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Abstract

The effects of nuclear re-interactions in the quasi-elastic neutrino—nucleus scattering are investigated with a phe-
nomenological model. We found that the nuclear responses are lowered and that their maxima are shifted towards
higher excitation energies. This is reflected on the total v-nucleus cross-section in a general reduction of about 15% for
neutrino energies above 300 MeV. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 13.15+g; 25.30.Pt

1. Introduction

Many works on the measurements of atmo-
spheric and solar neutrino fluxes pointed out sev-
eral anomalies which could hardly be explained
without assuming the phenomenon of flavor os-
cillation [1,2]. In particular, the flux of solar v’s is
shown to be depleted in the whole energy spectrum
[2,3], while anomalies in the angular distributions
and event rates come out from different experi-
ments which measure the fluxes of v’s produced by
n, K and u decays in the cascades initiated by
primary cosmic rays in the atmosphere [4-7]. The
continuously growing interest in the physics of
neutrino oscillations drove an increasing effort in
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the studies of the various aspects related to the
aforementioned measurements. The correct ana-
lysis of the data requires a good knowledge of the
v-nucleon cross-section in a wide range of energies.

The total cross-section is usually calculated by
summing three separate contributions each of
them evaluated using different models which take
into account the dominant physical effects in the
various energy regions. At energies above 3 GeV
the cross-section is well described by deep inelastic
scattering processes within the parton model. The
intermediate energy region, from 1 to 3 GeV, is
dominated by the nucleon resonances. In this re-
gion, the appropriate degrees of freedom to de-
scribe the cross-section seem to be nucleons and
mesons. At energies below 1 GeV it is possible to
neglect nucleon excitations but it is necessary to
consider nuclear effects.

A deep knowledge of the cross-section for v-
induced reactions on nuclear targets is needed for
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the correct analysis and interpretation of the ex-
perimental data [8,9]. The total inclusive cross-
section and, therefore, the expected number of
events could change. Moreover the kinematics of
the final state is modified by nuclear recoil, Fermi
motion and re-scattering. Therefore the knowledge
of these effects provides the ultimate limit to some
experimental issues. One of these is the recon-
struction of the direction of the incoming neutrino,
and then its pathlength from the production point
[10]. Another is the background rejection based on
parameters like the missing momentum in the
transverse plane, used for v, detection/tagging on
long/short baseline experiments [11].

Recently, the scattering off nuclei like '*C, '°0O
(i-e. the main constituents of scintillator and water
Cerenkov detectors) has been the object of many
investigations [12-14].

In this work we shall concentrate on the quasi-
elastic regime of v charged current interactions

vw+n—1 +p and V,+p—I"+n (1)

The interest in these particular channels lies on
two different aspects:

e The quasi-elastic scattering is the dominant pro-
cess at v energies below 1 GeV. In long baseline
or atmospheric v experiments, this energy re-
gion is sensitive to low values of Am’ (i.e.
1073-1072 eV?), which is indicated as the pre-
ferred solution for the atmospheric v anomaly.

o The kinematics of the final state can be easily re-
constructed in several types of detectors and
provides a very clean signal if compared to the
case of deep inelastic scattering which produces
showering events.

The quasi-elastic regime is characterized by
nuclear excitation energies, i.e. the energy lost by v,
whose values range from 30 MeV up to about 300
MeV. In this energy region the scattering is domi-
nated by the direct interaction of the v with a
single nucleon, i.e. the elementary processes of Eq.
(1), while the other nucleons act as spectators.
Anyway the v-nucleon cross-section has to be
corrected because the nucleon is not free but em-
bedded in the nucleus.

At a first sight, the quasi-elastic cross-section
seems to be well described by mean-field (MF)
models, like Hartee-Fock, shell and Fermi gas
models. These models neglect the collective nu-
clear excitations which are important at excitation
energies smaller than 30 MeV, but they are not
present at higher energies. In MF models the
electro-weak excitation of the full nuclear system is
described as the transition of a nucleon from a
state below to one above the Fermi surface. In this
way the binding of the nucleon in the nucleus and
the Pauli blocking are taken into account. A 20
years experience in the study of quasi-elastic elec-
tromagnetic excitations has shown that this picture
is unable to provide an accurate quantitative de-
scription of the experimental data. The agreement
with the experiment is obtained if the re-scattering
between the emitted nucleon and the rest nucleus is
considered in addition to the MF effects [15].

In this paper we investigate the effects of the
nucleon re-interaction on the quasi-elastic v cross-
sections for all types of neutrinos, using the phe-
nomenological folding model developed in Refs.
[16,17]. In Section 2 we present the folding model
and we apply it to the nuclear Fermi gas model in
Section 3. The results of the calculations are shown
and discussed in Section 4 and conclusions are
presented in Section 5. Since in its original for-
mulation the folding model was constructed to
correct response functions, we recall in the Ap-
pendix A the relationships between response func-
tions, Green’s functions and cross-sections.

2. Re-interaction effects

A general analysis of charge-changing semi-
leptonic weak interaction in nuclei can be done in
close analogy with electron scattering off nuclei
[18]. The hypotheses usually made in the deriva-
tion of the electron scattering cross-section can be
applied to the scattering of weakly interacting
probes. A first hypothesis assumes that the process
can be well described by the first order Feynmann
diagram i.e. by considering only those diagrams
where a single gauge boson is exchanged. In a
second hypothesis the exchanged boson is assumed
to interact with a single nucleon in the nuclear
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interior. The nuclear transition amplitude is ob-
tained by summing the transition amplitudes of
the single nucleons. In the second quantization
language this means that we consider one-body
transition operators only. A further hypothesis
consists in assuming that the nucleus makes a
transition between states of definite angular mo-
mentum.

In the nuclear MF model, these states are Slater
determinants of the single particle states. Since we
have chosen to restrict ourselves to the case where
there is only one-particle in the continuum the
nuclear final state |f) will be described by a pure
one-particle-one-hole (1p—1h) excitation:

) = | @) = a,ai| D), (2)

where |®,) and |@;) indicate the Slater determi-
nants describing the initial and final MF states.

As already mentioned, the application of the
MF model to the description of quasi-elastic
electron scattering data is unsatisfactory. The ex-
perimental work done in this field allowed the sep-
aration of the two response functions, the charge
and the current responses forming the inclusive
electron scattering cross-section (Rosenbluth sep-
aration). MF calculations overestimate the charge
responses and underestimate the current ones (for
a review see for example [15]).

The studies done to clarify this puzzle have
shown that the main correction to the MF re-
sponses is coming from the re-interaction of the
emitted nucleon with the rest of the nucleus. This
effect is only partially taken into account by the
random phase approximation (RPA), a theory
which describes collective excited states as linear
combination of 1p-lh and lh-1p excitations of
the ground state. In the quasi-elastic region, i.e. at
nuclear excitation energies above ~100 MeV,
continuum RPA calculations done with a finite
range effective nucleon—nucleon interaction pro-
duce responses which do not differ very much from
the MF responses [17,22,23]. More important are
those re-interaction effects beyond the RPA de-
scription which, in the electron scattering litera-
ture, are called final state interactions (FSI). The
FSI take into account the possibility that, after the
interaction with the probe, the nucleus remains in

a highly excited state which can be described only
in terms of many-particle many-hole excitations. In
this case FSI lower by 15-20% the MF responses.

We think that FSI may play an important role
also in the description of weak quasi-elastic re-
sponses. We have considered FSI using the model
developed in Refs. [16,17], which we shall briefly
present in the following.

The full Hilbert space ## can be divided in a
subspace #, composed by all the 1p—1h Slater
determinants defined in Eq. (2) and a com-
plementary subspace #. = # — #,. The 1p-1h
excited states are eigenvectors of the MF hamil-
tonian H,

Ho| @) = E)F|®y), 3)
and lead to the MF expression of the response:

S (lql, ) = > (@/]0(q)|®)

7
x (@/|0(q)|®:)'8(E; — ) (4)

- %Im<<15i|0”*(q)G°(w)0”(q)\‘Pi>~
()

where we have indicated with G°(w) the MF
Green’s function (see Appendix A).

To evaluate the modifications of SMF due to
presence of #. we introduce projection operators
P onto #, and Q onto .. The effects of . can
be taken into account by considering the effective
hamiltonian:

He(w) = PHP — PHQm OHP

= PHP — U(w). (6)

If the hamiltonian H, is composed by one-body
hamiltonians, like in the MF case, only the two-
body term V = H — Hy can connect the s, and
A . Hilbert subspaces, therefore the many-particle
many-hole excited states forming . act only as
doorway states. Since the operators ()(q) are one-
body operators they act only on the #, subspace.

Using the effective hamiltonian in the Green’s
function (Eq. (A.4)) in the Appendix A) and in-
serting a full set of eigenstates of H,, we obtain the
following expression for the response function:
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S(lql, ) —Imz (il0" (q)| @)
7
1

X 3

Efdpr — o = 2yp(w) —in

1
+—— .

Efdpp + o — 2y (—0) +in

x (Dp|0(q)li), (7)

where we have used (@/|PHP|®) = (P |H|P/) =
E/d; and we have defined X (w)=
(DU (w)|@p).

We introduce the assumption that in quasi-
elastic energy range the term X~ does not strongly
depend on the individual MF states |®,) but rather
on the full phase space available at the energy w.
In other words we make the assumption:

Zyp(w) = Z(@)d, (8)

where X(w) is a complex function of the trans-
ferred energy:

I(w) = A(w) — %F(a)). )

Using the above expressions in Eq. (7) we obtain:

S(laf, ) = ZI@I@ W p(Er, o)
+p(Ef7_w)]a (10)
where we have defined:
p(E, ) — L [o) (an

27 [E— o — Ao)] + [[(0)/2]"

In the expression (10) the nuclear ground state
is still eigenstate of the full hamiltonian H, but it is
usually replaced by the nuclear ground state pro-
vided by H,. Making this substitution and con-
sidering that the quasi-elastic region is in the
continuum excitation region of the nucleus, we can
rewrite the full response function as a convolution
of the MF response (5) with the lorentzian func-
tions p(E, w):

S(lql, ) = / " AESM (jq], E)[p(E. ) + plE. — )]

(12)

The FSI produce three effects on the MF re-
sponse: a lowering of the maximum value of the
response, a widening of the width and a shift of the
position of the peak due to the 4(w) term.

The functions 4(w) and I'(w) are connected by
a dispersion relation:

Mo = %P/m dow L) (13)

where we have indicated with P the principal value
integral. Therefore our calculations would only
require the knowledge of I'(w) which can be re-
lated to the imaginary part of the single particle
self-energy.

Our description of the nuclear excitation does
not consider the nonlocality of the MF. A simple
way to take into account this important correction
is the introduction of a g-dependent nucleon ef-
fective mass M*(q) [24]. For a given value of M* /M
the following scaling relation holds:

(1l o). (14)

3. Application to the Fermi gas model

Su- (1], @) =

In the previous outline of the folding model we
have not specified the characteristics of the MF
hamiltonian H, (the only requirement was that it
should be a sum of single particle hamiltonians).

Finite nuclear systems are realistically described
by MF hamiltonians of Hartree-Fock and shell
model type where the single particle wave func-
tions are calculated solving the single particle
Schrodinger equation for a spherically symmetric
potential. On the other hand, the excitation energy
and 3-momentum transfer values characterizing
the quasi-elastic region are such that surface and
collective excitations of the nucleus are not im-
portant. Therefore it is plausible to use in this re-
gion a simpler MF model, the Fermi gas (FG)
model, which describes the nucleus as a transla-
tionally invariant system composed by an infinite
number of nucleons whose momentum distribu-
tion is given by:
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a

I
= ——=0(kr — 15
n(ll’l) %nk% ( F |p|>> (

~—

where @ is the Heaviside function, 4 = Z or N,
kg is the Fermi momentum and p the nucleon 3-
momentum.

In this system the full hamiltonian is the sum
of free single particle hamiltonians and the sin-
gle particle wave functions used to form Slater
determinants are plane waves. The nucleon sin-
gle particle energies ¢(|p|) are related to their 3-
momentum by

e(pl) = \/Ipl* +M> —w, (16)

where p = (py, p) is the nucleon 4-momentum, M
its rest mass and we have subtracted a constant
binding energy w. The nucleus excitation energy is
given by the difference between the particle and
hole single particle energies. In the Fermi gas
model the observable quantities are calculated per
unit of volume and per nucleon. Their values
should remain constant in the limit of infinite
volume and nucleon number.

The relevance of nuclear finite size in the quasi-
elastic region has been studied in Ref. [25] by
comparing electromagnetic shell model and FG
responses. It has been found that the FG model
generates nuclear responses rather close to those of
the shell model as long as the value of the Fermi
momentum is taken as the average value with re-
spect to the nuclear matter density n(r):

V31 drrn(r)]*?
(kr) = (%7?) % (17)

Neutrino—nucleus quasi-elastic cross-section was
first evaluated in a FG model by Smith and Moniz
[26], and the final expression contains the various
responses (as it does the expression given in Eq.
(A.1)). Since the interaction matrix elements show
a very weak dependence on the initial nucleon 3-
momentum p, we make the common approxima-
tion of writing the cross-section in a factorized
form:

d”(|‘l|aw)> ! (do‘(q|,w)> .

TdOdE, - 30 RI 9 9

( dQdE /g 2; BTo) WM>FGGq(wz
18

where A is the number of nucleons forming the
target nucleus, dQ; is the differential solid angle
around the direction of the outgoing lepton, and

(Fa).. ®

is the neutrino cross-section on free nucleons. In
Eq. (18) the nuclear effects, Fermi motion, binding
and Pauli blocking, are taken into account by the
Rrg(q, ®) function whose expression is [27]:

; 1 &*pM?
Ry (lq], ) Z%/ o7, o(po + © — pp)
F

x O(ke — p)O(Ip| — k), (20)

where p = (po,p) and p/ = (pj,p' =p +q) are the
initial and final nucleon 4-momenta. The validity
of the approximation leading to the factorized
form of the cross-section has been checked in Ref.
[27] where it was found that in the quasi-elastic
region the expression (18) numerically differs from
the full expression given in Ref. [26] by a few
percent.

The folding model described in the previous
section should be applied to the response functions
using different folding functions p(E, w) for every
response function according to their spin and iso-
spin dependence. In the quasi-elastic region these
differences among responses are rather small,
therefore we have used the same folding function
for all them. Since the cross-section is a sum of
responses, we have applied the folding directly to
the cross-section:

(i), = [ oo (o) e
+Mi—wﬂ

A
da ql,» ;
( .o ) R (), )
i=1 (v,N;)

(21
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following Egs. (12) and (14), with the definition
E = (EM*)/M.

4. Results and discussion

The only free parameter required by the FG
model is the value of the Fermi momentum which
can be related to the average density of the real
nuclear system through Eq. (17). In all our calcu-
lations we have used kg = 220 MeV/c which cor-
responds to the average density of nuclei with mass
number 15 < 4 < 50.

Once the FG cross-section has been calculated,
the other inputs we need are related to correction
for the re-interaction: the I'(w) function of Eq. (9)
and the effective nucleon mass M*. From a theo-
retical point of view I'(w) can be evaluated by
considering many-particle many-hole nuclear ex-
citations, however we have used an estimate based
on a comparison with experiments. The data we
have considered for positive values of w are those
related to the imaginary part of the nuclear MF
whose parameters have been fixed to fit nucleon—
nucleus elastic scattering cross-sections. For neg-
ative values of w we have considered the energy
width of the single particle levels, measured in
knock-out reactions like (e, ¢'p) or (p,d). We have
obtained I'(w) by making the average of the single
particle energy width y(w):

I'(w) ! /000 defy(e + w) + y(e — w)]. (22)

w

In order to reproduce the empirical values of
the single particle widths, we have used the ex-
pression:

62

() = amh(f)a (23)

with a = 11.5 and 5 = 18 MeV [24]. Unfortunately
the data are limited to |e| < 100 MeV, therefore
the high energy behaviour, controlled by #(e), is
affected by strong uncertainties. We have used two
extreme parameterizations compatible with the
data:

e+’

with ¢ = 110 MeV.

The value of the effective nucleon mass is an-
other input of our calculation. It has been deter-
mined by using the expressions proposed in the
polarization potential model of Ref. [28]:

M 1

o 26
M 1+ 2MAU/ (@ +q})’ (26)
with
2MAU
2 _

where AU = 50 MeV is the depth of the potential
well. The above expressions have been built such
as M*/M =1 in the limit for ¢ — oo and M* = M;
for ¢ — 0. Various nuclear structure studies [24,
28-30] indicate that M;/M = 0.8, and this is the
value we have used in our calculations.

The effects of the re-scattering are evident in
Fig. 1 where we show R(q,®) of Eq. (21) calcu-
lated for |q| =600 MeV/c as a function of w. The
dotted line represents Rpg(q,®), Eq. (18). The
other two lines have been obtained performing
the folding with 4(e) given by Eq. (25), the dashed
line with M*/M =1, and the full line using the
value of the effective mass given by the procedure
discussed above. A comparison between dashed
and dotted lines shows that the re-interaction is
moving strength from the peak region towards
both lower and higher energy regions. The total
strength is conserved i.e. the areas underlined by
the two curves in the figure are equal. The peak
position is slightly shifted towards higher energy
values owing to the presence of A(w) in the de-
nominator of the folding p(E,®) functions. The
differences between dashed and full lines are due to
the nucleon effective mass which produces a fur-
ther spreading, a lowering of the peak value and a
shift of the peak to a higher energy.

The sensitivity of our results to the expression
chosen to set I'(w) and to the effective mass, can be
seen in Fig. 2, where we show the v,-nucleus cross-
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R(q,0)

s | S q=600 MeVie

g

R

0 005 01 015 02 025 03 035 04

Fig. 1. Dependence of R(|q|, ) on the transferred energy w for
v,-nucleus scattering. The dotted line shows the result of a bare
FG calculation, the dashed one has been obtained with
M* = M, and the solid line includes all the considered FSI ef-
fects (see text). The responses per nucleon on isoscalar target
(N = Z) are represented.

sections per nucleon as a function of the neutrino
energy. The dashed lines have been obtained set-
ting M*/M = 1 while the full lines have been cal-
culated using the expression (26). In both cases the
upper curves have been obtained using /(e) = 1 in
Eq. (23) while the lower lines have been produced
with the expression (25). As expected the use of the

Y03 |

10° 1 10
E, (GeV)

Fig. 2. Sensitivity of the total v,-nucleus cross-section to the
parametrization of I'(w) and to M* /M (see text). In this figure,
and in the following ones, the cross-sections per nucleon on
isoscalar target are shown.

effective mass lowers the values of the cross-section
at all energies. It is also clear that the use of
h(e) = 1 enhances the effect of the folding, since
this means that the re-scattering is active whatever
is the energy of the emitted nucleon. In the other
choice the re-scattering effects are switched off
when the energy of the emitted nucleon is above
200 MeV. We think that the calculations with M*
given by Eq. (26) are the most realistic ones. On
the other hand, we do not have any good reason to
prefer one of the two possible choices for %(e). The
expression (25) would be favored by the specula-
tions about the so-called color transparency [31-
33] claiming that the nucleus is transparent to high
energy emitted nucleons. However these specula-
tions do not have, so far, experimental support.
The results presented in Figs. 4 and 5 have been
obtained using effective mass and Eq. (25). We
should remark, in any case, that the maximum
difference between the upper and lower full lines in
Fig. 2 is of 5%.

Our study has been made under the assumption
of no uncertainties in the elementary v-nucleon
cross-section. This hypothesis, common to all the
calculations of this type, is not fully correct, since
this elementary cross-section depends upon the
electromagnetic and axial nucleon form factors. In
our calculations we have used the dipole form for
the electromagnetic form factors, and we have
checked that changes produced by the more so-
phisticated parameterization of Ref. [34] were
within the numerical accuracy of the calculations.
Since we have adopted the dipole expression, the
only free parameter is the axial mass M,. In the
calculations presented so far we used the axial
mass value of M, = 1.00 GeV/c* which has been
adopted also in Ref. [35]. This value is compatible
with the analysis of the neutrino nucleus total
cross-section data of Refs. [36,37]. On the other
hands, these studies, and also other ones done on
different target nuclei, show an uncertainty on the
axial mass value of 15%. To test the sensitivity of
the cross-section to the axial form factor we have
calculated the v,-nucleus cross-section by changing
the axial mass value by a 15%. These results are
presented in Fig. 3 where it is shown that the
changes on the cross-section are of the same order
of magnitude of the changes on the axial mass.
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Fig. 3. Sensitivity of the total v,-nucleus cross-section to the
value of the axial mass M, (see text).

This is not a specific feature of our model, but it is
a systematic error which affects all the theoretical
evaluations of the v-nucleus cross-sections by
shifting all the predicted values. Comparisons be-
tween different models have to be done by using
the same value of the axial mass.

The total quasi-elastic neutrino and antineu-
trino cross-sections for the three flavors are pre-
sented in Fig. 4 where the dashed lines show the
FG results and the full lines have been obtained
with our folding model. As expected, the effect of
the FSI is analogous for all the cases, since it de-
pends on the nuclear structure and not on the
details of the interaction.

In Fig. 5 we compare the v,-nucleus cross-
section data [36-43] with the FG result [35] and
withthat of our model including FSI. The contri-
butions of the nucleon resonances and the deep
inelastic scattering to the total cross-section (cal-
culated in the framework of the FG model) are
also shown. The 15% lowering of the quasi-elastic
peak, due to FSI is clearly visible.

Finally a crude estimate of the effect of the
lowering of the quasi-clastic peak on the total
upward muon flux, produced by atmospheric
neutrinos, has also been done. Above a u energy
threshold of 100 MeV, the integral muon flux is
reduced by ~5%.

5. Summary and conclusions

The v-nucleus scattering in the quasi-elastic re-
gion leaves the nucleus in a highly excited state

0.6

0.4

0.2

0.4 ¢
03 F
0.2 F
01 |

4 5 6 7 8 9 10
E, (GeV)

Fig. 4. Cross-sections for quasi-elastic v-nucleus and v-
nucleus scattering for all flavors. The dashed lines show the
result of a bare FG calculation, while solid lines include FSI
effects.

which decays mainly by nucleon emission. This
decay is not properly treated in MF nuclear
models, where the emitted nucleon does not in-
teract with the residual nucleus. We have presented
a phenomenological model to correct the MF
cross-sections for this effect. The re-interaction
model has been applied to FG differential cross-
sections. It could also be applied to more sophis-
ticated MF models. However, for quasi-elastic
scattering, our calculation takes into account, in a
simple way, the main physical ingredients since in
this energy region collective nuclear excitations
and finite size effects are not important [17,22,
23,25].

We have shown that the re-interaction spreads
the cross-section strength at both higher and lower
energies, with respect to the pure MF result. This
produces a general lowering effect of about 15% in
the cross-section.
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Fig. 5. Cross-section per nucleon (isoscalar target) for v,-
nucleus scattering compared with experimental data. The three
contributions of the quasi-elastic, nucleon resonances and deep
inelastic scattering, as calculated in the framework of the FG
model [28], are shown with solid lines (curves A, B, C). The
dashed line shows the result of the quasi-elastic cross-section
calculated in this work including also FSI effects. The 15%
lowering of the quasi-elastic peak, due to FSI is clearly visible.
The total cross-section, computed with the two different results
in the quasi-elastic region, is also reported with solid line (FG
model) and dashed lines (this work).
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Appendix A

In this appendix we briefly recall the link be-
tween response function, Green’s function and
cross-sections. The commonly used approxima-
tions adopted in the derivation of the neutrino or
antineutrino cross-section on nucleus are: first
order perturbation theory, impulse approximation
and ultra-relativistic limit (i.e. the terms containing
the leptons rest masses are neglected). With these
assumptions the cross-section can be written, in
the lab frame, as [18]:

d’c g} 4n
dQldEl - 27T2 ZJ, + 1

[i s

=0

J
q
_l’_ P
-~ a <2q2

+sin2§) [Z(anf [Pl

J=1

SRV

NIQ:

.0
Fsin—

AT | 7 sing

0 L, 0\"?
X (q2 cos? E—l—q2 sin” 5)

D 2Re( LTINS I

J=1

X

(A.1)

where the F should be used for neutrino or an-
tineutrino scattering respectively. In the above
expression we have indicated with g the universal
weak coupling constant, with E; the energy of the
emitted lepton, with ¢ = (w,q) the 4-momentum
transfer, with 6 the angle between incoming and
outgoing leptons, with |J;) and |J;) the initial and
final states of the nuclear system characterized by
their total angular momenta J. The quantities .4,
Ly, g5, and #¢ are multipole expanded oper-
ators obtained by separating the hadronic tensor
in charge, longitudinal and transverse electric and
magnetic operators. As discussed above, these
operators are expressed in terms of one-body op-
erators within the nuclear many-body Hilbert
space.

In the expression (A.1) of the cross-section the
leptonic variables are separated from the hadronic
ones. The information about the hadronic part is
fully contained in the reduced matrix elements of
the transition amplitude from the nuclear ground
state |J;) to the excited state |J/;). In Eq. (A.1) the
sums over all the possible values of J have been
included since we are interested in an energy range
above the nucleon emission threshold. The nuclear
states form a complete basis since they are eigen-
states of the nuclear hamiltonian H, therefore it is
possible to relate the transition matrix elements to
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the linear response function as it is usually defined
in many-body theories [19-21]:

S(lal, @) = Y _(F10@Ii){f10(a)]))5(E; — o)
f

(A2)
= milc @G (A3

G(w) is the many-body Green function:
G(w) = ! ! (A4)

" H-w—-in H+w+in

where we have indicated with H the full many-
body hamiltonian. In the above equations |i) and
|f) indicates the initial and final nuclear states, £,
the eigenvalue of |f), and (¢(q) a generic many-
body operator.

We are interested in nuclear excitation energies
well above the nucleon emission threshold i.e. in
reactions disintegrating the nucleus. Generally the
nuclear final state can be complicated, for exam-
ple, it can be composed by a set of unbound nu-
cleons or various nucleon clusters. We make the
simplifying assumption that the nuclear final state
is formed by one particle in the continuum and a
residual nucleus composed by 4 — 1 nucleons.
Even within this assumption the evaluation of the
nuclear transition amplitudes, or of the nuclear
responses, is rather difficult if one attempts to
solve the nuclear many-body problem using the
full interacting hamiltonian H.

A successful model used to obtain a simplified
solution of the full problem is the MF model,
where the nucleons are supposed to move in an
average potential independently from each other.
This means that in the above equations the ham-
iltonian H is substituted with a MF hamiltonian
Hy which is formed by a sum of single particle
hamiltonians whose eigenvectors form a basis of
single particle states.
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