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Departamento de F́ısica Atómica, Molecular y Nuclear,

Universidad de Granada, E-18071 Granada, SPAIN

(Dated: May 6, 2009)

Abstract

The electric dipole excitation of various nuclei is calculated with a Random Phase Approxima-

tion phenomenological approach. The evolution of the strength distribution in various groups of

isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E1 strength

in the low energy region. Indexes to measure the collectivity of the excitation are defined. We stud-

ied the behavior of proton and neutron transition densities to determine the isoscalar or isovector

nature of the excitation. We observed that in medium-heavy nuclei the low-energy E1 excitation

has characteristics rather different that those exhibited by the giant dipole resonance. This new

type of excitation can be identified as pygmy dipole resonance.

PACS numbers:
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I. INTRODUCTION

There are experimental evidences that in nuclei with neutron excess, in addition to the

well known Giant Dipole Resonance (GDR), a new type of dipole resonance appears [1–3].

Since this resonance has smaller strength than that of the GDR and exhausts only a small

fraction of the energy weighted sum rule, it is called Pygmy Dipole Resonance (PDR). The

PDR appears at lower energy with respect to the GDR but it is not its low-energy tail,

since it has an isoscalar (IS) character and it is dominated by neutron excitations, while

the GDR has isovector (IV ) character with almost equal contribution of proton and neutron

excitations.

The existence of a new type of resonance in nuclei is an interesting subject by itself. In

the present case the interest is also related to the fact that the presence of the PDR may

have some relevant consequences in the stellar r-process production of exotic nuclei [4].

We have studied how the PDR emerges when neutrons become more numerous than

protons. The nuclear model adopted in our calculation is the traditional discrete Random

Phase Approximation (RPA). Non relativistic [5–7] and relativistic [8, 9] RPA approaches

have been used in the past to investigate the PDR. Studies of PDR have been also done

with more elaborated nuclear models containing pairing [10–13] and spreading widths [14–

20]. Usually these calculations have been done to make detailed investigations of the PDR

characteristics in a limited set of isotopes. Our goal here is to search for general trends of

the PDR in various nuclei belonging to different regions of the nuclear isotope table, from

oxygen to lead. For this purpose we have defined two indexes which enable us to distinguish

between PDR and GDR. We tested the validity of these investigation tools on the 208Pb

nucleus where we found a resonance with all the features we attribute to the PDR at about

7.7 MeV, against an experimental evidence around 7.35 MeV [2]. We applied our method

to isotopic chains of oxygen, calcium, zirconium and tin. We clearly identify the emergence

of the PDR in the isotopes with neutron excess.

The basic features of our model are presented in Sect. II where we also make a critical

discussion of its limits. We present our results in Sect. III and in Sect. IV we summarize

our work and draw our conclusions.
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II. THE MODEL

In our work we adopted the phenomenological RPA approach as proposed and used by

the Jülich group [21–23]. The single-particle (s.p.) basis is constructed on a Woods-Saxon

well whose parameters are fixed in order to reproduce at best the s.p. energies around the

Fermi surface and the charge distributions. We used the parameters of the Woods-Saxon

potential given in Ref. [24]. Only the parameters of the 90Zr and 132Sn nuclei are new, and

they are presented in Table I. We used the expression of the Woods-Saxon potential given

in Ref. [24]. In our RPA calculations we used experimental s.p. energies when available.

The calculations have been done in discrete s.p. basis. The s.p. Schrödinger equation

with the Woods-Saxon potential has been solved by expanding the s.p. wave functions in

a harmonic oscillator basis. This produces bound states even for positive s.p. energies.

We consider configuration spaces by 6 major oscillator shells for oxygen, of 8 shells for

calcium and 11 shells for zirconium, tin and lead nuclei. In our phenomenological model the

truncation of the s.p. configuration space is taken into account in an effective manner by

the choice of the parameters of the effective interaction.

Our RPA calculations have been done with a zero range force of Landau-Midgal type,

Veff(1, 2) =
[
v1(r12) + vρ

1(r12) ρ(r1, r2)

+ [v2(r12) + vρ
2(r12) ρ(r1, r2)] τ (1) · τ (2)

+ v3(r12) σ(1) · σ(2) + v4(r12) σ(1) · σ(2) τ (1) · τ (2)
]
δ(r12) . (1)

In the equation above we have indicated with σ and τ the usual Pauli spin and isospin

operators. The zero range character of the force implies that the vα(r12) functions of the

expression above are constants. We used the values of the constants defined in Ref. [25].

The choice of the parameters was done in two steps. First, we defined the values for the

density independent terms of the expression (1). These values were fixed once for all the

nuclei and they describe the properties of some specific magnetic excitations in 16O and

208Pb. In MeV fm3 units these values are

v1 = −918 ; v2 = 600 ; v3 = 20 ; v4 = 200 , (2)

where the sub-indexes refer to the terms in the expression (1). In the second step we chose

the parameters of the density dependent terms in order to reproduce the energies of the
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collective low-lying 3− states in 16O, 40Ca and 208Pb nuclei. This procedure selects the

values of vρ
1 . The parameters of the isospin dependent terms vρ

2 were chosen to reproduce

the peak energies of the GDR in 16O, 40Ca, 132Sn and 208Pb. For each doubly closed shell

nucleus considered, we give in Table II the values of the parameters of the density dependent

terms of the force. Note that for the 90Zr nucleus we used the set of values selected for 40Ca.

The structure of the interaction (1) is simple if compared with the complexity of modern

microscopic nucleon-nucleon interactions, as for example the Argonne V18 [26]. We tested

the reliability of our results by doing calculations also with more elaborated effective nucleon-

nucleon interactions. We used the finite range interactions of Refs. [25, 27] containing also

tensor terms. In the excitation of the 1− states, the differences between the results obtained

with the various interactions are rather small and not relevant for the purposes of the present

work. For this reason we present here only the results obtained with the interaction (1).

For a given multipolarity Jπ, our RPA calculations produce a number of solutions equal

to the number of particle-hole excitations, Nph, compatible with the angular momentum

and parity conservation rules within the given configuration space. For a single solution,

of excitation energy ω, the RPA provides the set of amplitudes Xph(ω) and Yph(ω) which

describe the wave function of the excited state in terms of particle-hole (p-h) and hole-

particle (h-p) excitations, respectively. The proper normalization of the many-body wave

function implies that, for a given excited state, the RPA amplitudes are normalized as:

Nph∑

ph=1

[
X2

ph(ω) − Y 2
ph(ω)

]
= 1 . (3)

In our search for states which can be identified as PDR, we singled out a few quantities

which summarize the main characteristics of each state. First, for a given excited state, we

calculated the relative contribution of protons and neutrons to the normalization (3). These

contributions, indicated as N(π) and N(ν) in the following, are obtained from Eq. (3) by

summing over p-h pairs for protons, or, respectively, neutrons only.

Second, we defined an index to measure the degree of collectivity of a specific excited

state. In the ideal collective state all the p-h excitation pairs contribute with the same

statistical weight. In this case, all the X2
ph(ω) − Y 2

ph(ω) terms of Eq. (3) would contribute

1/Nph. From these considerations we defined a collectivity index as

D = N∗/Nph , (4)

4



where N∗ is the number of states with (X2
ph(ω)− Y 2

ph(ω)) ≥ 1/Nph. The two extreme values

of D are 1 in the fully collective case, and 1/Nph when the excitation is produced by a single

p-h pair.

The definition of D, Eq. (4), depends on the number of p-h excitations Nph, and this

latter quantity is related to the size of the configuration space. The values of the index

D must be used to compare excited states calculated within the same configuration space.

To gauge the values of D indicating a high degree of collectivity, we calculated D for the

collective low-lying 3− states of various doubly closed shell nuclei. These values are given in

Table III and are our reference values.

The collectivity of a state is not only related to the value of the X and Y amplitudes,

but also to the coherence of the p-h pairs in constructing transition amplitudes. For this

reason we also calculated the transition densities

ρ(EJ ; ω, r) =
∑

ph

[Xph(ω) + Yph(ω)] ρJ
ph(r) , (5)

with

ρJ
ph(r) = (−1)jp+

1

2

ĵp Ĵ ĵh√
4π



 jp J jh

1

2
0 −1

2



 Rp(r)Rh(r) . (6)

In the equation above we have indicated with R(r) the radial part of the s.p. wave functions,

with j their angular momenta, we used the symbol ĵ =
√

2j + 1 and the traditional symbol

to indicate the Wigner 3-j coefficient.

We calculated separately the proton and neutron transition densities by limiting the sum

of Eq. (5) to proton or neutron pairs only. The transitions densities for the low-lying 3−

states of the various doubly closed shell nuclei are shown in Fig. 1. The full lines indicate the

proton densities, while the dashed lines the neutron densities. The structure of the various

densities becomes more complicated the heavier is the nucleus. Despite these differences,

in all the cases shown in the figure the in phase behavior of the two types of density is

evident. This indicates the IS character of the transition. The IS structure of these states

is confirmed by the fact that the energies eigenvalues are sensitive only to scalar terms of

the interaction, v1 and vρ
1 of Eq. (1).

Finally, we characterize each state by its B(E1) value and by the ratio R between the

B(E1) value of the specific state and the total B(E1) strength. We prefer to consider this

ratio, rather than making a comparison with the Thomas-Reiche-Khun energy weighted
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sum rule, because our approach is not self-consistent, and in addition it uses a truncated

s.p. configuration space. In any case, our results satisfy the sum rule at the 5% level.

In our work, we used the following strategy. The set of s.p. wave functions, and the pa-

rameters of the effective nucleon-nucleon interaction, were chosen to reproduce some prop-

erties of the 16O, 40Ca, 90Zr, 132Sn and 208Pb doubly magic nuclei, as we have discussed

above. Around each doubly magic nucleus we constructed a set of isotopes by increasing

or decreasing, within the chosen configuration space, the number of neutron levels forming

the ground state. Since we work with a spherical basis, the difference between the number

of neutrons of each isotope is 2j + 1, where j is the angular momentum of the level with

higher energy. We considered only isotopes which have been experimentally identified. For

each isotopic chain we used the effective interaction and s.p. basis adjusted to reproduce the

properties of the doubly magic nucleus of the chain. The number of neutrons was changed

by considering a different number of fully occupied s.p. levels.

Before presenting the results of our calculations we want to critically discuss the basic

features and the limits of our model. The first point is related to the choice of a discrete,

and restricted, configuration space. We have recently verified the large sensitivity of the

RPA results to the truncation of the configuration space [25, 27]. Only a proper treatment

of the continuum can provide numerically stable RPA results. This is a big problem in self-

consistent calculations where the effective nucleon-nucleon interaction used in the RPA is

the same one also used to build the s.p. basis by means of a Hartree-Fock calculation. In our

phenomenological approach we use s.p. bases constructed on a Woods-Saxon potential, and

effective interactions chosen to reproduce the energies of some specific excited states. The

effects of the truncation of the configuration space are effectively taken into account by the

choice of the parameters of the interaction. Therefore our effective interactions are strictly

related to the configuration space. In our calculations all the nuclei of a given isotopic chain

are described by using the same parameterization of the nucleon-nucleon interaction and the

same set of s.p. wave functions. This ensures numerical stability at the price of a rigid use

of the s.p. wavefunctions. A Hartree-Fock approach would be more flexible. In any case,

we studied the ground states of the oxygen isotopes 16O, 22O, 24O, 28O by using a spherical

Hartree-Fock approach [25, 28] with the Gogny D1 interaction [29], and we did not find

relevant differences in the occupied s.p. wave functions of the 16O core.

The second point we would like to discuss is related to the fact that our calculations
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do not consider effects beyond one-particle one-hole (1p-1h) excitations, even though in the

literature there are now quite a few calculations of the PDR excitations where these effects

are taken into account [1–3, 15–18]. The inclusion of p-h excitations beyond those considered

by the RPA produces two effects related to the real and imaginary part of the self-energy.

The real part of the self-energy changes the position of the resonance. In our approach this

effect is taken into account by using phenomenological s.p. energies and effective interactions.

The imaginary part generates a spreading of the width of the resonances obtained in RPA.

Our approach cannot simulate this effect.

Finally, we consider pairing and deformation. Our phenomenological approach cannot

simulate these effects. For this reason, besides doubly magic nuclei, we have studied only

those nuclei with fully occupied s.p. levels. In this case, we expect that the spherical

symmetry of the nucleus is almost restored, and also pairing effects should be smaller than

in nuclei with the partially occupied levels.

An accurate description of the experimental data requires the inclusion of terms which

consider the spreading of the resonance width. However, despite of its simplicity, our model

should predict the position of the resonance, its total strength, the degree of collectivity and

the relative importance of proton and neutron excitations. These are the quantities we have

considered in our work and they are presented and discussed in the next section.

III. SPECIFIC APPLICATIONS

In this section we present the results obtained by applying our model to a set of isotopic

chains built around the doubly magic nuclei 16O, 40Ca, 90Zr and 132Sn. Before doing that,

we discuss the 208Pb results. In this nucleus we identify the PDR, therefore the values of the

collectivity indexes, and the behavior of the proton and neutron transition densities, can be

used as references for the results obtained for the other nuclei.

In panel (a) of Fig. 2 we present the B(E1) values of the 208Pb nucleus as a function of

the excitation energy ω. The figure shows the GDR region which has its maximum at 14.67

MeV and a set of peaks at lower energy which we identify with the PDR region. We discuss

with some detail the characteristics of the states which are indicated by the arrows in panel

(a). The energy value of the first state is 6.58 MeV. For this state we found D=0.049 and

N∗ =10. The proton contribution to the normalization of the wavefunction is N(π) =0.026,
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therefore the neutron contribution is N(ν) =0.974. The proton and neutron transition

densities for this state are shown in panel (b) of the figure. The characteristics of the other

state are ω=7.77 MeV, D=0.049, N∗ =10, N(π) =0.238 and N(ν) =0.762, and its transition

densities are shown in panel (c) of the figure. For both states, the proton and neutron

transition densities are in phase, which is the typical behavior of the IS excitation. The

behavior of these transition densities, are rather different from those of the states forming

the GDR. As typical example, we discuss here only the state at 14.67 MeV. For this state

we obtain D=0.073, and N∗ =15, two values indicating a slightly higher collectivity with

respect to that of the PDR. The contributions to the normalization of the wave functions

are N(π) =0.682 and N(ν) =0.318. The transition densities for the GDR state are shown in

panel (d) and they have an out of phase behavior indicating the IV nature of the excitation.

Photon scattering experiments on 208Pb have identified, in addition to the well known

GDR peaked at 13.5 MeV [30], a small dipole resonance around 7.35 MeV which has been

interpreted as PDR [2]. In our calculations we found a large resonance above 13.5 MeV

which contributes for about the 70% of the total dipole strength, and a tiny resonance with

centroid energy at about 7.2 MeV which carries about the 5% of the total strength. The

two resonances have a similar degree of collectivity, though the resonance at smaller energy

shows an IS structure while the other resonance has an IV structure. In the PDR, the

contribution of neutron p-h pairs is slightly larger than that of the protons, while in the

GDR the neutron and proton contributions are more equilibrated.

In the following study, we use the values of the indexes D, N(π) and N(ν) presented

above as a guide to identify the presence of a collective excitation, and we identify the

IS or IV character of the excitation by analyzing the behavior of the proton and neutron

transition densities.

We start our discussion by considering the 22O, 24O, 28O nuclei, obtained from the 16O core

by filling the neutron 1d5/2, 2s1/2 and 1d3/2 s.p. levels respectively. The B(E1) distributions

for these isotopes are presented in Fig. 3. The isotopes with neutron excess show a rich

structure at excitation energies below the GDR peak. The values of the collectivity indexes

of the states indicated by the arrows in the figure are given in Table IV. In this table we also

give the ratio R between the B(E1) of the indicated state and the global B(E1) strength.

The values presented in Table IV give some indication of collectivity of the states below

the GDR. In the three heavier isotopes of the 16O, the states around 11, 12 MeV have a

8



relatively large degree of collectivity. For this reason we analyzed their transition densities,

and we found that they have an IV structure, as it is shown in Fig. 4. For these three

nuclei we compare the transition densities of the GDR peak with that of the state with the

largest B(E1) value. The out of phase behavior of the densities indicates that these states

are produced by the fragmentation of the GDR and they are not a new type of excitation.

The situation is rather different for the other isotopic chains we have studied. The

results for the calcium chain are presented in Figs. 5 and 6 and in Table V. In our study,

we considered the 48Ca and 52Ca isotopes obtained from the 40Ca core by filling the neutron

1f7/2 and 2p3/2 s.p. levels. The B(E1) distributions of these three isotopes are shown in Fig.

5. As we have already observed for the oxygen case, also in this case the presence of excess

neutrons produces E1 strength at energies lower than those of the GDR. We have repeated

the study of these states in analogy to what we have done for lead and oxygen, and the

values of the collectivity indexes for the states indicated by the arrows are given in Table

V. The states at the peak of the GDR show a degree of collectivity comparable with that of

the 3− state (see Table III). Proton and neutron p-h pairs contribute to the excitation with

almost equal weight. The structure of the lower energy states is different. There is a certain

degree of collectivity, but it is smaller than that of the states just described. In addition it

is evident that these states are dominated by neutron excitations. The different structure of

these two type of states is emphasized by the transition densities, which are shown in Fig.

6. The low energy states show an in phase behavior, typical of the IS transition, while the

higher energy states have the typical IV out of phase behavior. All these remarks indicate

that the low energy states are not produced by the fragmentation of the GDR, as it happens

for the oxygen isotopes, but they are a new type of excitation.

When the nucleon number increases, the features related to the rising of the PDR become

more evident. We found an excellent example of this fact in the Zr chain. In Fig. 7 we show

the B(E1) distributions for the 90Zr, 98Zr, 104Zr, 108Zr, and 110Zr isotopes. We constructed

this isotopic chain starting from the 90Zr core and filling the neutron 1g7/2, 2d5/2, 2d3/2 and

3s1/2 s.p. levels respectively. In these calculations we used the same interaction adopted for

the Ca calculations.

With the increasing of the number of neutrons, we observe a fragmentation of the B(E1)

distributions. There is a fragmentation of the GDR and a rising of new strength at low

energy. In 90Zr the most important state is at 17.89 MeV, and is indicated by the arrow in
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Fig. 7. This state carries about the 30% of the total B(E1) strength. In the 110Zr nucleus,

this state is not any more the most important one, and it is responsible only for about the

9% of the total strength. The remaining part of the GDR strength has been redistributed

between states with slightly smaller energies.

In our discussion we consider three specific states for each isotope, and we indicated

them in Fig. 7 by the arrows. The values of the collectivity indexes for these states are

presented in Table VI. We have followed the evolution of these states in all the isotopic

chain. The lower energy states have extremely small B(E1) values in the 90Zr and 98Zr

isotopes, as it is shown by the values of R. Their contributions to the total strength increase

with increasing the neutron number. Both states are neutron dominated. On the contrary,

the most important state of the GDR in 90Zr has an almost equal contribution of proton

and neutron components. The proton contribution becomes smaller with the increase of the

neutron number, but still it remains remarkable. The low-lying states have an IS behavior,

while the states of the giant resonance have an IV behavior. As an example of the results

we have obtained, we show in Fig. 8 the transition densities for the 8.3 - 8.4 MeV states,

and those of the peak in 90Zr at 17.89 MeV. The proton and neutron transition densities of

the lower energy states clearly show an IS in phase behavior, contrary to the out of phase

behavior of the 17.89 MeV state in 90Zr indicating the IV character of the GDR.

As a last application of our model we show the results regarding a Sn isotopic chain.

These calculations are of interest since the PDR has been recently identified around 10 MeV

in tin isotopes [1]. In the case of the Sn chain, the doubly magic nucleus is the heaviest of

the chain, the 132Sn, which, obviously has the largest number neutrons. We obtain the other

isotopes by removing neutrons from the 2d3/2, 1h11/2, 3s1/2 and 2d5/2 levels, to obtain the

128Sn, 116Sn, 114Sn and 108Sn nuclei, respectively.

The B(E1) distributions for these isotopes are shown in Fig. 9. For all the nuclei, we

found, in addition to the GDR, also a group of states which appear at lower energies. We

give in Table VII the values of the various indexes for some characteristic states. The states

at about 7.8 MeV and 8.4 MeV have large B(E1) values also in the lighter isotopes. We

found it interesting to follow the development of the state at about 10 MeV. This state has

negligible B(E1) values in all the isotopes up to 116Sn. Its B(E1) value becomes visible in

128Sn, about the 0.2 % of the global B(E1) contribution, and it further increases in 132Sn.

With respect to the other tin isotopes, the additional neutrons of 132Sn produce a relevant
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contribution for this state, as indicated by the relatively large value of N∗ shown in Table

VII. We show in Fig. 10 the transition densities for these 10 MeV states in the various

isotopes, and for the sake of comparison, also that of the state at the peak of the GDR in

132Sn. The relative behavior of the proton and neutron transition densities clearly shows the

IS structure of the states below the GDR and the IV structure of the 16.92 state in 132Sn.

The results presented above indicate that in medium heavy nuclei with neutron excess,

a new type of dipole resonance appears, with the characteristics we attribute to the PDR,

and that the presence of this resonance becomes more important with the increase of the

neutron number. We further investigated this point by considering the ratio Rint between the

integrated B(E1) low energy strength and the total strength. We calculated the numerator

of Rint by summing all the B(E1) values located below the values indicated by the dashed

lines in Figs. 5, 7 and 9, and the total strength in the denominator by summing over the

whole energy range shown in the figures.

In Fig. 11 Rint is plotted against the number of neutrons in excess with respect to

the doubly magic core of the Ca, Zr and Sn isotopic chains. These results clearly show an

increase of the relative E1 strength in the low energy region with increasing neutron number.

The number of Ca isotopes we have considered is too small to allow a systematic study

of the dependence of Rint on the neutron excess, whereas for the Zr chain we observe a

monotonic growth. The behavior of the Sn isotopic chain is more complicated. A linear

growth is observed for A=108-116, then the value of Rint for 128Sn is almost equal to that

for 116Sn, and it starts to grow again, but more slowly, when passing from 128Sn to 132Sn.

This behavior resembles that observed in Ref. [9] (see also [31]), where, within a relativistic

RPA framework, a linear correlation between the ratio of the low-energy to high-energy

dipole strength and the neutron skin of the Sn isotopes was obtained for A ≤ 120, followed

by an apparent mild anticorrelation for 120 ≤ A ≤ 132. The latter was attributed to the

filling of the 1h11/2 neutron orbital.

In the upper panel of Fig. 12 we show again the ratio Rint for various Sn isotopes, but

now as a function of the neutron skin calculated as a difference between the neutron and

proton root mean square radii, Rn − Rp. The nuclei considered have, from left to right,

A = 108, 114, 116, 128 and 132. In the lower panel of the figure, we relate these neutron

skins to the isotope mass number. Although we only consider isotopes with fully occupied

s.p. levels, our results confirm the findings of Ref. [9], except for the heaviest isotopes. In
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fact, we do not find any anticorrelation effect since Rint mildly increases in going from 128Sn

to 132Sn.

IV. DISCUSSION AND CONCLUSIONS

We have studied the electric dipole excitation spectra of several isotopes of oxygen, zirco-

nium and tin nuclei, searching for a possible appearance of the PDR. The calculations were

done for isotopes with fully occupied s.p. levels using a traditional phenomenological RPA

approach without pairing effects. In Sect. II, we have critically discussed merits and faults

of our approach which we think to be reliable in predicting position and total strength of

the resonance.

The dipole excited states have been studied by analyzing their collectivity, their isospin

character and the relevance on neutron and proton p-h excitations. We have defined an index

D, see Eq. (4), which quantifies the degree of collectivity. From the study of the proton and

neutron transition densities, Eq. (5), we have identified the IS character with the in phase

behavior of the two transition densities, while the out of phase behavior indicates the IV

character. We should mention here that we have also investigated the vorticity of the excita-

tions [32], as it has been suggested in [2], but we did not find significant differences between

the results in the PDR and GDR regions. Our work consisted in studying 1− excitations in

isotopic chains built around doubly closed shell nuclei, to identify the possible presence of

PDR. The signals we searched for identifying the PDR are high degree of collectivity, IS

character and neutron dominated excitation.

We have first applied our model to oxygen isotopes where we observed an increase of

the E1 strength at low energies. These states did not satisfy our identification criteria. We

observed a fragmentation of the GDR, rather than the rising of a new type of excitation

mode. This result disagrees with the findings of Ref. [5], where the calculations were done in

a fully self-consistent Hartree-Fock plus RPA approach with Skyrme-like interactions. The

problem is still open. In any case, we should point out that the oxygen nuclei are relatively

light and in our approach the number of p-h pairs responsible for the low-lying excitations

is so small that it is difficult to consider these excited states as collective excitation of the

nucleus (see the values of N∗ in Table IV).

We found positive results for all the other isotopic chains we have investigated. Our cal-
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culation for the 48Ca produces strength around 8.5 MeV in agreement with the experimental

findings of Ref. [3] and with the results of Ref. [6]. Also the results in tin isotopes show low

energy strength and confirm the experimental finding of Ref. [1]. We identify this excitation

as PDR as it has been done in [8]. This result is in contrast with the findings of Ref. [15],

obtained with self-consistent calculations which consider also effects beyond the RPA, in

terms of phonon coupling. The authors of Ref. [15] indicate that few p-h excitations are

responsible for the low energy states, while our calculations give quite a relevant collectivity

for these states.

In the study of the zirconium isotopes we have found a handbook example of the role

played by the neutrons in excess. The contribution of the state at about 8.5 MeV to the

B(E1) strength becomes relevant only in the heavier isotopes, where the neutrons in excess

strongly contribute to the excitation and make it collective.

Our calculations clearly indicate that the appearance of the PDR is a common feature of

medium- heavy-nuclei. By studying the ratio between the low energy and the total integrated

B(E1) strength we have seen that the relevance of the PDR increases with increasing neutron

number.
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V0 R0 a0 VLS RLS aLS Rc

90Zr π 55.88 5.69 0.73 7.70 5.68 0.73 6.40

ν 48.12 5.69 0.73 7.70 5.68 0.73

132Sn π 58.85 6.40 0.70 8.95 6.40 0.70 6.40

ν 47.50 6.10 0.70 5.50 6.10 0.70

Table I: Parameters of the Woods-Saxon potential for the 90Zr and 132Sn nuclei. The values of

V0 and VLS are expressed in MeV, all the others in fm. As in the traditional nuclear structure

convention, we indicate with π and ν the proton and neutron parameters, respectively. The explicit

expression of the Woods-Saxon potential is given in Ref. [24].

16O 40Ca 90Zr 132Sn 208Pb

v
ρ
1 436.4 492.3 492.3 585.0 599.0

v
ρ
2 -310.0 -150.0 -150.0 -50.0 0.0

Table II: Values of the parameters of the density dependent terms of the interaction Eq. (1), in

MeV fm3.
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16O 40Ca 132Sn 208Pb

ω 6.12 3.74 4.34 2.63

N
∗ 5 10 27 40

D 0.192 0.135 0.095 0.119

N(π) 0.501 0.568 0.187 0.362

N(ν) 0.499 0.432 0.813 0.638

Table III: Values of the collectivity indexes for the low-lying 3− states of the doubly closed shell

nuclei we considered. The values of the excitation energies ω are expressed in MeV, D is defined

in Eq. (4) and N
∗ is the numerator of that equation. With N(π) and N(ν) we have indicated

respectively the proton and neutron contribution to the normalization (3), clearly N(π) +N(ν) =1.

ω [MeV] N
∗ D N(π) N(ν) R

16O

23.70 4 0.143 0.480 0.520 0.855

22O

7.46 1 0.003 0.006 0.074 0.017

11.68 5 0.152 0.074 0.926 0.106

22.17 5 0.152 0.459 0.541 0.229

24O

6.36 2 0.057 0.020 0.980 0.095

12.01 6 0.171 0.546 0.454 0.018

20.40 9 0.257 0.530 0.490 0.273

28O

6.29 3 0.077 0.035 0.965 0.079

11.28 8 0.205 0.162 0.838 0.096

20.36 10 0.256 0.634 0.366 0.348

Table IV: Values of the collectivity indexes for the 1− states of the various oxygen isotopes identified

by the arrows in Fig. 3. The meaning of the various indexes is the same as in Table III. We also

show the ratio R between the B(E1) of the specific state and the total B(E1) strength.
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ω [MeV] N
∗ D N(π) N(ν) R

40Ca

20.69 8 0.133 0.670 0.340 0.409

48Ca

8.73 5 0.077 0.096 0.904 0.006

18.62 11 0.170 0.521 0.479 0.684

52Ca

8.65 3 0.045 0.020 0.980 0.063

18.21 9 0.134 0.503 0.497 0.664

Table V: Same as in Table IV for the 1− states of the various calcium isotopes identified by the

arrows in Fig. 5.

18



ω [MeV] N
∗ D N(π) N(ν) R

90Zr

7.41 4 0.026 0.022 0.978 0.000

8.42 7 0.045 0.024 0.976 0.000

17.89 19 0.123 0.656 0.344 0.316

98Zr

7.53 8 0.050 0.013 0.987 0.005

8.45 7 0.043 0.019 0.981 0.000

17.89 18 0.111 0.678 0.322 0.313

104Zr

7.52 6 0.036 0.011 0.989 0.004

8.45 11 0.066 0.025 0.975 0.016

17.79 13 0.078 0.818 0.182 0.133

108Zr

7.57 6 0.035 0.011 0.989 0.005

8.35 11 0.065 0.025 0.975 0.017

17.58 10 0.059 0.251 0.749 0.093

110Zr

7.45 7 0.041 0.004 0.996 0.012

8.29 13 0.076 0.020 0.980 0.016

17.58 10 0.058 0.250 0.750 0.092

Table VI: Same as in Table IV for the 1− states of the various zirconium isotopes identified by the

arrows in Fig. 7.
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ω [MeV] N
∗ D N(π) N(ν) R

108Sn

7.56 7 0.048 0.132 0.868 0.014

8.67 13 0.078 0.874 0.126 0.007

9.89 11 0.066 0.058 0.942 0.000

16.53 21 0.126 0.476 0.524 0.546

114Sn

7.95 9 0.053 0.422 0.578 0.022

8.35 13 0.076 0.583 0.417 0.024

9.88 6 0.035 0.025 0.975 0.000

16.33 24 0.140 0.448 0.552 0.511

116Sn

7.98 7 0.040 0.498 0.502 0.021

8.38 14 0.081 0.530 0.470 0.028

9.88 3 0.017 0.011 0.989 0.000

16.27 24 0.139 0.509 0.491 0.569

128Sn

7.88 9 0.051 0.166 0.834 0.053

8.31 11 0.062 0.805 0.195 0.005

9.99 7 0.039 0.067 0.933 0.003

17.03 17 0.096 0.425 0.575 0.450

132Sn

7.88 7 0.038 0.038 0.962 0.018

8.13 12 0.066 0.489 0.501 0.022

10.02 14 0.077 0.130 0.870 0.007

16.92 17 0.093 0.483 0.517 0.513

Table VII: Same as in Table IV for the 1− states of the various tin isotopes identified by the arrows

in Fig. 9.
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Figure 1: Transition densities for the 3− low-lying states of the 16O, 40Ca, 132Sn and 208Pb nuclei.

The full lines indicates the proton transition densities, and the dashed lines the neutron transition

densities. Here, and in the following figures, we drop dependence on ω with respect to the definition

(5), since each transition density is calculated for a specific value of the excitation energy.

21



0 10 20 30
10-2

10-1

100

101

102

0 2 4 6 8 10
-10

-5

0

5

10

0 2 4 6 8 10
-5.0

-2.5

0.0

2.5

5.0

0 2 4 6 8 10
-5.0

-2.5

0.0

2.5

5.0

ω [MeV] r [fm]

r [fm] r [fm]

B
(E

1)
[e

2
fm

2
]

ρ
(E

1,
r)

[1
0−

3
fm

1/
3
] ρ

(E
1,r)

[10
−

3
fm

1/3]
ρ
(E

1,r)
[10

−
3

fm
1/3]

208Pb(a)

1−
7.77 MeV

(c)

14.67 MeV

(d)

6.58 MeV

(b)

Figure 2: Dipole results for the 208Pb nucleus. In panel (a) we show, in log scale, the B(E1) values

as a function of the excitation energy. In the other panels, we show the transition densities for the

states indicated by the arrows, whose excitation energies are given in the panels. In panels (b), (c)

and (d) the meaning of the lines is the same as in Fig. 1.

22



0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

ω [MeV] ω [MeV]

B
(E

1)
[e

2
fm

2
]

B
(E

1)
[e

2
fm

2
]

16O

22O

24O

28O

Figure 3: B(E1) distributions for the oxygen isotopes we have studied. The numbers in the panels

indicate the mass number of the isotope. The collectivity indexes of the states indicated by the

arrows are given in Table IV.

23



0 2 4 6
-40

-20

0

20

40

0 2 4 6
-40

-20

0

20

40

0 2 4 6
-40

-20

0

20

40

0 2 4 6
-40

-20

0

20

40

0 2 4 6
-40

-20

0

20

40

0 2 4 6
-40

-20

0

20

40

r [fm] r [fm]

ρ
(E

1,
r)

[1
0−

3
fm

1/
3
]

22O

24O

28O

22O

24O

28O

11.68 MeV 22.17 MeV

12.01 MeV 20.40 MeV

11.28 MeV 20.36 MeV

Figure 4: Transition densities, multiplied by a factor 1000, of some 1− states for various oxygen

isotopes. The numbers in the panels indicate the excitation energy in MeV. Full and dashes lines

represent proton and neutron densities, respectively.

24



0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101
B

(E
1)

[e
2

fm
2
]

ω [MeV]ω [MeV]ω [MeV]

40Ca 48Ca 52Ca

Figure 5: Same as in Fig. 3, but for the calcium isotopes we have studied. The collectivity indexes

of the states indicated by arrows are given in Table V. The meaning of the dashed line is explained

in Fig. 11 and in the related text.

0 2 4 6 8
-40

-20

0

20

40

0 2 4 6 8
-10

-5

0

5

10

0 2 4 6 8
-20

-10

0

10

20

0 2 4 6 8
-20

-10

0

10

20

r [fm] r [fm]

ρ
(E

1,
r)

[1
0−

3
fm

1/
3
]

ρ
(E

1,
r)

[1
0−

3
fm

1/
3
]

48Ca

8.73 MeV

52Ca

8.65 MeV

48Ca

18.62 MeV

52Ca

18.21 MeV

Figure 6: Same as in Fig.4, but for various calcium isotopes.

25



0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

ω [MeV]

ω [MeV]

B
(E

1)
[e

2
fm

2
]

90Zr

98Zr

104Zr

108Zr

110Zr

Figure 7: Same as in Fig. 3, but for the zirconium isotopes we have studied. The collectivity

indexes of the states indicated by arrows are given in Table VI.

26



0 2 4 6 8
-20

-10

0

10

20

0 2 4 6 8
-20

-10

0

10

20

0 2 4 6 8
-10

-5

0

5

10

0 2 4 6 8
-20

-10

0

10

20

0 2 4 6 8
-10

-5

0

5

10

0 2 4 6 8
-10

-5

0

5

10

r [fm] r [fm]

ρ
(E

1,
r)

[1
0−

3
fm

1/
3
]

90Zr

98Zr

104Zr

108Zr

110Zr

90Zr

8.42 MeV 8.35 MeV

8.45 MeV 8.29 MeV

8.45 MeV 17.89 MeV

Figure 8: Same as in Fig. 4, but for various zirconium isotopes.

27



0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

0 10 20 30 40
10-3

10-2

10-1

100

101

ω [MeV]

ω [MeV]

B
(E

1)
[e

2
fm

2
]

108Sn

114Sn

116Sn

128Sn

132Sn

Figure 9: Same as in Fig. 3, but for the tin isotopes we have studied. The collectivity indexes of

the states indicated by arrows are given in Table VII.
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