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We present a technique which treats, without approximations, the continuum part of the exci-
tation spectrum in Random Phase Approximation calculations with finite-range interactions. The
interaction used in the Hartree-Fock calculations to generate the single particle basis is also used in
the Continuum Random Phase Approximation calculations. We show results for the electric dipole
and quadrupole excitations in the 16O, 22O, 24O, 40Ca, 48Ca and 52Ca nuclei. We compare our
results with those of the traditional discrete Random Phase Approximation, with the continuum
independent particle model results and with those obtained by a phenomenological Random Phase
Approximation approach. We study the relevance of the continuum, of the residual interaction and
of the self-consistency. We also compare our results with the available total photoabsorption cross
section data.

PACS numbers: 21.60.Jz,24.30.Cz,25,20,Dc

I. INTRODUCTION

In the next few years, radioactive ion beams facilities will provide a large amount of data on unstable nuclei. The
description of the structure of these nuclei is a challenge for the nuclear many-body theories which have been mainly
tested on stable nuclei.
The starting point of our description of nuclear systems is the many-body Schrödinger equation with a two-body

potential built to describe elastic nucleon-nucleon (NN) cross sections and deuteron properties [1, 2]. To this two-body
potential we add a three-body force whose parameters are chosen to reproduce the 3H binding energy [3, 4]. Modern
microscopic calculations, which solve the many-body Schrödinger equation without approximations, describe well the
structure of nuclear few-body systems as well as that of light nuclei [5, 6]. These results establish the validity of
the non relativistic description of atomic nuclei. Unfortunately, the computational complexity of these microscopic
calculations hinders their application to medium and heavy nuclei.
In recent years, there have been great advances in theories which solve the many-body Schrödinger equation with

microscopic interactions by doing well controlled approximations [7–12]. The results are very promising but the
calculations are still computationally rather involved. Probably, the development of these approaches will not be
rapid enough to cover the requirements for the description of the data which will appear in the near future. We think
that, for this purpose, effective theories will play a fundamental role.
Effective theories search for solutions of the many-body Schrödinger equation in a subspace of the full Hilbert space.

Usually this subspace is chosen to be formed by Slater determinants. This restriction requires the modification of the
NN interaction in order to reproduce the energy eigenvalues of the microscopic theory. By using Feshbach’s projection
techniques, it is possible to obtain a formal expression which relates microscopic and effective interactions [13]. In the
common practice, the effective interaction is parametrized, and the values of the parameters are chosen to reproduce
some experimental data.
For example, in the Jülich approach [14, 15], which we shall call here phenomenological Random Phase Approxi-

mation (RPA) approach, the single particle (s.p.) wave functions are produced by a Woods-Saxon potential whose
parameters are chosen to reproduce at best charge radii and s.p. energies near the Fermi level of the nucleus under
investigation. The values of the interaction parameters are selected to reproduce the excitation energy of some particu-
larly collective state, for example, in the 208Pb nucleus, that of the low-lying 3− state. The phenomenological approach
has been applied in the ’80s of the past century to describe, and predict, with success the excitation of the low-lying
spectrum and of the giant resonances mainly in doubly-magic nuclei. This phenomenological approach, based on the
Landau-Migdal theory of finite Fermi systems [16], requires the knowledge of a quite a number of observables in order
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to select the RPA input parameters, i.e. the s.p. basis and the effective interaction. The philosophy of the approach
requires to change the input for every nucleus considered, therefore, despite of its success, the phenomenological RPA
approach is not suitable to predict the structure of experimentally unknown nuclei.
For this purpose, self-consistent RPA approaches are more useful. In these approaches, s.p. wave functions and

energies are obtained by solving the Hartree-Fock (HF) equations. Since the effective interaction used in HF is also
used in the RPA calculation this type of calculations is called self-consistent. In the self-consistent approaches the
values of the parameters of the effective interaction are chosen to reproduce binding energies, and charge radii, of a
large number of nuclei. This fit produces an effective interaction to be used in all the regions of the nuclear chart,
including those so far unexplored by the experiment.
Self-consistent RPA approaches have greater prediction power than phenomenological approaches, but they require

higher level of accuracy and stability of the calculations. For example, the dimension of the s.p. configuration space,
beyond a certain size, is not a problem in the phenomenological approach since the effects of the truncation of the s.p.
basis are taken into account by changing the values of the interaction parameters. This procedure cannot be used any
more in self-consistent approaches, since the interaction parameters are chosen once forever in HF calculations. This
drawback of the self-consistent RPA approach is avoided if the full s.p. configuration space is used in the calculation.
This implies a proper treatment of the continuum part of the s.p. spectrum.
Self-consistent RPA approaches which consider the continuum have been proposed already in the second half of

the ’70s [17–23], but they are applicable only if zero-range interactions are used. In this case the continuum RPA
(CRPA) equations simplify, since direct and exchange matrix elements assume the same expressions, i. e. they are
proportional.
Zero-range effective interactions have the great merit of simplifying the calculations. There are however various

drawbacks in their use, many of them discussed already in Ref. [24] where the D1 parameterization of the finite-range
Gogny interaction was proposed. Here we would like to mention some other aspects more directly related to the
present work. In RPA calculations zero-range interactions produce more collectivity than finite-range interactions.
The difference becomes larger with the increasing value of the momentum transfer [25]. In addition, finite-range
interactions provide a better description of unnatural parity excitations [15, 26, 27]. Finally, finite-range interactions
are more directly comparable with microscopic NN force.
The reasons presented above motivated our work. We developed a formalism capable to solve the CRPA equations

with finite-range interactions. The main problem we had to face was the treatment of the exchange terms of the
interaction matrix elements. In the literature there are few examples of CRPA calculations done with finite-range
interactions [28, 29], and, to the best of our knowledge, only a single case of self-consistent CRPA calculation [30].
The relativistic self-consistent calculations of Ref. [31] use finite range interactions, but in the so-called Hartree
approximation where the exchange terms are neglected. Our approach, which will be described in Sect. II, follows the
lines of that proposed by the Jülich group at the beginning of the ’90s [29]. There are, however, important differences
due to the different manner of generating the s.p. bases. In the Jülich case they are produced by using a Woods-Saxon
potential while in our approach with a HF calculation.
Details and basic ingredients of the calculations, such as interactions, expansion basis, test of convergence etc.,

are presented in Sect. III. A discussion of a selected set of results is done in Sect. IV. We have calculated charge
conserving excitations in three oxygen isotopes and in three calcium isotopes. We compare our CRPA results with
those obtained from discrete RPA calculations, with the results of the phenomenological RPA approach and also with
results obtained by switching off the residual interaction in the RPA calculations. Following the notation of Ref. [32]
we shall label independent particle model (IPM) the results of this last type of calculations. In Sect. V we summarize
the main results of our work and we draw our conclusions.

II. FORMALISM

The RPA theory describes the excited state of a many-body system as linear combination of particle-hole (ph), and
hole-particle (hp) excitations. This implies the existence of a s.p. basis which, in our calculations, is generated by
solving the HF equations:

H [φk(r)] = − ~
2

2m
∇2φk(r) + U(r)φk(r) −

∫
d3r′ W(r, r′)φk(r

′) = ǫk φk(r) , (1)

where we have indicated with H and φk the s.p. hamiltonian and wave function respectively, with U the Hartree
potential

U(r) =
8∑

α=1

∑

j≤F

∫
d3r′ φ∗

j (r
′)Vα(r, r

′)φj(r
′) , (2)
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with W the Fock-Dirac potential

W(r, r′) =

8∑

α=1

∑

j≤F

φ∗
j (r

′)Vα(r, r
′)φj(r) , (3)

and with ǫk the energy eigenvalue of the k-th s.p. state. In the above expressions, the sums on the s.p. states are
restricted to those with energy lower than the Fermi energy, i.e. to the hole states.
In our calculations we consider a two-body NN interaction of the form

Vα(ri, rj) = vα(|ri − rj |) Oα
i,j , with α = 1, 2, . . . , 8 , (4)

where vα are scalar functions of the distance between the two interacting nucleons, and Oα indicates the type of
operator dependence

Oα
i,j : 1 , τ (i) · τ (j) , σ(i) · σ(j) , σ(i) · σ(j) τ (i) · τ (j) ,

S(i, j) , S(i, j)τ (i) · τ (j) , lij · sij , lij · sij τ (i) · τ (j) . (5)

In the above expression we have indicated with σ the Pauli matrix operator acting on the spin variable, with τ the
analogous operator for the isospin, and with

S(i, j) = 3
[σ(i) · (ri − rj)] [σ(j) · (ri − rj)]

(ri − rj)2
− σ(i) · σ(j) (6)

the usual tensor operator. The terms α = 7, 8 indicate the spin-orbit contributions of the force. We include these last
terms only in the HF calculations and we consider them in a zero-range approximation as it is done in Ref. [24].
We solve the HF equations in a spherical basis, and we express the s.p. wave functions as

φt
k(r) = φt

nljm(r) = Rt
nlj(r)

∑

sµ

〈lµ1
2
s|jm〉Ylµ(Ω)χs . (7)

In the above equation, we have indicated with n, l, j and m the principal quantum number, the orbital angular
momentum, the total angular momentum and its z-axis projection, respectively. We use r to indicate the distance
from the center of the nucleus, and Ω to indicate the usual angular coordinates of the polar spherical system. The
symbol 〈 | 〉 indicates the Clebsch-Gordan coefficient, Ylµ is the spherical harmonics and χs the Pauli spinor for the
spin. We call t the third component of the isospin and we use the convention t = 1/2 for protons and t = −1/2 for
neutrons. The radial part of the s.p. wave function satisfies the closure relation

∑

ǫi<ǫF

δik Ri(r)R
∗
i (r

′) +
∑∫

ǫk

Rk(r, ǫk)R
∗
k(r

′, ǫk) = δ(r − r′) , (8)

where we have introduced the symbol

∑∫

ǫk

≡
∑

ǫF≤ǫk≤0

+

∫ ∞

0

dǫk (9)

to indicate a sum and an integration on all the s.p. energies above the Fermi surface. In the following, we shall
indicate explicitly the dependence on the s.p. energies ǫk which can assume both discrete and continuum values. We
shall use the index h to indicate all the quantum numbers identifying a hole s.p. state, energy included, while the
symbol p will indicate all the quantum numbers of the particle state, but the s.p. energy ǫp.
A nuclear excited state |ν〉 ≡ |J,Π, ω〉 is characterized by its total angular momentum J , parity Π and excitation

energy ω. In the CRPA theory, the expression of the operator that applied to the ground state generates the excited
state |ν〉 can be expressed as

Q†
ν =

∑

ph

∑∫

ǫp

[
Xν

ph(ǫp) a
†
p(ǫp) ah − Y ν

ph(ǫp) a
†
h ap(ǫp)

]
, (10)
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where we have indicated with a† and a the usual particle creation and annihilation operators and with X and Y the
RPA amplitudes. The CRPA secular equations whose solution provides the values of X and Y can be written as

(ǫp − ǫh − ω)Xν
ph(ǫp)+

∑

p′h′

∑∫

ǫp′

[
vJph,p′h′(ǫp, ǫp′)Xν

p′h′(ǫp′) + uJ
ph,p′h′(ǫp, ǫp′)Y ν

p′h′(ǫp′)
]
= 0 , (11)

(ǫp − ǫh + ω)Y ν
ph(ǫp)+

∑

p′h′

∑∫

ǫp′

[
vJ∗ph,p′h′(ǫp, ǫp′)Y ν

p′h′(ǫp) + uJ∗
ph,p′h′(ǫp, ǫp′)Xν

p′h′(ǫp′)
]
= 0 . (12)

In the above equations, the interaction terms have been defined as

vJph,p′h′(ǫp, ǫp′) = vJ,dirph,p′h′(ǫp, ǫp′) − vJ,excph,p′h′(ǫp, ǫp′) , (13)

and

uJ
ph,p′h′(ǫp, ǫp′) = (−1)jp′+jh′−J vJph,h′p′(ǫp, ǫp′) , (14)

with

vJ,dirph,p′h′(ǫp, ǫp′) =

∫
dr1 r

2
1

∫
dr2 r

2
2 R

∗
p(r1, ǫp)R

∗
h′(r2)V

J,dir
ph,p′h′(r1, r2)Rh(r1)Rp′(r2, ǫp′) , (15)

vJ,excph,p′h′(ǫp, ǫp′) =

∫
dr1 r

2
1

∫
dr2 r

2
2 R

∗
p(r1, ǫp)R

∗
h′(r2)V

J,exc
ph,p′h′(r1, r2)Rp′(r1, ǫp′)Rh(r2) . (16)

In an analogous way, according to Eq. (14), we define the corresponding u functions. We have used the following
definitions for the quantities related to the interaction

V J,dir
ph,p′h′(r1, r2) =

6∑

α=1

Vα(r1, r2)A
J,α,dir
ph,p′h′ , (17)

V J,exc
ph,p′h′(r1, r2) =

6∑

α=1

Vα(r1, r2)A
J,α,exc
ph,p′h′ , (18)

A
J,α,dir
ph,p′h′ =

∑

K

(−1)jh+jp′+K K̂

{
jp jh J
jp′ jh′ K

}
〈jpjh′K‖Vα(Ω)‖jhjp′K〉 , (19)

A
J,α,exc
ph,p′h′ =

∑

K

K̂

{
jp jh J
jp′ jh′ K

}
〈jpjh′K‖Vα(Ω)‖jp′jhK〉 . (20)

Here for the angular momentum quantum numbers we used the notation â =
√
2a+ 1. The terms in curly brackets

are the Racah 6j symbol and the double bars indicate the reduced matrix element as defined by the Wigner-Eckart
theorem. In our work we adopt the phase conventions of Ref. [33].
In the above equations we have factorized the two-body NN interaction (4) in a radial part Vα(r1, r2), depending

only on the moduli of the positions of the two-interacting nucleons, and in an angular and operator dependent part
Vα(Ω). We have done this factorization by using the Fourier transformed expression of the NN interaction.
Our method of solving the CRPA equations consists in reformulating the secular equations (11) and (12) with new

unknown functions which do not have an explicit dependence on the continuous particle energy ǫp. This is the same
approach adopted in Refs. [28, 29], but in our case the s.p. wave functions are generated by a HF calculation. For
this reason, we present here, with some detail, the various steps bringing to the new CRPA secular equations. The
new unknowns are the channel functions f and g defined as:

fν
ph(r) =

∑∫

ǫp

Xν
ph(ǫp)Rp(r, ǫp) , (21)

and

gνph(r) =
∑∫

ǫp

Y ν∗
ph (ǫp)Rp(r, ǫp) . (22)
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The first step of this procedure consists in multiplying Eqs. (11) and (12) by Rp(r, ǫp), the radial part of the particle
wave function. Considering Eq. (1), we obtain for the left hand side of Eq. (11)

(ǫp − ǫh − ω)Rp(r, ǫp)X
ν
ph(ǫp) = H

[
Rp(r, ǫp)X

ν
ph(ǫp)

]
− (ǫh + ω)Rp(r, ǫp)X

ν
ph(ǫp) . (23)

The second step of the procedure is to integrate on ǫp, the particle energy. For the first term in the right hand side
of the above equation we obtain, using again Eq. (1),

∑∫

ǫp

H
[
Rp(r, ǫp)X

ν
ph(ǫp)

]
= − ~

2

2m
∇2

∑∫

ǫp

Rp(r, ǫp)X
ν
ph(ǫp) + U(r)

∑∫

ǫp

Rp(r, ǫp)X
ν
ph(ǫp)

−
∫

d3r′ W(r, r′)
∑∫

ǫp

Rp(r, ǫp)X
ν
ph(ǫp)

= − ~
2

2m
∇2 fν

ph(r) + U(r) fν
ph(r) −

∫
d3r′ W(r, r′) fν

ph(r
′)

= H
[
fν
ph(r)

]
. (24)

In the above equation we have indicated with ∇2 the usual Laplace operator where the differential terms related to
θ and φ have been already applied to the spherical harmonics providing the correct eigenvalue. Therefore, in our
writing, we imply that only the derivations on r should be done.
The operations described above are applied to all the terms of Eqs. (11) and (12). As example of our calculations,

we write the contribution of the first interaction term of Eq. (11):

∑∫

ǫp

Rp(r, ǫp)
∑

p′h′

∑∫

ǫp′

vJph,p′h′(ǫp, ǫp′)Xν
p′h′(ǫ′p) =

=
∑∫

ǫp

Rp(r, ǫp)
∑

p′h′

∑∫

ǫp′

∫
dr1 r

2
1

∫
dr2 r

2
2 R

∗
p(r1, ǫp)R

∗
h′(r2)

[
V J,dir
ph,p′h′(r1, r2)Rh(r1)Rp′(r2, ǫp′) − V J,exc

ph,p′h′(r1, r2)Rp′(r1, ǫp′)Rh(r2)

]
Xν

p′h′(ǫp′)

=
∑∫

ǫp

Rp(r, ǫp)
∑

p′h′

∫
dr1 r

2
1

∫
dr2 r

2
2 R

∗
p(r1, ǫp)R

∗
h′(r2)

[
V J,dir
ph,p′h′(r1, r2)Rh(r1) f

ν
p′h′(r2) − V J,exc

ph,p′h′(r, r2) f
ν
p′h′(r1)Rh(r2)

]

=
∑

p′h′

∫
dr2 r

2
2 R

∗
h′(r2)

[
V J,dir
ph,p′h′(r, r2)Rh(r) f

ν
p′h′(r2)− V J,exc

ph,p′h′(r, r2) f
ν
p′h′(r)Rh(r2)

]
+ T(r) , (25)

In the above equation we have used the definition (21) and the closure relation (8) and we have defined the term

T(r) = −
∑

ǫi<ǫF

δip Ri(r)

∫
dr1 r

2
1 R

∗
i (r1)

∫
dr2 r

2
2

∑

p′h′

R∗
h′(r2)

[
V J,dir
ph,p′h′(r1, r2)Rh(r1) fp′h′(r2)− V J,exc

ph,p′h′(r1, r2) fp′h′(r1)Rh(r2)

]
, (26)

where, to simplify the writing, we have dropped the dependence of f on ν ≡ (J,Π, ω).
We write a new set of CRPA secular equations where the unknowns are the channel functions f and g,

H [fph(r)] − (ǫh + ω) fph(r) = −FJ
ph(r) +

∑

ǫi<ǫF

δip Ri(r)

∫
dr1 r

2
1 R

∗
i (r1)F

J
ph(r1) , (27)

H [fph(r)] − (ǫh − ω) gph(r) = −GJ
ph(r) +

∑

ǫi<ǫF

δip Ri(r)

∫
dr1 r

2
1 R

∗
i (r1)G

J
ph(r1) , (28)
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where we have defined

FJ
ph(r) =

∑

p′h′

∫
dr2 r

2
2

{
R∗

h′(r2)

[
V J,dir
ph,p′h′(r, r2)Rh(r) fp′h′(r2)− V J,exc

ph,p′h′(r, r2) fp′h′(r)Rh(r2)

]

+ g∗p′h′(r2)

[
UJ,dir
ph,p′h′(r, r2)Rh(r)Rh′(r2) − UJ,exc

ph,p′h′(r, r2)Rh′(r)Rh(r2)

]}
, (29)

and GJ
ph is obtained from the above equation by interchanging the f and g channel functions. The relation between

the U and V symbols is analogous to that of the u and v symbols of Eq. (14). The last terms in the right-hand side
of Eqs. (27) and (28) are zero if there are no hole states having the same angular momenta l and j of the particle
state considered.
We have changed a set of algebraic equations with unknowns depending on the continuous variable ǫp into a set of

integro-differential equations with unknowns depending on the distance from the center of coordinates. The solution
of this problem requires to impose the proper boundary conditions. If the excitation energy ω is above the nucleon
emission threshold, in some of the ph excitation pairs compatible with the angular momentum and the parity of the
final state, the particle has positive energy. We call open channels these ph pairs, and closed channels those pairs
where the particle is in a discrete state.
After fixing the angular momentum J and the parity Π of the excited state, for each value of the excitation energy

ω, we solve Eqs. (27) and (28) a number of times equal to the number of the open channels. Every time we impose a
different boundary condition, i.e. that the particle is emitted only in a specific channel, which we call elastic channel
and we label it as p0h0. For an open ph channel, we impose that the outgoing asymptotic behaviour of the channel

function fp0h0

ph is

fp0h0

ph (r → ∞) → Rp0
(r, ǫp) δp,p0

δh,h0
+ λH−

p (ǫh + ω, r) , (30)

where λ is a complex normalization constant and H−
p (ǫh +ω, r) is an ingoing Coulomb function or a Hankel function

in case of a proton or neutron channel, respectively. The s.p. wave function Rp is eigenfunction of the HF hamiltonian
(1) for positive energy, and is calculated as described in Appendix B.
In the case of a closed channel, the asymptotic behaviour is given by a decreasing exponential function

fp0h0

ph (r → ∞) → 1

r
exp

[
−r

(
2m|ǫh + ω|

~2

) 1

2

]
, (31)

as in the case of the channel functions gp0h0

ph ,

gp0h0

ph (r → ∞) → 1

r
exp

[
−r

(
2m|ǫh − ω|

~2

) 1

2

]
. (32)

We solve the CRPA secular equations (27) and (28) by using a procedure similar to that presented in Ref. [29].
The channel functions f and g are expanded on a basis of sturmian functions Φµ

p which obey the required boundary
conditions (30)-(32).
The sturmian functions Φµ

p are defined as eigenstates of the differential equation [34–38]

[
− ~

2

2m

d2

dr2
− ~

2

m

1

r

d

dr
+

~
2

2m

lp(lp + 1)

r2
− ǫp

]
Φµ

p (r) = −U
µ

p (r)Φ
µ
p (r) , (33)

where m is the particle mass, lp is the orbital quantum number and U
µ

p (r) is a complex square well potential of the
form

U
µ

p (r) =

{
βµ
p + iγµ

p , if r ≤ a ,
0 , if r > a ,

(34)

with βµ
p and γµ

p real constants. The requirement of continuity of Φµ
p at r = a implies that only a discrete set of values

of βµ
p and γµ

p should be considered. In this set of solutions, the index µ is related to the number of nodes of the
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Sturm-Bessel function Φµ
p in the region 0 ≤ r ≤ a. When the value of the index µ increases by one unity, an additional

node appears in the wave function at r ≤ a. The definition of the Sturm-Bessel functions given above implies the
orthogonality relation

(βµ
p + iγµ

p )

∫ a

0

dr r2 Φµ
p (r)Φ

ν
p(r) = δµν . (35)

Since, in general, the Sturm-Bessel functions are not orthogonal to the wave functions of the s.p. hole states, we
find more useful to consider a set of orthogonalized functions which we construct as

Φ̃µ
p (r) = Φµ

p (r) −
∑

ǫi<ǫF

δip R
∗
i (r)

∫
dr′ r′2 Ri(r

′)Φµ
p (r

′) , (36)

where with δip we indicate that in the sum li = lp and ji = jp. By using this set of orthogonalized sturmian functions

we express the channel functions fp0h0

ph and gp0h0

ph as

fp0h0

ph (r) = Rp0
(r, ǫp0

) δpp0
δhh0

+
∑

µ

cµ+ph Φ̃µ+
p (r) , (37)

gp0h0

ph (r) =
∑

µ

cµ−ph Φ̃µ−
p (r) , (38)

where the superscripts + and − indicate that the sturmian functions are calculated for ǫp = ǫh + ω or ǫp = ǫh − ω
respectively. To simplify the writing we drop the explicit dependence on the open channel label p0h0 of all the cµph
expansion coefficients.
We insert the expressions (37) and (38) in the secular equations (27) and (28), and following the steps presented

in Appendix A, we obtain a system of linear equations whose unknowns are the expansion coefficients cµ±ph . The new
CRPA secular equations are

∑

µ

∑

p′h′

{[
δpp′ δhh′

(
δµν − 〈(Φν+

p )∗|U|Φµ+
p 〉 + 〈(Φν+

p )∗ I|W|IΦµ+
p 〉

+
∑

ǫi<ǫF

δip (ǫi − ǫh − ω) 〈(Φν+
p )∗|Ri〉〈(Ri)

∗|Φµ+
p 〉

)

−
(
〈(Φ̃ν+

p )∗Rh′ |V J,dir
ph,p′h′ |RhΦ̃

µ+
p′ 〉 − 〈(Φ̃ν+

p )∗Rh′ |V J,exc
ph,p′h′ |Φ̃µ+

p′ Rh〉
)]

cµ+p′h′

−
(
〈(Φ̃ν+

p )∗Φ̃µ−
p′ |UJ,dir

ph,p′h′ |RhRh′〉 − 〈(Φ̃ν+
p )∗Φ̃µ−

p′ |UJ,exc
ph,p′h′ |Rh′Rh〉

)
(cµ−p′h′)

∗

}
=

= 〈(Φ̃ν+
p )∗Rh0

|V J,dir
ph,p0h0

|RhRp0
(ǫp0

)〉 − 〈(Φ̃ν+
p )∗Rh0

|V J,exc
ph,p0h0

|Rp0
(ǫp0

)Rh〉 , (39)

∑

µ

∑

p′h′

{[
δpp′ δhh′

(
δµν − 〈(Φν−

p )∗|U|Φµ−
p 〉 + 〈(Φν−

p )∗ I|W|IΦµ−
p 〉

+
∑

ǫi<ǫF

δip (ǫi − ǫh + ω) 〈(Φν−
p )∗|Ri〉〈(Ri)

∗|Φµ−
p 〉

)

−
(
〈(Φ̃ν−

p )∗Rh′ |V J,dir
ph,p′h′ |RhΦ̃

µ−
p′ 〉 − 〈(Φ̃ν−

p )∗Rh′ |V J,exc
ph,p′h′ |Φ̃µ−

p′ Rh〉
)]

cµ−p′h′

−
(
〈(Φ̃ν−

p )∗Φ̃µ+
p′ |UJ,dir

ph,p′h′ |RhRh′〉 − 〈(Φ̃ν−
p )∗Φ̃µ+

p′ |UJ,exc
ph,p′h′ |Rh′Rh〉

)
(cµ+p′h′)

∗

}
=

= 〈(Φ̃ν−
p )∗Rp0

(ǫp0
)|UJ,dir

ph,p0h0
|RhRh0

〉 − 〈(Φ̃ν−
p )∗Rp0

(ǫp0
)|UJ,exc

ph,p0h0
|Rh0

Rh〉 . (40)

In the above expressions, with the bra and ket integration convention we indicate integrations on radial variables
only. The number of these integrations is given by the number of the functions inserted between the bra and ket
symbols. For this reason we have inserted the symbol I indicating the identity function.
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Summarizing, we have converted the CRPA secular equations (11) and (12) into a set of algebraical equations whose
unknowns are the expansion coefficients cµph. These equations have a solution for each value of the excitation energy
ω above the nucleon emission threshold.
The solution of the secular CRPA equations provides the channel functions f and g and this allows us to calculate

the transition matrix elements induced by an operator TJ . If the operator TJ inducing the transition is of one-body
type of the form

TJM (r) =

A∑

i=1

FJ(ri) θJM (Ωi) δ(ri − r) , (41)

where we have separated the dependence on the radial and angular parts of the operator, we obtain for the transition
matrix element the expression

〈J‖TJ‖0〉p0h0
=

∑

ph

[
〈jp‖θJ‖jh〉

∫
dr r2 (fp0h0

ph (r))∗ FJ (r)Rh(r)

+ (−1)J+jp−jh 〈jh‖θJ‖jp〉
∫

dr r2 R∗
h(r)FJ (r) g

p0h0

ph (r)

]
, (42)

where with the double bar we indicate the reduced matrix elements of the angular coordinates, as defined in [33].
In this paper we present results regarding nuclear excitations induced by photons. We consider here only natural

parity, electric, excitations, and we use the following expression for the operator TJ

TJM =

A∑

i=1

Zeff
i rJi YJM (Ωi) δ(ri − r) , (43)

where Zeff
i is the effective charge

Zeff
i =





(
N

A

)
1

2
[1 + τ3(i)] −

(
Z

A

)
1

2
[1− τ3(i)] , if JΠ = 1−

1

2
[1 + τ3(i)] , otherwise .

(44)

The second of these expressions is obtained by using an approximation valid for the medium-heavy nuclei we are
studying [39]. In the above equation A, Z and N are the mass, proton and neutron numbers respectively, and
τ3(i) = 1 for protons and −1 for neutrons. For a given excitation energy ω, and electric transition EJ , we calculate
the B-value as the incoherent sum on every open channel p0h0,

B(ω,EJ : 0 → J) =
∑

p0h0

|〈ω, J‖TJ‖0〉p0h0
|2 . (45)

We obtain the total photoabsorption cross section from the B-value by using the expression [40]

σ(ω, 0 → J) = 8 π3 J + 1

J

e2

[(2J + 1)!!]2

( ω

~c

)2J−1

B(ω,EJ : 0 → J) , (46)

where we have indicated with e the elementary charge.

III. DETAILS OF THE CALCULATIONS

The formalism developed in the previous section leads to a set of algebraic equations whose unknowns are the expan-
sion coefficients cµ±ph . The number of coefficients, and therefore the dimensions of the complex matrix to diagonalize,
is an input of our approach.
Since the expansion on a basis of sturmian functions is a technical artifact, the solution of the CRPA secular

equations must be independent of the number of expansion coefficients. We tested the convergence of our results by
controlling the values of the total photoabsorption cross section in 16O and 40Ca nuclei. We reached the stability up
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to the fifth significant figure with 10 expansion coefficients, independently of the multipolarity and of the energy of
the excitation.
In our calculations we have used two different parameterizations of the Gogny interaction, the more traditional D1S

force [41] and the new D1M force [42] obtained from a fit to about 2000 nuclear binding energies and 700 charge radii.
The D1S and D1M forces describe the empirical saturation point of symmetric nuclear matter and reproduce rather
well the behaviour of the equations of state calculated with microscopic approaches [43, 44]. The situation for pure
neutron matter is different, because the behaviour of the D1S equation of state at high densities is unphysical. The
D1M force produces an equation of state which has a plausible behaviour at higher densities, even though it does not
reproduce the results of modern microscopic calculations.
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Figure 1: Comparison between the interactions used in our calculations and the microscopic Argonne V8’ interaction in the
scalar channel, v1, spin channel, v2, isospin channel, v3, and in the spin-isospin channel, v4. The dashed-dotted lines, labelled
FHNC, have been obtained by multiplying the Argonne V8’ terms with the scalar part of the correlation function obtained in
Correlated Basis Function calculations [10].

In Fig. 1 we show the D1S and D1M forces in momentum space, and we compare them with the bare Argonne
V8’ interaction [3]. The scalar, v1 (panel (a)), isospin, v2 (panel (b)), spin, v3 (panel (c)) and spin-isospin, v4 (panel
(d)), channels are shown. The dashed-dotted lines have been obtained by multiplying the Argonne V8’ terms with
the scalar part of the correlation function obtained in the finite nuclei Correlated Basis Function calculations of Ref.
[10]. To be precise we have used the correlation function obtained for the 48Ca nucleus. In any case, these correlation
functions are rather similar for all the nuclei considered (see Fig. 21 of Ref. [10]). The large differences between
microscopic and effective interactions shown in Fig. 1 indicate that the effective interactions take into account a large
number of effects explicitly treated in microscopic calculations. The effects originated by the short-range correlations
are only a limited part of them. It is interesting to notice, in the spin, isospin and spin-isospin channels, the extremely
large values of the D1M interaction, with respect to those of the other forces.
In the next section we shall compare self-consistent CRPA results with those of phenomenological calculations.

The s.p. wave functions of the phenomenological calculations have been obtained by using Woods-Saxon wells, whose
parameters are given in Ref. [10]. The residual interaction is a zero-range, density dependent, Landau-Migdal force
whose parameters are those chosen in Ref. [45].
We have investigated nuclei where the hole s.p. levels are fully occupied. This eliminates deformations and minimizes

pairing effects.

IV. RESULTS

A. Oxygen

We have studied three oxygen isotopes, the doubly magic 16O nucleus, and the 22O and 24O isotopes. In our model,
the heavier isotopes are obtained from the 16O core by filling, respectively, the neutron 1d5/2, and the 2s1/2 s.p. levels.
The ground state properties of these three isotopes, obtained in HF calculations with the D1S and D1M interactions,
are presented in Table I, and in Figs. 2 and 3.
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D1S D1M
16O 22O 24O 16O 22O 24O

E/A -8.093 -7.372 -7.012 -7.955 -7.254 -6.912

protons

1s1/2 -35.37 -46.43 -48.64 -32.74 -43.38 -45.65

1p3/2 -18.58 -29.89 -32.32 -17.63 -28.71 -31.18

1p1/2 -12.49 -23.99 -25.97 -11.91 -23.60 -25.60

neutrons

1s1/2 -38.61 -41.02 -41.11 -36.00 -38.32 -38.46

1p3/2 -21.82 -22.11 -22.43 -20.91 -20.72 -21.15

1p1/2 -15.63 -18.53 -17.22 -15.10 -17.35 -16.29

1d5/2 -6.56 -7.01 -6.34 -6.85

2s1/2 -4.13 -4.09

Table I: Nuclear binding energies per nucleon, E/A, and s.p. energies of the three oxygen isotopes we have considered, calculated
within the HF approach by using the D1S and D1M interactions. All the quantities are expressed in MeV. The values of the
experimental binding energies are -7.976, -7.365 and -7.016 MeV for 16O, 22O and 24O, respectively.
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Figure 2: Panel (a): charge density distributions of the 16O nucleus. The shaded area represents the empirical density
distribution [46]. The other lines show the distributions obtained in HF calculations with the D1S and D1M interactions (full
and dashed lines, respectively) and that obtained with the Woods-Saxon potential of Ref. [10] (dotted line). Panel (b): elastic
electron scattering cross sections calculated in Distorted Wave Born Approximation by using the charge distributions shown
in the upper panel, as a function of the scattering angle θ. The empirical charge distribution plotted in the upper panel
(dashed-dotted line) has been obtained from a fit to the data taken from Ref. [48, 49]. The numbers in the panel indicate the
values of the electron energy.

We show in Table I the binding energies per nucleon, E/A, and the s.p. energies of the three oxygen isotopes.
The agreement with the experimental binding energies, whose values are given in the table caption, is within the
few percent. We observe that the D1M interaction is slightly less attractive than the D1S one. In any case, these
are relatively small differences and we may state that, despite the fact that the two interactions are rather different,
as we have shown in Fig. 1, they give very similar descriptions of the binding and s.p. energies of the three nuclei
considered. The results of the table show that the proton s.p. states become more bound with the increasing of the
number of neutrons.
In the panel (a) of Fig. 2 we show the 16O charge distributions obtained in HF calculations where the D1S and D1M

forces have been used, and we compare them with the empirical charge distribution taken from Ref. [46]. Our charge
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Figure 3: Proton ρp, neutron ρn and matter ρm distributions for the three oxygen isotopes we have considered, obtained in HF
calculations with the D1S and D1M interactions.

distributions have been obtained by folding the proton distributions with a dipole proton electromagnetic form factor.
We have verified that more modern, and accurate, form factors do not produce sizable differences in our results. Our
calculations describe well the empirical charge density on the surface but they underestimate it in the center of the
nucleus. We show in panel (b) of Fig. 2 the elastic electron scattering cross section calculated in Distorted Wave Born
Approximation [47] by using the charge distributions shown in the panel (a). We compared our results with the data
of Ref. [48, 49]. The differences between theoretical and empirical densities show up in the cross sections at large
momentum transfer. The charge distribution obtained with the Woods-Saxon potential by using the parameters of
Ref. [10], does not make a better job in describing the empirical density, which is now overestimated in the nuclear
center.
In Fig. 3, we show the proton, neutron, and matter distributions, ρp, ρn and ρm respectively, for the three oxygen

isotopes we have considered. The matter distribution is the sum of the proton and neutron ones. We do not remark
relevant differences between the results obtained with the two different interactions. The shapes of the neutron
distributions show the effects of the filling of the s.p. levels, which are empty in the lighter isotopes. In the 22O
nucleus the 1d5/2 level, empty in 16O , is completely occupied. This level gives a contribution mainly on the surface.

The rms radius of the neutron distribution changes from 2.64 fm in 16O to 3.00 fm in 22O, for the D1S interaction,
and from 2.61 fm to 2.97 fm for the D1M interaction. The situation is different in 24O, where the new s.p. level
to be occupied is the 2s1/2. In this case, the main effect is in the center of the nucleus. The values of the neutron
distributions rms radii are 3.17 fm and 3.12 fm for the D1S and D1M interaction respectively. It is a relatively small
change on the neutron distribution surface.
The proton distributions are interesting since there is no change in the occupation of the s.p. levels in the different

isotopes, therefore all the differences are produced by the interaction between protons and neutrons. In the panels
(a) and (d) of Fig. 3 we show the proton distributions of the three oxygen isotopes. We notice that the increase of
the neutron number produces a change in the interior of the nucleus. The proton 1s1/2 s.p. wave function becomes
wider the heavier is the isotope, and since the normalization is conserved, the value of wave function at the center of
the nucleus becomes smaller. The rms radius of these distributions changes from 2.20 fm in 16O to 2.45 fm in 24O
almost independently of the interaction used. The relevant lowering of the proton distribution in the nuclear center
is produced to compensate the increase of the neutron density (see panels (b) and (e)). In the panels (c) and (f) we
also show the matter distributions and we observe that the differences between the various isotopes are smaller than
those shown separately by the proton and neutron distributions.
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So far, we have presented HF results which are related to the ground states properties of the three oxygen isotopes.
We discuss now the excitation spectra obtained by our CRPA calculations. A first point we have investigated is related
to the relevance of the proper treatment of the continuum in the self-consistent CRPA calculations. Our study has
been conducted by comparing our CRPA results with the results of discrete RPA calculations, such as those of Ref.
[27]. This is the same strategy adopted in Ref. [30] and, within a relativistic framework, in Ref. [50]. The discrete
set of s.p. states is obtained by solving the HF equations in a box with bound state boundary conditions. For all
oxygen isotopes we use a box radius of 12 fm. Larger values of this radius do not change binding and s.p. energies up
to the fifth significant figure. There is not such a stability for the unbound, ǫp > 0, s.p. wave functions and energies.
We have controlled the stability of the RPA results by selecting the maximum value of the particle-hole excitation
energy, ǫmax

ph , used in the RPA calculation. For a given total angular momentum and parity of the excitation, this
value determines the number of s.p. states forming the configuration space of the discrete calculation.
The quantity we have considered for these convergence tests is the centroid energy, which we calculate as

〈ω〉J =

∫ ωmax

ωmin

dω ω B(ω,EJ : 0 → J)

∫ ωmax

ωmin

dω B(ω,EJ : 0 → J)

. (47)

We have studied the convergence for the 1− and 2+ excitations in all the nuclei we have investigated, and we have
found that the change from ǫmax

ph =200 MeV to ǫmax
ph =250 MeV modifies the value of the centroid energies for less than

one part on a thousand. All the discrete RPA results we present here have been obtained by using ǫmax
ph =250 MeV.

Our choice ensures the convergence of discretized RPA calculations done with HF basis which has been generated by
using a specific value of the box size.
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Figure 4: Total photoabsorption cross sections calculated with discrete and continuum RPA approaches. The vertical bars
show the discrete results, and the solid lines those of the CRPA calculations. The excitation multipole is the 1−. The upper
panels show the results obtained with the D1S interaction, the lower panels with the D1M interaction.

In Fig. 4 we compare the total photoabsorption cross sections calculated for the excitation of the 1− resonance in
the three oxygen isotopes we have studied. The vertical bars show the discrete RPA results and the solid lines those
of the CRPA calculations. In the upper panels we present the results obtained with the D1S interaction, and in the
lower panels those obtained with the D1M interaction.
In the 16O nucleus, the agreement between the results of the two different calculations is rather good. Discrete

results have their maxima in the same position of those of the continuous solutions. There are peaks around 30, 35
and 40 MeV which do not have corresponding partners in the CRPA cross sections. The D1M cross sections are
slightly smaller, indicating, again, that this interaction is less attractive than the D1S force. The situation is more
complicated in 22O. Discrete and continuum results have similar structures, but the positions of the peaks are slightly
different. In any case, the cross sections show a richer structure than in the 16O case. This situation is worsening in
24O where the peaks of the continuous cross sections do not correspond to those of the discrete calculation.
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Figure 5: The same as Fig. 4 for the 2+ multipole excitation.

We show in Fig. 5 analogous results for the excitation of the 2+ resonance. In this case the results of the discrete
RPA are rather different from those of the CRPA, even in the 16O nucleus. The discrete calculations show clusters of
peaks not present in the continuous calculations.

16O 22O 24O

1−

RPA-D1S 26.34 24.87 22.82

CRPA-D1S 27.17 25.11 23.07

RPA-D1M 26.36 24.72 22.81

CRPA-D1M 27.23 25.04 23.20

2+

RPA-D1S 28.43 32.91 31.58

CRPA-D1S 30.47 33.47 32.20

RPA-D1M 28.19 32.26 30.93

CRPA-D1M 30.51 33.06 31.06

Table II: Centroid energies in MeV, Eq. (47), for the 1− and 2+ electromagnetic excitations in the three oxygen isotopes we
have studied, obtained with discrete (RPA) and continuum (CRPA) calculations.

We show in Table II the centroid energies of the electromagnetic responses obtained in discrete and continuum RPA
calculations. We have considered for ωmin the values corresponding to the continuum thresholds. The 1− resonances
have been integrated up to ωmax= 60 MeV, while the 2+ resonances up to ωmax= 120 MeV. The relative differences
between these centroid energies are smaller than 2% in the 1− case. In the case of the 2+ excitation we reach the
maximum value of 4% relative difference between the D1M results in 16O.
While the 1− response to photon excitations is essentially of pure isovector character, the 2+ response is a combi-

nation of isoscalar (IS) and isovector (IV) modes. For the 2+ excitation we have separated the IS and IV responses
by including in the expression of the B(EJ) value of Eq. (45) the operators

T IS
JM =

A∑

i=1

rJi YJM (Ωi) (48)

T IV
JM =

A∑

i=1

rJi YJM (Ωi) τ3(i) (49)
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Figure 6: Isoscalar (IS) and isovector (IV) strengths of the 2+ excitation mode for the oxygen isotopes we have studied.

with J = 2. We show in Fig. 6 the IS and IV responses for the 2+ excitation of all the three oxygen isotopes we
have investigated obtained by using the D1S and the D1M interactions. The IS responses are concentrated at lower
energies and show a sharp peak, while the IV responses are broader and they have less pronounced maxima at higher
energies. In the 16O nucleus the IS quadrupole resonance has been identified in α scattering processes at a peak
energy of about 21 MeV [51], to be compared with the peak energies of 21.7 and 21.6 MeV obtained with the D1S
and D1M forces respectively. The centroid energies of our calculations for the 16O nucleus, calculated for ωmax=100
MeV are 22.94 and 23.13 MeV for D1S and D1M interactions respectively. If we consider ωmax=40 MeV we obtain
22.12 and 22.24 MeV for these centroid energies.
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Figure 7: Total photoabsorption cross sections for the 1− (panel (a)) and 2+ (panel (c)) excitations. Experimental data (solid
squares) are from Ref. [52]. In panels (b) and (d), we show the sum rule exhaustion functions, Eq. (50), for the two multipole
excitations. The grey area indicates the same function calculated for the experimental data. Full and dashed lines show the
CRPA results obtained with the D1S and D1M interactions, respectively, and the dotted and dashed-dotted lines the IPM
results obtained with the D1S and D1M HF single particle wave functions, respectively. The horizontal lines indicate the sum
rule limiting values obtained by using a nuclear matter estimate of the enhancement factor. The values of the TRK sum rule
is 240 mb MeV.

Another point we have investigated is related to the effects of the residual interaction in CRPA calculations. In Fig.
7 the CRPA results (solid and dashed curves) are compared with the IPM results (dotted and dashed-dotted curves),
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obtained by switching off the residual interaction in the CRPA calculation, and with the data of Ref. [52]. Since
more than the 90% of the contribution to the total photoabsorption cross section is given by the 1− excitation, we
compare the data with results of this excitation mode. The contribution of the 2+ excitation to the photoabsorption
cross section is shown in the panel (c) of the figure, and it is one order of magnitude smaller than the contribution of
the 1− mode. In the lower panels we present the sum rule exhaustion functions,

SR(ω) =

∫ ω

0

dω′ σ(ω′) , (50)

calculated for the cross sections shown in the upper panels.
The results obtained with the D1S interaction do not show significant differences with respect to those obtained

with the D1M interaction. Evidently, only the CRPA calculations predict the presence, and also the positions, of the
resonances. The positions of the peaks are well reproduced for both multipole excitations by the CRPA calculations,
while the IPM results do not give a good description of the data. The sum rule functions obtained with the IPM
calculations are smaller than those of the CRPA. The differences are larger for the 1− excitation than for the 2+

excitation. This may be due to the different isospin character of the two excitations, which, as we have already
pointed out, is mainly IV in the 1− mode, and a combination of IS and IV in the 2+ mode. In the 1− case, the
energies of the peaks of the CRPA cross sections are larger than those of the IPM results. This because the residual
interactions are repulsive in the isovector channel. The situation is inverted for the lower energy peaks of the 2+

excitation mode. The CRPA cross sections present peaks at lower energies than those of the IPM calculations. This
indicates that the interactions are attractive in the isoscalar channel. The other, wider, 2+ resonances peaked at
energies of about 42 MeV, have, instead, IV character, and their energies are slightly greater than those of the IPM
ones.
The comparison of the CRPA results with the photoabsorption data emphasizes the well known limitations of the

RPA description of the giant resonances. The strength is too concentrated in the peak region, and the data show a
wider energy distribution. The sum rule functions of the panel (b) of Fig. 7 further confirm these deficiencies. Even
though experimental and CRPA curves seem to have the same limiting values, the CRPA curves saturate much earlier
than the experimental one. Again, the strength is too concentrated in the resonance region.
The saturation value given by the Thomas-Reiche-Khun (TRK) sum rule is of 240 mb MeV. The isospin dependence

of our interactions is responsible for the fact that our calculations saturate at higher values. The calculation of the
enhancement factor κ of the TRK sum rule is rather involved for finite-range interactions [53]. We use the values
of κ for the D1S and D1M interactions obtained by a nuclear matter estimate [30]. We obtain κ=0.65 for the D1S
interaction and κ=0.50 for the D1M force. These values correspond in 16O to sum rule limiting values of 396 and
360 mb MeV for the D1S and D1M interaction respectively. As we show in the panel (b) of Fig. 7, these values are
compatible with the results we obtain with our CRPA calculations.
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Figure 8: Comparison between the self-consistent CRPA results obtained with the D1S interaction (full lines), the D1M
interaction (dashed lines) and those obtained with the phenomenological approach of Refs. [54, 55] where a Landau-Migdal
interaction has been used (dotted lines).

Another issue we have investigated is the capacity of a phenomenological CRPA approach to predict the excitation
spectra of experimentally unknown nuclei. For this reason we have calculated the 1− and 2+ excitations of the three
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D1S D1M
40Ca 48Ca 52Ca 40Ca 48Ca 52Ca

E/A -8.579 -8.639 -8.344 -8.462 -8.537 -8.260

protons

1s1/2 -44.82 -51.31 -54.01 -41.01 -46.90 -49.35

1p3/2 -30.04 -37.61 -40.02 -27.84 -34.91 -37.16

1p1/2 -26.05 -33.89 -35.76 -24.14 -31.74 -33.60

1d5/2 -16.02 -23.89 -26.37 -15.15 -22.65 -25.07

2s1/2 -10.52 -17.12 -20.93 -9.91 -16.17 -19.98

1d3/2 -9.18 -16.96 -19.29 -8.75 -16.54 -18.82

neutrons

1s1/2 -52.07 -53.20 -53.14 -48.44 -49.57 -49.52

1p3/2 -37.09 -37.89 -37.88 -35.00 -35.60 -35.71

1p1/2 -33.01 -35.32 -34.46 -31.21 -33.23 -32.56

1d5/2 -22.96 -22.92 -23.09 -22.15 -21.84 -22.13

2s1/2 -17.54 -18.27 -17.40 -17.03 -17.69 -17.89

1d3/2 -15.95 -17.83 -18.85 -15.57 -17.09 -16.83

1f7/2 -9.39 -9.76 -9.25 -9.71

2p3/2 -5.49 -5.50

Table III: Nuclear binding energies per nucleon, E/A, and s.p. energies of the three calcium isotopes we have considered,
calculated within the HF approach by using the D1S and D1M interactions. All the quantities are expressed in MeV. The
values of the experimental binding energies are -8.551, -8.666 and -8.396 MeV for 40Ca, 48Ca and 52Ca, respectively.

oxygen isotopes by using the phenomenological approach of Refs. [54, 55]. In the phenomenological calculations we
solved the CRPA equations without exchange terms by using a zero-range Landau-Migdal force, whose parameters are
those of Ref. [45]. In this approach the s.p. wave functions are generated by solving the one-body Schrödinger equation
with a Woods-Saxon potential. For all the oxygen isotopes, we used the parameters of the Woods-Saxon potential of
16O given in [10]. In Fig. 8 we compare our self-consistent CRPA results with those of the phenomenological approach
which are indicated by the dotted lines.
The phenomenological results compare rather well with experimental data [52] and with our self-consistent CRPA

results in the case of the 1− excitation of the 16O nucleus. The position of the peak coincides with that obtained in
the self-consistent calculations, and all of them are rather close to the experimental one. We remark, however, that
the global strength of the phenomenological result is smaller than that produced in the self-consistent approach. The
reasonable agreement between the CRPA results obtained in the case of the 1− excitation in 16O is peculiar since all
the other cases show large differences between phenomenological and self-consistent results. The phenomenological
calculation predicts the isoscalar 2+ excitation of 16O at 21 MeV energy, but it fails in describing the isovector excita-
tion at higher energies. The differences between the results of the phenomenological and self-consistent calculations in
the other two oxygen isotopes are large. The total strengths of the phenomenological cross sections are much smaller
than those of the self-consistent ones. Great part of the resonance structure of the self-consistent cross sections is
absent in the phenomenological results.

B. Calcium

The same type of investigation done for the oxygen isotopes has been repeated for three calcium isotopes: 40Ca,
48Ca and 52Ca. The ground state properties of these nuclei are presented in Table III and in Figs. 9 and 10. In Table
III we give the values of the binding and s.p. energies. As in case of oxygen, the agreement with the experimental
binding energies is within few percents. To be precise, we remark that the D1S results are slightly better than those
obtained with the D1M force. Also in these calculations the D1M force shows less attraction than the D1S interaction.
As in the case of oxygen, the proton s.p. levels become more bound with increasing number of neutrons.
In the upper panels of Fig. 9 we show the charge distributions of 40Ca and 48Ca nuclei. We use these charge

distributions to calculate in Distorted Wave Born Approximation the elastic electron scattering cross sections. These
cross sections are compared with the experimental data [49, 56–59] in the lower panels of the figure. In the figure we
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[46]. The elastic electron scattering data on 40Ca from Refs. [56–58], and those of 48Ca from Refs. [49, 59], have been rescaled
to match a unique electron energy of 400 MeV.

also show, with the dotted lines, the charge densities and the associated cross sections obtained from phenomenological
calculations done by using the Woods-Saxon potential with the parameters given in Ref. [10]. The dashed-dotted
lines showing the empirical densities are taken from the compilation of Ref. [46]. The results of our HF calculations
show a better agreement with the data than those of the phenomenological calculations.
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Figure 10: Proton ρp, neutron ρn and matter ρm distributions for the three calcium isotopes, obtained in HF calculations with
the D1S and D1M interactions.

The proton, neutron and matter distributions of the three calcium isotopes are shown in Fig. 10. The main features
pointed out in the discussion done for the oxygen isotopes are present also in this case, where there are, however,
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remarkable differences in the details. In the oxygen isotopes the 2s1/2 state was occupied only by the neutrons in

the 24O nucleus. In the calcium isotopes we have considered, the 2s1/2 state is always occupied in both proton and

neutron cases. The 48Ca is obtained from the 40Ca nucleus by filling the neutron 1f7/2 state, and the 52Ca by filling,
in addition, the neutron 2p3/2 state. In the panel (b) of Fig. 10 it is shown that the filling of the 1f7/2 state increases
the neutron surface, and leaves practically unmodified the density at the center of the nucleus. The filling of the
2p3/2 state modifies the neutron density mainly around 2.0 fm, but it produces also a small lowering at the nuclear
center. These modifications change the proton densities at the nuclear center as it is shown in the panel (a). The
matter distributions obtained with the D1S interaction, and shown in panel (c), are rather smooth in the nuclear
interior. The D1M interaction generates in 40Ca narrow s-waves, and this produces a large proton distribution in the
nuclear center. The corresponding neutron distribution, panel (e), has a hole in the center, and this compensates the
peak of the proton distribution and produces a matter distribution rather smooth. The same type of considerations
can be done also for the distributions of the 52Ca isotope. In general, we observe that, as in the oxygen case, the
HF calculations find the optimal matter distributions which is rather smooth, even though the separated proton and
neutron densities may show some rapid changes.
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The comparison between discrete and continuum RPA results is done in Figs. 11 and 12 for the 1− and 2+ multipole
excitations, respectively. As in the oxygen case, we show the contributions to the total photoabsorption cross sections.
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The agreement between the results of discrete and continuum RPA calculations is slightly worse than in the oxygen
case. Both type of calculations produce resonances, however the total strengths predicted by the discrete RPA are
about one half those of the CRPA. For the calcium isotopes, this result is common to all the nuclei, interactions and
multipole excitations we have investigated.

40Ca 48Ca 52Ca

1−

RPA-D1S 22.37 22.27 20.56

CRPA-D1S 21.89 22.40 20.63

RPA-D1M 22.10 21.86 20.24

CRPA-D1M 22.42 21.77 20.33

2+

RPA-D1S 24.66 27.34 26.84

CRPA-D1S 25.02 26.89 26.14

RPA-D1M 24.39 26.70 26.12

CRPA-D1M 27.36 26.29 25.49

Table IV: Centroid energies in MeV, Eq. (47), for the 1− and 2+ electromagnetic excitations in the various calcium isotopes.
The discrete RPA results have been obtained by using ǫmax

ph =250 MeV.

We show in Table IV the centroid energies of the electromagnetic responses obtained in discrete and continuum
RPA calculations. As we have done for the oxygen isotopes we have taken for ωmin the values corresponding to the
continuum thresholds for the various calcium isotopes. The 1− resonances have been integrated up to ωmax= 40 MeV,
while the 2+ resonances up to ωmax= 100 MeV. The relative differences between these centroid energies are smaller
than 1% for the 1− excitations and reach the value of about the 6% for the 2+ states. We have studied separately the
centroid energies of the IS and IV components of the 2+ excitations. By selecting the same values of ωmin and ωmax

we reproduce the energy differences of Ref. [30].
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Figure 13: IS and IV strengths of the 2+ excitation mode for the calcium isotopes we have studied.

The structure of the electromagnetic 2+ strength distributions is analogous to that of the oxygen isotopes. They
are characterized by a narrow IS peak at lower energies, here around 17-18 MeV, and a much wider IV resonance at
higher energies. The IS and IV 2+ responses are separately shown in Fig. 13 for the three calcium isotopes we are
studying, and for the two interactions we are using. The peak of the IS 2+ resonance has been identified in 40Ca at
17.7±0.2 MeV in α scattering processes [60]. This value should be compared with the peak energy of 17.4 MeV in
CRPA calculations done with both D1S and D1M forces. The presence of an IV 2+ resonance in 40Ca around 32
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MeV has been indicated in the analysis of radiative neutron capture data [61]. Our calculations produce wide, and
fragmented, IV resonances. We have peaks around 32 MeV but also around 35 MeV.
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Figure 14: The same as Fig. 7 for 40Ca . Experimental data (solid squares) are from Ref. [52]. The value of the TRK sum
rule is 600 mb MeV.

In Fig. 14 we compare our 40Ca CRPA results with the total photoabsorption data of Ref. [52] and with the result
of the IPM calculations. The same observations done for the oxygen case are valid also here. The IPM results are
unable to describe the experimental cross section. The sum rule functions (50) shown in the panels (b) and (d) of the
figure confirm what we have observed in the oxygen case. The strengths of the IPM results are much smaller than
those of the CRPA calculations. In the 1− case, the CRPA sum rule function reaches the empirical value but too
early with respect to the empirical behaviour. This indicates that the strength is too concentrated in the resonance
region.
The value of the traditional TRK sum rule is 600 mb MeV, much lower than the limiting values obtained by our

CRPA calculations. The nuclear matter estimates of the enhancement factors gives limiting values of the sum rules
of 990 and 900 mb MeV for the D1S and D1M interactions, respectively. We show in the panel (b) of Fig. 14 that
these values are compatible with out CRPA results.
Also in the case of the calcium isotopes we have compared our self-consistent CRPA results, with those of the

phenomenological approach. We obtain results analogous to those shown in the oxygen case. The phenomenological
results show less strength and structure than the self-consistent ones.

V. CONCLUSIONS

In this article we presented a technique to solve the CRPA equations in a self-consistent framework. In our
calculations we used Gogny-like finite-range interactions containing zero-range density dependent terms. Also the
spin-orbit term, used only in the HF calculations, is of zero-range type. We have shown results for the A = 16, 22
and 24 oxygen isotopes, and for A = 40, 48 and 52 calcium isotopes. We have compared our results with the available
experimental total photoabsorption data. We have studied the need of a proper treatment of the continuum, by
comparing our results with those obtained by discrete RPA calculations. The need of a self-consistent approach has
been investigated by making a comparison with the results of phenomenological CRPA calculations.
We summarize here below the main results of our study.

- The D1S and D1M forces are very different if compared in the various interaction channels Eq. (5). However,
they produce very similar results, both in HF and in CRPA calculations.

- In the HF calculations the global matter distribution, given by the sum of the proton and neutron distributions,
is modified to obtain the minimization of the total energy of the system. We have shown in Figs. 3 and 10
that the HF minimization procedure produces rather smooth matter distributions, even though separately, the
proton and neutron densities may strongly variate.
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- With the increasing number of neutrons, the protons s.p. states become more bound, as we have shown in Tabs.
I and III. This effect is not relevant for the charge conserving excitations, those treated in this work, but it may
have consequences in charge exchange excitations.

- The IPM calculations of the nuclear responses are unable to provide the proper strength of the multipole
excitation. This confirms a well known fact that IPM calculations do not predict the presence of giant resonances
in the nuclear excitation spectrum.

- The comparison with discrete RPA results shows the need of a correct treatment of the continuum in self-
consistent calculations. In discrete calculations we have used s.p. configuration spaces large enough to ensure
the stability of the results in the low-lying states and in the giant resonance excitation regions. Discrete RPA
calculations can reproduce some bulk properties of the excitation, the centroid energies for example, but they
fails in the detailed description. Discrete RPA responses show clustering of excited stated that the CRPA
strength distributions do not have.

- The phenomenological CRPA results are similar to those of the self-consistent CRPA calculations in 16O and
40Ca . The input parameters of the phenomenological calculations have been chosen to reproduce some ex-
perimental quantities in these nuclei. On the contrary, when we apply this approach to the other isotopes, we
found results which are rather different from those obtained with the self-consistent approach. This indicates
the inadequacy of the phenomenological approach in the study of nuclei lying in experimentally unexplored
parts of the nuclear isotope chart.

- Self-consistent CRPA calculations describe rather well the experimental positions of the giant resonance peaks,
for both the 1− and the 2+ excitations. On the other hand, the strength distributions are incorrect since they are
concentrated in the peak region, while the experimental distributions are wider. This is a well known deficiency
of the RPA description of nuclear giant resonances. There are strong indications that the problem could be
solved by considering the excitation of two particle-two hole pairs [62–64].

The work presented here is the first step of a project aiming to apply a self-consistent computational scheme to
many other observables and nuclei. The next step of our work will be the study of unnatural parity excitations, and
for this investigation we shall consider a tensor term in the interaction [65]. It has been shown that this term slightly
affects the ground state properties, [66, 67] but it has more relevant effects on the spectrum of magnetic states [26, 27].
The study of charge-exchange excitations will be a following step.

Appendix A: Expansion of the CRPA equations on a basis of sturmian functions

In this appendix we derive Eqs. (39) and (40) by inserting the expansions (37) (38) of the f and g functions on the
sturmian functions basis in the CRPA secular equations (27) and (28). We insert the expression (37) in the first term
of Eq. (27) and, by using the definition (36) of the orthogonalized sturmian functions and the fact that Rp(r, ǫp) is
an eigenfunction of the s.p. hamiltonian H (see Eq. (1)) for the eigenvalue ǫp = ǫh + ω, we obtain

H[fp0h0

ph (r)] − (ǫh + ω) fp0h0

ph (r) = H

[
Rp0

(r, ǫp) δpp0
δhh0

+
∑

µ

cµ+ph Φ̃µ+
p (r)

]

−(ǫh + ω)
[
Rp0

(r, ǫp) δpp0
δhh0

+
∑

µ

cµ+ph Φ̃µ+
p (r)

]

=
∑

µ

cµ+ph

{
H[Φµ+

p (r)] − (ǫh + ω)Φµ+
p (r) (A1)

−
∑

ǫi<ǫF

δip (ǫi − ǫh − ω)Ri(r)

∫
dr′ r′2 Ri(r

′)Φµ+
p (r′)

}
.

The sum of the last term is limited to the states below the Fermi surface having the same orbital and total angular
momentum of the particle state. Using the definition of the Sturm-Bessel functions given in Eq. (33), we obtain for
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the above expression

H[fp0h0

ph (r)] − (ǫh + ω) fp0h0

ph (r) =

= −
∑

µ

cµ+ph

{[
U

µ

p (r) − U(r)
]
Φµ+

p (r) +

∫
dr′ r′2 W(r, r′)Φµ+

p (r′)

+
∑

ǫi<ǫF

δip (ǫi − ǫh − ω)Ri(r)

∫
dr′ r′2 Ri(r

′)Φµ+
p (r′)

}
, (A2)

where we have used the fact that, from Eqs. (1) and (33), we have

H
[
Φµ+

p (r)
]
− [U(r) + ǫp] Φ

µ+
p (r) +

∫
dr′ r′2 W(r, r′)Φµ+

p (r′) = −U
µ

p (r)Φ
µ+
p (r) . (A3)

Multiplying the above expression by r2 Φν+
p (r) and integrating on r we obtain:

∫
dr r2 Φν+

p (r)
{
H[fp0h0

ph (r)] − (ǫh + ω) fp0h0

ph (r)
}

=

= −
∑

µ

cµ+ph

{
δµν −

∫
dr r2 Φν+

p (r)

[
U(r)Φµ+

p (r) −
∫

dr′ r′2 W(r, r′)Φµ+
p (r′)

−
∑

ǫi<ǫF

δip (ǫi − ǫh − ω)Ri(r)

∫
dr′ r′2 Ri(r

′)Φµ+
p (r′)

]}

≡ −
∑

µ

cµ+ph

{
δµν − 〈(Φν+

p )∗|U|Φµ+
p 〉 + 〈(Φν+

p )∗ I|W|IΦµ+
p 〉

+
∑

ǫi<ǫF

δip (ǫi − ǫh − ω) 〈(Φν+
p )∗|Ri〉〈(Ri)

∗|Φµ+
p 〉

}
, (A4)

where we have used the orthogonality relation (35). The number of the radial integrations is given by the number
of the functions indicated in the bra and ket symbols. For this reason, in the terms with W we have inserted I to
indicate the identity function.
For the right-hand side of Eq. (27), using the orthogonality relation (36) we obtain

∫
dr r2 Φν+

p (r)

[
− F

J
ph(r) +

∑

ǫi<ǫF

δip Ri(r)

∫
dr′ r′2 R∗

i (r
′)FJ

ph(r
′)

]
=

= −
∫

dr r2

[
Φ̃ν+

p (r) +
∑

ǫi<ǫF

δip R
∗
i (r)

∫
dr′ r′2 Ri(r

′)Φν
p(r

′)

]
FJ
ph(r)

+

∫
dr r2 Φν+

p (r)
∑

ǫi<ǫF

δip Ri(r)

∫
dr′ r′2 R∗

i (r
′)FJ

ph(r
′)

= −
∫

dr r2 Φ̃ν+
p (r)FJ

ph(r) . (A5)
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Using now Eqs. (29), (37) and (38) we have

−
∫

dr r2 Φ̃ν+
p (r)FJ

ph(r) = −
∫

dr r2 Φ̃ν+
p (r)

∑

p′h′

∫
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[
V J,dir
ph,p′h′(r, r

′)Rh(r) f
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p′h′(r′)− V J,exc
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p′h′(r)Rh(r
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]
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∫
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∑

p′h′

∫
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+
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+
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′)Rh(r)Rh′(r′) − UJ,exc
ph,p′h′(r, r

′)Rh′(r)Rh(r
′)

]}

= −〈(Φ̃ν+
p )∗Rh0

|V J,dir
ph,p0h0

|RhRp0
(ǫp0

)〉 −
∑

p′h′

∑

µ

cµ+p′h′〈(Φ̃ν+
p )∗Rh′ |V J,dir

ph,p′h′ |RhΦ̃
µ+
p′ 〉

+ 〈(Φ̃ν+
p )∗Rh0

|V J,exc
ph,p0h0

|Rp0
(ǫp0

)Rh〉 +
∑

p′h′

∑

µ

cµ+p′h′〈(Φ̃ν+
p )∗Rh′ |V J,exc

ph,p′h′ |Φ̃µ+
p′ Rh〉

−
∑

p′h′

∑

µ

(cµ−p′h′)
∗ (A6)

[
〈(Φ̃ν+

p )∗Φ̃µ−
p′ |UJ,dir

ph,p′h′ |RhRh′〉 − 〈(Φ̃ν+
p )∗Φ̃µ−

p′ |UJ,exc
ph,p′h′ |Rh′Rh〉

]
.

Putting together Eqs. (A4) and (A7), we find a new expression of the CRPA secular equation Eq. (27)

∑

µ

∑

p′h′

{[
δpp′ δhh′

(
δµν − 〈(Φν+

p )∗|U|Φµ+
p 〉 + 〈(Φν+

p )∗ I|W|IΦµ+
p 〉

+
∑

ǫi<ǫF

δip (ǫi − ǫh − ω) 〈(Φν+
p )∗|Ri〉〈(Ri)

∗|Φµ+
p 〉

)

−
(
〈(Φ̃ν+

p )∗Rh′ |V J,dir
ph,p′h′ |RhΦ̃

µ+
p′ 〉 − 〈(Φ̃ν+

p )∗Rh′ |V J,exc
ph,p′h′ |Φ̃µ+

p′ Rh〉
)]

cµ+p′h′

−
(
〈(Φ̃ν+

p )∗Φ̃µ−
p′ |UJ,dir

ph,p′h′ |RhRh′〉 − 〈(Φ̃ν+
p )∗Φ̃µ−

p′ |UJ,exc
ph,p′h′ |Rh′Rh〉

)
(cµ−p′h′)

∗

}
=

= 〈(Φ̃ν+
p )∗Rh0

|V J,dir
ph,p0h0

|RhRp0
(ǫp0

)〉 − 〈(Φ̃ν+
p )∗Rh0

|V J,exc
ph,p0h0

|Rp0
(ǫp0

)Rh〉 . (A7)

A similar equation can be obtained from Eq. (28) for the g channel function.

Appendix B: Continuum wave function with HF potential

We use an expansion on the Sturm-Bessel functions basis to calculate the s.p. wave function for ǫp > 0 with HF
mean-field potential. The explicit expression of the differential equation to be solved for the reduced radial part of
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the wave function up(r) = r Rp(r, ǫp) is

− ~
2

2m

(
d2

dr2
− lp(lp + 1)

r2

)
up(r) + U(r)up(r) −

∫
dr′ r′ W(r, r′)up(r

′) = ǫp up(r) , (B1)

where U and W have been defined in Eqs. (2) and (3) respectively.
We express the solution of the above equation as

up(r)

r
= jlp(kpr) +

∑

µ

cµp Φ
µ
p (r) (B2)

where jlp(kpr) is a spherical Bessel function with kp the wave number corresponding to ǫp. Using the definition (33)
of the Sturm-Bessel functions, and their orthogonality relation (35), we obtain the following non homogeneous system

∑

µ

[
δµν −

∫
dr r2 Φν

p(r)U(r)Φ
µ
p (r) +

∫
dr r2 Φν

p(r)

∫
dr′ r′2 W(r, r′)Φµ

p (r
′)

]
cµp =

=

∫
dr r2 Φν

p(r)U(r) jlp (kpr) −
∫

dr r2 Φν
p(r)

∫
dr′ r′2 W(r, r′) jlp(kpr

′) , (B3)

where the unknowns are the expansion coefficients cµp .
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