in the number of particles composing the systems. For this reason, the
methodologies most commonly used to solve the quantum many-body problem are based on some
simplifying approximations. One of the key problems of this branch of physics is the possibility of
testing the validity of these approximations. With this aim, in themiddle ’60s of the last century, Lipkin,
Meshkov, and Glick (LMG) [3–5] built a many-fermion system for which the Schrödinger equation can
be solvedwithout approximations. In this model, the non interacting, one-body, part of the hamiltonian
has only two energy levels, which are occupied by fermions. The exact description of this system
has been compared with those obtained by using effective theories [6–10]. This model is a beautiful

Σ δΛ International Journal of Modern Physics EInternational Journal of Modern Physics E 27, 1850039-18 (2018). 1

ar
X

iv
:1

80
5.

12
44

2v
1 

 [
nu

cl
-t

h]
  3

1 
M

ay
 2

01
8



example of application of basic quantum mechanics, and one of the few examples of many-body
systems which can be studied in relatively simple manner, without making approximations.

In this article, we consider the two level model containing in its hamiltonian both the V and theW
interaction terms. After showing how to obtain the solutions of the one-body part of the hamiltonian,
we present a simple derivation of the exact solutions for the complete LGM hamiltonian. We show
analytical expressions for system of two and three particles and numerical results for those with more
particles. We discuss the role of the various terms of the hamiltonian, and some general features of the
solutions, mainly those concerning the degeneracies of some eigenstates.

II. The Lipkin-Meshkov-Glick modelII. The Lipkin-Meshkov-Glick model
The original LMG model [3] considers a hamiltonian of the type

HLMG = E0 J0 +
V

2

(
J

2

+
+ J

2

−

2

)
+
W

2

(
J+J− + J−J+

2

)
. (1)

Nevertheless, since the model was often used to test the treatment of ground-state correlation in the
random phase approximation, the LMG hamiltonian is usually simplified by settingW = 0. Another
possible choice for theW interaction parameter is given byW = V . In this case the hamiltonian can be
easily solved and its eigenvalues and eigenvectors are used to study the instability of the Hartree-Fock
state against collective oscillations.

The aimof this paper is to present a detailed discussion of the hamiltonian (1)without any assumption
or constraint on theW interation term.

We start our study by considering a system composed byN non-interacting particles. The configura-
tion space available to each particle is composed by only two states whose energy values are separated
by an amount E0 , {

− E0

2
,
E0

2

}
. (2)

When the particles do not interact with each other only the one-body part of the hamiltonian is present,
E0J0 . In this case, the ground state of the system is that where all the N particles are lying on the
lowest state. The excited states are obtained by promoting particles from the lower to the higher of the
two energy levels.
A convenient representation of the many-body states of this system is obtained by defining the

quantum numbers j = N/2 andm, this latter one can assume the values

m = −j, −j + 1 , ... , j − 1, j .

The eigenstates of the unperturbed hamiltonian (V = W = 0) then satisfy

J0 |j,m〉 = m |j,m〉 . (3)

The global number of possible eigenstates of this system is 2j + 1, and the energies of these eigenstates
are mE0 . A pictorial representation of the eigenstates of systems with N = 2, 3, and 4 particles is
given in Table 1.

The J+ operator removes a particle from the lower level and put it on the higher one. The lowering
operator, J− , acts in the opposite direction. The action of these operators on the eigenstates of J0 , Eq.
(3), is

J± |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 . (4)

The J 2

+
term promotes particle pairs from the lower to the upper state, while the J 2

− term operates
in the opposite direction. The J+J− operator and its hermitian conjugate promotes one particle and
lowers another one. The constants V and W are the strengths of the interactions between the two
particles involved in the processes described above.
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We prefer to work with dimensionless quantities and with attractive interactions

(V , W ) = − ( |V | , |W | ) ,

therefore we divide the LMG hamiltonian (1) by a constant factor related to the the two-level model
energy eigenvalue

H =
HLMG

E0

= J0 −
ν

2

(
J

2

+
+ J

2

−

)
− ω

2

(
J+J− + J−J+

)
, (5)

where we have defined
ν = |V | /E0 and ω = |W | /E0 .

Many of the of matrix elements ofH between the eigenstates of J0 are zero, those different from zero
are

〈j,m|H|j,m〉 = m− ω[ j(j + 1)−m2 ],

〈j,m|H|j,m+ 2〉 = − ν
2

√
[ j (j + 1)− (m+ 1)m ] [ j (j + 1)− (m+ 2) (m+ 1) ],

〈j,m+ 2|HLMG |j,m〉 = 〈j,m|H|j,m+ 2〉. (6)

We define a new quantum number r, related to N andm by the expression

m =
N

2
− r + 1 (r = 1, 2, ..., N + 1), (7)

and we express the above matrix elements as a function of the particle numberN and of the interaction
parameters ν and ω,

H[N ]

rs =



N

2
− r + 1−

(
N r − N

2
− r2 + 2 r − 1

)
ω for s = r ; (r = 1, 2, ..., N + 1),

−
√

(N − r)(N − r + 1)(r + 1) r

2
ν for s = r + 2 ; (r = 1, 2, ..., N − 1),

−
√

(N − s)(N − s+ 1)(s+ 1) s

2
ν for r = s+ 2 ; (s = 1, 2, ..., N − 1),

0 otherwise.

(8)

The solution of the Schrödinger equation consists in diagonalizing the above matrix. In this manner,
we obtain the eigenvalues of the hamiltonian (5) in terms of the N , r quantum numbers and of the ν
and ω stregths. The corresponding eigenvectors are expressed in the basis formed by the eigenstates
of J0 .

III. Solutions for N = 2 and N = 3.III. Solutions for N = 2 and N = 3.
For the systems composed by 2 or 3 particles we found analytical expressions of eiegenvalues and
eigenvectors of the full hamiltonian (5). We obtained analytical expressions of eiegenvalues and
eigenvectors also for systems composed by 4, 6 and 8 particles, but only when in the hamiltonian we
set ω = 0.
We exploit the analytical form of solutions to investigate the effects of the terms proportional to

ν and ω as they evolve with the increasing number of particles and to suggest how to analyse the
numerical solutions.
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The explicit expression of the hamiltonian matrix for the system composed by two particles is

H[2]
=

(
1− ω 0 −ν

0 − 2ω 0
− ν 0 − (1 + ω)

)
, (9)

where we have indicated in the upperindex between square brackets the number of particles composing
the system. We write the eigenvalues, E [2]

(ν, ω) and the eigenvectors, V [2]
(ν, ω) of this system as

{
E [2]

(ν, ω) ; V [2]
(ν, ω)

}
=


+
√

1 + ν2 − ω ;

(
1 +

√
1 + ν2

2
, 0 , − ν

2

)>
− 2ω ; ( 0 , 1 , 0 )t

−
√

1 + ν2 − ω ;

( √
1 + ν2 − 1

ν
, 0 , 1

)>


, (10)

where> indicates the transpose which, in this case, transform the rows into columns. We have selected
a global normalisation of the eigenvectors which allows us to recover, in the limit where both ν and ω
are zero, the simple form (1, 0, 0)>, (0, 1, 0)> and (0, 0, 1)>.
For the case of three particles, we found the following expression of the hamiltonian matrix

H
[3]

=


3
2 (1− ω) 0 −

√
3 ν 0

0 1
2 (1− 7ω) 0 −

√
3 ν

−
√

3 ν 0 − 1
2 (1 + 7ω) 0

0 −
√

3 ν 0 − 3
2 (1 + ω)

 . (11)

The energy eigenvalues are

E [3]
(ν, ω) =


E [3]

4
(ν, ω)

E [3]

3
(ν, ω)

E [3]

2
(ν, ω)

E [3]

1
(ν, ω)

 =
1

2


+1 + 2

√
(1 + ω)2 + 3 ν2 − 5ω

−1 + 2
√

(1− ω)2 + 3 ν2 − 5ω

+1− 2
√

(1 + ω)2 + 3 ν2 − 5ω

−1− 2
√

(1− ω)2 + 3 ν2 − 5ω

 , (12)

where they are ordered with increasing values for ν = 0 and ω = 0.
We show in Fig. 1 the evolution of these four eigenvalues as a function of ν for 6 selected values of ω.

Since we are interest in studying when degeneracy appear, we write the energy differences between
the r-th and s-th levels as

∆
[N ]

r,s
(ν, ω) = E [N ]

r
(ν, ω)− E [N ]

s
(ν, ω) .

In the case of ω = 0 we recover the traditional LMG model [3–5]. For this case we have

∆
[3]

(ν, 0) =

 ∆
[3]

4,3
(ν, 0)

∆
[3]

3,2
(ν, 0)

∆
[3]

2,1
(ν, 0)

 =

 1

− 1 + 2
√

1 + 3 ν2

1

 . (13)

We observe that the energy gap between the first/second and third/fourth energy levels remains
unchanged by increasing the value of ν. The energy gap between the second/third energy level
increases when we increase the ν value and, consequently, the energy levels in the traditional LMG
model never cross with each other, see the panel (a) of Fig. 1.
Values of ω different from zero break this symmetry. We show in Fig. 2 the evolution of the four

egeinenergies as a function of ω for 6 values of ν. When ν = 0, see the panel (a) of Fig. 2, we find
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∆
[3]

(0, ω) =

 ∆
[3]

4,3
(0, ω)

∆
[3]

3,2
(0, ω)

∆
[3]

2,1
(0, ω)

 =

[
1 + 2ω

1
1− 2ω

]
. (14)

In this case, the values of the first and second energy eigenvalues cross at ω = 1/2. In general, the
crossing point, for a given value of ν, satisfies the equation

∆
[3]

2,1
(ν, ω) = E [3]

2
(ν, ω)− E [3]

1
(ν, ω) = 0, (15)

which implies that the ω and ν terms are related by the expression

ω
[3]

2,1
=

√
ν2 +

1

4
. (16)

The eigenvectors of the 3 particle system related to the four eigenvalues can be expressed as

V [3]
(ν, ω) = A(ν, ω)



 1 +
√

1 + a2+(ν, ω)

2
, 0 , − a+(ν, ω)

2
, 0

> ,
 0 ,

1 +
√

1 + a2−(ν, ω)

2
, 0 , − a−(ν, ω)

2

> ,

√

1 + a2+(ν, ω)− 1

a+(ν, ω)
, 0 , 1 , 0

> ,
 0 ,

√
1 + a2−(ν, ω)− 1

a−(ν, ω)
, 0 , 1

> .

(17)

where we have defined the quantity

a±(ν, µ) =

√
3 ν

1± ω
. (18)

In the limit of ν = ω = 0 the eigenvectors assume the simple form (0, 0, 0, 1)>, etc. and the normalisation
constant

A(ν, ω) =
a−(ν, ω)√

2
√

1 + a2−(ν, ω)
(√

1 + a2−(ν, ω)− 1
) (19)

is chosen to guarantee that each eigenvector is normalised to one.
We studied how the eigenvectors changes as a function of the interaction strengths ν and ω. As

example of these changes, we show in Fig. 3, for the lowest energy state, the behaviour of the squares
of the two non zero components. We remark that for ν � |1 − ω|, i.e. in the limit a2−(ν, ω) → 0, the
lowest energy eigenvector assumes the values

( 0 , 0 , 0 , 1 )>.

For ν = |1− ω|, i.e. when a2−(ν, ω)→ 3, we find

( 0 , 0.25 , 0 , 0.75 )> .

Finally, in the limit for a2−(ν, ω)→∞ (ν � |1− ω|), we obtain for the energy eigenvector the represent-
ation

( 0 , 0.5 , 0 , 0.5 )> .
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In all the panels of Fig. 3 and 4 the full black line and the red dashed line represent, respectively,
the second and fourth component of the lowest energy eigenvector. The difference between the two
components start from 1 and tends to zero when the value of ν inceases. This can be see in all the
panels of Fig. 3 and 4 . The interaction depending on ω potential accelerate this behaviour when the
values of ω are between 0 and 1, see Fig. 3. At ω = 1, the trend is inverted, as it is shown in Fig. 4, and
the difference between these two components of the lowest energy eigenstate tends to 1. These two
components are equal, and assume the value of 0.5, for ω = 1∓ ν, see Fig. 4.

IV. Solutions for N ≥ 4IV. Solutions for N ≥ 4

We obtain analytical expressions for the solutions of the systems with N = 4, 6, 8 when we set ω = 0,

E [4]
(ν, 0) = 0, ±

√
1 + 9 ν2 , ± 2

√
1 + 3 ν2 ,

E [6]
(ν, 0) = 0, ± 2

√
1 + 15 ν2 , ±

√
5 + 33 ν2 ± 4

√
1 + 6 ν2 + 54 ν4 , (20)

E [8]
(ν, 0) = 0, ±

√
5 + 113 ν2 ± 4

√
1 + 38 ν2 + 550 ν4 , ±

√
10 + 118 ν2 ± 6

√
1− 2 ν2 + 225 ν4 .

The above expressions correct those given in the original paper of Lipkin et al. [3] where a factor 4 in
E

[6] , and a factor 6 in E[8] , are missing.
The energy differences between the first excited state and the ground state in each of these systems

are

∆
[4]

2,1
(ν, 0) = 2

√
1 + 3 ν2 −

√
1 + 9 ν2 ,

∆
[6]

2,1
(ν, 0) =

√
5 + 33 ν2 + 4

√
1 + 6 ν2 + 54 ν4 − 2

√
1 + 15 ν2 ,

∆
[8]

2,1
(ν, 0) =

√
10 + 118 ν2 + 6

√
1− 2 ν2 + 225 ν4 −

√
5 + 113 ν2 + 4

√
1 + 38 ν2 + 550 ν4 .

As expected, for a free hamiltonian we have ∆
[4]

2,1
(0, 0) = ∆

[6]

2,1
(0, 0) = ∆

[8]

2,1
(0, 0) = 1.

The above results indicate that, for a given ν value, these quantities become smaller with the increase
of the particle number N . For example, in the case ν = 1, we obtain

∆
[4]

2,1
(1, 0) = 4−

√
10 ≈ 0.838 ,

∆
[6]

2,1
(1, 0) =

√
38 + 4

√
61− 8 ≈ 0.321 ,

∆
[8]

2,1
(1, 0) = 2

√
43 + 6

√
14−

√
118 + 4

√
589 ≈ 0.093 .

The energy eigenvalues for the cases investigated are shown in Fig. 5 for 0 ≤ ν ≤ 1 when ω = 0. The
various lines never cross with each other and show a symmetry with respect to the zero value. The
differences from this value increase with the increase of the value of ν. In the figure it is evident the
lowering of the ∆

[N ]

2,1
(ν, 0) values with increasing of N and of ν.

We investigate the role of ω in the hamiltonian (1) by considering the case of ν = 0. We found that,
for a system composed by N particles, the eigenvalues of them state can be expressed as

E [N ]

m (0, ω) = m− ω [ j (j + 1)−m2
] , (21)

wherem can assume the integer values (−j,−j + 1, ..., j − 1, j) with j = N/2.
The energy difference between the levelm+ p and the levelm is

∆
[N ]

m+p,m
= p [ 1 + ω ( 2m + p ) ] (22)
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which is a constant, i.e. independent of ω, when p = −2m.
The energy level r (m = −N/2 + r − 1) intercepts the level s (p = s− r) when ω acquires the value

ω
[N ]

r,s
=

1

N − r − s+ 2
. (23)

We show in Fig. 6 the behaviour of the energy eigenvalues for the N = 4, 6, 8 systems as a function of
ω, when ν = 0. The vertical lines highlight the position of the crossing points obtained in (23). This
expression implies degeneracies for equal values of r + s. For example, for N = 8, see Fig. 6(c), we
have a triple degeneracy when

ω
[8]

1,6
= ω

[8]

2,5
= ω

[8]

3,4
=

1

3
and ω

[8]

1,7
= ω

[8]

2,6
= ω

[8]

3,5
=

1

2
,

and a fourfold degeneracy for
ω

[8]

18
= ω

[8]

27
= ω

[8]

36
= ω

[8]

45
= 1 .

We have numerically studied the solution forN > 8. We show in Fig. 7 the energy difference between
the two lowest states of a system composed by 10 interacting particles as a function of the renormalised
interaction strength ν. The various lines indicate the results obtained with different values of ω. We
observe that by increasing the ω values, i.e. the strength of the last term of the hamiltonian (1), this
difference decreases, see panel (a) of Fig. 7.

We found a relation between the ν and ω strengths indicating when the two levels are degenerated.
We generalise the results obtained for the 3 particle system, Eq. (16), and we found the following
relation for N particles:

ω
[N ]

2,1
=

√
ν2 +

1

(N − 1)2
. (24)

In the specific case presented in Fig. 7, N = 10, we have that for a strength ω = 1/9 the two levels
become degenerated for ν = 0, see the red line in the panel (b) of Fig. 7. For stronger ω strengths the
degeneracy appear at positive values of ω as it is shown in the panel (b) of Fig. 7 by the black line.

In Fig. 8 we compare some result of the N = 10 system with those obtained for N = 20 and N = 50.
The blue lines indicate the ∆

[N ]

2,1
values when ω = 0, this is the result of the usual LMG model. We

observe that the degeneracy of the two levels appear at smaller values of the interaction strength ω.
The red lines show the results obtained by including also the second interaction term of the Hamilto-

nian. We have chosen the values ω = 1/(N − 1) which satisfy Eq. (24) when ν = 0. We observe that the
degeneracies for ν > 0 appear for values always smaller with the increase of N . It is worth to remark
in the figure, the differences in the ν scale between the different panels and the amplification factors of
the red lines.

V. ConclusionsV. Conclusions
In this article, we have investigated the two-level LMG model when the hamiltonian includes a two-
body interaction term which allows particle-hole type of excitations. We have studied the effects of the
interaction terms of the LMG hamiltonian (1) by changing ω and ν, the strengths of the two interaction
terms. The ω = 0 case reproduce the traditional LMG model [3–5].

ForN = 2, 3 we obtain fully analytical solutions for both eigenvalues and eigenvectors. The presence
of the new interaction term implies the degeneracy of some of the solutions. By changing the values of
the strengths ν and ω the energies of the lowest states is modified and the higher states becomes a new
ground state.
This feature is emphasised when the number of the particle composing the system increases. We

have pointed out cases when the energy differences become always smaller with increasing the ν
values but they are never zero. In other cases, instead, it is evident the crossing between the different
eigenvalues resulting in a change of the ground state eigenvector.
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We give in Eq. (24) a semi-empirical expression which relates the zeros of the energy differences
between the two lowest states of a system with N particles with the strength ν of the interaction.
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N=2

• • | 1 , 1 〉

• • | 1 , 0 〉

• • | 1 , - 1 〉

N=3

• • • | 3
2
, 3

2
〉

• • • | 3
2
, 1

2
〉

• • • | 3
2
, - 1

2
〉

• • • | 3
2
, - 3

2
〉

N=4

• • • • | 2 , 2 〉

• • • • | 2 , 1 〉

• • • • | 2 , 0 〉

• • • • | 2 , - 1 〉

• • • • | 2 , - 2 〉

Table 1: Representation of the eigenstates of the one-body hamiltonian for systems with N = 2, 3,
and 4 particles. The number of green and red dots represents the number of particles lying
on the upper and on the lower energy level, respectively.
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Figure 1: Eigenenergies of a system of 3 particles, Eq. (12), as a function of the strength ν for some fixed values of the
strength ω. The blues and red lines identify the the specific eigenvalues. The coloured areas are drawn to
highlight the differences between the eigenvalues.
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Figure 2: The same as Fig. 1, but as a function of the strength ω for six values of ν.
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Figure 3: The square of the two non-zero components of the lowest energy eigenstate, Eq. (17), as a function of ν for
six values of ω. The system is composed by 3 particles. The yellow areas emphasise the differences between
the two components.
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Figure 4: Same as Fig. 3 as a function of the ω strength, for different values of ν.
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Figure 5: Energy eigenvalues of the N = 4, 6, 8 particle systems as a function of ν, when ω = 0.
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Figure 6: The same as Fig. 5 as a function of ω, when ν = 0. The vertical lines indicate the degeneracy points where
the energies of different eigenstates becomes equal.
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Figure 7: Energy difference between the lowest two states ∆1.2 of a system of 10 particles for different values of ω, as
a function of ν. The different coloured areas emphasize the differences.
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Figure 8: Energy difference ∆
[N ]
12 between the two lowest states of systems with N = 10, 20, 50 particles. The blue lines

show results obtained with ω = 0 while the red lines for ω = 1/(N − 1). We point out the different ν scales
in the various panels, and the amplification factors of the red lines.
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