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We study the effects of short- and long-range correlations on the charge radii of Ca isotopes. We
start our investigation with an independent particle model consisting in Hartree-Fock plus Bardeen-
Cooper-Schrieffer calculations with finite-range effective nucleon-nucleon interactions of Gogny type.
The short-range correlations effects are evaluated by considering all the terms of a cluster expansion
containing a single correlation line. The long-range correlations are taken into account by including
the coupling with the quasi-particle random phase approximation phonons. While the effects of
the short-range correlations are negligible, those of the long-range correlations largely modify the
independent particle model results and improve the agreement with the experimental data.

PACS numbers:

I. INTRODUCTION

In these last few years, the measurement of several isotope shifts completed the information about the charge
radii of Ca nuclei. Garcia Ruiz et al. [1] measured the isotope shifts of the neutron rich 49,51,52Ca nuclei using laser
spectroscopy and Miller et al. [2] investigated the proton rich 36,37,38Ca isotopes with similar experimental techniques.
These new data have been used to derive the values of the charge radii of these nuclei.

The behavior of the experimental values of the charge radii shows a steep enhancement for nuclei with A > 48.
This behaviour is not described by several independent particle models [1–3]). It has been shown [2] that by using
elaborate energy functionals, containing a large number of free parameters [4–6], it is possible to reproduce the full
set of experimental data. However, the physics simulated by these new functionals is difficult to disentangle.

In this work we attack the problem by using a more traditional independent particle model, which in our case consists
in Hartree-Fock (HF) plus Bardeen-Cooper-Schrieffer (BCS) calculations, and we study the effects of the correlations.
We consider short-range correlations related to the strongly repulsive core of the nucleon-nucleon interaction and
long-range correlations generated by the coupling of collective nuclear excitations to the single-particles degrees of
freedom.

This work is organized as follows. Sec. II is devoted to present some details of the various theoretical approaches
used in our calculations. In Sec. III we show our results which are discussed in Sec. IV where we also present our
conclusions.

II. THEORETICAL APPROACHES

The goal of our study is the evaluation of the root mean square (r.m.s.) radii of nuclear density distributions ρα(r):

Rα =


∫ ∞

0

dr r4 ρα(r)∫ ∞
0

dr r2 ρα(r)


1
2

. (1)

Proton and neutron r.m.s. radii are obtained by considering the (point-like) proton, ρp, and neutron, ρn, density
distributions, which are defined as:

ρα(r) =
A〈

Ψ|Ψ
〉 〈Ψ

∣∣∣∑
j

′
δ(r− rj)

∣∣∣Ψ〉 , α ≡ p,n , (2)
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where |Ψ〉 is the state describing the full nucleus, which has A nucleons (Z protons and N neutrons). In the above
equation, and in all the following ones,

∑′
indicates that the sum is limited either to the protons or to the neutrons

as indicated by the sub-index α. Mass r.m.s. radii are obtained by using the mass density distributions, ρm = ρp +ρn.
We calculate the charge r.m.s. radii by inserting in Eq. (1) the charge distributions, ρc obtained by folding the (point-
like) proton densities, ρp, with the charge proton form factor. We used a dipole parameterization of this form factor
[7], having verified that other, more complex, expressions produce differences smaller than the numerical accuracy of
our calculations.

The aim of the various nuclear models we adopted in our study is the evaluation of the density distributions required
to calculate the r.m.s radii.

A. Independent particle model

The starting point of our approach is the Independent Particle Model (IPM) where the nuclear state |Ψ〉 is described
as a Slater determinant, |Φ〉 ≡ Φ(1, 2, . . . , A), of single particle (s.p.) wave functions. We exploit the spherical
symmetry of the problem, and for the s.p. wave functions we have used the expression [8, 9]

φµ(r) ≡ φmt

nljm(r) = Rnljm(r)Yljm(Ω)χ 1
2 mt

, (3)

where we have indicated with n the principal quantum number, and with l, j and m the quantum numbers identifying
the orbital, the total angular momentum and its projection on the z axis, respectively. The symbol Y indicates the
spin-spherical harmonics [10], and mt the third component of the isospin.

Since we have considered nuclei without deformation, we have assumed a unique radial wave function for the same
n, l, j quantum numbers, i.e. Rnljm ≡ Rnlj . In open shell nuclei the degenerate, not fully occupied, s.p. neutron
state near the Fermi level is equally occupied with respect to the projection quantum number m.

The first step of our IPM calculation consisted in obtaining the s.p. radial wave functions Rnlj by solving a set of
HF equations. In a second step, we have considered the pairing effects by using these HF s.p. wave functions in a BCS
calculation wich modifies the occupation probability, v2

µ, of each s.p. state. We named this IPM type of calculation
HF+BCS [8, 9], and, in this model, the density distributions are given by:

ρIPM
α (r) =

1

4π

∑
µ

′
(2j + 1) v2

µ [Rµ(r)]
2
, α ≡ p,n . (4)

The only physical input of this calculation is the effective nucleon-nucleon interaction. We have consistently used
the same finite-range effective nucleon-nucleon interactions of Gogny type [11] in both the HF and the BCS steps. In
order to test the sensitivity of our results to the effective nucleon-nucleon interaction we carried out calculations with
three different parameterizations. Two of them are the well known D1S [12] and D1M [13] interactions, and the third
one is the D1ST2a, a force built by adding tensor terms to the D1S [14].

B. Short-range correlations

In the IPM each nucleon is free to move independently of the presence of the other ones. On the other hand, the
nucleon-nucleon interaction has a strongly repulsive core which prevents two nucleons from approaching each other
at distances smaller than about 0.5 fm. This is the source of the Short-Range Correlations (SRC).

We have evaluated the effects of the SRC by following the approach of Ref. [15] where the nuclear state is described
as

|Ψ〉 ≡ ΨSRC(1, 2, . . . , A) = F (1, 2, . . . , A) Φ(1, 2, . . . , A) , (5)

with Φ indicating the IPM Slater determinant, and F a many-body correlation function which we have assumed to
be of the form

F (1, 2, . . . , A) = S
∏
i<j

6∑
p=1

f (p)(rij)O
(p)
i,j , (6)

We indicate with S a symmetrization operator, with f (p)(rij) a two-body correlation scalar function acting on the

(i, j) nucleon pair, and with {O(p), p = 1, . . . , 6} a set of operators depending on spin, isospin and tensor terms,
classified as in the usual Urbana-Argonne sequence [16]. Specifically, we have considered operators of central type

O
(1)
ij = 1 , O

(2)
ij = τ (i) · τ (j) , O

(3)
ij = σ(i) · σ(j) , O

(4)
ij = σ(i) · σ(j)τ (i) · τ (j) , (7)
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Figure 1: The set of SRC diagrams considered in our calculations. The dashed lines indicate the correlation function h, Eq.
(10), while the oriented lines represent the IPM one-body density matrices ρIPM

α (r1, r2), Eq. (11). The solid dots indicate a
coordinate where an integration is carried out and the open ones those where the density is evaluated.

and of tensor type

O
(5)
ij = S(i, j) , O

(6)
ij = S(i, j) τ (i) · τ (j) , (8)

where σ indicates the spin operator, τ the isospin operator, and S(i, j) the tensor operator defined as:

S(i, j) = 3
[σ(i) · rij ] [σ(j) · rij ]

r2
ij

− σ(i) · σ(j) . (9)

The key point of the model of Ref. [15] is the truncation of the cluster expansion of the density distribution in
order to consider only those terms with a single correlation function

h(p)(rij) = f (p)(rij) − δp,1 , (10)

where δ is the Kronecker symbol. We show in Fig. 1 the diagrams included in the calculations. The dashed lines
represent the h correlation function and the oriented lines the IPM one-body density matrix

ρIPM
α (r1, r2) =

∑
µ

′
v2
µ φ
∗
µ(r1)φµ(r2) , α ≡ p,n . (11)

A solid dot indicates a point in r space that is integrated, while the empty dot is the point where the density is
calculated.

Due to the orthonormality of the s.p. wave functions, the IPM density matrices satisfy the property∫
d3r′ ρIPM

α (r1, r
′) ρIPM

α (r′, r2) = ρIPM
α (r1, r2) . (12)

Because of this, the integration on the open dots in the diagrams of Fig. 1 implies that, in absolute value, the
contributions of the diagrams (b) and (d) are equal, as well as those of the diagrams (c) and (e). For this reason, the
integral on r of the correlated terms cancel exactly, and the correlated density is normalized as the IPM one:∫

d3r ρSRC
α (r) =

∫
d3r ρIPM

α (r) . (13)

These integrals are equal to A, Z or N depending on the density distribution considered. We indicate with ρ(r) the
diagonal part of the one-body density matrix. It is worth remarking the need of considering all the diagrams of Fig.
1, i.e. those with two and three points, in order to conserve the proper normalization of the correlated density.

Explicit expressions of the contribution of the diagrams in terms of the radial s.p. wave functions are given in Ref.
[15]. The only difference in the present calculations is the presence of the v2 occupation probability multiplying every
pair of s.p. wave functions.

The two-body correlation scalar functions are the only physics input which is not consistently derived from the
selected effective nucleon-nucleon interaction. We present here the results obtained by using the f (p)(rij) taken
from a Fermi Hypernetted-Chain calculation for the 48Ca nucleus [17], carried out with the microscopic V8’ Urbana
interaction [16] (see Fig. 2). We have tested the effects of other correlation functions presented in Ref. [17] related to
other doubly magic nuclei and to nuclear matter, and we did not find remarkable differences with the results presented
here below.
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Figure 2: The SRC functions f (1) and f (p) (p = 2, . . . , 6), Eq. (6), for the six operator channels considered in our calculations.

C. Long-range correlations

The part of the nuclear hamiltonian not considered by the IPM, the residual interaction, is the source of the so-called
Long-Range Correlations (LRC), which take into account collective phenomena inside the nucleus.

We have described the effects of the LRC on the density distributions by extending the model presented in Refs. [18–
20]. We have substituted the Random Phase Approximation Y amplitudes with those obtained with the Quasi-particle
Random Phase Approximation (QRPA) theory. In this approach, the density distributions can be written as:

ρLRC
α (r) = ρIPM

α (r) −
∑
JΠ

2J + 1

8π

∑
Ek

∑
µ<ν

′ ∣∣∣Y JΠ

µν (Ek)
∣∣∣2 {[Rµ(r)]

2 − [Rν(r)]
2
}
, α ≡ p,n . (14)

From the above expression it emerges the fact that the relevant ingredient modifying the IPM density is provided
by the QRPA Y amplitudes calculated for a specific excited state of energy Ek, angular momentum J and parity Π.
Because of the orthonormalization of the s.p. wave functions, an integration on r produces equal contributions of
the two terms related to the same QRPA Y amplitudes, therefore they cancel with each other. Also in this case the
normalization of ρLRC is the same as that of ρIPM.

Our QRPA calculations, whose technical details can be found in Ref. [21], are based on a discrete set of s.p. wave
functions, therefore the energy spectrum we obtain is discrete. On the other hand, the three sums in Eq. (14) have to
be truncated. The dimensions of the s.p. configuration space, which limit the sum on the states µ and ν and ensure
the stability of the QRPA results, are fixed by using the prescriptions described in Ref. [21].

For a given multipolarity JΠ, we have studied the maximum energy required in the sum on Ek to stabilize the result.
Even though every excitation multipole, in each of the nuclei investigated, has its own value for this maximum energy
Emax, we have found that Emax = 20 MeV, for all multipolarities included in Eq. (14), ensures sufficient stability of
our results.

Concerning the sum on JΠ, we have considered all the positive and negative multipoles with angular momentum
from J = 1 to J = 3 and also the contribution of J = 0+. As the more relevant contributions come from the low-lying
excited states, in the case of the 42Ca, 44Ca and 46Ca isotopes, we have included also the 4+ and 6+ multipoles since,
in our calculations, some excited state with these multipolarities appears below 4 MeV.

III. RESULTS

In our study we have considered the even-even Ca isotopes. The parameters of the effective nucleon-nucleon
interactions have been chosen to provide a good IPM description of the ground state of a set of nuclei all along the
nuclear chart [13, 22]. As an example of the performances of these interactions, we compare in Table I the experimental
binding energies of the nuclei we have investigated [23] with those obtained with our IPM (HF+BCS) by using the
three interactions considered. The good agreement between the empirical values and the results of our calculations is
evident, and also expected, since binding energies, among other data, have been used to select the values of the force
parameters [22].
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A D1S D1ST2a D1M exp.

34 7.254 7.255 7.148 7.173

36 7.867 7.871 7.754 7.816

38 8.296 8.296 8.180 8.240

40 8.626 8.624 8.513 8.551

42 8.668 8.669 8.556 8.617

44 8.711 8.718 8.602 8.658

46 8.719 8.732 8.614 8.669

48 8.694 8.714 8.593 8.667

50 8.551 8.572 8.458 8.550

52 8.404 8.427 8.320 8.429

54 8.211 8.230 8.140 8.248

56 8.028 8.033 7.956 8.033

58 7.832 7.834 7.768 7.828

60 7.614 7.620 7.577 7.627

Table I: Binding energies per nucleon, in MeV, for the Ca isotopes under investigation, obtained with our HF+BCS IPM
by using the D1S, D1ST2a and D1M interactions, compared to the experimental values taken from the compilation of the
Brookhaven National Laboratory [23]. The largest experimental uncertainty is 0.012 MeV in 60Ca.

Since our IPM is built to reproduce some experimental nuclear quantities, the appearance of phenomena beyond
IPM can be identified by doing a relative comparison between the theoretical results. On the other hand, the quantity
experimentally measured, the isotope shift, is defined in a relative manner as the difference between the square of the
charge radii of the each Ca isotope and that of 40Ca,

δR2
ch(A) = [Rch(A)]

2 − [Rch(A = 40)]
2
. (15)

These are the two reasons that have induced us to concentrate our study on the isotope shifts rather than on the
charge radii.

In Fig. 3a, we compare the values of the isotope shifts obtained in our IPM calculations, carried out with the three
different parameterizations of the Gogny interaction, D1S (red open dots), D1M (blue open squares) and D1ST2a
(green solid dots), with the available experimental data of Refs. [1, 2, 24–26] (black triangles).

The first remark is that the behaviors of our IPM results are very similar, independently of the interaction used.
A quantitative indicator of this similarity is the average of the absolute differences between these curves, which is
smaller than 0.07 fm2, with a maximum value of 0.2 fm2 (in the case of 54Ca). It is also worth noting that the tensor
terms of the force do not play any relevant role: the results obtained with the D1ST2a and D1S almost overlap.

The comparison with the experimental data is not straightforward. We observe good agreement with the isotope
shifts of the nuclei lighter than 40Ca and heavier than 48Ca, while in the cases of 42Ca, 44Ca and 48Ca the IPM fails
to describe the data. The IPM isotope shifts increase smoothly with increasing neutron number. On the contrary,
the experimental data show a steeper increase from 40Ca up to the value of 44Ca and a decreasing behavior for 46Ca
and 48Ca, whose isotope shift is almost zero.

A direct comparison between the r.m.s. radii obtained by using our IPM densities, as indicated by Eq. (1), and the
empirical ones is shown in Fig. 3b. The latter values have been obtained from Eq. (15) by considering the experimental
isotope shifts and the reference value Rch(A = 40) = 3.4776(19) fm [27].

The D1S and D1ST2a results are almost overlapping, with differences smaller than 0.5%, and this indicates again
that the tensor terms in the interaction do not produce noticeable effects on the charge radii.

We observe a systematic difference, of about 1%, between the results obtained with the D1S and the D1M inter-
actions, the latter one producing smaller values. This difference improves the description of the data obtained with
the D1M force with respect to the D1S and D1ST2a interactions. We remark that in the set of empirical information
used to select the parameters of the D1M force, the charge radii values of 707 nuclei were considered [13]. This is
probably the reason of the better agreement with the experiment obtained with the D1M interaction.

In any case, it is very striking that all the IPM calculations fail to describe the charge radius of 48Ca, a doubly magic
nucleus, and, in general, the charge radii of the nuclei between 40Ca and 48Ca. This is a well known problem since
1968 [28], and it has been shown to be present in different kinds of IPMs (see for example the results of Refs.[29–31]).

The behavior of the isotopes shifts that we have obtained with our IPM can be separated in three regions. As
example of this analysis, we show again in Fig. 4 the comparison between the isotope shifts obtained with the D1M
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Figure 3: IPM results obtained with the D1S (open red dots), D1ST2a (solid green dots) and D1M (open blue squares) Gogny
interactions for the Ca isotopes considered in our work, with the experimental data (black triangles). Panel (a): isotope
shifts of the squared r.m.s. charge radii evaluated with respect to the 40Ca r.m.s. radius, Eq. (15); the experimental data
have been obtained from Refs. [1, 2, 24–26]. Panel (b): r.m.s. charge radii of the Ca isotopes; the experimental values
have been calculated by considering the experimental isotope shifts shown in panel (a) and the reference r.m.s. charge radius
Rch(A = 40) = 3.4776(19) fm [27]. .
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interaction (blue open squares) and the experimental values (black solid triangles). These latter values are the average
of those quoted by different experiments [1, 2, 24–26]. The red lines of the figure are the results of linear fits of the
D1M data for three regions: nuclei lighter than 48Ca, from 48Ca to 52Ca, and nuclei heavier than 52Ca. The values
of the angular coefficients, the slopes, of these lines are also indicated in the figure. Similar results are obtained for
the other two forces considered.

We identify three regions also in the case of the experimental data, but, in this case, the trend is remarkably
different from that found for the IPM. The behaviour of the data for the isotopes lighter than 40Ca and heavier than
48Ca is linear. The value of the slope of the line fitting this latter set of data is very similar to that of the IPM results
for nuclei heavier than 54Ca. The real problem is related to the experimental data of the Ca isotopes from 40Ca to
48Ca. Contrary to the IPM results, these data present a maximum for the 44Ca nucleus, and a minimum for the 48Ca
that, as we have already pointed out, shows a null isotope shift, indicating that its charge r.m.s. radius is essentially
the same as that of 40Ca.

The inclusion of the correlations modifies the IPM charge distributions and, consequently, the values of the charge
r.m.s. radii. The effects of the SRC are mainly concentrated in the nuclear interior, therefore the IPM radii are only
slightly modified. Eq. (1) clearly indicates that the values of the r.m.s. radii are obtained by integrating the densities
weighted by a factor r4, against a factor r2 related to the normalization. For this reason, the radii are more sensitive
to the changes of the nuclear surface than those of the interior. The LRC, which consider the coupling of the IPM
ground state with low-lying surface collective excitations, enlarge the charge distributions and increase the values of
the r.m.s radii of about 15%.

The effects of the correlations on the isotope shifts defined in Eq. (15) are shown in Fig. 5. The three panels
present, separately, the results obtained for the three interactions considered. In each panel the open circles indicate
the IPM results, the solid circles those obtained by considering the SRC, and the solid squares those including the
LRC.
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8

The effects of the SRC are extremely small, and the results obtained by taking them into account almost overlap
with those of the IPM. On the contrary, the LRC produce a significant modification of the overall trend.

In the isotopes lighter than 40Ca, the LRC effects are negligible. However, already the IPM values describe well
the corresponding experimental data.

The largest effects of the LRC are seen in the nuclei between 40Ca and 48Ca. The inclusion of the LRC generates a
set of almost constant values for the D1S and D1ST2a interactions, while for the D1M interaction we found a moderate
growth, though much smaller than that shown by the IPM results. The important point is that by including LRC a
good description of the 48Ca isotope shift for the D1S and D1ST2a interactions is obtained. The value found for the
D1M interaction is not as good but, certainly, much better than that of the IPM.

Above 48Ca, the trend of the isotope shift is roughly the same as in the IPM calculations, showing an enhancement
with two well defined slopes for A < 52 and A > 52, respectively. For the nuclei heavier than this isotope, the growth
rate of the isotope shifts is similar to the experimental one, as determined from the values of 48Ca, 50Ca and 52Ca.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have presented the results of our study of the isotope shifts of even-even Ca isotopes. We first
carried out IPM calculations, based on a HF+BCS approach, by using three finite-range effective interactions. The HF
and BCS steps of our calculations have been executed by consistently using the same interaction. The results obtained
do not show any particular sensitivity to the interaction used, especially to the presence of tensor terms. These IPM
results agree with the experimental values for the lighter Ca isotopes (with A ≤ 40) and describe the growth rate of
the heavier ones (with A ≥ 50). The problem is the failure in describing the behavior of the experimental data of
the nuclei from 40Ca to 48Ca, in particular the fact that these two doubly magic nuclei, which in principle should be
well described by the IPM, have the same charge radius. We did not find remarkable effects generated by the pairing,
contrary to what has been claimed in Ref. [32].

We have extended our calculations by including short- and long-range correlations. The effects of the SRC, treated
by using the model of Ref. [15], are irrelevant. This result disagrees with the findings of Ref. [33]. However, we found
difficult to make a direct comparison between our and their definition of SRC and, therefore, to compare the specific
contributions taken into account in both calculations. We remark that the fully microscopic calculation of Ref. [34]
gives the correct proton radius of 48Ca.

More significant are the effects of the LRC which we have described by extending the model of Ref. [20] in order to
consider QRPA backward amplitudes. The LRC do not affect the behavior of the IPM in the region of the light and
heavy Ca isotopes where the IPM provides already a good description of the data. The results of the intermediate
region between 40Ca and 48Ca are strongly modified. The first, important, point is that with the inclusion of LRC
we obtain the same radii for the two doubly magic nuclei. The results are better for the D1S and D1ST2a forces than
for the D1M, but also in this latter case, the improvement with respect to the IPM is evident.

The second point is that, for this set of isotopes, the LRC calculations generate almost constant values of the isotope
shifts, contrary to the IPM results which show a continuous increase. Despite of a clear improvement, the trend of
the experimental data, showing a maximum for 44Ca, is not yet well described.

In Ref. [35] it has been pointed out the need of including terms related to proton and neutron magnetic moments
and spin-orbit in order to obtain a precise description of isotope shifts. These effects are very small, and, furthermore,
they show a linear trend in the region between 40Ca and 48Ca, therefore they are unable to explain the behavior of
the experimental results.

A good description of the data in the region of interest is provided by the shell model calculation of Ref. [36]. By
using our language, we may say that in this approach the LRC have been taken into account in a wider manner
by including effects beyond the single quasi-particle excitations, which are the only ones considered in our QRPA
calculations.

In conclusion, there is no problem in describing the new isotope shifts data measured for neutron rich Ca isotopes,
and the data in the region between the two doubly magic isotopes 40Ca and 48Ca indicate the relevance of the LRC.
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