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Abstract

We discuss the need of including tensor terms in the effective Gogny interaction used in mean–

field calculations. We show in one illustrative case that, with the usual tensor term that is employed

in the Skyrme interaction (and that allows us to separate the like–nucleon and the neutron–proton

tensor contributions), we can describe the evolution of the N = 28 neutron gap in calcium isotopes.

We propose to include a tensor and a tensor–isospin term in finite–range interactions of Gogny

type. The parameters of the two tensor terms allow us to treat separately the like–nucleon and

the neutron–proton contributions. Two parameterizations of the tensor terms have been chosen to

reproduce different neutron single–particle properties in the 48Ca nucleus and the energy of the first

0− state in the 16O nucleus. By employing these two parameterizations we analyze the evolution

of the N = 14, 28, and 90 neutron energy gaps in oxygen, calcium and tin isotopes, respectively.

We show that the combination of the parameters governing the like–nucleon contribution is crucial

to correctly reproduce the experimental (where available) or shell–model trends for the evolution

of the three neutron gaps under study.

PACS numbers: 21.60.Jz,21.30.Fe,21.10.Pc
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I. INTRODUCTION

The presence of an electric quadrupole moment in the ground state of the deuteron [1, 2]

can be explained by including static tensor terms in the microscopic nucleon–nucleon force

as first suggested by Rarita et al. [3–5]. This procedure is today commonly adopted by

all the modern microscopic nucleon–nucleon interactions [6–10]. In a description of the

nucleon–nucleon interaction based on a meson–exchange picture [6], the strongest of the

tensor components, the tensor–isospin term, is dominated by the exchange of a single pion.

Since the pion is the lightest meson, this means that the interaction range of the tensor–

isospin term is the longest one inside the nucleon–nucleon interaction.

For many years, tensor terms have not been considered in effective interactions used in

mean–field theories such as Hartree–Fock (HF) and random–phase approximation (RPA),

commonly used to describe medium and heavy nuclei. An exception to this is represented by

the semirealistic M3Y–P interactions [11, 12]. These interactions are based on the effective

M3Y-Paris interaction [13] which has been constructed to describe inelastic nucleon–nucleus

processes. The new M3Y–P interactions are obtained by including a density–dependent

zero–range term and by modifying some of the force parameters. The tensor and tensor–

isospin terms of the M3Y–P3 and of the M3Y–P5 interactions are the same as those used

in the original M3Y–Paris interaction.

In almost all the existing parameterizations of the most used effective interaction in HF

and RPA self–consistent calculations, the Skyrme interaction, the tensor term is neglected,

even though a zero–range tensor term was proposed in the original formulation of the force

[14, 15]. In the last years, tensor terms have been included either on top of existing Skyrme

parametrizations like the SIII [16] and the SLy5 [17–19] forces (see Refs. [20, 21]) or by

inserting them in the global fit procedure producing new parametrizations of Skyrme inter-

actions [22–24]. In the following we shall indicate as SLy5T the parametrization introduced

in Ref. [21] where tensor terms have been added on top of the SLy5 interaction.

Finite–range effective Gogny–like interactions are less used in HF and RPA calculations

than the Skyrme ones. As far as the tensor terms are concerned, we find in the literature

only few works where they have been introduced in this type of forces. A first effort in

this direction was done by Onishi and Negele [25] who added a tensor term to an effective

force of finite range which was taken of Gaussian form. After the introduction of the Gogny
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force in 1980 [26], some further attempts of including a finite–range tensor term have been

done. Otsuka et al. [27] proposed the GT2 force obtained by adding to the standard central

channels of the original Gogny force [26] a finite–range tensor–isospin term of Gaussian form,

and by refitting all the parameters. An alternative procedure was proposed in Ref. [28]

where the D1ST and the D1MT forces were constructed by adding on top of the D1S [29]

and D1M [30] parameterizations a finite–range tensor–isospin term chosen to reproduce the

energy of the first 0− state in 16O in self–consistent HF plus RPA calculations.

The inclusion of tensor terms in effective interactions allows us to have the same operator

structure of the microscopic nucleon–nucleon interactions, and, moreover, it is necessary to

describe observables related to both single particle (s.p.) [21, 31, 32] and collective properties

of medium and heavy nuclei [28, 33–37].

The s.p. proton (neutron) energy gaps at Z (N) = 8, 20, and 28 have been investigated

in Refs. [32, 38] by using both non–relativistic and relativistic HF techniques. These studies

showed that nuclear systems corresponding to Z or N = 8 and 20 are particularly suitable

to study the neutron–proton tensor component of the effective interaction.

On the other hand, the s.p. proton (neutron) energy gaps along isotonic (isotopic) chains

may be sensitive to the like–nucleon component of the tensor interaction. Experimental

observations indicate that the N = 14 neutron gap in oxygen isotopes increases when going

from 16O to 22O. A similar behavior is found in calcium isotopes for the N = 28 neutron

s.p energy gap which increases from 40Ca to 48Ca. The shell–model calculations of Ref. [39]

describe this behavior and predict an analogous increase of the N = 90 neutron gap from

132Sn to 140Sn. In that work, the previous effect has been attributed to the three–body

terms of the interaction. Here we show that, in the framework of mean–field HF theory, the

evolution of these three neutron gaps strongly depends on the presence of the like–nucleon

component of the tensor term.

For the Skyrme interaction, several works exist in the literature where both the neutron–

proton and the like–nucleon tensor contributions have been analyzed. An extensive study

of the effects generated by these two contributions has been carried out in Ref. [23]. In

the Gogny case, a detailed analysis where the two components are studied separately is

still missing. As already mentioned, in some recent works a finite–range tensor term has

been introduced only in the isospin dependent channel with a single parameter to be chosen

[27, 28]. As it will be discussed in the next section, this implies that the neutron–proton and

3



the like–nucleon contributions are proportional and have the same sign, that is, they are

both attractive or repulsive. Considering that realistic and semirealistic nucleon–nucleon

forces include both types of tensor terms (pure tensor and tensor isospin), we propose here

to take into account both terms also for the effective Gogny interaction. This implies the

introduction of a second parameter which allows us to separately tune the neutron–proton

and the like–nucleon tensor contributions of the effective interaction.

The work is organized as follows. In Sec. II we present the physics case of the N = 28

neutron gap in calcium isotopes. We describe the experimental energies by using the Gogny

D1ST and the Skyrme SLy5T interactions, and we show the need of including both tensor and

tensor–isospin terms in the Gogny interaction. In Sec. III we discuss the implementation of

the two finite–range tensor terms in the Gogny interaction, and we propose two possibilities

for the choice of the parameters. In Sec. IV we apply these two parameterizations of the

tensor terms in the Gogny interaction to describe the evolution of the neutron gaps in oxygen,

calcium and tin isotopes. We compare our results with experimental data (where available)

and with the results of the HF calculations carried on with the Skyrme interaction. Finally,

we draw in Sec. V our conclusions and we discuss the perspectives of future applications of

the Gogny plus tensor interaction.

II. NEUTRON N = 28 ENERGY GAP IN CALCIUM ISOTOPES

It has been experimentally established that the N = 28 neutron energy gap, that is, the

difference between the s.p. energies of the 2p3/2 and 1f7/2 neutron levels, increases when

going from 40Ca to 48Ca. The experimental situation is summarized in Fig. 7 of Ref. [40]

and indicates a change from a value of about 2.2 MeV in 40Ca to 4.8 MeV in 48Ca.

We have calculated the evolution of this energy gap in the HF framework by using Skyrme

and Gogny interactions. Our results are presented in Fig. 1. In the panel (b) we show

with solid and dotted lines, respectively, the results obtained with the Skyrme SLy5 and

SLy5T interactions. The values of the energy gaps we have obtained are, in general, larger

than the experimental ones. Despite this deficiency, we observe that the interaction without

tensor terms, the SLy5, does not describe the trend of the energy gap, which is slightly

decreasing in this calculation. On the other hand, the result obtained with the SLy5T force,

which includes tensor terms, shows an increasing behavior of the energy gap.
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The behavior of the energy gap is controlled by the like–nucleon term of the tensor force.

In the Skyrme interaction the contribution of tensor components to the energy density of

the system can be written as [21, 32]

∆ET(r) =
1

2
αT

[

J2
p (r) + J2

n(r)
]

+ βTJp(r)Jn(r) , (1)

where Jp(r) and Jn(r) are the proton and neutron spin–orbit densities. The parameters

αT and βT rule, respectively, the like–nucleon and the proton-neutron terms of the tensor

interaction. In the SLy5T force [21] these parameters assume the values -170 MeV fm5 and

100 MeV fm5, respectively.

It is easy to show that the effect of the tensor interaction is almost zero in spin-saturated

nuclear systems, since the effect on the j = l + 1/2 s.p. level is canceled by that on the

j = l − 1/2 one. The global effect would be exactly zero if the radial wave functions of

the two levels were the same. Since calcium isotopes are spin-saturated in protons, the

like–nucleon tensor term does not act on protons, and the neutron–proton contribution is

not active in the evolution of the neutron gap. The consequences of this in the excitation

of magnetic states in calcium isotopes have been widely discussed in [37].

The sensitivity of our results to the like–nucleon tensor term is shown in the panel (b)

of Fig. 1 by the dashed line, obtained by changing the sign of the parameter αT. This

modification leads to a decreasing energy gap going from 40Ca to 48Ca.

In the panel (a) of Fig. 1 we show the results of HF calculations carried out with the

Gogny interaction. The black full line indicates the result obtained with the D1S force

[26] which does not contain tensor terms. The behavior of the energy gap is analogous to

that obtained with the Skyrme interaction without tensor term. The dotted line shows the

result obtained with the D1ST interaction. In this case the behavior of the energy gap

is opposite with respect to the experimental one, and also with respect to that obtained

with the SLy5T interaction. If the sign of the parameter that determines the strength of the

tensor term in the D1ST interaction is changed, the results indicated by the blue dashed line

in panel (a) of Fig. 1 are obtained. We remark that this operation on the D1ST force acts

only on the tensor–isospin dependent term and, therefore, changes both the like–nucleon

and unlike components of the tensor force. In this way, nuclear properties depending on the

neutron–proton tensor interaction that are well described by the D1ST force are not any more

reproduced. For example, the energy of the first 0− state in 16O whose experimental value
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of 10.94 MeV was used to tune the tensor force term in the D1ST interaction, appears at

14.48 MeV when the sign of the total strength is changed. Evidently, a unique tensor-isospin

term in the D1S force is not able to reproduce simultaneously both nuclear properties.

III. TENSOR TERMS AND THE GOGNY INTERACTION

The D1ST and D1MT interactions have been constructed by adding a tensor-isospin term

to the Gogny D1S and D1M interactions, respectively [28]. The radial part of this term was

based on the analogous one in the microscopic Argonne V18 interaction [10]. Specifically,

we have considered

vTt(r) = vTt,AV18(r)
[

1 − exp
(

− b r2
)]

, (2)

where the radial part of the Argonne V18 tensor isospin term [10], vTt,AV18(r), has been

multiplied by a function that simulates the effect of the short-range correlations [42]. Here

b is a free parameter. The inclusion of this tensor-isospin term was done without changing

the values of the other force parameters but the strength of the spin-orbit term. The values

of the two free parameters, one for the tensor and the other one for the spin-orbit term,

have been chosen to reproduce, in an iterative HF plus RPA calculation chain, the energy

of the first 0− state and the s.p. energy gap between the 1p3/2 and 1p1/2 neutron states, in

16O [36].

In the present work we use an expression for the tensor interaction similar to that proposed

by Onishi and Negele [25]

Vtensor(r1, r2) = (VT1 + VT2 P
τ
12) S12 exp

[

−(r1 − r2)
2/µ2

T

]

=

[(

VT1 +
1

2
VT2

)

+
1

2
VT2 τ (1) · τ (2)

]

S12 exp
[

−(r1 − r2)
2/µ2

T

]

(3)

where we have indicated with P τ the usual isospin exchange where S12 and τ represent the

usual tensor and isospin Pauli operators. In the second line we have separated the pure

tensor and tensor-isospin terms. In this approach the radial part of the two independent

tensor terms is identical, and it has been chosen of Gaussian form. In our calculations we

used µT = 1.2 fm, corresponding to the longest range of the D1S interaction.

In this approach, the strength of the full tensor force is ruled by the two parameters

VT1 and VT2. A calculation of the isospin matrix elements for the interaction (3) indicates

that the strength of the force acting in like–nucleon pairs is given by VT1 + VT2, while that
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between proton-neutron pairs is VT2. These combinations of the parameters are, respectively,

analogous to the αT and βT parameters of the Skyrme interaction given in Eq. (1).

The two tensor terms in Eq. (3) have been added to the D1S force without changing any

other parameter value, including the strength of the spin-orbit. In this way we are able to

analyze exclusively the effect of the tensor force.

In order to choose the values of the two free parameters, VT1 and VT2, we have used two

observables. The first one is the energy difference between the 1f5/2 and 1f7/2 s.p. neutron

states in 48Ca. As already discussed in Sect. II, this observable depends only on the like–

nucleon tensor contribution and therefore is ruled by VT1 + VT2. We show in Table I the

energy difference between these two s.p. states obtained for various values of VT1 + VT2.

We have verified that by changing VT1 and VT2 the result is the same if the sum does not

change. The experimental value of the energy difference is 8.8 MeV [43], therefore we have

chosen VT1 + VT2 = −20 MeV.

The second observable we have considered is the energy of the first 0− state in the 16O

nucleus. In Ref. [28] a large sensitivity of the energies of the 0− states in doubly magic

nuclei to the tensor-isospin term of the interaction was observed. We show in Fig. 2 the

excitation energy of this state calculated in the HF plus RPA approach for different values

of VT2. All the calculations shown by the black solid line have been carried out by using

VT1 + VT2 = −20 MeV. For VT2 = 115 MeV we obtain for the energy of the 0− the value of

10.72 MeV, close to the experimental value of 10.96 MeV [44]. This choice of VT2, together

with VT1 + VT2 = −20 MeV, implies VT1 = −135 MeV. We label this parameterization

D1ST2a.

In order to identify the general features of our results we have implemented another

parameterization of the tensor terms, which we call D1ST2b. In this case, we selected the

like-nucleon part of the tensor force to reproduce the N = 28 neutron gap increase from 40Ca

to 48Ca as obtained in the HF calculation with the SLy5T force. We obtained this results

with the value of VT1 + VT2 = −80 MeV. As in the previous case, the other observable we

have chosen to select the value of VT2 is the excitation energy of the first 0− state in 16O.

The blue dotted line in Fig. 2 indicates the value VT2 = 102 MeV. In Fig. 3 we compare the

two terms of the D1ST2a and D1ST2b tensor force with the analogous ones of the effective

M3YP5 [12] and microscopic AV18 [10] interactions. The M3YP5 tensor isospin term is of

the same order than that of our interactions. In the case of the vT term, M3YP5 presents
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an attractive part for small q, that becomes repulsive for q > 1 fm−1. It is interesting

to notice that all the effective interactions have a repulsive vT term and an attractive vTτ

term. On the contrary, in the microscopic AV18 interaction both terms are attractive. This

is an indication of the important role played by both short and long range correlations in

modifying the interaction.

IV. NEUTRON GAPS

The results we discuss in this section have been obtained in the HF framework. Pairing

correlations are not included in our calculations since the nuclei we have considered, 16O,

22O, 40Ca, 48Ca, 132Sn and 140Sn, have a well defined closed-shell character. The study has

been conducted by comparing results obtained by using interactions with (D1ST2a, D1ST2b

and SLy5T ) and without (D1S and Sly5) tensor terms.

A. N=28 and N=90

The gap evolution in calcium and tin isotopes, are rather similar. The case N = 28

involves the 2p3/2 and 1f7/2 neutron s.p. levels in 40Ca and 48Ca. The s.p. energies of these

states are shown in Fig. 4, for the Gogny (panel (a)) and Skyrme (panel (b)) interactions.

The corresponding gap values are shown in panels (c) and (d) of the same figure.

The effects of the tensor on the energies of the 2p3/2 state are rather small, while those

on the 1f7/2 state are more evident, producing a lowering of the energy value in 48Ca, much

pronounced in the case of the Skyrme and D1ST2b interactions. In both type of calculations

(Skyrme and Gogny) only the presence of the tensor terms produces an increase of the gap,

in agreement with the experimental evidence [40]. In the shell–model calculations of Ref. [39]

the energy of the 1f7/2 level is lowered and that of the 2p3/2 level is increased. This last

effect is not present in our calculations.

The case N = 90 involves similar s.p. states which differ from the N = 28 case only

for the principal quantum numbers. The results obtained are presented in Fig. 5 and show

behaviours similar to those shown in Fig. 4. In this case, we found an increase of the energy

gap already in the D1S calculation. This effect is enhanced by the inclusion of the tensor

term and is more evident for the D1ST2b force. No experimental data are available for
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the N = 90 gap, however shell model calculations carried out with microscopic interactions

indicate an increase of the N = 90 gap [40].

B. N=14

We discuss another case, in a different region of the nuclear chart, where the experimental

values of the s.p energies are known. We consider the energy gap N = 14 between the 2s1/2

and the 1d5/2 neutron states in oxygen isotopes. The experimental value of this gap in 16O

is 0.87 MeV [45]. From the study of the excited states in 21−23O nuclei through their γ

decay, Stanoiu et al. [46] deduced a value of the energy gap of 4.11 MeV in 22O. This value

is relatively large and, for this reason, 22O can be considered a doubly magic nucleus. This

is also supported by the observation that the value of the excitation energy of the first 2+

state in 22O is almost twice that observed in the neighboring even–even nuclei.

The results of our calculations are shown in Fig. 6. Also in this case the behavior found

for the two types of interactions, Gogny and Skyrme, are rather similar. The major effects

of the tensor terms of the force are present on the neutron 1d5/2 s.p. energies which, in 22O

are remarkably lower than those obtained without tensor, mainly for the Skyrme interaction

and in the case of the D1ST2b force. This effect produces an increase of the energy gap,

even though the energies of the 2s1/2 states remain unchanged. The results obtained with

the D1S and SLy5 force show a decreasing gap.

V. CONCLUSIONS

In this work, we have first pointed out the need of including in the effective Gogny

interaction two independent tensor terms acting separately on like–nucleon and proton-

neutron pairs. We have included these two independent terms under the form of tensor and

tensor–isospin components to be added on top of effective Gogny forces. To the best of our

knowledge, only tensor–isospin terms have been considered up to now for these finite–range

interactions. We have proposed two different parameterizations of the tensor force. In a first

one, the strength of the like-nucleon part of the tensor force has been chosen to reproduce

the experimental value of the splitting between the 1f7/2 and 1f5/2 neutron s.p. energies

in 48Ca. In the second parameterization, the strength of this part of the interaction has
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been chosen to reproduce the neutron gap increase in N = 28 going from 40Ca to 48Ca as

obtained with the SLy5T interaction. In both parameterizations the remaining term ruling

the proton-neutron term has been selected to the energy of the first 0− excited state in 16O

Using these parameterizations, we have calculated the neutron energy gap for N =

14, 28, and 90, in oxygen, calcium and tin isotopes respectively. Our results show that

both parameterizations reproduce the trend for the neutron gaps obtained with the Skyrme

SLy5T interaction, better in the case of the D1ST2b fit. This trend is in agreement with the

experimental behavior in oxygen and calcium isotopes, and with the results of shell–model

calculations in tin isotopes.

The inclusion of two tensor terms allows us to reproduce the experimental trends of the

neutron energy gaps in the isotope chains we have investigated. This is our main result. From

the quantitative point of view it is evident that the two observables related to the like-nucleon

term of the tensor interaction are not compatible in HF calculations. The parameterization

D1ST2a built to reproduce the s.p. splitting of the f states in 48Ca produces the correct

behaviour of the neutron energy gap, but its value is quantitative too small. Probably,

a good quantitative description of these two quantities requires to go beyond mean-field

calculations, and to consider explicitly the effects of the coupling between s.p. and collective

degrees of freedom.

We consider the present work as a step forward in the direction of constructing a new

parameterization of the Gogny interaction which include tensor terms. We have the per-

spective of validating these new tensor terms by using them in the description of observables

where the particle–like contribution of the tensor force is expected to play a role, for exam-

ple, in the excitation of unnatural parity states in nuclei with neutron excess and with closed

proton shells [36]. Of course, a more accurate fit would require to simultaneously modify

all the parameters of the Gogny force, especially the spin–orbit strength which has a strong

interplay with the tensor force, in both the s.p. energies and the excitation of magnetic

states.
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VT1 + VT2 ǫν(1f5/2) -ǫν(1f7/2)

0.0 8.3

-5.0 8.5

-10.0 8.6

-20.0 8.9

-30.0 9.3

-40.0 9.7

-50.0 10.0

-60.0 10.4

-70.0 10.8

-80.0 11.1

Table I: Difference between the energies of the 1f5/2 and 1f7/2 s.p. neutron states in 48Ca for some

values of VT1 + VT2. The experimental value is 8.8 MeV [43]. All the quantities are expressed in

MeV.
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Figure 1: (Color online)(a) Neutron energy gap for N = 28 in 40Ca and 48Ca nuclei obtained with

the Gogny interactions D1S (solid line) and D1ST (dotted line). The result obtained by changing

the sign of the tensor term in the D1ST case is shown by the dashed line. (b) Neutron energy

gap for N = 28 obtained with the Skyrme interactions SLy5 (solid line) and SLy5T (dotted line).

The result obtained by changing the sign of the parameter αT in the SLy5T case is shown by the

dashed line.
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Figure 2: (Color online) Energy of the first 0− excited in 16O calculated in RPA as a function of

the VT2 parameter, Eq. (3), and keeping fixed VT1 + VT2 at −20 MeV (solid line) and −80 MeV

(dotted line). The horizontal dashed line indicates the experimental value.
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Figure 3: (Color online) Tensor (panel (a)) and tensor–isospin (panel (b)) terms of the D1ST2a and

D1ST2b parametrizations used in this work, compared with the analogous terms in the effective

M3YP5 interaction and in the realistic one AV18.
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Figure 4: (Color online) Panel (a): Energies of the neutron s.p. levels around N = 28 for the

nuclei 40Ca and 48Ca obtained with the D1S, dashed lines, D1ST2a, solid lines, and D1ST2b,

dotted lines, forces. Panel (c): evolution of the energy gap for N = 28 obtained with the D1S,

dashed line, D1ST2a, solid lines, and D1ST2b, dotted lines, forces. Panel (b): the same as in (a)

but for the SLy5, dashed lines, and SLy5T , solid lines. Panel (d): the same as (c) for the two

Skyrme interactions.
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Figure 5: (Color online) The same as Fig. 4 for the case of the N = 90 neutron gap for the nuclei

132Sn and 140Sn. The meaning of the lines is analogous to that of Fig. 4 with the obvious changes.
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Figure 6: (Color online) The same as Fig. 4 for the case of the N = 14 neutron gap for the nuclei

16O and 22O. The meaning of the lines is analogous to that of Fig. 4 with the obvious changes.
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