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Abstract

We investigate the ground state properties of the nuclei belonging to the isotonic chain N =
82. The pairing effects have been taken into account by considering a Hartree-Fock—Bogoliubov
and also a Hartree-Fock plus Bardeen—Cooper—Schrieffer approaches. We consider finite-range
interactions to obtain stability of the results against the changes of the dimensions of the single
particle configuration space. Our results reproduce very well the available experimental data
of binding energies and charge radii. The study of the particle number fluctuation indicates a
remarkable sensitivity of the pairing effects to the presence of tensor terms in the interaction.
In some situations, they reduce the pairing effects, and produce shell closure phenomena. The
experimental behavior of the energy difference between neutron single particle states up to A = 140

is described only if the tensor force is considered.

PACS numbers:



I. INTRODUCTION

In the solar system, the abundance distribution of nuclei generated by r-process shows a
peak around A = 130 [1]. The common interpretation of this observation is related to the
shell closure when the neutron number, N, is 82 [2]. On the other hand, recent experimental
data of nuclei far from stability indicate important changes in the shell structure [3], and
motivate more detailed studies of nuclei with neutron excess in the region of Sn isotopes
and N = 82 isotones. It is nowadays an experimental evidence that the sequence of single
particle (s.p.) states changes with the ratio N/Z [4]. This implies that new magic numbers
emerge and other ones disappear [5-7].

Starting from the seminal works of Otsuka et al. [8, 9] it has been established a relation
between the trend in the evolution of the nuclear shells and the tensor part of the nucleon-
nucleon interaction. The inclusion of the tensor force improves the description of the new
and old magic numbers [10].

In this article we carry out a theoretical study of the isotone chain of even-even nuclei
with N = 82 around the '*?Sn doubly magic nucleus. We adopt a description based on the
spherical symmetry of these nuclei, and we consider the pairing in the proton sector only,
since the neutron number is magic.

The simplest mean-field approach that takes into account the pairing effects is the
Bardeen—Cooper—Schrieffer (BCS) model [11-13]. Inputs of this model are a set of s.p.
states and a pairing nucleon-nucleon interaction. The solution of the BCS pairing equa-
tions produces partial occupation probabilities of each s.p. state which are used to calculate
various ground state observables.

A more involved, and consistent, treatment of the pairing is provided by the Hartree—
Fock-Bogoliubov (HFB) theory [14]. In this case, the only input required is the effective
nucleon-nucleon interaction. The s.p. states and their occupation probabilities are obtained
in a unique step by solving a system of integro-differential non-linear equations [12].

Recently, we have developed a Hartree-Fock plus BCS (HF+BCS) model [15] which
uses the same effective, finite-range, nucleon-nucleon interaction in the two steps of the
calculation, HF and BCS. For this reason, the only input of our approach is the effective
nucleon-nucleon interaction whose parameters have been fixed once forever in a global fit.

Specifically, we used nucleon-nucleon interactions of Gogny type [14, 16, 17]. We compared



our results with those obtained in HFB calculations by using the same interaction [18, 19].
The agreement between the two types of calculation is very good [15, 20].

It is worth noticing that the finite range of the interaction ensures the stability of the
BCS results against the enlargement of the s.p. configuration space. This occurs, of course,
after that certain dimensions of the s.p. configuration space have been reached. On the
contrary, the use of zero-range forces always requires renormalisation procedures, eventually
by using different interactions in the HF and in the BCS calculations [21].

The aim of the present article is to study the evolution of the ground state properties
of the isotone chain with N = 82 by considering the presence of the tensor interaction
together with that of the pairing force. We carry out our investigation by considering the
finite-range interactions introduced in Ref. [22] where tensor terms have been added to well
defined parameterizations of the Gogny interactions. We investigate the emergence and
disappearance of magic numbers when the tensor interaction is included at the HF level. To
be sure that our results are due to the presence of the tensor term, and not to its specific
implementation in an effective theory, we calculated the various quantities presented in the
work with both HFB and HF+BCS approaches. To the best of our knowledge, in addition
to our work, only the calculations of Ref. [23] have considered, up to now, the tensor terms
of finite-range effective forces in HFB calculations.

In Sec. II we present the basic ideas of our nuclear structure model, and we describe
how we calculate the quantities, and the observables considered in our work. We discuss
our results in Sec. III. We first show binding energies and proton and neutron root mean
square (rms) radii for the full chain of isotones. Then, we present the fluctuation of the
particle number obtained with and without tensor interaction to study the shell closure.
Finally, we compare our results with the, recently measured, empirical data [24, 25|, which
show the behavior of the energy difference between the neutron 14135 and 1hg/s s.p. states
as a function of the proton number. In Sec. IV we summarize our results and we draw our

conclusions.

II. THE MODELS

We recall here below some basic points of our HF+BCS approach which is described with

more details in Ref. [15]. We first generate a set of s.p. wave functions in a spherical basis



by solving the HF equations. When the iterative method described in Ref. [26] has reached
convergence, the direct, Hartree, and exchange, Fock-Dirac, potentials are built by using
the s.p. wave functions below the Fermi surface and inserted in the integro-differential HF
equations to generate the set of s.p. wave functions above it.

Each s.p. state |k) = |ex; nilpjrmy) is characterized by the principal quantum number
nyg, the orbital angular momentum [, the total angular momentum ji, its z axis projection
my and the energy €. These s.p. states are used as the starting point to solve the BCS
equations. From their solution, we obtain the occupation probabilities v? of each s.p. state.
The knowledge of v, and wy,, normalized such that v; +wu; = 1, and of the s.p. wave function
¢r(r), allows us to evaluate the expectation values of various quantities with respect to the
BCS ground state.

For example, we calculate the particle number fluctuation defined as

((AN)?) = (BCS|N?BCS) — (BCS|N|BCS)” = 4) ~(2ji + 1) ui v} , (1)

to study the pairing effect. In the previous equation, N represents the particle number
operator. In the following, we shall indicate as ((AN)?); the result obtained when the sum
of Eq. (1) is restricted to proton, t=p, or neutron, t=n, s.p. states, and we shall compare
the values obtained in our HF+BCS approach with those of the HFB calculation.

In the next section we shall present results related to the global energy of the HF+BCS

ground state obtained as
1 .
B =3 Z(ij +1) [vi(en + (KITIE)) — upvr Ag] (2)
k
where we have indicated with 7' the kinetic energy operator. In the above equation, the

symbol Ay is defined as

1
Ay = ——— 27; + 1w v; (10| V |kEO) | 3
= ey 2 VI T Gl (3

where |kk’0) indicates a state where the |k) and |k’) s.p. states are coupled to total angular
momentum J = 0, and V' is the pairing interaction.

In our HF4+BCS model, the matter density distribution is obtained as
1 .
p(r) = S0 lon)? = — S0 (@ + 1) 0 [Relr) P, @
k k
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where we have indicated with Ry the radial part of the s.p. wave function normalized as

/000 r? |Rp(r)|?dr = 1. (5)

We obtain the proton, p,, and neutron, p,, density distributions by selecting the correspond-

ing s.p. states in the sum of Eq. (4). From the above distributions we determine the rms

0 1/2
e /%OT ki 0
/0 r? pe(r)dr

where the subindex t identifies protons, p, or neutrons n radii.

radii by calculating

In our model the HF equations are solved by imposing bound boundary conditions at
the edge of an r-space box [26-28|. In this manner all the s.p. states forming the working
configuration space are bound, even those with positive energy. The size of the s.p. con-
figuration space should be large enough to ensure the stability of the BCS results. From
the numerical point of view, the use of finite-range interactions automatically generates the
stability of these results without adding additional renormalisation parameters [29]. In our
BCS calculations we have considered all the s.p. states with energies up to 10 MeV. We
have checked that this guarantees the stability of the BCS energy (2) within the keV range.

The HEF'B calculations have been performed by using the technique developed by Robledo
et al. [30, 31], based on the gradient method. The approximated second order gradient
method is applied to minimize the energy functional in the constrained HFB method. The
time reversal, simplex and axial symmetries are preserved in our HFB calculations. The HFB
equations are solved in the three dimensional harmonic oscillator basis of the Fock space,
and the oscillator length parameters are equal to 2.1 fm in all directions. This allows the
analysis of spherical nuclei. In our HFB calculations the Coulomb term is exactly treated,
i.e. we do not use the commonly adopted Slater approximation [19]. The HFB results we
shall present in the following have been obtained by using a configuration space composed
by 10 major harmonic oscillator shells.

Our calculations have been carried out by using effective finite-range interactions of Gogny
type [14, 16], which can be expressed as a sum of central, Vg, spin-orbit, Vgo, density

dependent, Vpp, and Coulomb, Ve, terms
V(1,2) = V(1,2) + Vso(1,2) + Vbp(1,2) + Veou(l,2). (7)
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The central term, which depends on the spin and the isospin of the two interacting nucleons,
has a finite range, while the spin-orbit and density dependent terms are of zero-range type.

In this article we shall present results obtained with the traditional D1S interaction, and
its extension D15ST2a which includes tensor terms [22]. We have carried out calculations by
using the more recent D1M parameterization of the force [17]. The results obtained with
this force are very similar to those obtained with the D1S interaction, and for this reason,
we do not show them in this paper.

The tensor terms contained in the D1ST2a interaction [22] can be expressed in the form
VT(l, 2) = [le + VTQ T(l) . T(Q)] 512 exp[—(r1 - I'Q)Q/MT] s (8)

where we have indicated with Si5 the usual tensor operator, and with Vi, Vs and pr
real numbers whose values are free parameters. The parameters of the tensor interaction
have been chosen to reproduce the energy of the first 0~ state of the nucleus °O and the
energy difference between the neutron 1f72 and 1f5/5 s.p. states of **Ca without changing
the values of the other parameters of the D1S force. By using this procedure we chose
V11 = =77.5 MeV, V1o = 57.5 MeV and pup = 1.2 fm. This last value has been chosen to
coincide with the longest range of the two gaussians of the D1S Gogny interaction.

In the BCS calculations we have followed the procedure commonly adopted in the pairing
sector of the HFB calculations when Gogny type interactions are used [14, 16, 18|, and we
have considered only Vg, the central, finite-range term of Eq. (7). This means that in all
our calculations, either HFB or HF+BCS, the tensor term is present only at the HF level,
and not in the pairing sector. In any case, we point out that this is the first time that
the contribution of tensor forces is considered in HFB calculations done with the axial code

developed in [30, 32].

III. RESULTS

In order to clarify the quality of our calculations we show in Fig. 1 the binding energies
and the proton and neutron radii of the nuclei under study. The circles and the squares
indicate, respectively, the HF+BCS and HFB results obtained with the D1S interaction.
The triangles, in the panel (a), show the experimental values taken from Ref. [33]. The

largest relative difference between the available experimental data and our results is about



2%. In panel (b) of the figure we show the proton and neutron rms radii, (see Eq. (6)). The
results of the two types of calculations, HF+BCS (circles) and HFB (squares), essentially
overlap for all the nuclei investigated. For these two observables the effects of the tensor are
within the numerical accuracy of the calculations, and for this reason, in the figure, we do
not show the binding energies and radii obtained with the D1ST2a interaction.

A quantity extremely sensitive to both tensor and pairing forces is the particle number
fluctuation ((AN)?), defined in Eq. (1). This quantity goes to zero if the pairing effects are
negligible due to the fact that the energy gap between the last occupied and the first empty
s.p. level in the extreme mean-field picture is too large. Therefore a zero value of ((AN)?)is
an indication of shell closure. In the isotone chain under study the number of neutrons is
fixed and corresponds to a magic number, 82. In this case ((AN)?), is zero, therefore we
shall consider only the proton number fluctuation, ((AN)?),,.

In Fig. 2 we show the ((AN)?), values of the N = 82 isotone chain calculated with the
D1S interaction, panel (a), and with the D1ST2a interaction, panel (b). In the figure, the
squares show the results found in HFB calculations, and the circles those calculated with
HF+BCS.

In each of the two panels, the HFB and HF+BCS results are very similar. The com-
parison of the results of the two panels indicates that the presence of the tensor produces
additional shell closures for the '22Zr, 4°Ce and '*9Gd nuclei. These effects are due to the
full occupation of the proton 2p; s, 2ds/; and 1g7/2 s.p. levels.

The tensor effects we have pointed out become evident in the behavior of the nucleon

separation energies. We present in the panel (a) of Fig. 3 the two-proton separation energies
Sop(Z,N) = E(Z—-2,N) — E(Z,N) (9)

calculated for the full isotone chain. In this figure we show the results obtained with HFB
using the D1S (black squares) and the D1ST2a (white squares) forces. Those found with
the HF+BCS approach are indistinguishable on the scale of the figure. The red triangles
indicate the available experimental data extracted from the compilation of Refs.[33, 34].
The lines in our figures have been drawn to guide the eyes, and they become extremely
useful in this case because they emphasize the changes of slope of the various calculations.
For the dashed line, linking the results obtained with the D1S interaction, the slope changes

only in coincidence with the ¥2Sn nucleus, the only case where in Fig. 2 we observe a zero



value of ((AN)?),. The slope of the solid line, corresponding to the results obtained by
including tensor terms, shows three additional changes in coincidence with A = 122, 140
and 146, where, in Fig. 2, we have observed that ((AN)?), is zero. To have a better view
of these behaviors we show in the panel (b) of Fig. 3 the quantity

ASZP(Z> N) = [SZP(Z_ 2>N) - SQP(Z> N)] ) (10)

1
2
which emphasises the change of slope by presenting a peak in coincidence with the isotone
following that where the slope changes. Both types of calculation show a peak at A = 134,
therefore, the change of slope appears at A = 132 which is the closed shell isotone. The full
line of panel (b), linking the results obtained by using the tensor force, shows additional,
even if smaller, peaks corresponding to A = 124, 142 and 148, indicating the change of slope,
and the eventual shell closure, for A = 122, 140 and 146 isotones. The comparison with the
available experimental data shows a better agreement with the D1S results rather than with
those obtained with D1ST2a.

Since in our calculations the tensor force has been used only in the evaluation of the HF
s.p. basis, the effects we have observed are only due to the modifications of the energy of
the proton s.p. levels which, consequently, affect the pairing contributions. To have a better
insight of this combination of effects, we present in Fig. 4 the occupation numbers v2, panel
(a), and the energies €, panel (b), of the proton 1g7/, and 2ds/, s.p. states as a function of
the mass number A, as we have obtained in HF+BCS calculations.

The white and black circles show the results obtained with the D1S and the D15T2a
interactions, respectively. For both states the smooth behavior of v? is strongly modified by
the tensor force which produces a sharp increase. The main effect of the tensor interaction is
due to its action between the neutron 1542 s.p. level and the two proton levels considered
in the figure. The energy of the proton 1g;,, level decreases, while that of the 2ds,, level
remains essentially unchanged. As a consequence of these changes, the energy difference
between these two proton levels increases when the tensor is included, and this reduces the
size of the pairing effects.

The D1ST2a interaction has been constructed on the D1S force by adding the tensor
interaction given in Eq. (8) composed by a pure tensor term, related to the V; parameter,
and a tensor-isospin term, related to the Vs parameter. In order to understand the relevance

of each of these terms in the effects we have discussed so far, we have investigated their



individual role on the proton number fluctuation, ((AN)?),.

The results of this study with the HF+BCS approach are shown in Fig. 5 where we
compare the values of ((AN)?), Eq. (1), obtained by using the full D1S and D1ST2a
interactions, represented by the white and black circles respectively, with those found using
the pure tensor (blue triangles) and tensor-isospin (red squares) terms. These latter results
have been obtained by setting V1o = 0 and Vr; = 0 in Eq. (8), respectively.

There is a remarkable similarity between the D1S results and those obtained only with
the pure tensor term. On the other hand, the values obtained with the full D1ST2a force
are rather similar to those obtained by using only the tensor-isospin term. We remark,
however, that in the last case the shell closure of ¥2Sn and '%Gd does not appear. In our
parameterization of the tensor force these effects are produced, at least in some cases, by
the interference between the two terms of Eq. (8).

Since the main effect of the tensor force is on the s.p. energies, we tested the predictions
of our model against the empirical data related to the differences between the energies of
the neutron 1i3/2 and 1hg/s s.p. states, and between the neutron 2fs/5 and 2 f7/ s.p. states.
The results of our HF4+BCS calculations are shown in the Fig. 6, where the white and black
circles have been obtained by using the D1S and D1ST2a interactions, respectively.

In the panel (a), where we show the energy differences between the neutron 1i;3,, and
lhg/s s.p. states, we show two types of empirical data, presented by the blue triangles and
red squares. The former have been calculated as difference between the energies of the
lowest 13/2% and 9/27 excited states of the corresponding N = 83 nuclei, taken from the
compilation of Ref. [34]. The red squares are the centroid energies of the s.p. strengths
extracted in (d, p) pick-up reactions, and given in Ref. [24].

The general trend of the experimental data is reproduced, at least up to A = 140, only by
the calculations carried out with the tensor force, in agreement with the results of Otsuka et
al. [8, 24, 25]. This behavior can be understood by considering the occupation probabilities
v? shown in Fig. 4. The observable we are studying is related to the filling of the proton
1g7/2 s.p. state. When the number of protons increases, and therefore the occupation of
this level, the tensor interaction between this s.p. level and the neutrons levels is enhanced.
Since the 1g7/, state has j = [ —1/2, the tensor force lowers the energy of the neutron liys/,
level, and acts with opposite sign on the energy of the 1hg/; level. Consequently, the energy

difference between these two levels becomes smaller, as indicated by the black circles in the



figure. For A = 140 the proton lg7/, state is completely full, therefore the protons start to
fill the 2d5/, s.p. state, which has opposite effect on the neutron levels since j = [ + 1/2.
This explains the change of slope observed in our results, which, on the other hand, is absent
in the empirical data.

In the panel (b) of Fig. 6 we compare our HF+BCS results with the empirical data related
to the energy difference between the neutron 2f5,, and 2f7/, s.p. states. The meaning of
the symbols and of the lines is the same as in the upper panel. The behavior of the D1ST2a
results is completely different with respect to that shown by the results obtained with the
D1S interaction. The tensor interaction between the protons lying on the 1g7/; state increases
the energy of the neutron 2f5/; level and lowers that of the neutron 2f7/, state. The figure
shows an increase of the difference between the energy of these two states, a behavior similar
to that of the empirical data. In analogy to what happens in upper panel, our HF+BCS
calculations change behavior at A = 140, when the proton 1g;/, s.p. level is completely full.
After A = 140 we observe a change of slope related to the filling of the proton 2ds/,, and

now the tensor force has opposite sign effects on the two neutron levels considered.

IV. SUMMARY AND CONCLUSIONS

We have studied the ground state properties of the N = 82 isotonic chain which is
particularly interesting for astrophysical r-processes. Our study has been conducted within
a mean-field framework where the pairing interaction has been taken into account by using
HFB and HF+BCS approaches. Our aim was to investigate the role of the tensor force in the
shell structure of the isotone chain, and, to be sure of handling with real tensor force effects
and not with effects related to the specific implementation of the force, we have carried out
the calculations with both approaches. We should point out that our HFB calculations,
together with those of [23|, are the only ones where a finite range tensor interaction is
considered, and certainly they are the first ones which used the technology of Ref. [32] for
this purpose.

Our calculations have been carried out by using finite-range Gogny interactions, in both
the Hartree-Fock and the pairing sectors. This ensures the stability of the results against the
increase of the s.p. configuration space. We used the D1S interaction and the D1ST2a force

which add to the D1S interaction a pure tensor and a tensor-isospin term, as indicated in Eq.
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(8). Since the parameters of these forces have been selected in the literature, we do not have
any free parameter to play with, and, in this sense, we may state that our calculations are
parameter free. The quality of our calculations has been clarified by showing the excellent
agreement between our results and experimental binding energy of the N = 82 isotone chain.

The effects of the tensor force have been emphasized in the study of the particle fluctuation
((AN)?), defined in Eq. (1). The comparison between calculations done with and without
tensor force indicates that the presence of the tensor produces new shell closure for A=122,
140, 146. We should point out that, at least for the '“6Gd nucleus, there have been empirical
claims about its shell closure [35], which have triggered a set of study of this nucleus, see
[36] and references therein.

We have analyzed in detail the mechanism associated to the presence of the tensor force
which produces the emergence of these new shell closure. The tensor force increases the
proton energy gap, and this reduces the effects of the pairing generating the new shell
closure. The main responsible of this effect is the tensor-isospin part of our tensor force
(8). However, the presence of the pure tensor term is not negligible since it generates strong
interference effects together with tensor-isospin term.

We searched for a phenomenological validation of these results by calculating the evolution
in the isotone chain of the difference between the energy of two neutron s.p. states which is
also empirically known. While the results without tensor fail completely in describing the
data, those obtained with the tensor force have the correct behavior up to a certain value
of the mass number, A = 140 in the specific cases studied. However, the general agreement
is not satisfactory, from both the quantitative and qualitative point of view.

We conclude by stating that a detailed description of the shell evolution in the N = 82
isotone chain, and more in general, in the experimentally unexplored regions of the isotope
chart, requires the inclusion of the tensor term in the effective interaction to be used. The
present situation is, however, not satisfactory and it requires additional work. Certainly it
will be necessary to include the tensor force also in the pairing sector, even though our first,
preliminary, results seem to indicate small effects. Second, and probably more relevant, it
is necessary a more systematic and global fit of observables to choose the parameters of the
tensor force. Whether this should be done as we have done, maintaining fixed the parameters
values of the full force (7) and selecting only the parameters of the tensor force, or involving

in a global fit all the parameters of the new force, is matter of discussion, and investigation.
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Figure 1: (Color on line) Binding energies per nucleon, upper panel, and rms radii, lower panel,
obtained for the even-even isotones with N = 82. The white circles show the HF+BCS results
and the black squares those obtained with the HFB calculations. The red triangles indicate the
experimental binding energies taken from the compilation of Ref. [33]. The lines are drawn to guide

the eyes.
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Figure 2: Proton number fluctuation ((AN)?),, Eq. (1), for the various isotones of the N =
82 chain. The HF+BCS results are compared to those obtained within HFB model (squares).
The upper and lower panels show the values corresponding to the D1S and D1ST2a interactions,

respectively. The lines are drawn to guide the eyes.
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Figure 3: (Color on line) In the upper panel we show the two-proton separation energies S, as
defined in Eq. (9), and in the lower panel the quantity ASs;,, as given by Eq. (10), with the D1S
and D1ST2a interactions. All the calculations have been carried out within the HFB model. The

red triangles are the experimental values [34].
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Figure 4: Occupation numbers v?, panel (a), and s.p. energies ¢, panel (b), of some proton s.p.
states as a function of the mass number. The white circles have been obtained with the D1S

interaction and the black ones with the D1ST2a force.
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Figure 5: (Color on line) Values of the proton number fluctuation, ((AN)?),, Eq. (1), for the
various isotones of the N = 82 chain obtained in HF+BCS calculations. White and black circles
are the same as those of Fig. 2 and show the results obtained with the D1S and D1ST2a interactions,
respectively. The blue triangles have been obtained by using only the pure tensor term in D1ST2a,
i.e. by setting V12=0 in Eq. (8), while the red squares have been calculated by considering only

the tensor-isospin term, i.e. with Vp1=0.
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Figure 6: (Color on line) Differences between s.p. energies of the neutron states liqs 2 and 1lhg o,
panel (a) and 2f7/, and 2f;5 5, panel (b). White and black circles have been obtained by using the
D1S and D1ST2a interactions, respectively. The blue triangles indicate the differences between the
experimental energies of the corresponding excited states as given in Ref. [34]. The red squares are

the centroid energies of the s.p. strengths extracted in (d, p) pick-up reactions [24].
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