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Abstract

We investigate the ground state properties of the nuclei belonging to the isotonic chain N =

82. The pairing effects have been taken into account by considering a Hartree–Fock–Bogoliubov

and also a Hartree–Fock plus Bardeen–Cooper–Schrieffer approaches. We consider finite-range

interactions to obtain stability of the results against the changes of the dimensions of the single

particle configuration space. Our results reproduce very well the available experimental data

of binding energies and charge radii. The study of the particle number fluctuation indicates a

remarkable sensitivity of the pairing effects to the presence of tensor terms in the interaction.

In some situations, they reduce the pairing effects, and produce shell closure phenomena. The

experimental behavior of the energy difference between neutron single particle states up to A = 140

is described only if the tensor force is considered.

PACS numbers:
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I. INTRODUCTION

In the solar system, the abundance distribution of nuclei generated by r-process shows a

peak around A = 130 [1]. The common interpretation of this observation is related to the

shell closure when the neutron number, N , is 82 [2]. On the other hand, recent experimental

data of nuclei far from stability indicate important changes in the shell structure [3], and

motivate more detailed studies of nuclei with neutron excess in the region of Sn isotopes

and N = 82 isotones. It is nowadays an experimental evidence that the sequence of single

particle (s.p.) states changes with the ratio N/Z [4]. This implies that new magic numbers

emerge and other ones disappear [5–7].

Starting from the seminal works of Otsuka et al. [8, 9] it has been established a relation

between the trend in the evolution of the nuclear shells and the tensor part of the nucleon-

nucleon interaction. The inclusion of the tensor force improves the description of the new

and old magic numbers [10].

In this article we carry out a theoretical study of the isotone chain of even-even nuclei

with N = 82 around the 132Sn doubly magic nucleus. We adopt a description based on the

spherical symmetry of these nuclei, and we consider the pairing in the proton sector only,

since the neutron number is magic.

The simplest mean-field approach that takes into account the pairing effects is the

Bardeen–Cooper–Schrieffer (BCS) model [11–13]. Inputs of this model are a set of s.p.

states and a pairing nucleon-nucleon interaction. The solution of the BCS pairing equa-

tions produces partial occupation probabilities of each s.p. state which are used to calculate

various ground state observables.

A more involved, and consistent, treatment of the pairing is provided by the Hartree–

Fock–Bogoliubov (HFB) theory [14]. In this case, the only input required is the effective

nucleon-nucleon interaction. The s.p. states and their occupation probabilities are obtained

in a unique step by solving a system of integro-differential non-linear equations [12].

Recently, we have developed a Hartree–Fock plus BCS (HF+BCS) model [15] which

uses the same effective, finite-range, nucleon-nucleon interaction in the two steps of the

calculation, HF and BCS. For this reason, the only input of our approach is the effective

nucleon-nucleon interaction whose parameters have been fixed once forever in a global fit.

Specifically, we used nucleon-nucleon interactions of Gogny type [14, 16, 17]. We compared
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our results with those obtained in HFB calculations by using the same interaction [18, 19].

The agreement between the two types of calculation is very good [15, 20].

It is worth noticing that the finite range of the interaction ensures the stability of the

BCS results against the enlargement of the s.p. configuration space. This occurs, of course,

after that certain dimensions of the s.p. configuration space have been reached. On the

contrary, the use of zero-range forces always requires renormalisation procedures, eventually

by using different interactions in the HF and in the BCS calculations [21].

The aim of the present article is to study the evolution of the ground state properties

of the isotone chain with N = 82 by considering the presence of the tensor interaction

together with that of the pairing force. We carry out our investigation by considering the

finite-range interactions introduced in Ref. [22] where tensor terms have been added to well

defined parameterizations of the Gogny interactions. We investigate the emergence and

disappearance of magic numbers when the tensor interaction is included at the HF level. To

be sure that our results are due to the presence of the tensor term, and not to its specific

implementation in an effective theory, we calculated the various quantities presented in the

work with both HFB and HF+BCS approaches. To the best of our knowledge, in addition

to our work, only the calculations of Ref. [23] have considered, up to now, the tensor terms

of finite-range effective forces in HFB calculations.

In Sec. II we present the basic ideas of our nuclear structure model, and we describe

how we calculate the quantities, and the observables considered in our work. We discuss

our results in Sec. III. We first show binding energies and proton and neutron root mean

square (rms) radii for the full chain of isotones. Then, we present the fluctuation of the

particle number obtained with and without tensor interaction to study the shell closure.

Finally, we compare our results with the, recently measured, empirical data [24, 25], which

show the behavior of the energy difference between the neutron 1i13/2 and 1h9/2 s.p. states

as a function of the proton number. In Sec. IV we summarize our results and we draw our

conclusions.

II. THE MODELS

We recall here below some basic points of our HF+BCS approach which is described with

more details in Ref. [15]. We first generate a set of s.p. wave functions in a spherical basis
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by solving the HF equations. When the iterative method described in Ref. [26] has reached

convergence, the direct, Hartree, and exchange, Fock-Dirac, potentials are built by using

the s.p. wave functions below the Fermi surface and inserted in the integro-differential HF

equations to generate the set of s.p. wave functions above it.

Each s.p. state |k〉 ≡ |εk;nklkjkmk〉 is characterized by the principal quantum number

nk, the orbital angular momentum lk, the total angular momentum jk, its z axis projection

mk and the energy εk. These s.p. states are used as the starting point to solve the BCS

equations. From their solution, we obtain the occupation probabilities v2k of each s.p. state.

The knowledge of vk and uk, normalized such that v2k +u2k = 1, and of the s.p. wave function

φk(r), allows us to evaluate the expectation values of various quantities with respect to the

BCS ground state.

For example, we calculate the particle number fluctuation defined as

〈(∆N)2〉 = 〈BCS|N̂2|BCS〉 − 〈BCS|N̂ |BCS〉2 = 4
∑
k

(2jk + 1)u2k v
2
k , (1)

to study the pairing effect. In the previous equation, N̂ represents the particle number

operator. In the following, we shall indicate as 〈(∆N)2〉t the result obtained when the sum

of Eq. (1) is restricted to proton, t=p, or neutron, t=n, s.p. states, and we shall compare

the values obtained in our HF+BCS approach with those of the HFB calculation.

In the next section we shall present results related to the global energy of the HF+BCS

ground state obtained as

E =
1

2

∑
k

(2jk + 1)
[
v2k(εk + 〈k|T |k〉) − uk vk ∆k

]
, (2)

where we have indicated with T the kinetic energy operator. In the above equation, the

symbol ∆k is defined as

∆k = − 1√
2jk + 1

∑
i

√
2ji + 1ui vi 〈ii0|V |kk0〉 , (3)

where |kk′0〉 indicates a state where the |k〉 and |k′〉 s.p. states are coupled to total angular

momentum J = 0, and V is the pairing interaction.

In our HF+BCS model, the matter density distribution is obtained as

ρ(r) =
∑
k

v2k |φk(r)|2 =
1

4π

∑
k

(2jk + 1) v2k |Rk(r)|2 , (4)

4



where we have indicated with Rk the radial part of the s.p. wave function normalized as∫ ∞
0

r2 |Rk(r)|2 dr = 1 . (5)

We obtain the proton, ρp, and neutron, ρn, density distributions by selecting the correspond-

ing s.p. states in the sum of Eq. (4). From the above distributions we determine the rms

radii by calculating

〈r2〉1/2t =


∫ ∞
0

r4 ρt(r) dr∫ ∞
0

r2 ρt(r) dr


1/2

, (6)

where the subindex t identifies protons, p, or neutrons n radii.

In our model the HF equations are solved by imposing bound boundary conditions at

the edge of an r-space box [26–28]. In this manner all the s.p. states forming the working

configuration space are bound, even those with positive energy. The size of the s.p. con-

figuration space should be large enough to ensure the stability of the BCS results. From

the numerical point of view, the use of finite-range interactions automatically generates the

stability of these results without adding additional renormalisation parameters [29]. In our

BCS calculations we have considered all the s.p. states with energies up to 10 MeV. We

have checked that this guarantees the stability of the BCS energy (2) within the keV range.

The HFB calculations have been performed by using the technique developed by Robledo

et al. [30, 31], based on the gradient method. The approximated second order gradient

method is applied to minimize the energy functional in the constrained HFB method. The

time reversal, simplex and axial symmetries are preserved in our HFB calculations. The HFB

equations are solved in the three dimensional harmonic oscillator basis of the Fock space,

and the oscillator length parameters are equal to 2.1 fm in all directions. This allows the

analysis of spherical nuclei. In our HFB calculations the Coulomb term is exactly treated,

i.e. we do not use the commonly adopted Slater approximation [19]. The HFB results we

shall present in the following have been obtained by using a configuration space composed

by 10 major harmonic oscillator shells.

Our calculations have been carried out by using effective finite-range interactions of Gogny

type [14, 16], which can be expressed as a sum of central, VC, spin-orbit, VSO, density

dependent, VDD, and Coulomb, VCoul, terms

V (1, 2) = VC(1, 2) + VSO(1, 2) + VDD(1, 2) + VCoul(1, 2) . (7)

5



The central term, which depends on the spin and the isospin of the two interacting nucleons,

has a finite range, while the spin-orbit and density dependent terms are of zero-range type.

In this article we shall present results obtained with the traditional D1S interaction, and

its extension D1ST2a which includes tensor terms [22]. We have carried out calculations by

using the more recent D1M parameterization of the force [17]. The results obtained with

this force are very similar to those obtained with the D1S interaction, and for this reason,

we do not show them in this paper.

The tensor terms contained in the D1ST2a interaction [22] can be expressed in the form

VT(1, 2) = [VT1 + VT2 τ (1) · τ (2)] S12 exp[−(r1 − r2)
2/µT] , (8)

where we have indicated with S12 the usual tensor operator, and with VT1, VT2 and µT

real numbers whose values are free parameters. The parameters of the tensor interaction

have been chosen to reproduce the energy of the first 0− state of the nucleus 16O and the

energy difference between the neutron 1f7/2 and 1f5/2 s.p. states of 48Ca without changing

the values of the other parameters of the D1S force. By using this procedure we chose

VT1 = −77.5 MeV, VT2 = 57.5 MeV and µT = 1.2 fm. This last value has been chosen to

coincide with the longest range of the two gaussians of the D1S Gogny interaction.

In the BCS calculations we have followed the procedure commonly adopted in the pairing

sector of the HFB calculations when Gogny type interactions are used [14, 16, 18], and we

have considered only VC, the central, finite-range term of Eq. (7). This means that in all

our calculations, either HFB or HF+BCS, the tensor term is present only at the HF level,

and not in the pairing sector. In any case, we point out that this is the first time that

the contribution of tensor forces is considered in HFB calculations done with the axial code

developed in [30, 32].

III. RESULTS

In order to clarify the quality of our calculations we show in Fig. 1 the binding energies

and the proton and neutron radii of the nuclei under study. The circles and the squares

indicate, respectively, the HF+BCS and HFB results obtained with the D1S interaction.

The triangles, in the panel (a), show the experimental values taken from Ref. [33]. The

largest relative difference between the available experimental data and our results is about
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2%. In panel (b) of the figure we show the proton and neutron rms radii, (see Eq. (6)). The

results of the two types of calculations, HF+BCS (circles) and HFB (squares), essentially

overlap for all the nuclei investigated. For these two observables the effects of the tensor are

within the numerical accuracy of the calculations, and for this reason, in the figure, we do

not show the binding energies and radii obtained with the D1ST2a interaction.

A quantity extremely sensitive to both tensor and pairing forces is the particle number

fluctuation 〈(∆N)2〉, defined in Eq. (1). This quantity goes to zero if the pairing effects are

negligible due to the fact that the energy gap between the last occupied and the first empty

s.p. level in the extreme mean-field picture is too large. Therefore a zero value of 〈(∆N)2〉is
an indication of shell closure. In the isotone chain under study the number of neutrons is

fixed and corresponds to a magic number, 82. In this case 〈(∆N)2〉n is zero, therefore we

shall consider only the proton number fluctuation, 〈(∆N)2〉p .

In Fig. 2 we show the 〈(∆N)2〉p values of the N = 82 isotone chain calculated with the

D1S interaction, panel (a), and with the D1ST2a interaction, panel (b). In the figure, the

squares show the results found in HFB calculations, and the circles those calculated with

HF+BCS.

In each of the two panels, the HFB and HF+BCS results are very similar. The com-

parison of the results of the two panels indicates that the presence of the tensor produces

additional shell closures for the 122Zr, 140Ce and 146Gd nuclei. These effects are due to the

full occupation of the proton 2p1/2, 2d5/2 and 1g7/2 s.p. levels.

The tensor effects we have pointed out become evident in the behavior of the nucleon

separation energies. We present in the panel (a) of Fig. 3 the two-proton separation energies

S2p(Z,N) = E(Z − 2, N) − E(Z,N) , (9)

calculated for the full isotone chain. In this figure we show the results obtained with HFB

using the D1S (black squares) and the D1ST2a (white squares) forces. Those found with

the HF+BCS approach are indistinguishable on the scale of the figure. The red triangles

indicate the available experimental data extracted from the compilation of Refs.[33, 34].

The lines in our figures have been drawn to guide the eyes, and they become extremely

useful in this case because they emphasize the changes of slope of the various calculations.

For the dashed line, linking the results obtained with the D1S interaction, the slope changes

only in coincidence with the 132Sn nucleus, the only case where in Fig. 2 we observe a zero
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value of 〈(∆N)2〉p . The slope of the solid line, corresponding to the results obtained by

including tensor terms, shows three additional changes in coincidence with A = 122, 140

and 146, where, in Fig. 2, we have observed that 〈(∆N)2〉p is zero. To have a better view

of these behaviors we show in the panel (b) of Fig. 3 the quantity

∆S2p(Z,N) =
1

2
[S2p(Z − 2, N) − S2p(Z,N)] , (10)

which emphasises the change of slope by presenting a peak in coincidence with the isotone

following that where the slope changes. Both types of calculation show a peak at A = 134,

therefore, the change of slope appears at A = 132 which is the closed shell isotone. The full

line of panel (b), linking the results obtained by using the tensor force, shows additional,

even if smaller, peaks corresponding to A = 124, 142 and 148, indicating the change of slope,

and the eventual shell closure, for A = 122, 140 and 146 isotones. The comparison with the

available experimental data shows a better agreement with the D1S results rather than with

those obtained with D1ST2a.

Since in our calculations the tensor force has been used only in the evaluation of the HF

s.p. basis, the effects we have observed are only due to the modifications of the energy of

the proton s.p. levels which, consequently, affect the pairing contributions. To have a better

insight of this combination of effects, we present in Fig. 4 the occupation numbers v2, panel

(a), and the energies ε, panel (b), of the proton 1g7/2 and 2d5/2 s.p. states as a function of

the mass number A, as we have obtained in HF+BCS calculations.

The white and black circles show the results obtained with the D1S and the D1ST2a

interactions, respectively. For both states the smooth behavior of v2 is strongly modified by

the tensor force which produces a sharp increase. The main effect of the tensor interaction is

due to its action between the neutron 1h11/2 s.p. level and the two proton levels considered

in the figure. The energy of the proton 1g7/2 level decreases, while that of the 2d5/2 level

remains essentially unchanged. As a consequence of these changes, the energy difference

between these two proton levels increases when the tensor is included, and this reduces the

size of the pairing effects.

The D1ST2a interaction has been constructed on the D1S force by adding the tensor

interaction given in Eq. (8) composed by a pure tensor term, related to the VT1 parameter,

and a tensor-isospin term, related to the VT2 parameter. In order to understand the relevance

of each of these terms in the effects we have discussed so far, we have investigated their
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individual role on the proton number fluctuation, 〈(∆N)2〉p.

The results of this study with the HF+BCS approach are shown in Fig. 5 where we

compare the values of 〈(∆N)2〉, Eq. (1), obtained by using the full D1S and D1ST2a

interactions, represented by the white and black circles respectively, with those found using

the pure tensor (blue triangles) and tensor-isospin (red squares) terms. These latter results

have been obtained by setting VT2 = 0 and VT1 = 0 in Eq. (8), respectively.

There is a remarkable similarity between the D1S results and those obtained only with

the pure tensor term. On the other hand, the values obtained with the full D1ST2a force

are rather similar to those obtained by using only the tensor-isospin term. We remark,

however, that in the last case the shell closure of 132Sn and 146Gd does not appear. In our

parameterization of the tensor force these effects are produced, at least in some cases, by

the interference between the two terms of Eq. (8).

Since the main effect of the tensor force is on the s.p. energies, we tested the predictions

of our model against the empirical data related to the differences between the energies of

the neutron 1i13/2 and 1h9/2 s.p. states, and between the neutron 2f5/2 and 2f7/2 s.p. states.

The results of our HF+BCS calculations are shown in the Fig. 6, where the white and black

circles have been obtained by using the D1S and D1ST2a interactions, respectively.

In the panel (a), where we show the energy differences between the neutron 1i13/2 and

1h9/2 s.p. states, we show two types of empirical data, presented by the blue triangles and

red squares. The former have been calculated as difference between the energies of the

lowest 13/2+ and 9/2− excited states of the corresponding N = 83 nuclei, taken from the

compilation of Ref. [34]. The red squares are the centroid energies of the s.p. strengths

extracted in (d, p) pick-up reactions, and given in Ref. [24].

The general trend of the experimental data is reproduced, at least up to A = 140, only by

the calculations carried out with the tensor force, in agreement with the results of Otsuka et

al. [8, 24, 25]. This behavior can be understood by considering the occupation probabilities

v2 shown in Fig. 4. The observable we are studying is related to the filling of the proton

1g7/2 s.p. state. When the number of protons increases, and therefore the occupation of

this level, the tensor interaction between this s.p. level and the neutrons levels is enhanced.

Since the 1g7/2 state has j = l− 1/2, the tensor force lowers the energy of the neutron 1i13/2

level, and acts with opposite sign on the energy of the 1h9/2 level. Consequently, the energy

difference between these two levels becomes smaller, as indicated by the black circles in the
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figure. For A = 140 the proton 1g7/2 state is completely full, therefore the protons start to

fill the 2d5/2 s.p. state, which has opposite effect on the neutron levels since j = l + 1/2.

This explains the change of slope observed in our results, which, on the other hand, is absent

in the empirical data.

In the panel (b) of Fig. 6 we compare our HF+BCS results with the empirical data related

to the energy difference between the neutron 2f5/2 and 2f7/2 s.p. states. The meaning of

the symbols and of the lines is the same as in the upper panel. The behavior of the D1ST2a

results is completely different with respect to that shown by the results obtained with the

D1S interaction. The tensor interaction between the protons lying on the 1g7/2 state increases

the energy of the neutron 2f5/2 level and lowers that of the neutron 2f7/2 state. The figure

shows an increase of the difference between the energy of these two states, a behavior similar

to that of the empirical data. In analogy to what happens in upper panel, our HF+BCS

calculations change behavior at A = 140, when the proton 1g7/2 s.p. level is completely full.

After A = 140 we observe a change of slope related to the filling of the proton 2d5/2, and

now the tensor force has opposite sign effects on the two neutron levels considered.

IV. SUMMARY AND CONCLUSIONS

We have studied the ground state properties of the N = 82 isotonic chain which is

particularly interesting for astrophysical r-processes. Our study has been conducted within

a mean-field framework where the pairing interaction has been taken into account by using

HFB and HF+BCS approaches. Our aim was to investigate the role of the tensor force in the

shell structure of the isotone chain, and, to be sure of handling with real tensor force effects

and not with effects related to the specific implementation of the force, we have carried out

the calculations with both approaches. We should point out that our HFB calculations,

together with those of [23], are the only ones where a finite range tensor interaction is

considered, and certainly they are the first ones which used the technology of Ref. [32] for

this purpose.

Our calculations have been carried out by using finite-range Gogny interactions, in both

the Hartree-Fock and the pairing sectors. This ensures the stability of the results against the

increase of the s.p. configuration space. We used the D1S interaction and the D1ST2a force

which add to the D1S interaction a pure tensor and a tensor-isospin term, as indicated in Eq.
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(8). Since the parameters of these forces have been selected in the literature, we do not have

any free parameter to play with, and, in this sense, we may state that our calculations are

parameter free. The quality of our calculations has been clarified by showing the excellent

agreement between our results and experimental binding energy of the N = 82 isotone chain.

The effects of the tensor force have been emphasized in the study of the particle fluctuation

〈(∆N)2〉 , defined in Eq. (1). The comparison between calculations done with and without

tensor force indicates that the presence of the tensor produces new shell closure for A=122,

140, 146. We should point out that, at least for the 146Gd nucleus, there have been empirical

claims about its shell closure [35], which have triggered a set of study of this nucleus, see

[36] and references therein.

We have analyzed in detail the mechanism associated to the presence of the tensor force

which produces the emergence of these new shell closure. The tensor force increases the

proton energy gap, and this reduces the effects of the pairing generating the new shell

closure. The main responsible of this effect is the tensor-isospin part of our tensor force

(8). However, the presence of the pure tensor term is not negligible since it generates strong

interference effects together with tensor-isospin term.

We searched for a phenomenological validation of these results by calculating the evolution

in the isotone chain of the difference between the energy of two neutron s.p. states which is

also empirically known. While the results without tensor fail completely in describing the

data, those obtained with the tensor force have the correct behavior up to a certain value

of the mass number, A = 140 in the specific cases studied. However, the general agreement

is not satisfactory, from both the quantitative and qualitative point of view.

We conclude by stating that a detailed description of the shell evolution in the N = 82

isotone chain, and more in general, in the experimentally unexplored regions of the isotope

chart, requires the inclusion of the tensor term in the effective interaction to be used. The

present situation is, however, not satisfactory and it requires additional work. Certainly it

will be necessary to include the tensor force also in the pairing sector, even though our first,

preliminary, results seem to indicate small effects. Second, and probably more relevant, it

is necessary a more systematic and global fit of observables to choose the parameters of the

tensor force. Whether this should be done as we have done, maintaining fixed the parameters

values of the full force (7) and selecting only the parameters of the tensor force, or involving

in a global fit all the parameters of the new force, is matter of discussion, and investigation.
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Figure 1: (Color on line) Binding energies per nucleon, upper panel, and rms radii, lower panel,

obtained for the even-even isotones with N = 82. The white circles show the HF+BCS results

and the black squares those obtained with the HFB calculations. The red triangles indicate the

experimental binding energies taken from the compilation of Ref. [33]. The lines are drawn to guide

the eyes.
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Figure 2: Proton number fluctuation 〈(∆N)2〉p , Eq. (1), for the various isotones of the N =

82 chain. The HF+BCS results are compared to those obtained within HFB model (squares).

The upper and lower panels show the values corresponding to the D1S and D1ST2a interactions,

respectively. The lines are drawn to guide the eyes.

16



0

10

20

30

40

50

114 120 126 132 138 144 150 156

0

2

4

6

S
2p

(M
eV

)
∆
S
2p

(M
eV

)
HFB

A

N = 82

(a)

(b)

exp

D1S

D1ST2a

Figure 3: (Color on line) In the upper panel we show the two-proton separation energies S2p, as

defined in Eq. (9), and in the lower panel the quantity ∆S2p, as given by Eq. (10), with the D1S

and D1ST2a interactions. All the calculations have been carried out within the HFB model. The

red triangles are the experimental values [34].
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interaction and the black ones with the D1ST2a force.
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Figure 5: (Color on line) Values of the proton number fluctuation, 〈(∆N)2〉p, Eq. (1), for the

various isotones of the N = 82 chain obtained in HF+BCS calculations. White and black circles

are the same as those of Fig. 2 and show the results obtained with the D1S and D1ST2a interactions,

respectively. The blue triangles have been obtained by using only the pure tensor term in D1ST2a,

i.e. by setting VT2=0 in Eq. (8), while the red squares have been calculated by considering only

the tensor-isospin term, i.e. with VT1=0.
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D1S and D1ST2a interactions, respectively. The blue triangles indicate the differences between the

experimental energies of the corresponding excited states as given in Ref. [34]. The red squares are

the centroid energies of the s.p. strengths extracted in (d, p) pick-up reactions [24].
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