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Abstract

The electric dipole excitation of various nuclei is calculated with a Random Phase Approxima-
tion phenomenological approach. The evolution of the strength distribution in various groups of
isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E'1 strength
in the low energy region. Indexes to measure the collectivity of the excitation are defined. We stud-
ied the behavior of proton and neutron transition densities to determine the isoscalar or isovector
nature of the excitation. We observed that in medium-heavy nuclei the low-energy F1 excitation
has characteristics rather different that those exhibited by the giant dipole resonance. This new

type of excitation can be identified as pygmy dipole resonance.

PACS numbers:



I. INTRODUCTION

There are experimental evidences that in nuclei with neutron excess, in addition to the
well known Giant Dipole Resonance (GDR), a new type of dipole resonance appears [1-3].
Since this resonance has smaller strength than that of the GDR and exhausts only a small
fraction of the energy weighted sum rule, it is called Pygmy Dipole Resonance (PDR). The
PDR appears at lower energy with respect to the GDR but it is not its low-energy tail,
since it has an isoscalar (/.5) character and it is dominated by neutron excitations, while
the GDR has isovector (IV') character with almost equal contribution of proton and neutron
excitations.

The existence of a new type of resonance in nuclei is an interesting subject by itself. In
the present case the interest is also related to the fact that the presence of the PDR may
have some relevant consequences in the stellar r-process production of exotic nuclei [4].

We have studied how the PDR emerges when neutrons become more numerous than
protons. The nuclear model adopted in our calculation is the traditional discrete Random
Phase Approximation (RPA). Non relativistic [5-7] and relativistic [8, 9] RPA approaches
have been used in the past to investigate the PDR. Studies of PDR have been also done
with more elaborated nuclear models containing pairing [10-13] and spreading widths [14-
20]. Usually these calculations have been done to make detailed investigations of the PDR
characteristics in a limited set of isotopes. Our goal here is to search for general trends of
the PDR in various nuclei belonging to different regions of the nuclear isotope table, from
oxygen to lead. For this purpose we have defined two indexes which enable us to distinguish
between PDR and GDR. We tested the validity of these investigation tools on the 2Pb
nucleus where we found a resonance with all the features we attribute to the PDR at about
7.7 MeV, against an experimental evidence around 7.35 MeV [2]. We applied our method
to isotopic chains of oxygen, calcium, zirconium and tin. We clearly identify the emergence
of the PDR in the isotopes with neutron excess.

The basic features of our model are presented in Sect. II where we also make a critical
discussion of its limits. We present our results in Sect. III and in Sect. IV we summarize

our work and draw our conclusions.



II. THE MODEL

In our work we adopted the phenomenological RPA approach as proposed and used by
the Jiilich group [21-23]. The single-particle (s.p.) basis is constructed on a Woods-Saxon
well whose parameters are fixed in order to reproduce at best the s.p. energies around the
Fermi surface and the charge distributions. We used the parameters of the Woods-Saxon
potential given in Ref. [24]. Only the parameters of the ?°Zr and '32Sn nuclei are new, and
they are presented in Table I. We used the expression of the Woods-Saxon potential given
in Ref. [24]. In our RPA calculations we used experimental s.p. energies when available.

The calculations have been done in discrete s.p. basis. The s.p. Schrodinger equation
with the Woods-Saxon potential has been solved by expanding the s.p. wave functions in
a harmonic oscillator basis. This produces bound states even for positive s.p. energies.
We consider configuration spaces by 6 major oscillator shells for oxygen, of 8 shells for
calcium and 11 shells for zirconium, tin and lead nuclei. In our phenomenological model the
truncation of the s.p. configuration space is taken into account in an effective manner by
the choice of the parameters of the effective interaction.

Our RPA calculations have been done with a zero range force of Landau-Midgal type,

Ver(1,2) = [ui(rie) + vf(ria) plr1.72)
+ [va(r12) + v5(r12) p(ri,m2)] T(1) - 7(2)
+u3(riz) (1) - o(2) + v4(r12) o(1) - o(2) T(1) - 7(2) [ 6(r12) - (1)

In the equation above we have indicated with o and 7 the usual Pauli spin and isospin
operators. The zero range character of the force implies that the v,(r12) functions of the
expression above are constants. We used the values of the constants defined in Ref. [25].
The choice of the parameters was done in two steps. First, we defined the values for the
density independent terms of the expression (1). These values were fixed once for all the
nuclei and they describe the properties of some specific magnetic excitations in O and

208Ph. In MeV fm?® units these values are
v = —918; vy = 600; vy = 20; vy = 200 2)

where the sub-indexes refer to the terms in the expression (1). In the second step we chose

the parameters of the density dependent terms in order to reproduce the energies of the



collective low-lying 3~ states in 160, 4°Ca and 2°®Pb nuclei. This procedure selects the
values of v{. The parameters of the isospin dependent terms v§ were chosen to reproduce
the peak energies of the GDR in 190, %Ca, ¥2Sn and 2°®Pb. For each doubly closed shell
nucleus considered, we give in Table II the values of the parameters of the density dependent
terms of the force. Note that for the *Zr nucleus we used the set of values selected for *°Ca.
The structure of the interaction (1) is simple if compared with the complexity of modern
microscopic nucleon-nucleon interactions, as for example the Argonne V18 [26]. We tested
the reliability of our results by doing calculations also with more elaborated effective nucleon-
nucleon interactions. We used the finite range interactions of Refs. [25, 27] containing also
tensor terms. In the excitation of the 1~ states, the differences between the results obtained
with the various interactions are rather small and not relevant for the purposes of the present
work. For this reason we present here only the results obtained with the interaction (1).
For a given multipolarity J™, our RPA calculations produce a number of solutions equal
to the number of particle-hole excitations, N, compatible with the angular momentum
and parity conservation rules within the given configuration space. For a single solution,
of excitation energy w, the RPA provides the set of amplitudes X,;,(w) and Y,,(w) which
describe the wave function of the excited state in terms of particle-hole (p-h) and hole-
particle (h-p) excitations, respectively. The proper normalization of the many-body wave
function implies that, for a given excited state, the RPA amplitudes are normalized as:

Npn

S [XE) - Vi) =1 . (3)

ph=1
In our search for states which can be identified as PDR, we singled out a few quantities
which summarize the main characteristics of each state. First, for a given excited state, we
calculated the relative contribution of protons and neutrons to the normalization (3). These
contributions, indicated as N(m) and N(v) in the following, are obtained from Eq. (3) by
summing over p-h pairs for protons, or, respectively, neutrons only.

Second, we defined an index to measure the degree of collectivity of a specific excited
state. In the ideal collective state all the p-h excitation pairs contribute with the same
statistical weight. In this case, all the X2 (w) — Y} (w) terms of Eq. (3) would contribute

1/N,;,. From these considerations we defined a collectivity index as
D =N"/N,p, , (4)
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where N* is the number of states with (X2, (w) — Y3, (w)) > 1/Nyp. The two extreme values
of D are 1 in the fully collective case, and 1/N,;, when the excitation is produced by a single
p-h pair.

The definition of D, Eq. (4), depends on the number of p-h excitations N, and this
latter quantity is related to the size of the configuration space. The values of the index
D must be used to compare excited states calculated within the same configuration space.
To gauge the values of D indicating a high degree of collectivity, we calculated D for the
collective low-lying 3~ states of various doubly closed shell nuclei. These values are given in
Table IIT and are our reference values.

The collectivity of a state is not only related to the value of the X and Y amplitudes,
but also to the coherence of the p-h pairs in constructing transition amplitudes. For this

reason we also calculated the transition densities

p(ET;w,r) =Y [Xpn(w) + You(w)] g (r) (5)
ph
with
jp+i ijjh Jp JJn

A % _1

2

pon(r) = (=1) Ry(r)Ri(r) - (6)

In the equation above we have indicated with R(r) the radial part of the s.p. wave functions,
with j their angular momenta, we used the symbol 3 = /27 + 1 and the traditional symbol
to indicate the Wigner 3-j coefficient.

We calculated separately the proton and neutron transition densities by limiting the sum
of Eq. (5) to proton or neutron pairs only. The transitions densities for the low-lying 3~
states of the various doubly closed shell nuclei are shown in Fig. 1. The full lines indicate the
proton densities, while the dashed lines the neutron densities. The structure of the various
densities becomes more complicated the heavier is the nucleus. Despite these differences,
in all the cases shown in the figure the in phase behavior of the two types of density is
evident. This indicates the IS character of the transition. The .S structure of these states
is confirmed by the fact that the energies eigenvalues are sensitive only to scalar terms of
the interaction, v; and v] of Eq. (1).

Finally, we characterize each state by its B(E1) value and by the ratio R between the
B(E1) value of the specific state and the total B(E1) strength. We prefer to consider this

ratio, rather than making a comparison with the Thomas-Reiche-Khun energy weighted
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sum rule, because our approach is not self-consistent, and in addition it uses a truncated
s.p. configuration space. In any case, our results satisfy the sum rule at the 5% level.

In our work, we used the following strategy. The set of s.p. wave functions, and the pa-
rameters of the effective nucleon-nucleon interaction, were chosen to reproduce some prop-
erties of the 90, 4°Ca, Zr, 32Sn and 2°®*Pb doubly magic nuclei, as we have discussed
above. Around each doubly magic nucleus we constructed a set of isotopes by increasing
or decreasing, within the chosen configuration space, the number of neutron levels forming
the ground state. Since we work with a spherical basis, the difference between the number
of neutrons of each isotope is 25 + 1, where j is the angular momentum of the level with
higher energy. We considered only isotopes which have been experimentally identified. For
each isotopic chain we used the effective interaction and s.p. basis adjusted to reproduce the
properties of the doubly magic nucleus of the chain. The number of neutrons was changed
by considering a different number of fully occupied s.p. levels.

Before presenting the results of our calculations we want to critically discuss the basic
features and the limits of our model. The first point is related to the choice of a discrete,
and restricted, configuration space. We have recently verified the large sensitivity of the
RPA results to the truncation of the configuration space [25, 27]. Only a proper treatment
of the continuum can provide numerically stable RPA results. This is a big problem in self-
consistent calculations where the effective nucleon-nucleon interaction used in the RPA is
the same one also used to build the s.p. basis by means of a Hartree-Fock calculation. In our
phenomenological approach we use s.p. bases constructed on a Woods-Saxon potential, and
effective interactions chosen to reproduce the energies of some specific excited states. The
effects of the truncation of the configuration space are effectively taken into account by the
choice of the parameters of the interaction. Therefore our effective interactions are strictly
related to the configuration space. In our calculations all the nuclei of a given isotopic chain
are described by using the same parameterization of the nucleon-nucleon interaction and the
same set of s.p. wave functions. This ensures numerical stability at the price of a rigid use
of the s.p. wavefunctions. A Hartree-Fock approach would be more flexible. In any case,
we studied the ground states of the oxygen isotopes °O, 220, 22O, 20 by using a spherical
Hartree-Fock approach [25, 28] with the Gogny D1 interaction [29], and we did not find
relevant differences in the occupied s.p. wave functions of the °O core.

The second point we would like to discuss is related to the fact that our calculations



do not consider effects beyond one-particle one-hole (1p-1h) excitations, even though in the
literature there are now quite a few calculations of the PDR excitations where these effects
are taken into account [1-3, 15-18]. The inclusion of p-h excitations beyond those considered
by the RPA produces two effects related to the real and imaginary part of the self-energy.
The real part of the self-energy changes the position of the resonance. In our approach this
effect is taken into account by using phenomenological s.p. energies and effective interactions.
The imaginary part generates a spreading of the width of the resonances obtained in RPA.
Our approach cannot simulate this effect.

Finally, we consider pairing and deformation. Our phenomenological approach cannot
simulate these effects. For this reason, besides doubly magic nuclei, we have studied only
those nuclei with fully occupied s.p. levels. In this case, we expect that the spherical
symmetry of the nucleus is almost restored, and also pairing effects should be smaller than
in nuclei with the partially occupied levels.

An accurate description of the experimental data requires the inclusion of terms which
consider the spreading of the resonance width. However, despite of its simplicity, our model
should predict the position of the resonance, its total strength, the degree of collectivity and
the relative importance of proton and neutron excitations. These are the quantities we have

considered in our work and they are presented and discussed in the next section.

III. SPECIFIC APPLICATIONS

In this section we present the results obtained by applying our model to a set of isotopic
chains built around the doubly magic nuclei O, °Ca, °Zr and '*2Sn. Before doing that,
we discuss the 2°Pb results. In this nucleus we identify the PDR, therefore the values of the
collectivity indexes, and the behavior of the proton and neutron transition densities, can be
used as references for the results obtained for the other nuclei.

In panel (a) of Fig. 2 we present the B(E1) values of the 2*Pb nucleus as a function of
the excitation energy w. The figure shows the GDR region which has its maximum at 14.67
MeV and a set of peaks at lower energy which we identify with the PDR region. We discuss
with some detail the characteristics of the states which are indicated by the arrows in panel
(a). The energy value of the first state is 6.58 MeV. For this state we found D=0.049 and

N* =10. The proton contribution to the normalization of the wavefunction is N () =0.026,



therefore the neutron contribution is N(v) =0.974. The proton and neutron transition
densities for this state are shown in panel (b) of the figure. The characteristics of the other
state are w=7.77 MeV, D=0.049, N* =10, N(7) =0.238 and N(v) =0.762, and its transition
densities are shown in panel (c) of the figure. For both states, the proton and neutron
transition densities are in phase, which is the typical behavior of the 1.5 excitation. The
behavior of these transition densities, are rather different from those of the states forming
the GDR. As typical example, we discuss here only the state at 14.67 MeV. For this state
we obtain D=0.073, and N* =15, two values indicating a slightly higher collectivity with
respect to that of the PDR. The contributions to the normalization of the wave functions
are N(m) =0.682 and N(v) =0.318. The transition densities for the GDR state are shown in
panel (d) and they have an out of phase behavior indicating the IV nature of the excitation.

Photon scattering experiments on 2°*Pb have identified, in addition to the well known
GDR peaked at 13.5 MeV [30], a small dipole resonance around 7.35 MeV which has been
interpreted as PDR [2]. In our calculations we found a large resonance above 13.5 MeV
which contributes for about the 70% of the total dipole strength, and a tiny resonance with
centroid energy at about 7.2 MeV which carries about the 5% of the total strength. The
two resonances have a similar degree of collectivity, though the resonance at smaller energy
shows an [.S structure while the other resonance has an IV structure. In the PDR, the
contribution of neutron p-h pairs is slightly larger than that of the protons, while in the
GDR the neutron and proton contributions are more equilibrated.

In the following study, we use the values of the indexes D, N(mw) and N(v) presented
above as a guide to identify the presence of a collective excitation, and we identify the
IS or IV character of the excitation by analyzing the behavior of the proton and neutron
transition densities.

We start our discussion by considering the 20, 2O, 280 nuclei, obtained from the 6O core
by filling the neutron 1ds/2, 2512 and 1ds/, s.p. levels respectively. The B(£1) distributions
for these isotopes are presented in Fig. 3. The isotopes with neutron excess show a rich
structure at excitation energies below the GDR peak. The values of the collectivity indexes
of the states indicated by the arrows in the figure are given in Table IV. In this table we also
give the ratio R between the B(F1) of the indicated state and the global B(E1) strength.

The values presented in Table IV give some indication of collectivity of the states below

the GDR. In the three heavier isotopes of the 'O, the states around 11, 12 MeV have a



relatively large degree of collectivity. For this reason we analyzed their transition densities,
and we found that they have an IV structure, as it is shown in Fig. 4. For these three
nuclei we compare the transition densities of the GDR peak with that of the state with the
largest B(F1) value. The out of phase behavior of the densities indicates that these states
are produced by the fragmentation of the GDR and they are not a new type of excitation.

The situation is rather different for the other isotopic chains we have studied. The
results for the calcium chain are presented in Figs. 5 and 6 and in Table V. In our study,
we considered the **Ca and %2Ca isotopes obtained from the “°Ca core by filling the neutron
1f7/2 and 2pg/ s.p. levels. The B(E1) distributions of these three isotopes are shown in Fig.
5. As we have already observed for the oxygen case, also in this case the presence of excess
neutrons produces E'1 strength at energies lower than those of the GDR. We have repeated
the study of these states in analogy to what we have done for lead and oxygen, and the
values of the collectivity indexes for the states indicated by the arrows are given in Table
V. The states at the peak of the GDR show a degree of collectivity comparable with that of
the 3~ state (see Table III). Proton and neutron p-h pairs contribute to the excitation with
almost equal weight. The structure of the lower energy states is different. There is a certain
degree of collectivity, but it is smaller than that of the states just described. In addition it
is evident that these states are dominated by neutron excitations. The different structure of
these two type of states is emphasized by the transition densities, which are shown in Fig.
6. The low energy states show an in phase behavior, typical of the 1.5 transition, while the
higher energy states have the typical IV out of phase behavior. All these remarks indicate
that the low energy states are not produced by the fragmentation of the GDR, as it happens
for the oxygen isotopes, but they are a new type of excitation.

When the nucleon number increases, the features related to the rising of the PDR become
more evident. We found an excellent example of this fact in the Zr chain. In Fig. 7 we show
the B(E1) distributions for the %Zr, %Zr, 1017, 19%7r and '°Zr isotopes. We constructed
this isotopic chain starting from the Zr core and filling the neutron 1gz /s, 2ds/s, 2ds/2 and
3512 s.p. levels respectively. In these calculations we used the same interaction adopted for
the Ca calculations.

With the increasing of the number of neutrons, we observe a fragmentation of the B(E1)
distributions. There is a fragmentation of the GDR and a rising of new strength at low

energy. In %°Zr the most important state is at 17.89 MeV, and is indicated by the arrow in



Fig. 7. This state carries about the 30% of the total B(E1) strength. In the "°Zr nucleus,
this state is not any more the most important one, and it is responsible only for about the
9% of the total strength. The remaining part of the GDR strength has been redistributed
between states with slightly smaller energies.

In our discussion we consider three specific states for each isotope, and we indicated
them in Fig. 7 by the arrows. The values of the collectivity indexes for these states are
presented in Table VI. We have followed the evolution of these states in all the isotopic
chain. The lower energy states have extremely small B(E1) values in the “°Zr and %Zr
isotopes, as it is shown by the values of R. Their contributions to the total strength increase
with increasing the neutron number. Both states are neutron dominated. On the contrary,
the most important state of the GDR in *°Zr has an almost equal contribution of proton
and neutron components. The proton contribution becomes smaller with the increase of the
neutron number, but still it remains remarkable. The low-lying states have an I.S behavior,
while the states of the giant resonance have an I'V behavior. As an example of the results
we have obtained, we show in Fig. 8 the transition densities for the 8.3 - 8.4 MeV states,
and those of the peak in “°Zr at 17.89 MeV. The proton and neutron transition densities of
the lower energy states clearly show an IS in phase behavior, contrary to the out of phase
behavior of the 17.89 MeV state in “°Zr indicating the IV character of the GDR.

As a last application of our model we show the results regarding a Sn isotopic chain.
These calculations are of interest since the PDR has been recently identified around 10 MeV
in tin isotopes [1]. In the case of the Sn chain, the doubly magic nucleus is the heaviest of
the chain, the ¥2Sn, which, obviously has the largest number neutrons. We obtain the other
isotopes by removing neutrons from the 2ds/s, 1hi1/2, 35172 and 2ds/, levels, to obtain the
128Qn, 168n, 11481 and '°8Sn nuclei, respectively.

The B(FE1) distributions for these isotopes are shown in Fig. 9. For all the nuclei, we
found, in addition to the GDR, also a group of states which appear at lower energies. We
give in Table VII the values of the various indexes for some characteristic states. The states
at about 7.8 MeV and 8.4 MeV have large B(E1) values also in the lighter isotopes. We
found it interesting to follow the development of the state at about 10 MeV. This state has
negligible B(E1) values in all the isotopes up to '°Sn. Its B(E1) value becomes visible in
128Sn, about the 0.2 % of the global B(E1) contribution, and it further increases in 32Sn.

With respect to the other tin isotopes, the additional neutrons of *2Sn produce a relevant
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contribution for this state, as indicated by the relatively large value of N* shown in Table
VII. We show in Fig. 10 the transition densities for these 10 MeV states in the various
isotopes, and for the sake of comparison, also that of the state at the peak of the GDR in
132Gn. The relative behavior of the proton and neutron transition densities clearly shows the
IS structure of the states below the GDR and the I'V structure of the 16.92 state in 32Sn.

The results presented above indicate that in medium heavy nuclei with neutron excess,
a new type of dipole resonance appears, with the characteristics we attribute to the PDR,
and that the presence of this resonance becomes more important with the increase of the
neutron number. We further investigated this point by considering the ratio R;,; between the
integrated B(E1) low energy strength and the total strength. We calculated the numerator
of Ry by summing all the B(E1) values located below the values indicated by the dashed
lines in Figs. 5, 7 and 9, and the total strength in the denominator by summing over the
whole energy range shown in the figures.

In Fig. 11 R;, is plotted against the number of neutrons in excess with respect to
the doubly magic core of the Ca, Zr and Sn isotopic chains. These results clearly show an
increase of the relative F'1 strength in the low energy region with increasing neutron number.

The number of Ca isotopes we have considered is too small to allow a systematic study
of the dependence of R;,; on the neutron excess, whereas for the Zr chain we observe a
monotonic growth. The behavior of the Sn isotopic chain is more complicated. A linear
growth is observed for A=108-116, then the value of R;,; for 1?®Sn is almost equal to that
for 16Sn, and it starts to grow again, but more slowly, when passing from '2*Sn to '32Sn.
This behavior resembles that observed in Ref. [9] (see also [31]), where, within a relativistic
RPA framework, a linear correlation between the ratio of the low-energy to high-energy
dipole strength and the neutron skin of the Sn isotopes was obtained for A < 120, followed
by an apparent mild anticorrelation for 120 < A < 132. The latter was attributed to the
filling of the 1511/, neutron orbital.

In the upper panel of Fig. 12 we show again the ratio R;,; for various Sn isotopes, but
now as a function of the neutron skin calculated as a difference between the neutron and
proton root mean square radii, R, — R,. The nuclei considered have, from left to right,
A =108, 114, 116, 128 and 132. In the lower panel of the figure, we relate these neutron
skins to the isotope mass number. Although we only consider isotopes with fully occupied

s.p. levels, our results confirm the findings of Ref. [9], except for the heaviest isotopes. In
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fact, we do not find any anticorrelation effect since R;,; mildly increases in going from 2*Sn

to 132Sn.

IV. DISCUSSION AND CONCLUSIONS

We have studied the electric dipole excitation spectra of several isotopes of oxygen, zirco-
nium and tin nuclei, searching for a possible appearance of the PDR. The calculations were
done for isotopes with fully occupied s.p. levels using a traditional phenomenological RPA
approach without pairing effects. In Sect. II, we have critically discussed merits and faults
of our approach which we think to be reliable in predicting position and total strength of
the resonance.

The dipole excited states have been studied by analyzing their collectivity, their isospin
character and the relevance on neutron and proton p-h excitations. We have defined an index
D, see Eq. (4), which quantifies the degree of collectivity. From the study of the proton and
neutron transition densities, Eq. (5), we have identified the .S character with the in phase
behavior of the two transition densities, while the out of phase behavior indicates the IV
character. We should mention here that we have also investigated the vorticity of the excita-
tions [32], as it has been suggested in [2], but we did not find significant differences between
the results in the PDR and GDR regions. Our work consisted in studying 1~ excitations in
isotopic chains built around doubly closed shell nuclei, to identify the possible presence of
PDR. The signals we searched for identifying the PDR are high degree of collectivity, 1.5
character and neutron dominated excitation.

We have first applied our model to oxygen isotopes where we observed an increase of
the E'1 strength at low energies. These states did not satisfy our identification criteria. We
observed a fragmentation of the GDR, rather than the rising of a new type of excitation
mode. This result disagrees with the findings of Ref. [5], where the calculations were done in
a fully self-consistent Hartree-Fock plus RPA approach with Skyrme-like interactions. The
problem is still open. In any case, we should point out that the oxygen nuclei are relatively
light and in our approach the number of p-h pairs responsible for the low-lying excitations
is so small that it is difficult to consider these excited states as collective excitation of the
nucleus (see the values of N* in Table IV).

We found positive results for all the other isotopic chains we have investigated. Our cal-
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culation for the *Ca produces strength around 8.5 MeV in agreement with the experimental
findings of Ref. [3] and with the results of Ref. [6]. Also the results in tin isotopes show low
energy strength and confirm the experimental finding of Ref. [1]. We identify this excitation
as PDR as it has been done in [8]. This result is in contrast with the findings of Ref. [15],
obtained with self-consistent calculations which consider also effects beyond the RPA; in
terms of phonon coupling. The authors of Ref. [15] indicate that few p-h excitations are
responsible for the low energy states, while our calculations give quite a relevant collectivity
for these states.

In the study of the zirconium isotopes we have found a handbook example of the role
played by the neutrons in excess. The contribution of the state at about 8.5 MeV to the
B(FE1) strength becomes relevant only in the heavier isotopes, where the neutrons in excess
strongly contribute to the excitation and make it collective.

Our calculations clearly indicate that the appearance of the PDR is a common feature of
medium- heavy-nuclei. By studying the ratio between the low energy and the total integrated
B(FE1) strength we have seen that the relevance of the PDR increases with increasing neutron

number.
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VW Ro ao Vis Rps ars Re

907r 7 55.88 5.69 0.73 7.70 5.68 0.73 6.40
v 48.12 5.69 0.73 7.70 5.68 0.73

1328n 7 58.85 6.40 0.70 8.95 6.40 0.70 6.40
v 47.50 6.10 0.70 5.50 6.10 0.70

Table I: Parameters of the Woods-Saxon potential for the °Zr and '32Sn nuclei. The values of
Vo and Vg are expressed in MeV, all the others in fm. As in the traditional nuclear structure
convention, we indicate with m and v the proton and neutron parameters, respectively. The explicit

expression of the Woods-Saxon potential is given in Ref. [24].

160 4OCa QOZI‘ 1328n 208Pb

vf 436.4 492.3 492.3 585.0 599.0
vh -310.0 -150.0 -150.0 -50.0 0.0

Table II: Values of the parameters of the density dependent terms of the interaction Eq. (1), in

MeV fm3.
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160 40Ca 1328n 208Pb

w 612 3.74 434 263
N* 5 10 27 40
D 0.192 0.135 0.095 0.119

N(x) 0.501 0.568 0.187 0.362

N(v) 0.499 0.432 0.813 0.638

Table III: Values of the collectivity indexes for the low-lying 3~ states of the doubly closed shell
nuclei we considered. The values of the excitation energies w are expressed in MeV, D is defined
in Eq. (4) and N* is the numerator of that equation. With N(m) and N(v) we have indicated

respectively the proton and neutron contribution to the normalization (3), clearly N(7) +N(v) =1.

w [MeV] N* D N(m) N(v) R

160
23.70 4 0.143 0.480 0.520 0.855
220
7.46 1 0.003 0.006 0.074 0.017

11.68 5 0.152 0.074 0.926 0.106
22.17

ot

0.152 0.459 0.541 0.229

240

6.36 2 0.057 0.020 0.980 0.095
12.01 6 0.171 0.546 0.454 0.018
20.40 9 0.257 0.530 0.490 0.273

28()

6.29 3 0.077 0.035 0.965 0.079
11.28 8 0.205 0.162 0.838 0.096
20.36 10 0.256 0.634 0.366 0.348

Table IV: Values of the collectivity indexes for the 1~ states of the various oxygen isotopes identified
by the arrows in Fig. 3. The meaning of the various indexes is the same as in Table III. We also

show the ratio R between the B(E1) of the specific state and the total B(E1) strength.
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w [MeV] N* D N(m) N(v) R

40Ca

20.69 8 0.133 0.670 0.340 0.409

480&
8.73 5 0.077 0.096 0.904 0.006
18.62 11 0.170 0.521 0.479 0.684
52Ca

8.65 3 0.045 0.020 0.980 0.063

18.21 9 0.134 0.503 0.497 0.664

Table V: Same as in Table IV for the 1~ states of the various calcium isotopes identified by the

arrows in Fig. 5.
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741 4 0.026 0.022 0.978 0.000
8.42 7 0.045 0.024 0.976 0.000
17.89 19 0.123 0.656 0.344 0.316

987,

7.53 8 0.050 0.013 0.987 0.005
8.45 7 0.043 0.019 0.981 0.000
17.89 18 0.111 0.678 0.322 0.313

10477,

752 6 0.036 0.011 0.989 0.004
8.45 11 0.066 0.025 0.975 0.016
17.79 13 0.078 0.818 0.182 0.133

10877,

7.57 6 0.035 0.011 0.989 0.005
8.35 11 0.065 0.025 0.975 0.017
17.58 10 0.059 0.251 0.749 0.093

11077,

745 7 0.041 0.004 0.996 0.012
8.29 13 0.076 0.020 0.980 0.016
17.58 10 0.058 0.250 0.750 0.092

Table VI: Same as in Table IV for the 1~ states of the various zirconium isotopes identified by the

arrows in Fig. 7.
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w [MeV] N* D N(m) N(v) R

108Gy,

7.56 7 0.048 0.132 0.868 0.014
8.67 13 0.078 0.874 0.126 0.007
9.89 11 0.066 0.058 0.942 0.000
16.53 21 0.126 0.476 0.524 0.546

114gy,

795 9 0.053 0.422 0.578 0.022
8.35 13 0.076 0.583 0.417 0.024
9.88 6 0.035 0.025 0.975 0.000
16.33 24 0.140 0.448 0.552 0.511

116Gy,

7.98 7 0.040 0.498 0.502 0.021
8.38 14 0.081 0.530 0.470 0.028
9.88 3 0.017 0.011 0.989 0.000
16.27 24 0.139 0.509 0.491 0.569

128Gy

7.88 9 0.051 0.166 0.834 0.053
8.31 11 0.062 0.805 0.195 0.005
9.99 7 0.039 0.067 0.933 0.003
17.03 17 0.096 0.425 0.575 0.450

132gy,

7.88 7 0.038 0.038 0.962 0.018
8.13 12 0.066 0.489 0.501 0.022
10.02 14 0.077 0.130 0.870 0.007
16.92 17 0.093 0.483 0.517 0.513

Table VII: Same as in Table IV for the 1~ states of the various tin isotopes identified by the arrows

in Fig. 9.
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Figure 1: Transition densities for the 3~ low-lying states of the 60, 4°Ca, 132Sn and 2°8Pb nuclei.
The full lines indicates the proton transition densities, and the dashed lines the neutron transition
densities. Here, and in the following figures, we drop dependence on w with respect to the definition

(5), since each transition density is calculated for a specific value of the excitation energy.
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Figure 2: Dipole results for the 2°Pb nucleus. In panel (a) we show, in log scale, the B(E1) values
as a function of the excitation energy. In the other panels, we show the transition densities for the
states indicated by the arrows, whose excitation energies are given in the panels. In panels (b), (c)

and (d) the meaning of the lines is the same as in Fig. 1.
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Figure 3: B(E1) distributions for the oxygen isotopes we have studied. The numbers in the panels
indicate the mass number of the isotope. The collectivity indexes of the states indicated by the

arrows are given in Table IV.
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represent proton and neutron densities, respectively.
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Figure 5: Same as in Fig. 3, but for the calcium isotopes we have studied. The collectivity indexes
of the states indicated by arrows are given in Table V. The meaning of the dashed line is explained

in Fig. 11 and in the related text.
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Figure 6: Same as in Fig.4, but for various calcium isotopes.
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indexes of the states indicated by arrows are given in Table VI.
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Figure 8: Same as in Fig. 4, but for various zirconium isotopes.
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Figure 9: Same as in Fig. 3, but for the tin isotopes we have studied. The collectivity indexes of

the states indicated by arrows are given in Table VII.
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Figure 10: Same as in Fig. 4, but for the tin isotopes we have studied.
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Figure 11: Ratios R;,¢ between the integrated B(E1) values of the PDR, and the global B(FE1)
strength against the number of neutrons in excess with respect to the doubly magic core of the Ca,
Zr and Sn isotopic chains. The B(E1) values of the PDRs have been obtained as a sum of all the

values below the dashed lines indicated in Figs. 5, 7 and 9.
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Figure 12: Top panel: ratio R;,; between the integrated B(FE1) values of the PDR, and the global
B(FE1) strength against the difference between the proton (R,) and neutron (R,,) root mean square
radii for, form left to right, A=108, 114, 116, 128 and 132 Sn isotopes. Bottom panel: difference

R, — R, as a function of the mass number A.
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