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δE[Ψ] = δ

[

< Ψ|H|Ψ >

< Ψ|Ψ >

]

= 0

Ψ(1,2, ..., A) = F (1,2, ..., A)Φ(1,2, ...., A)

F (1,2, ..., A) =
∏

i<j

f(rij)

Two-body distribution function

g(x1, x2) =
A(A− 1)

∫

dx3 . . . dxAΨ
∗(x1, x2, . . . , xA)Ψ(x1, x2, . . . , xA)

ρ2
∫

dx1dx2 . . . dxAΨ
∗(x1, . . . , xA)Ψ(x1, . . . , xA)

< O >=
1

2
ρ2

∫

dx1dx2 g(x1, x2)O(x1, x2)



g(x1, x2) =
A(A− 1)

∫

dx3 . . . dxAΦ
∗(x1, . . . , xA)F ∗ FΦ(x1, . . . , xA)

ρ2
∫

dx1dx2 . . . dxAΦ
∗(x1, . . . , xA)F ∗ FΦ(x1, . . . , xA)

F ∗F =
∏

i<j

f2(rij)

f2(rij) = 1+ h(rij)

∏

i<j

f2(rij) = f2(r12)[1 + h(r13)][1 + h(r14)]....[1 + h(r34)]....

N ∼ f2(r12)
[

1+A
∑

j>2

∫

dxjh(r1j) + B
∑

j>i>2

∫

dxidxjh(rij) + . . .
]
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Building of the nodal diagrams
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k



j



a(r ik)
 
b(r kj)


∫

d~rk a(rik)b(rkj) ≡ (a(rik)|b(rkj))



g(r12) = f2(r12) e
[N(r12)+E(r12)]

= [1+ h(r12)] [1 +N(r12) + E(r12) + . . .]

= [1 +N(r12) +X(r12)]

X(r12) = g(r12)− 1−N(r12)

N(r12) = (X(r1k)|ρ(rk)[N(rk2) +X(rk2)])

Starting values

N(r12) = 0 X(r12) = f2(r12)− 1 = h(r12)



Steps to obtain HNC equations

1. Cluster expansion of the two-body distribution function.

2. Elimination of the unlinked diagrams.

3. Elimination of the reducible diagrams.

4. Composite diagrams are built as power sum of nodal and elementary

diagrams.

5. Close expression to calculate the nodal diagrams

The elementary diagrams are inserted one by one.



Fermions

Slater Determinants

Φ(x1, ...., xA) =
1√
A!

φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

... ... . . . ...
φA(x1) φA(x2) . . . φA(xA)

|Φ(1,2, . . . , A)|2 =

ρ0(x1, x1) ρ0(x1, x2) . . . ρ0(x1, xA)
ρ0(x2, x1) ρ0(x2, x2) . . . ρ0(x2, xA)

... ... . . . ...
ρ0(xA, x1) ρ0(xA, x2) . . . ρ0(xA, xA)

ρ0(xi, xj) =
∑

a
φ∗a(xi)φa(xj)

∫

dxjρ0(xi, xj)ρ0(xj, xk) = ρ0(xi, xk)



Steps to obtain FHNC equations
S. Fantoni and S. Rosati, Nuov. Cim. 25 (1975) 593.

1. Cluster expansion of the two-body distribution function.

2. Elimination of the unlinked diagrams.

3. Elimination of the reducible diagrams

4. Composite diagrams are built as a power sum of nodal and elementary

diagrams.

5. Detailed classification of nodal diagrams.

6. Close expression to calculate the nodal diagrams.



Infinite system of Fermions

Translational invariance.
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Steps to obtain FHNC equations for finite fermion systems.

S. Fantoni and S. Rosati, Nucl. Phys. A 328 (1979) 478

1. Cluster expansion of the two-body distribution function.

2. Elimination of the unlinked diagrams.

3. Elimination of the reducible diagrams

4. Detailed classification of nodal diagrams

5. Composite diagrams are built as a power sum of nodal and elementary

diagrams.

6. Close expression to calculate the nodal diagrams.
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C(r) = exp[Ud(r)][ρ0(r) + Ue(r)] = ρ(r)



Realistic nucleon-nucleon interaction

V (xij) =
8
∑

p=1

Vp(rij)O
p
ij

O
p=1,8
ij = 1, τ i · τ j,σi · σj, (σi · σj)(τ i · τ j), Sij, Sij(τ i · τ j),

Lij · sij,Lij · sij(τ i · τ j).

Sij = 3(σi · r̂ij)(σj · r̂ij)− σi · σj

Operator dependent correlations

F(1, ..., A) = S(
A
∏

j>i=1

Fij) = S[
A
∏

j>i=1

6
∑

p=1

fp(rij)O
p
ij]



Single Operator Chain
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- Doubly magic nuclei.

- Different φ for protons and neutrons.

- jj coupling scheme.

- Argonne V8’ + Urbana IX

- Correlations up to p = 6.

- Minimization of the correlations with two healing distances.

- No minimisation on the φ.

- Calculations for 16O, 40Ca, 48Ca e 208Pb.



F. Arias de Saavedra, C. Bisconti, G. Co’, A. Fabrocini, Phys. Rep. 450 (2007) 1.
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16O 40Ca 48Ca 208Pb

T 32.33 41.06 39.64 39.56

V 6
2−body -38.15 -48.97 -46.60 -48.43

VLS -0.70 -0.85 -0.79 -0.80
v′8 + VCoul 0.86 1.96 1.57 3.97
UIX T + V (2) -5.66 -6.83 -6.24 -5.80

V3−body 0.86 1.76 1.61 1.91

E -4.80 -5.05 -4.62 -3.78

Eexp -7.97 -8.55 -8.66 -7.86



A. Akmal, V. R. Pandharipande and D. G. Ravenhall, Phys. Rev. C 58 (1998) 1804, (Tab. VI)
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E[Ψ] =

[

< Φ|F †HF |Φ >

< Φ|F †F |Φ >

]

≡
[

< Φ|Heff |Φ >

< Φ|F †F |Φ >

]

S. Cowell, V. R. Pandharipande, Phys. Rev. C 67 (2003) 035504.

A. Lovato, C. Losa, O. Benhar, Phys. Rev. C 83 (2011) 054003.

A. Lovato, Ab initio calculations on nuclear matter properties including the effects of three-nucleons
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