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Abstract

Momentum distributions, spectroscopic factors and quasi-hole wave functions of medium-
heavy doubly closed shell nuclei have been calculated in the framework of the Correlated
Basis Function theory, by using the Fermi hypernetted chain resummation techniques. The
calculations have been done by using microscopic two-body nucleon-nucleon potentials of
Argonne type, together with three-body interactions. Operator dependent correlations, up

to the tensor channels, have been used.

1 Introduction

The validity of the non relativistic description of the atomic nuclei has been well established in

the last ten years. The idea is to describe the nucleus with a Hamiltonian of the type:

52
HZ—%ZV2+ZUU+ Z Vijk (1)

i<j i<j<k

where the two- and three-body interactions, v;; and wv;ji respectively, are fixed to reproduce
the properties of the two- and three-body nuclear systems.

About fifteen years ago, we started a project aimed to apply to the description of medium
and heavy nuclei the Correlated Basis Function (CBF) theory, successfully used to describe the
nuclear and neutron matter properties [Il, 2]. We solve the many-body Schrédinger equation

by using the variational principle:

<VIHV>

SE[U] =6 s 0 (2)

The search for the minimum of the energy functional is carried out within a subspace of the

full Hilbert space spanned by the A-body wave functions which can be expressed as:

U1,y A) = F(1, o, AL, ..., A) (3)



where F(1,..., A) is a many-body correlation operator, and ®(1, ..., A) is a Slater determinant
composed by single particle wave functions, ¢, (i). We use two and three-body interactions of
Argonne and Urbana type, and we consider all the interaction channels up to the spin-orbit

ones. The complexity of the interaction requires an analogously complex correlation:

A
F=8| 1] Fs| . (4)

i<j=1

where § is a symmetrizer operator and Fj; has the form:

Fyj= Y fP(rij)O}; . (5)
p=1,6
In the above equation we have adopted the nomenclature commonly used in this field, by

defining the operators as:
ij:lﬁz[l,O'i-O'j,Si‘]@[l,Ti-Tj] y (6)

where S;; = (3t - ot - 0; — 0; - 0;) is the tensor operator.

The binding energies and the charge distributions of 12C , 160 , 4°Ca , **Ca and 2°Pb
doubly closed shell nuclei have been obtained by solving the Fermi Hypernetted Chain (FHNC)
equations in the Single Operator Chain (SOC) approximation [3]. These calculations have the
same accuracy of the best variational calculations done in nuclear and neutron matter [I} [2].

By using this FHNC/SOC computational scheme we have investigated the effects of the cor-
relations on some ground state quantities which are related to observables. A first quantity we
have studied is the momentum distribution. It is well known that the short-range correlations
enhance by orders of magnitude the high-momentum components of the momentum distribution
[4]. We have also studied the spectroscopic factors since, as we have already mentioned, their
empirical values are always smaller than the independent particle model (IPM) predictions.

The present study has been done by using the many-body wave functions obtained in Ref.
[3]. The Argonne v} two-nucleon potential, together with the Urbana XI three-body force has
been used.

In the next sections we present the results of our study of the One-Body Density Matrix

(OBDM) and of the momentum distribution and we evaluate the spectroscopic factors.

2 The momentum distributions

The OBDM, of a system of A nucleons is defined as:

SS/' A
p’ 7t(I'l,I'Il):m/‘dﬂjQ...d,’lﬁA

Ul e, .. wa)xe (D) xs(DxE ()xE ()0 (2, 2o, ... za) (7)

In the above expression, the variable z; indicates the position (r;) and the third components of
the spin (s) and of the isospin (¢) of the single nucleon. With the integral sign we understand
that also the sum on spin and isospin of all the particles, including 1, is performed. The
OBDM of eq. () is characterized by the quantum numbers relative to the particle 1. In our
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Figure 1: The proton momentum distributions for the 2C , 60 , 4°Ca , 8Ca,, 2°®Pb nuclei calculated
in the IPM model ( dashed lines), by using the scalar correlation only (dotted lines) and the full
correlation operator in FHNC/SOC approximation (solid lines).

calculations we are interested in the quantity:

pt(rl’ rll) = Z [pS)S;t(rl’ rll) + pS)is;t(rlv rll)] ’ (8)
s=+1/2

whose diagonal part represents the one-body density of neutrons or protons, this last one is
related to the charge density distribution of the nucleus.

We define the momentum distributions of protons or neutrons as:

1 . ’
n'(k) = N /ahjalr'1 elk'(“*”l)pt(rl,r’l) , (9)

where we have indicated with A; the number of protons or neutrons. We describe doubly closed
shell nuclei, with different numbers of proton and neutrons, in a jj coupling scheme. The corre-
lated OBDM is obtained by using the ansatz [B]) in Eq. (). The calculation is done by following
the lines indicated in Ref. [5] and considering, in addition, the presence of the antiparallel spin
terms and distinguishing proton and neutron contributions. The diagonal part of the OBDM



is the one-body density, normalized to the number of nucleons. We present in FiglI] the proton
momentum distributions, for the 2C , 60 , 49Ca , **Ca and 2°®Pb nuclei. The dashed lines
show the results obtained in the IPM model, the dotted lines those results calculated by using
the scalar correlations only and, finally, the solid lines indicate the momentum distributions
obtained by using the full operator dependent correlations. The high momentum components
of the correlated distributions are orders of magnitude larger than those produced by the IPM.

The operator dependent terms of the correlations further increase this behavior.

3 The spectroscopic factors

The quasi-hole wave function is defined as:

W (z) = VA < Woijm(A —1)|6(z — z4) PV (A) >

] 1
nljm < \I/nljm(A . 1)|\I/nljm(A _ 1) >1/2< \I/(A)|\I/(A) >1/2 7 ( 0)

where we have indicated with W,;;m (A — 1) and ¥(A) the wave functions describing the nuclei
formed by A—1 and A nucleons respectively, and with P the isospin projector. The subindexes
nljm designate the quantum numbers of the odd-even nucleus.

We describe the wave function of the nucleus with A — 1 nucleons by using an ansatz
analogous to that of Eq. (3)):

Upiim(A—1) = F(1,..; A= 1) ®pijm(1, .., A— 1) | (11)

where ®p5m (1, ..., A—1) indicates a Slater determinant obtained by removing from the Slater
determinant ®(1, ..., A) a single state characterized by the quantum numbers nijm. In the IPM
the quasi-hole wave functions coincide with the mean-field wave functions.

In order to obtain the radial part of the quasi-hole wave function we multiply equation (I0)

by < jm|, we integrate over the angular coordinate €2, and sum on the spin coordinates [5]:

hg(r) =D < lul/2s|jm > /dﬂ Y (XL o () = Xy () NG, 12 (12)

S

From the knowledge of the quasi-hole functions we obtain the spectroscopic factors as:

Sty = / dr o2 [l (r)? (13)

In Fig. 2l we compare the theoretical spectroscopic factors calculated for the proton bound
states of the 2°°Pb nucleus with the experimental data of Ref. [6]. In abscissa we give the
separation energies defined as the difference between the energy of a A-nucleon system and that
of the A — 1-nucleon system obtained by removing the nljm state. The agreement between
theory and experiment is better for the deeply bound shells than for those levels closer to the
Fermi surface. This could be due to the strong coupling between the quasi-hole wave function
and the low-lying surface vibrations. The effects of this coupling, usually called long-range
correlations, not explicitly treated by our theory, are expected to be larger for the external
shells than for the internal ones.

The effect of the correlations on the quasi-hole wave functions is presented in Fig. Bl where
we have shown the squared quasi-hole 3s; /5 proton wave function calculated with increasing
complexity in the correlation function. The full line indicates the IPM result, the other lines

have been obtained by using only scalar correlations, f, operatorial correlations without the
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Figure 2: Comparison between the theoretical, black points, and the experimental, empty diamonds,
spectroscopic factors for some proton states of 2°2 Pb. In the x axis we indicate the separation energies.

tensor channels, f4, and correlations which include also the tensor dependent terms, fs. The
presence of the correlations produces a lowering of the quasi-hole wave function in the nuclear
center. There is a consistent trend of the correlations effects: the more elaborated is the
correlations the larger is the decreasing at the center of the nucleus.

4 Summary and conclusions

In this work momentum distributions, spectroscopic factors and quasi-hole wave functions of
medium-heavy doubly closed shell nuclei have been calculated by extending the FHNC/SOC
computational scheme. The calculations have been done considering the different number of
proton and neutrons and the single particle basis are given in a jj coupling scheme. A micro-
scopic two-body interaction of Argonne type, implemented with the appropriated three-body
force of Urbana type, have been used. The calculations have been done with operator dependent
correlations which include, in addition to the four central channels, also tensor correlations.
The comparison between our results with those obtained in the IPM highlights the corre-
lations effects. The correlated momentum distributions have high momentum tails which are
orders of magnitude larger than the IPM results. The spectroscopic factors are always smaller
than one, the IPM value, and in a reasonable agreement with the experimental values, espe-
cially for the more bounded states. The quasi-hole wave functions are depleted in the nuclear
center by the correlations. We have found that the operator dependent terms emphasize the

correlations effects.
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Figure 3: The square of the quasi-hole wave function for the 3s; /5 proton state of the °*Pb .
The labels unc, Jas, f* and f9 indicate the IPM,Jastrow, f* and f® models respectively.
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