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Abstract

We discuss the need of including tensor terms in the effective Gogny interaction used in mean—
field calculations. We show in one illustrative case that, with the usual tensor term that is employed
in the Skyrme interaction (and that allows us to separate the like-nucleon and the neutron—proton
tensor contributions), we can describe the evolution of the N = 28 neutron gap in calcium isotopes.
We propose to include a tensor and a tensor—isospin term in finite-range interactions of Gogny
type. The parameters of the two tensor terms allow us to treat separately the like—nucleon and
the neutron—proton contributions. Two parameterizations of the tensor terms have been chosen to
reproduce different neutron single-particle properties in the *Ca nucleus and the energy of the first
0~ state in the '°O nucleus. By employing these two parameterizations we analyze the evolution
of the N = 14, 28, and 90 neutron energy gaps in oxygen, calcium and tin isotopes, respectively.
We show that the combination of the parameters governing the like-nucleon contribution is crucial
to correctly reproduce the experimental (where available) or shell-model trends for the evolution

of the three neutron gaps under study.
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I. INTRODUCTION

The presence of an electric quadrupole moment in the ground state of the deuteron H, ]

can be explained by including static tensor terms in the microscopic nucleon—nucleon force

as first suggested by Rarita et al. |. This procedure is today commonly adopted by
all the modern microscopic nucleon—nucleon interactions |. In a description of the
nucleon—nucleon interaction based on a meson—exchange picture [6], the strongest of the

tensor components, the tensor—isospin term, is dominated by the exchange of a single pion.
Since the pion is the lightest meson, this means that the interaction range of the tensor—
isospin term is the longest one inside the nucleon—nucleon interaction.

For many years, tensor terms have not been considered in effective interactions used in
mean—field theories such as Hartree-Fock (HF) and random-phase approximation (RPA),
commonly used to describe medium and heavy nuclei. An exception to this is represented by
the semirealistic M3Y-P interactions H, ] These interactions are based on the effective
M3Y-Paris interaction ] which has been constructed to describe inelastic nucleon-nucleus
processes. The new M3Y-P interactions are obtained by including a density—dependent
zero-range term and by modifying some of the force parameters. The tensor and tensor—
isospin terms of the M3Y—P3 and of the M3Y—-P5 interactions are the same as those used
in the original M3Y-Paris interaction.

In almost all the existing parameterizations of the most used effective interaction in HF
and RPA self-consistent calculations, the Skyrme interaction, the tensor term is neglected,
even though a zero-range tensor term was proposed in the original formulation of the force
, ] In the last years, tensor terms have been included either on top of existing Skyrme
parametrizations like the SIII [16] and the SLyb BE] forces (see Refs. |20, |j]) or by
inserting them in the global fit procedure producing new parametrizations of Skyrme inter-
actions g |. In the following we shall indicate as SLy5t the parametrization introduced
in Ref. ] where tensor terms have been added on top of the SLyb interaction.

Finite-range effective Gogny-like interactions are less used in HF and RPA calculations
than the Skyrme ones. As far as the tensor terms are concerned, we find in the literature
only few works where they have been introduced in this type of forces. A first effort in
this direction was done by Onishi and Negele @] who added a tensor term to an effective

force of finite range which was taken of Gaussian form. After the introduction of the Gogny



force in 1980 @], some further attempts of including a finite-range tensor term have been
done. Otsuka et al. [27] proposed the GT2 force obtained by adding to the standard central

channels of the original Gogny force |26] a finite-range tensor—isospin term of Gaussian form,

and by refitting all the parameters. An alternative procedure was proposed in Ref. g
where the D1ST and the DIMT forces were constructed by adding on top of the D1S ]
and D1M [30] parameterizations a finite-range tensor—isospin term chosen to reproduce the
energy of the first 0~ state in '°0 in self-consistent HF plus RPA calculations.

The inclusion of tensor terms in effective interactions allows us to have the same operator
structure of the microscopic nucleon—nucleon interactions, and, moreover, it is necessary to
describe observables related to both single particle (s.p.) , @, @] and collective properties
of medium and heavy nuclei |28, Jﬁ?

The s.p. proton (neutron) energy gaps at Z (N) = 8, 20, and 28 have been investigated
in Refs. E;j @ | by using both non-relativistic and relativistic HF techniques. These studies
showed that nuclear systems corresponding to Z or N = 8 and 20 are particularly suitable
to study the neutron—proton tensor component of the effective interaction.

On the other hand, the s.p. proton (neutron) energy gaps along isotonic (isotopic) chains
may be sensitive to the like-nucleon component of the tensor interaction. Experimental
observations indicate that the N = 14 neutron gap in oxygen isotopes increases when going
from %0 to 220. A similar behavior is found in calcium isotopes for the N = 28 neutron
s.p energy gap which increases from “°Ca to %Ca. The shell-model calculations of Ref. [39]
describe this behavior and predict an analogous increase of the N = 90 neutron gap from
13281 to %Sn. In that work, the previous effect has been attributed to the three-body
terms of the interaction. Here we show that, in the framework of mean—field HF theory, the
evolution of these three neutron gaps strongly depends on the presence of the like—nucleon
component of the tensor term.

For the Skyrme interaction, several works exist in the literature where both the neutron—
proton and the like—nucleon tensor contributions have been analyzed. An extensive study
of the effects generated by these two contributions has been carried out in Ref. ] In
the Gogny case, a detailed analysis where the two components are studied separately is
still missing. As already mentioned, in some recent works a finite-range tensor term has

been introduced only in the isospin dependent channel with a single parameter to be chosen

_ l As it will be discussed in the next section, this implies that the neutron—proton and



the like—nucleon contributions are proportional and have the same sign, that is, they are
both attractive or repulsive. Considering that realistic and semirealistic nucleon—nucleon
forces include both types of tensor terms (pure tensor and tensor isospin), we propose here
to take into account both terms also for the effective Gogny interaction. This implies the
introduction of a second parameter which allows us to separately tune the neutron—proton
and the like-nucleon tensor contributions of the effective interaction.

The work is organized as follows. In Sec. [[Il we present the physics case of the N = 28
neutron gap in calcium isotopes. We describe the experimental energies by using the Gogny
D1ST and the Skyrme SLy5 T interactions, and we show the need of including both tensor and
tensor—isospin terms in the Gogny interaction. In Sec. [TIl we discuss the implementation of
the two finite-range tensor terms in the Gogny interaction, and we propose two possibilities
for the choice of the parameters. In Sec. [[V] we apply these two parameterizations of the
tensor terms in the Gogny interaction to describe the evolution of the neutron gaps in oxygen,
calcium and tin isotopes. We compare our results with experimental data (where available)
and with the results of the HF calculations carried on with the Skyrme interaction. Finally,
we draw in Sec. [V] our conclusions and we discuss the perspectives of future applications of

the Gogny plus tensor interaction.

II. NEUTRON N =28 ENERGY GAP IN CALCIUM ISOTOPES

It has been experimentally established that the N = 28 neutron energy gap, that is, the
difference between the s.p. energies of the 2ps/» and 1f7/, neutron levels, increases when
going from “°Ca to *®Ca. The experimental situation is summarized in Fig. 7 of Ref. [40]
and indicates a change from a value of about 2.2 MeV in *°Ca to 4.8 MeV in **Ca.

We have calculated the evolution of this energy gap in the HF framework by using Skyrme
and Gogny interactions. Our results are presented in Fig. [[I In the panel (b) we show
with solid and dotted lines, respectively, the results obtained with the Skyrme SLy5 and
SLyb r interactions. The values of the energy gaps we have obtained are, in general, larger
than the experimental ones. Despite this deficiency, we observe that the interaction without
tensor terms, the SLy5, does not describe the trend of the energy gap, which is slightly
decreasing in this calculation. On the other hand, the result obtained with the SLy5 r force,

which includes tensor terms, shows an increasing behavior of the energy gap.



The behavior of the energy gap is controlled by the like-nucleon term of the tensor force.
In the Skyrme interaction the contribution of tensor components to the energy density of

the system can be written as , @]
1
ABx(r) = sor [20r) + J20)] + Bry(r)u(r) 1)

where J,(r) and J,(r) are the proton and neutron spin-orbit densities. The parameters
ar and [t rule, respectively, the like—nucleon and the proton-neutron terms of the tensor
interaction. In the SLyb force ] these parameters assume the values -170 MeV fm® and
100 MeV fm?®, respectively.

It is easy to show that the effect of the tensor interaction is almost zero in spin-saturated
nuclear systems, since the effect on the j = [+ 1/2 s.p. level is canceled by that on the
j =1 —1/2 one. The global effect would be exactly zero if the radial wave functions of
the two levels were the same. Since calcium isotopes are spin-saturated in protons, the
like—nucleon tensor term does not act on protons, and the neutron—proton contribution is
not active in the evolution of the neutron gap. The consequences of this in the excitation
of magnetic states in calcium isotopes have been widely discussed in [37].

The sensitivity of our results to the likenucleon tensor term is shown in the panel (b)
of Fig. [I] by the dashed line, obtained by changing the sign of the parameter cr. This
modification leads to a decreasing energy gap going from *°Ca to **Ca.

In the panel (a) of Fig. [l we show the results of HF calculations carried out with the
Gogny interaction. The black full line indicates the result obtained with the D1S force

| which does not contain tensor terms. The behavior of the energy gap is analogous to
that obtained with the Skyrme interaction without tensor term. The dotted line shows the
result obtained with the DI1ST interaction. In this case the behavior of the energy gap
is opposite with respect to the experimental one, and also with respect to that obtained
with the SLy5 tinteraction. If the sign of the parameter that determines the strength of the
tensor term in the D1ST interaction is changed, the results indicated by the blue dashed line
in panel (a) of Fig. [l are obtained. We remark that this operation on the D1ST force acts
only on the tensor—isospin dependent term and, therefore, changes both the like—nucleon
and unlike components of the tensor force. In this way, nuclear properties depending on the
neutron—proton tensor interaction that are well described by the D1ST force are not any more

reproduced. For example, the energy of the first 0~ state in 10 whose experimental value



of 10.94 MeV was used to tune the tensor force term in the D1ST interaction, appears at
14.48 MeV when the sign of the total strength is changed. Evidently, a unique tensor-isospin

term in the D1S force is not able to reproduce simultaneously both nuclear properties.

III. TENSOR TERMS AND THE GOGNY INTERACTION

The D1ST and D1IMT interactions have been constructed by adding a tensor-isospin term
to the Gogny D1S and D1M interactions, respectively [28]. The radial part of this term was
based on the analogous one in the microscopic Argonne V18 interaction [10]. Specifically,
we have considered

UTt(T) = UTt,AVls(T) [1 — €Xp (—er)] ) (2)

where the radial part of the Argonne V18 tensor isospin term @], vre,avis(r), has been
multiplied by a function that simulates the effect of the short-range correlations ] Here
b is a free parameter. The inclusion of this tensor-isospin term was done without changing
the values of the other force parameters but the strength of the spin-orbit term. The values
of the two free parameters, one for the tensor and the other one for the spin-orbit term,
have been chosen to reproduce, in an iterative HF plus RPA calculation chain, the energy
of the first 0~ state and the s.p. energy gap between the 1ps/; and 1p;/; neutron states, in
160 @]

In the present work we use an expression for the tensor interaction similar to that proposed

by Onishi and Negele [25]

Viensor (11, 72) = (V1 + Ve Pfy) S12 exp [—(7”1 - 7”2)2/,“"21“}

_ [(Vm + %Vm) + %VT2T(1)'T(2) Stz exp [~ (r1 —r2)*/px]  (3)

where we have indicated with P” the usual isospin exchange where Si5 and 7 represent the
usual tensor and isospin Pauli operators. In the second line we have separated the pure
tensor and tensor-isospin terms. In this approach the radial part of the two independent
tensor terms is identical, and it has been chosen of Gaussian form. In our calculations we
used pur = 1.2 fm, corresponding to the longest range of the D1S interaction.

In this approach, the strength of the full tensor force is ruled by the two parameters
V1 and V. A calculation of the isospin matrix elements for the interaction (B]) indicates

that the strength of the force acting in like—nucleon pairs is given by Vi + Vo, while that



between proton-neutron pairs is Vrs. These combinations of the parameters are, respectively,
analogous to the ap and fr parameters of the Skyrme interaction given in Eq. ().

The two tensor terms in Eq. (3] have been added to the D1S force without changing any
other parameter value, including the strength of the spin-orbit. In this way we are able to
analyze exclusively the effect of the tensor force.

In order to choose the values of the two free parameters, Vr; and Vo, we have used two
observables. The first one is the energy difference between the 1f5/, and 1f7/5 s.p. neutron
states in *8Ca. As already discussed in Sect. [l this observable depends only on the like—
nucleon tensor contribution and therefore is ruled by Vi + Ve, We show in Table [ the
energy difference between these two s.p. states obtained for various values of Vip; + Vis.
We have verified that by changing Vir; and Vo the result is the same if the sum does not
change. The experimental value of the energy difference is 8.8 MeV [43], therefore we have
chosen Vi + Vip = —20 MeV.

The second observable we have considered is the energy of the first 0~ state in the °O
nucleus. In Ref. [28] a large sensitivity of the energies of the 0~ states in doubly magic
nuclei to the tensor-isospin term of the interaction was observed. We show in Fig. 2 the
excitation energy of this state calculated in the HF plus RPA approach for different values
of Vo, All the calculations shown by the black solid line have been carried out by using
Vr1 + Vo = —20 MeV. For Vi, = 115 MeV we obtain for the energy of the 0~ the value of
10.72 MeV, close to the experimental value of 10.96 MeV ] This choice of Vi, together
with Vpy + Vg = =20 MeV, implies Vp; = —135 MeV. We label this parameterization
D1ST2a.

In order to identify the general features of our results we have implemented another
parameterization of the tensor terms, which we call D1ST2b. In this case, we selected the
like-nucleon part of the tensor force to reproduce the N = 28 neutron gap increase from “°Ca
to ¥Ca as obtained in the HF calculation with the SLy5t force. We obtained this results
with the value of Viy + Vi = —80 MeV. As in the previous case, the other observable we
have chosen to select the value of Vi is the excitation energy of the first 0~ state in '60.
The blue dotted line in Fig. 2 indicates the value Vipo = 102 MeV. In Fig. [3l we compare the
two terms of the D1ST2a and D1ST2b tensor force with the analogous ones of the effective
M3YP5 B] and microscopic AV18 M] interactions. The M3YP5 tensor isospin term is of

the same order than that of our interactions. In the case of the vy term, M3YP5 presents



an attractive part for small ¢, that becomes repulsive for ¢ > 1 fm™!.

It is interesting
to notice that all the effective interactions have a repulsive vr term and an attractive vy,
term. On the contrary, in the microscopic AV18 interaction both terms are attractive. This
is an indication of the important role played by both short and long range correlations in

modifying the interaction.

IV. NEUTRON GAPS

The results we discuss in this section have been obtained in the HF framework. Pairing
correlations are not included in our calculations since the nuclei we have considered, 0,
20, 9Ca, *8Ca, ¥2Sn and '“°Sn, have a well defined closed-shell character. The study has
been conducted by comparing results obtained by using interactions with (D1ST2a, D1ST2b
and SLy57 ) and without (D1S and Sly5) tensor terms.

A. N=28 and N=90

The gap evolution in calcium and tin isotopes, are rather similar. The case N = 28
involves the 2p;/ and 1f7/2 neutron s.p. levels in °Ca and **Ca. The s.p. energies of these
states are shown in Fig. @l for the Gogny (panel (a)) and Skyrme (panel (b)) interactions.
The corresponding gap values are shown in panels (¢) and (d) of the same figure.

The effects of the tensor on the energies of the 2ps ), state are rather small, while those
on the 1f7/; state are more evident, producing a lowering of the energy value in 48(Ca, much
pronounced in the case of the Skyrme and D1ST2b interactions. In both type of calculations
(Skyrme and Gogny) only the presence of the tensor terms produces an increase of the g@,

]

the energy of the 1f7/5 level is lowered and that of the 2ps/5 level is increased. This last

in agreement with the experimental evidence M] In the shell-model calculations of Ref.

effect is not present in our calculations.

The case N = 90 involves similar s.p. states which differ from the N = 28 case only
for the principal quantum numbers. The results obtained are presented in Fig. Bl and show
behaviours similar to those shown in Fig. @ In this case, we found an increase of the energy
gap already in the D1S calculation. This effect is enhanced by the inclusion of the tensor

term and is more evident for the D1ST2b force. No experimental data are available for



the N = 90 gap, however shell model calculations carried out with microscopic interactions

indicate an increase of the N = 90 gap [40].

B. N=14

We discuss another case, in a different region of the nuclear chart, where the experimental
values of the s.p energies are known. We consider the energy gap N = 14 between the 2s;
and the 1ds/; neutron states in oxygen isotopes. The experimental value of this gap in 'O
is 0.87 MeV ] From the study of the excited states in =230 nuclei through their ~y
decay, Stanoiu et al. [46] deduced a value of the energy gap of 4.11 MeV in 220. This value
is relatively large and, for this reason, 220 can be considered a doubly magic nucleus. This
is also supported by the observation that the value of the excitation energy of the first 27
state in 220 is almost twice that observed in the neighboring even—even nuclei.

The results of our calculations are shown in Fig. [6l Also in this case the behavior found
for the two types of interactions, Gogny and Skyrme, are rather similar. The major effects
of the tensor terms of the force are present on the neutron 1ds/s s.p. energies which, in 20
are remarkably lower than those obtained without tensor, mainly for the Skyrme interaction
and in the case of the D1ST2b force. This effect produces an increase of the energy gap,
even though the energies of the 2s;/, states remain unchanged. The results obtained with

the D1S and SLy5 force show a decreasing gap.

V. CONCLUSIONS

In this work, we have first pointed out the need of including in the effective Gogny
interaction two independent tensor terms acting separately on like-nucleon and proton-
neutron pairs. We have included these two independent terms under the form of tensor and
tensor—isospin components to be added on top of effective Gogny forces. To the best of our
knowledge, only tensor—isospin terms have been considered up to now for these finite-range
interactions. We have proposed two different parameterizations of the tensor force. In a first
one, the strength of the like-nucleon part of the tensor force has been chosen to reproduce
the experimental value of the splitting between the 1f7/» and 1f5/2 neutron s.p. energies

in “8Ca. In the second parameterization, the strength of this part of the interaction has



been chosen to reproduce the neutron gap increase in N = 28 going from “°Ca to **Ca as
obtained with the SLy5r interaction. In both parameterizations the remaining term ruling
the proton-neutron term has been selected to the energy of the first 0~ excited state in 16O

Using these parameterizations, we have calculated the neutron energy gap for N =
14, 28, and 90, in oxygen, calcium and tin isotopes respectively. Our results show that
both parameterizations reproduce the trend for the neutron gaps obtained with the Skyrme
SLyb r interaction, better in the case of the D1ST2b fit. This trend is in agreement with the
experimental behavior in oxygen and calcium isotopes, and with the results of shell-model
calculations in tin isotopes.

The inclusion of two tensor terms allows us to reproduce the experimental trends of the
neutron energy gaps in the isotope chains we have investigated. This is our main result. From
the quantitative point of view it is evident that the two observables related to the like-nucleon
term of the tensor interaction are not compatible in HF calculations. The parameterization
D1ST2a built to reproduce the s.p. splitting of the f states in **Ca produces the correct
behaviour of the neutron energy gap, but its value is quantitative too small. Probably,
a good quantitative description of these two quantities requires to go beyond mean-field
calculations, and to consider explicitly the effects of the coupling between s.p. and collective
degrees of freedom.

We consider the present work as a step forward in the direction of constructing a new
parameterization of the Gogny interaction which include tensor terms. We have the per-
spective of validating these new tensor terms by using them in the description of observables
where the particle-like contribution of the tensor force is expected to play a role, for exam-
ple, in the excitation of unnatural parity states in nuclei with neutron excess and with closed
proton shells [36]. Of course, a more accurate fit would require to simultaneously modify
all the parameters of the Gogny force, especially the spin—orbit strength which has a strong
interplay with the tensor force, in both the s.p. energies and the excitation of magnetic

states.
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Table I: Difference between the energies of the 1f5/, and 1

Vi +Vre  e(1fs5)2) -60(1f7/2)
0.0 8.3
-5.0 8.5

-10.0 8.6
-20.0 8.9
-30.0 9.3
-40.0 9.7
-50.0 10.0
-60.0 10.4
-70.0 10.8
-80.0 11.1

values of V1 4+ Vipa. The experimental value is 8.8 MeV

MeV.
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Figure 1: (Color online)(a) Neutron energy gap for N = 28 in °Ca and *®Ca nuclei obtained with
the Gogny interactions D1S (solid line) and D1ST (dotted line). The result obtained by changing
the sign of the tensor term in the DIST case is shown by the dashed line. (b) Neutron energy
gap for N = 28 obtained with the Skyrme interactions SLy5 (solid line) and SLy5 T (dotted line).
The result obtained by changing the sign of the parameter ar in the SLy5 T case is shown by the
dashed line.
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Figure 2: (Color online) Energy of the first 0~ excited in %O calculated in RPA as a function of

the Vo parameter, Eq. (B]), and keeping fixed Vi + Vg at —20 MeV (solid line) and —80 MeV

(dotted line). The horizontal dashed line indicates the experimental value.
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Figure 3: (Color online) Tensor (panel (a)) and tensor—isospin (panel (b)) terms of the D1ST2a and
D1ST2b parametrizations used in this work, compared with the analogous terms in the effective

M3YP5 interaction and in the realistic one AV18.
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Figure 4: (Color online) Panel (a): Energies of the neutron s.p. levels around N = 28 for the
nuclei *°Ca and “®Ca obtained with the D1S, dashed lines, D1ST2a, solid lines, and D1ST2b,
dotted lines, forces. Panel (c): evolution of the energy gap for N = 28 obtained with the D18,
dashed line, D1ST2a, solid lines, and D1ST2b, dotted lines, forces. Panel (b): the same as in (a)
but for the SLy5, dashed lines, and SLy5t, solid lines. Panel (d): the same as (c) for the two

Skyrme interactions.
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Figure 5: (Color online) The same as Fig. [l for the case of the N = 90 neutron gap for the nuclei

13281 and '%Sn. The meaning of the lines is analogous to that of Fig. H with the obvious changes.
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Figure 6: (Color online) The same as Fig. [l for the case of the N = 14 neutron gap for the nuclei

160 and 220. The meaning of the lines is analogous to that of Fig. @ with the obvious changes.
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