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Abstract

The application of the Correlated basis function theory and of the Fermi hypernet-
ted chain technique, to the description of the ground state of medium-heavy nuclei is
reviewed. We discuss how the formalism, originally developed for symmetric nuclear
matter, should be changed in order to describe finite nuclear systems, with different
number of protons and neutrons. This approach allows us to describe doubly closed
shell nuclei by using microscopic nucleon-nucleon interactions. We presents results
of numerical calculations done with two-nucleon interactions of Argonne type, im-
plemented with three-body forces of Urbana type. Our results regard ground-state
energies, matter, charge and momentum distributions, natural orbits, occupation
numbers, quasi-hole wave functions and spectroscopic factors of 12C , 160 |, 49Ca ,
48Ca and 2°®Pb nuclei.
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1 Introduction

Aim of the many-body theories is the description of composite systems in
terms of their elementary components. In our present understanding of na-
ture, only leptons, quarks, and gauge bosons are considered to be elementary.
In principle, any composite system should be described in terms of these en-
tities. In reality, pragmatical difficulties hinder the accomplishment of such
an ambitious program. For example, the difficulties in dealing with the non
perturbative features of Quantum Chromodinamics (QCD) complicates the
description even of the individual hadrons. The description of even more com-
plex systems in terms of quarks and gluons is evidently not practicable, at
least at present.

A more pragmatical, and fruitful, approach for the study of composite sys-
tems abandons quarks and leptons and uses effective degrees of freedom and
interactions. For nuclear systems, the most convenient choice is to consider
the nucleon as the basic degree of freedom. The nucleon-nucleon (NN) inter-
action, even if modeled in various manners, is always fixed to reproduce the
NN elastic scattering data and the deuteron properties [1-5].

After choosing the basic degrees of freedom and their interaction it is necessary
to define the theoretical framework to use. In the case of nuclear systems, if one
is interested in the ground state properties and in low energy phenomenology
(we mean here energies well below a GeV) the role of antiparticles can be
neglected. Therefore a good description of these systems can be provided by
the Schrodinger equation.

In the last decade the Schrodinger equation has been solved without approxi-
mations by using Green function Montecarlo (GFMC) techniques, for several
light nuclei up to A=12 [6-9]. In these calculations the two-body interaction
has been implemented with a three-body force chosen to reproduce the triton
binding energy. The great success in describing binding energies and low-lying
spectrum of these nuclei, is the pragmatical demonstration of the validity of
the non relativistic many-body approach.

Various techniques to solve the many-body Schrodinger equation without ap-
proximations have been developed. Some of them are tailored to describe only
few-body systems [10]. Others, formulated to handle any number of nucleons,
like the GFMC, are limited for computational reasons to deal with light nu-
clei. Recently, a new Montecarlo approach, called Auxiliary Field Diffusion
Montecarlo (AFDMC) [11], has been developed and it shows potentialities to
be applied to the description of medium-heavy nuclear systems.

The many-body theories try to overcome the difficulties in solving the many-
body Schrodinger equation by using approximations which simplify the prob-



lem, but still provide a proper description of the relevant physics effects. Be-
cause of the strong repulsion in the scalar channel of the NN interaction at
short internucleonic distances the use of the most traditional, and simplest,
approximations, such as the mean-field approximation, fails badly. For exam-
ple, the use of microscopic interactions in Hartee-Fock (HF') calculations leads
to unbound nuclei [12]. Dealing with the strong repulsion at short distances
is the major issue of the nuclear many-body theories.

Loosely speaking the various nuclear many-body theories can be classified
in two categories depending upon how they treat the short-range repulsion
problem. There are theories acting on the interaction, and others working on
the trial many-body wave function. The Brueckner theory, and all the theories
constructing effective interactions from microscopic ones, belong to the first
category. One of the theories belonging to the second category is the Correlated
Basis Function (CBF) theory whose most recent extensions and applications
to medium-heavy nuclei will be presented in this report. Strictly speaking, our
approach is the lowest order approximation of the CBF theory [13].

The starting point of the CBF approach is the solution of the many-body
Schrodinger equation by means of the variational principle:

< V|H|V >
SEV] =6————- =0. 1
7] < Y| > 0 (1)

The search for the minimum is done by using trial wave functions of the form:

U(1, ., A) = F(1, ..., A)B(L, ..., A) . (2)

In the above equation ® describes the system as a set of A particles moving
independently from each other. We call Independent Particles Model (IPM)
this picture, which, in our calculations, is modified by the correlation function
F'. In its easiest form, we use for F' the expression [14]:

A

F(1,...A) = I forsy), (3)

j>i=1

where f(r;;) is a scalar function of the distance between two particles of the
system.

The peculiarity of our approach consists in the technique used to calculate
the expectation values of Eq. (1). This technique is inspired by the cluster
expansion method used in statistical mechanics to describe liquids [15]. The
particles, correlated by the function f, form clusters. A topological study of the
various clusters shows that it is possible to construct a set of integral equations



which allows one to sum in a closed form the contributions of all the clusters
with some specific topological properties. This set of integral equations, called
HyperNetted Chain (HNC) equations, can be used to describe both classical
and bosonic systems [16].

In the mid 1970’s, the cluster expansion techniques were extended to include
also the Pauli exclusion principle, and the Fermi HyperNetted Chain (FHNC)
equations were formulated [17-19]. The complexity of the NN interactions
requires the use of correlation functions that are more complex than those
of Eq. (3). These new correlations contain operator dependent terms which
commute neither with the nuclear hamiltonian, nor among them. Also for this
reason it became necessary to extend the FHNC equations to deal with this
new type of correlations [20]. The computational difficulties require the use of
an approximation called Single Operator Chain (SOC). The resulting set of
equations is called FHNC/SOC [21], and it has been successfully applied to
describe infinite systems [22-25].

In this review, we are concerned about the application of the FHNC/SOC
computational scheme to medium-heavy nuclei. The extension of the FHNC
theory to finite Fermi systems was introduced by Fantoni and Rosati in the
late 1970s [26]. In their works they have shown that a cluster expansion with
an infinite numbers of terms can be formulated even for finite systems. Conse-
quently, the basic set of FHNC equations, can be used also for finite systems.
However, one has to consider that the loss of translational invariance in these
systems produces the so-called vertex corrections. We shall refer to the new set
of equations as Renormalized Fermi HyperNetted Chain (RFHNC) equations.

The results of the first numerical application of the RFHNC equations to finite
nuclear systems were presented in Ref. [27]. In that article, model nuclei were
described. Protons and neutrons wave functions were produced by a unique
mean field potential, and in a [s coupling scheme. The NN interactions consid-
ered had only central terms, and the correlations were scalar functions. This
simplified situation was used to test the theoretical, and numerical, feasibility
of the approach. Results for binding energies of 10O and °Ca model nuclei
were presented in [27] while the momentum distributions where shown in a
following article [28].

A more realistic description of doubly closed shell nuclei was given in [29],
where proton and neutrons were separately treated, and the single particle
wave functions were expressed in a jj coupling scheme. The RFHNC equations
required a non trivial reformulation. Binding energies, matter densities and
momentum distributions, have been calculated for various doubly magic nuclei
up to 2°Pb . However, also in this case, simple central interactions and scalar
correlations were used.



In a following step, the RFHNC equations were extended to treat the corre-
lation terms commuting neither with the hamiltonian, nor among themselves.
This involved the extension of the SOC approximation. Because of the techni-
cal difficulties the RFHNC/SOC equations have been first formulated to deal
with spin and isospin saturated nuclei, and with single particle wave functions
in a s coupling scheme. Again only O and 4°Ca nuclei could be treated. The
results of these calculations have been presented in Refs. [30-32].

A formulation of the RFHNC/SOC equations general enough to handle sep-
arately protons and neutrons in the more realistic jj coupling scheme was
finally done. Binding energies and density distributions have been shown in
Ref. [33] for the 12C , 60 , 4°Ca , **Ca and also **Pb nuclei. Here fully realis-
tic microscopic interactions, with tensor and spin-orbit terms were used. The
hamiltonian included also three-body interactions.

In the literature, there are various reviews regarding the FHNC/SOC formal-
ism applied to infinite nuclear systems [21,34-37], but there is a void regarding
finite nuclei. For the sake of brevity in writing journal articles, the formalism
presented in the papers quoted above is incomplete. The aim of the present
article is to provide a complete, coherent, and self-contained presentation of
the FHNC/SOC formalism for finite nuclear systems, and to review the most
recent results.

We recall in Sect. 2 the HNC, FHNC and FHNC/SOC equations for infi-
nite systems. They are important, not only because we want to give a self-
contained presentation, but especially because the REFEHNC/SOC formulation
for the finite systems is constructed by modifying that of infinite systems.
The RFHNC/SOC set of equations will be presented in Sect. 3, and it will
be applied in Sect. 4 to evaluate the energy of the system. A selected, but
significant, set of recent numerical results will be presented, and discussed, in
Sect. 5. In Sect. 6 we provide a short overview of the possible extensions of
the formalism. Conclusions are presented in Sect. 7.

To improve the readability of the paper we present many technical details of
the derivation of the various expressions in the Appendices. Furthermore, be-
cause of the large use of acronyms and symbols, we list them in the Appendices
G and H, respectively.



2 Infinite systems

In this section we present the HNC and FHNC equations for infinite systems.
This presentation does not aim to substitute, or update, the excellent review
articles describing in detail the derivations of the various expressions, see for
example Refs. [21,34-37]. Our purpose is to recall the main ideas and to em-
phasize those details which should be reconsidered in the description of finite
systems.

2.1 Bosons

We start to present the CBF approach by describing a system composed of A
bosons contained in a volume, V. We are interested in getting an infinite sys-
tem by using the thermodynamic limit, i.e. A and V' go to infinity keeping the
density, p = A/V, constant. We consider a homogeneous and translationally
invariant system, with a constant density, p. The wave function describing the
system when the interaction between the particles is switched off is:

O(z1,7,... 24) = S(1(x1) - Palza)) | (4)

where we have indicated with S the symmetrization operator, with ¢;(z;) the
single particle wave functions, and with x; the generalized coordinate of the
i-th particle.

In this IPM description of the ground state of the system, all the bosons
occupy the lowest single particles state. We consider spin zero bosons, and
because of the translational invariance of the system, the single particle wave
functions are eigenfunctions of the momentum k, and they can be expressed
as:

1

b;(z;) = W etkiTi (5)

In this case, the generalized coordinate x corresponds to r.

The density of the system can be obtained by using Egs. (4) and (5),

po(x) = A¢*™(x)d(r) = = = p, (6)

which is constant, as expected.



As we have already discussed in the introduction, the idea is to solve the
Schrodinger equation by means of the variational principle by using a trial
wave function of the form:

U(zy,.yxq) = F(x1, 0y ) P(21, ..., 24) (7)

where, in this case, the expression of ® is that of Eq. (4).

For this specific bosonic case we describe the many-body correlation function
F(z1,...x4) by using the so called Jastrow ansatz [38,14]:

A

F(zy,.mza)= [[ fOry), (8)

j>i=1

where the two-body correlation function (TBCF), f(r;), is a scalar function
of the distance between the i-th and j-th particles.

In the calculation of the energy functional

< VUH[|V >

EY) = <Yl > (9)

it is very useful to employ the two-body distribution function (TBDF') defined
as:

A(A — 1)/dx3 e dx gV (2, )Y (T, )

0* /da:ldxg codxpg U (2,2 A) Y (T, )

g(xhx?) = (10)

The expectation value of any two-body operator, such as the two-body inter-
action, is obtained by integrating the TBDF on the two coordinates x; and
ZTo:

1
<0 >= 5102/05951615172 g(w1,2) O(21, 72) - (11)
The evaluation of the TBDF allows the calculation of the many-body effects
independently from the explicit expression of the operator.

By using Egs. (4), (5), (6) and the expressions (7) and (8) the numerator and
the denominator of Eq. (10) can be written respectively as:

pA—2
N = (A= 15 [ dagdosdaa T] () | (12)

1<j



and

A
D= % /da:ldxg...da:A Hf2(rij) ) (13)

i<j

The cluster expansion is done by defining a new function h(r;;) such as:

f2(rij) = 1+ h(ry) . (14)

The product of f? factors can be rewritten by collecting all the terms with
the same number of h-functions. Let’s first consider the denominator D, Eq.
(13), which can be written as:

A
D= % /dxldxg...dxA [1 + Zh(ﬁ'j) +3 Z h(rir)h(re;)

i<j i<j<k
+ Y h(riphlr) + -] - (15)
i<j<k<l

A convenient way of investigating the structure of the various terms of Eq.
(15) is to use the graphical representation introduced by Yvon and Mayer
[15]. In this formalism the integrated points z; = r;, which are called internal
points, are represented by solid circles, and the h-functions by dashed lines.
The expression of Eq. (15) is obtained by associating to each integrated point
the contribution of the density. In the present case the density is constant,
therefore its contributions can be factorized out of the integral. This will not
be the case for finite systems.

j k k !
J ! J
A B C

Fig. 1. Graphical representation of some terms contributing to Eq.(15). The dashed
line represents the correlation function h. The black dots represents the integration
points.
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The first sum of Eq. (15) is represented by the diagram A of Fig. 1. The second
sum of Eq. (15) is represented by the diagram B. In this case, the point k is in
common with the two h-functions of the sum. The total contribution of this
type of term is:

%(A - 1121(;1 -2 P’ /dxidxjda?kh(ﬁk)h(rkj) , (16)

where the (A — 1)(A — 2) factor is due to the fact that the sums on the i, j
and k indexes are limited to ¢ < j < k.

In the third sum the two h-functions involves four different points. Its contri-
bution is represented by the diagram C of Fig. 1, and it is given by:

Al
Ty / didz;dadeih(riy)h(ru) | (17)
J i J
° @ -°
¢ ¢ (0] o o o
1 2 1 2 1 2
A B C

Fig. 2. Graphical representation of some terms contributing to Eq. (18).

The use of Eq. (14) in the numerator of Eq. (10), allows us to obtain the
expression:

N:f2(7“12) (AA D [1 + 2 ]>2/da:] T1;)
A—-2)(A-
+( >2( A2 p%zfdxzdx] Tij) 1 . (18)

A new symbol is required for the graphical representation of the numerator,
since it is necessary to indicate the two coordinates which are not integrated.
These coordinates are called external points, and we have labeled them 1 and
2. The external points are indicated by white circles as it is shown in Fig.
2, where we represent the lowest order terms of Eq. (18). The uncorrelated

11



term is represented by the A diagram. The B diagram represents the terms
of the first sum of Eq. (18), where the h-function connects an external and
an internal point. Also the second sum of Eq. (18) contains only a single h-
function but it connects, in this case, only internal points. The contribution
of this sum is represented by the diagram C of Fig. 2

The numerator and the denominator of the TBDF (10) are expressed by Egs.
(15) and (18) as sums of terms characterized by the number of the h-functions,
and by that of the external, and internal points. Each term of these sums forms
a cluster of particles, and can be described by a diagram. We proceed now by
doing a topological classification of the various diagrams.

The C diagrams of Fig. 1 can be written by factorizing the non connected
terms:

Al
m A4 //drldr]drkdrlh(r”)h(rkl)
1 6 11
E(l—z—‘—ﬁ—— /d’f’ld’l”] ’I“Z] /d’l”kd’f’l ’f’kl) .

Any diagram that can be factorized in two or more independent pieces is called
unlinked. Also the C diagram of Fig. 2 is unlinked. The diagrams that cannot
be expressed as a product of independent parts as the diagram B of Fig. 1,
are called linked.

° — -
:, ° * e
. a Pt
. q @--memeenen 3 . L S °
" i 1a
o o) o o o o
1 2 1 2 1 2

Fig. 3. Examples of reducible diagrams in the numerator of the TBDF, Eq. (18).

The linked diagrams of Fig. 3, have the properties of being reducible. From the
graphical point of view the reducible diagrams are characterized by the pres-
ence of, at least, one point linking a part of the diagram containing the external
point, and another part containing internal points only. Because of the trans-
lational invariance of the system, the contributions of these two parts can be
factorized. In general, every linked diagram whose contribution to the TBDF
can be expressed as a product of independent integrals is called reducible. In

12



bosonic systems both reducible and unlinked diagrams are factorizable. These
factorizable diagrams of the numerator simplify, up to the 1/A order, all the
diagrams of the denominator. The rigorous proof of this property is given in
Ref. [18].

So, in the expression (10) of the TBDF, the denominator diagrams compensate
the contribution of the unlinked and of the reducible diagrams of the numer-
ator. Therefore, the TBDF can be expressed as the sum of all the irreducible
linked diagrams containing the two external points 1 and 2:

g(ri2) = f2(riz) Y. Yar(riz) = f2(ri2) (1 + S(ri2) + C(ri2)) . (19)

all orders

The translational invariance of the infinite system makes the TBDF depen-
dent only on the relative distance between the external points, r15. A further
topological classification of these irreducible diagrams, divides them into sim-
ple and composite, and in the above equation we have called S(r12) and C(r12)
the corresponding contributions to the TBDF (19).

IRREDUCIBLE
Y
_—— SIMPLE
NODALS ELEMENTARY
———————— L) * -0
b4 1 =
e} e @) @) O O
COMPOSITE
e | S A4
[©) © é <>

Fig. 4. Example of irreducible diagrams, classified as composite and simple. This
latter type of diagrams is sub-divided into nodal and elementary ones.

The composite diagrams are those composed by parts that are connected only
through the two external points 1 and 2, see Fig. 4. They can be expressed in
terms of simple diagrams. Since there is no integration on the external points,
the contribution of a composite diagram is given by the product of the simple
diagrams connected to the external points. For example, the contribution of
all the composite diagrams which are formed by two simple diagrams only, is
S?(r15). Since the exchange of all the particles of one subdiagrams with those

13



of the other one, produces the same composite diagram, we have to divide by
2 to avoid double counting. Repeating the same procedure we find that the
contribution of the composite diagrams formed by three simple diagrams is
S3(r12)/3!, and so on. The total sum of composite diagrams can be written as:

52 g3 S
C(r15) = (27;12)+ ;7;12)-1- Z”H.... (20)

The TBDF, (19), can be rewritten as:

S2(r1 S3(r1a
g('f’12) :fz(rl2) 1+ S(T12) —+ (2' ) —+ ;' ) +

= f*(r12) exp[S(r12)] . (21)

where the last equality appears because our system has an infinite number of
particles and is called hypernetted connection.

The above equation expresses the TBDF in terms of simple diagrams only,
which are further classified as nodal and elementary ones. In a nodal diagram
there is at least one point where all the paths going from one external point to
the other one have to pass. This point is called a node. In the literature, the
diagrams without nodes are called elementary or bridge diagrams. We shall
always use the adjective elementary. Some examples of the type of diagrams
we have just defined can be found in Fig. 4.

If we call N the contribution of all the nodal diagrams, and E that of the
elementary ones, we can write the TBDF as:

9(r12) = f?(r12) exp[N(r12) + E(r12)] (22)
= [1 + h(Tlg)] [1 -+ N(T12) + E(Tlg) =+ .. ]
:1+N<T12)—|—X(7’12). (23)

The above equation defines the diagrams contained in X (r5), which are usu-
ally named non-nodal diagrams since they have no nodes.

A nodal diagram can be considered composed by parts which are linked at
the nodal point. Every nodal diagrams can be obtained by integrating on the
node the two functions representing the parts of the diagram. Let us consider,
for example, the nodal diagram of Fig. 5 having ¢ and j as external points
and k as node. If we call a(r;;) and b(ry;) the two functions describing the two

14



. »
a(rik) b(rk])
o
° J
l

Fig. 5. Example of nodal diagram. We indicate with a(r;;) the contribution of the
part of diagram to the left of the nodal point &, and with b(7;) the contribution of
the right part.

parts of the diagrams, the contribution of this diagram to the TBDF (19) is:

[ drialra)blrig)or) = p [ dria(ra)birg) = (atr]prbra)) . (24

where a density function p(rj) has been associated to the ry integration point
in order to recover the proper normalization, and since the density is constant
in this case, it has been factorized out of the integral. The last term defines the
symbol (D we shall use henceforth to indicate the folding product or chain
connection.

By using the above considerations we can write a closed expression which
allows the evaluation of all the nodal diagrams. The global contribution N (r;;)
of all the nodal diagrams between the two points ¢ and 7 can be obtained as
a folding product at the node ry of all the irreducible diagrams which can be
constructed between 7 and k and k£ and j:

N(rij) = (X (ran) |p(xs) [N (riy) + X (147)]) - (25)

Every nodal diagram has at least one node and any path between its external
points ¢ and j must pass through all the nodes. The above equation tells
us that the part of the diagram between ¢ and the first node k, which is a
non-nodal diagram, has to be folded to: i) the non-nodal diagrams producing
in this case nodal diagrams with only one node and, ii) the nodal diagrams
producing nodal diagrams with more than one node. The folding of two nodal
diagrams at the rp point is forbidden since it would produce many times the
same diagram.

The set of Egs. (22), (23) and (25) are known as HyperNetted Chain (HNC)
equations. Equation (22) allows one to express the TBDF in terms of the

15



simple diagrams after summing in a closed form the composite diagrams and
(25) allows the evaluation of the contribution of all the nodal diagrams in a
closed form. However, there is no closed expression to evaluate the contribution
of the elementary diagrams which must be calculated one by one. Calculations
of the TBDM without the contribution of the elementary diagrams are labelled
as HNC/0. When the contribution of the first elementary diagram is included
the calculation of the TBDF is called HNC/4, since this diagram, shown in
Fig. 4, has four particles. These equations are usually solved with an iterative
procedure starting from the ansatz N(r2) = E(ri2) = 0, then X(r2) =
f2(r12) — 1 and we can get new nodals using (25).

2.2 Fermions

In the description of a system of fermions we have to deal with the Pauli
exclusion principle. The IPM wave function ® to be used in the trial wave
function (2), is now a Slater determinant of single particle wave functions ¢:

ai(e) Gi(w) ... di(wa)
b= e o) oalen) | o)
Oale)) Galws) ... Galwa)
For an infinite system we can write the single particle wave functions as:
buliy) = e ) 0, 27)

where we have indicated with s and ¢ the projections on the z axis of the spin
and isospin and with y, and y; the Pauli spinors. In the fermions case, the gen-
eralized coordinate z indicates position r, spin and isospin third components,
in addition to the total spin and isospin values.

Before attacking the problem of the calculation of the TBDF (10) we discuss
some property of |®|? which we write as:

po(z1,71)  po(x1,72) ...  po(¥1,74)
o, T T2, T T2, T

w2, =] Pl el t ] gy
po(za,z1)  po(Ta,z2) .o po(Ta,Ta)

16



where we have defined the various elements of the above determinant as:

poli, z;) =D dnl@i)dalz;) - (29)

In the above expression the sum runs over all the occupied single particle
states of the system. We have defined in Eq. (29) the uncorrelated One-Body
Density Matrix (OBDM) which is the basic ingredient of the calculation of
the TBDF in the fermion case. A fundamental property of the uncorrelated
OBDM, due to the orthonormality of the single particle wave functions, is:

/dxjpo(xi,xj)po(xj,xk) = po(xi, 71) , (30)

where in the above integral sign we include both the space integration and the
sum on the spin and isospin third components, their trace.

We define the sub-determinant as:

po(r1,71) ,00(5’31,932) Po(931>517p)
To, X To, X To, T
AL .p) = /?0(? 1) Po(? 2) | Po(? p) . p<A. (31
PO(xm 1) po(ifp, Ta) ... PO(xzh xp)

Because of the property (30) of the uncorrelated OBDM the sub-determinants
have the property:

/dxp+1Ap+1(1, ep+1) = (A=A, ....p) (32)

and, by iterating it, we obtain:

/dxp+1...dxAAA(1, e A) = (A= )AL, . p) . (33)

The above expression implies that:

A, =0, p>A. (34)

The property (34) will be extremely useful in the application of the cluster
expansion technique to both finite and infinite fermion systems.
The properties of the uncorrelated OBDM and of the sub-determinats we

have just presented, depend only on the orthonormality of the single particle

17



wave functions, and not on their explicit expressions. For this reason, they will
remain valid also in the case of finite fermions systems. The expression (27) of
the single particle wave functions has been chosen to describe a infinite and
homogeneous system. In this case, we obtain for the uncorrelated OBDM the
expression:

ol ) = £ 0lkeriy) S (X (D)) (35)

st

In the above equation we have indicated with v the spin-isospin degeneration
of the system, 4 in the nuclear matter case, and with kr = (67%p/v)'/? the
Fermi momentum. In the literature the function ¢(x) is called Slater function
[39], and has the following explicit expression:

lx) = i(sinx —xCosT) . (36)

3

In the description of fermion systems, it is necessary to include in the Mayer
diagrams a new graphical symbol identifying the presence, and the role, of
po(z;, z;), which, in the calculation of the TBDF, forms closed non overlapping
loops. This is an oriented line connecting the two points z; and z;. These
lines are called statistical correlations to distiguish them from the dynamical
correlations, f(r;;). In the calculation of the TBDF for the infinite system a
term —{(kpr;;)/v should be considered for each statistical line joining the ¢
and j points, and a factor —v for every closed statistical loop which is related
to the spin and isospin trace [35].

There is a basic difference between dynamical and statistical correlations.
While any number of dynamical lines may arrive at a given point only none
or two statistical lines may arrive at that point.

By using the trial wave function (2) with the Jastrow ansatz (3) and the
definition (14) of the h-function we write the TBDF (10) as:

g(xlij)
A(A — 1)/dx3....dxA(1+Zhij + 3 highip+ )@ (g, oy wa) 2
_ i<j i<j<k
p2/dx1....dxA(1+Zhij+ S hihje 4 )| (@, o 1a)
i<j i<j<k

with h;; = h(r;;). By using the definition of sub-determinat (31) the numerator
and the denominator of the above equation can be expressed as sums of terms
identified by the number of h-functions:

18



A(A -1
N:% (r12 /dxg dx 4

(1 + Z hz'j + Z hijhjk + ) AA ) (37>

1<J 1<j<k

1<J 1<j<k

D= /dxl dza <1+thj+ S highy + - )AA. (38)

We rewrite the expressions of N" and D by grouping the terms with the same
number of points, p, and we indicate them as X®(1,2,3,..,p). For example

X(3)(17 2;4) = hyg + ho; + haihy;
The expression of the TBDF we obtain is:

g(l’l,.Tg):jq(Api;l)f2(’l“12)/dl’3...dxAAA [1 +

A A2)
2:: N(A—p)!

[/dml...dxAAA <1 +pZA ﬁx@a ,p)ﬂ_1 .

T

The factorials factors which multiply the X ® functions, take into account the
fact that permutations of the p internal points do not change the value of the
diagram.

By using the property (33) of the sub-determinants, we can integrate the above
expression of the TBDM on all the coordinates not involved by the correla-
tions, i. e. not present in the X functions. So we obtain for the numerator
and the denominator of the TBDF, the expressions:

f2(r12) 1

= Al )

N A p2 2)2_32 (p _ 2)[ /dl’g dpr (1727 7p)Ap(17 7p) ) (39>
A1

D=A! Z ;/dl’l dl’pX(p)(l, 7p)Ap(17 ,p) (40)
p=0

We extend up to infinity the upper limits of all the sums of the above ex-
pression by using the property (34) of the sub-determinants. Each cluster
term (diagram) can be divided in linked and unlinked parts. Let us call
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L, (1,243, ...,1,) the linked parts of the various cluster terms containing the
external points 1 and 2. In these diagrams each internal point i3, .., ¢, is con-
nected to the points 1 and 2 by at least one continuous path of dynamical
and/or statistical correlations. We call U,_,, (i1, -..,%,) the unlinked parts of
the cluster terms. In this case none of the p — n points is connected to 1 and
2, or to another point of £,. The contribution of £, does not change for a
permutation of some of its internal points. The same property holds for U,_,,
and its internal points. For this reason every diagram of A separated in L,
and U,_,, parts, give (p—2)!/(n—2)!(p —n)! times the same contribution. We
can then express the numerator if we define ¢ = p — n as:

N=at “2 Z o /dxg iy Lo(1,2;.,1)

Lgoa/dxl...dxquq(l,...,q)] . (41)

We extend the above considerations to the denominator (40). Since in this case
there are no external points, the diagrams we have defined as linked ones, are
not present. Only the i, diagrams contribute to the denominator:

D= A!l;%/dm...dmnuﬂ(l, n)} . (42)

This expression is identical to that giving the contribution of the unlinked
terms of the numerator. In the calculation of the TBDF the denominator
compensates all the unlinked diagrams of the numerator, and we can write:

g(w1,72) = g(r12)

f2(r12)
= 7 As(1,2) +Z /dxg dxy, £,(1,2;...,p)] - (43)

The above result shows that the TBDF can be obtained by calculating linked
cluster terms, only. As in the case of bosons, we define the reducible diagrams
as those linked diagrams containing a point, the articulation point, which al-
lows us to write the total contribution in two or more separated contributions.
An example of reducible diagrams is given in Fig. 6. Like in the bosonic case,
the factorization of the reducible diagrams in two or more subdiagrams is due
to the translational invariance of the system. Also in the fermionic case it is
possible to show that the reducible diagrams do not contribute to the calcula-
tion of the TBDF [18]. However, in the fermionic case, the mechanism which
allows the elimination of the contribution of the reducible diagrams, is very
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Fig. 6. Example of cancelation between two FHNC diagrams. The statistical loop in
the upper part produces a minus sign, and therefore the total contribution is zero.

different from that of the boson case. Furthermore, the cancelation of the re-
ducible diagrams is exact, not limited to 1/A power terms. The rigorous proof
of this cancellation is given in [18], and we present here only the basic idea
of how the cancellation mechanism works. This discussion will become useful
to present the vertex corrections in the finite fermion systems case. Let us
consider, as example, the case of the diagrams shown in the upper part of Fig.
6. These diagrams differ only because the second diagram has an additional
statistical loop. Because the system is translationally invariant, and for the
properties of the Slater function (36), the contribution of the the two diagrams
is identical but with different sign. Therefore, as is shown in the lower part of
the figure, the global contribution of the two diagrams is zero.

The fermionic TBDF (43) can be calculated by considering the contribution
of the irreducible diagrams only, in analogy to Eq. (19) for the bosons. Again
in strict analogy with what has been done for the bosonic case, see Eqs.(19 -
21), it is possible to show that the contribution of all the composite diagrams
can be obtained by considering simple diagrams only, which are classified
in nodal and elementary ones. The elementary, and nodal, diagrams in the
fermionic case are defined in analogy to those of the bosonic case, but both
statistical and dynamical correlations should be considered. The presence of
the statistical correlations hinders the possibility of writing a single integral
equation which allows the evaluation in closed form of the contribution of
all the nodal diagrams, as Eq. (25) is doing. However, it is possible to find
a set of integral equations relating the contribution of the nodal diagrams
characterized by the type of correlations reaching the external points 1 and 2
[18,39].

Graphical examples of the type of diagrams required to obtain the various

integral equations of interest are given in Fig. 7. In the A and B diagrams
only dynamical correlations reach the external points. These diagrams are
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Fig. 7. The various types of nodal diagrams required by the FHNC equations. The
subindexes classify the diagrams with respect to the type of correlations reaching
the external points 1 and 2.

labeled with the dd (dynamical-dynamical) subscripts (Ngq). The C and D
diagrams have only dynamical correlations reaching the external point 1 and
two statistical correlation lines reaching the external point 2. In this case,
we label the nodal diagram with a de (dynamical-exchange) subscript (Ng).
The E and F diagrams are labelled with a ee (exchange-exchange) subscript
since to both external points arrive two statistical lines. Up to build those ee
diagrams with the external points in the same statistical loop, it is convenient
to define diagrams where a statistical correlation starts from the external point
1 and arrives to the external point 2, forming an open loop. We label these
diagrams with the cc (cyclic-cyclic) subscript and we remark that they do not
contribute directly to the TBDF.

As discussed in the bosonic case for Eq. (25), also in this case the total contri-
bution of the nodal diagrams can be obtained by doing the folding product of
various parts of the diagrams at the nodal point. However, the Pauli exclusion
principle, prohibits some of the possible folding products. It is not possible to
fold cc diagrams with diagrams of different type and if one of the diagrams
to fold has the e type at the nodal point the other one has to be d type at
this point. This restriction is caused by the afore mentioned fact that only two
statistical lines may arrive at a point, in this case the nodal point.
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In analogy to the bosonic case, we call N the sum of all the nodal diagrams
and X the sum of all the irreducible non-nodal diagrams. Of course now N
and X are classified by the subindexes dd, de, ee and cc, and, for the nodal
diagrams, we obtain the following set of equations [18,39]:

Naa(r12) = (de(7“13) + Xge(r13)|p(r3)[Naa(r32) + de(T’?,z)])
+ (Xaa(r1s)]p(xs) [Nea(rs2) + Xea(rs2)])
Nae(r12) = (Xaa(r13) + Xae(r13) | p(rs) [Nae(r52) + Xae(r52)])
+ (de(7“13)|P(r3)[Nee(7“32 Xee(r32)] )
Nee(r12) = (Xea(ris) + Xee(r13) p(es) [Nae(r52) + Xae(r32)])
+ (Xed(T13)|P(r3)[Nee(7‘32 Xee(ra2)] )
Nee(r12) = (Xee(ris)p(rs) [Nee(rsa) + Xeolrsa) = Ukersa) [v]) . (44)

The equations for the non-nodal diagrams are:

Xaa(r12) = gaa(r12) — Naa(r12) — 1,
Xae(r12) = gaa(r12) [Nae (112) + Eae(r12)] — Nae(r12)
Xee(r12) = gaa(r12){ Nee(T12) + Eee(r12) + [Nae(r12 + Ede(ﬁz)]2

A [Neclrio) + Beelran) = (ko)) = Nee(ra)

Xee(12) = Gualrio) Nee(ria) + Erclria) — - {(bkr)]
~ Neoria) + - {(brr) (45)

Finally, the partial TBDF are defined as:

Y

— Noo(r12) + Xoo(ra) — %E(k;Fm) . (46)

The total TBDF can be written in terms of the partial ones as:

9(r12) = gaa(r12) + gea(r12) + Gae(T12) + gee(r12) (47)
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Fig. 8. Graphical representation of an elementary diagram.

The set of Eqgs. (44), (45), (46) and (47) forms the Fermi HyperNetted Chain
(FHNC) equations. As we have already mentioned in the case of bosons, also
the FHNC equations allow the evaluation of the contribution of all the com-
posite and nodal diagrams in a closed form. Again, the contributions of the
elementary diagrams, such as that shown in Fig. 8, should be included by cal-
culating them one by one. In analogy to the HNC case, it is common practice
to use the nomenclature FHNC/0, FHNC/4 etc. to indicate the elementary
diagrams included in the calculations.

2.8 The operator dependent correlations

The use of purely scalar correlations, as it is done in the Jastrow ansatz (3),
is not adequate to deal with the complicated structure of the nucleon-nucleon
interaction. For example, the tensor terms of the interaction do not contribute
to the energy expectation value if only scalar correlations are used. For this
reason the Jastrow ansatz has been extended by introducing correlations which
have the same operator structure of the NN interaction, and are called in the
literature [21] state-dependent correlations. The general expression of these
type of correlations is:

A A 6
F(1,..,4) =8( 11 F;) =s( I ;fp(rij)og) . (48)

The operators Of; are defined as:
O =1,7;-7j,0,- 04, (0 ,)(Ti - T5), Sij, i (T3 - T5) (49)

ij

where

N
|
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is the tensor operator. The symmetry operator S is required to guarantee
the antisymmetrization of the wave function W(1, ..., A) since, in general, the
operators do not commute. In Eq. (49) we have indicated only the channels up
to p = 6 since this is the correlation we have used in our numerical calculations.
State-dependent correlations constructed by considering a larger number of
channels have been used in nuclear matter [40] and in variational Monte Carlo
calculations [41].

The order that we have introduced in the operators will be useful for the finite
system since we can write:

OF ' = Pi(ri- 7)), (51)

with [ = 0,1, £k = 1,2,3 and PZ; = 1,0, - 0}, 5;;. This allows us to separate
clearly the spin and isospin parts of the operators.

The evaluation of the energy functional (9) requires the calculation of the
expectation value of two-body operators related to the NN interaction which
are written in terms of the operators (49). In general, these operators can be
expressed as:

B(l,...,A): XA: (6 Bp(T’ij)ij) s (52)

j>i=1

and this suggest to define state-dependent TBDFs as:

A(A—1) /dg;3 o dra (L, AOR(L, . A) 5

gp(r17r2> - 5
p /dl’ldl’g cdz a1, AU(, L A)

where we understand that all the spin and isospin traces are done, including
those of the external points 1 and 2. With the above definition, the expectation
value of B can be calculated as:

1 6
< B>= §P2 Z/drlde”(m)gp(rh ra) . (54)
p=1

With the help of the sub-determinants (31) we express the state-dependent
TBDF as:

gp(rb 1"2) =

25



A(A=1) [ dey.. . duaS( 1 F;) 0% ( 1 Fy)Aa(l,..., A)

]>2 1 j>i=1

P /dl’ldl’g dxAS( H FZ]) ( lA_[ Fi;

j>i=1 j>i=1

. (55)

o
N———
>
b
—
vli
=

In the calculation of the TBDF', we find it convenient to rewrite the correlation
function as:

Z TZ] zg = f1 Tz] (1 + Z ) Z) = fl(’f’ij) (1 + HZ]) (56)

Because of the non commutativity of the operator dependent terms, in the
cluster expansion we have to consider also the ordering of the various terms.
Only the scalar term p = 1, which commutes with all the other ones, can be
treated as we have indicated in the previous section. By using the commu-
tativity property of the scalar term we can rewrite the correlation function
as:

(57)

F(,..., A) :S( Hle'j) = ( H fl(?”@‘)) S [ H (1+ Hy)

J>i= j>i=1 j>i=1

This expression shows that each operator dependent term H;; can be multi-
plied by any contribution from the central correlation functions, f;, without
changing the operator structure of the correlation. In the many-body jargon
when we incorporate into the operator terms all the contributions from the
central correlation, we say that the Jastrow correlations dress the operator
terms.

The general treatment of the state dependent correlations for nuclear matter
was first proposed in [21]. This is the basic reference for the interested reader.
In the following we shall recall the basic steps of the procedure, and we point
out the features of interest for the treatment of finite nuclear systems.

Although the notation in the demonstration would be more involved than in
the purely Jastrow case, it is still possible to show that the compensation
between the unlinked diagrams of the numerator and all the diagrams of the
denominator holds for the state-dependent correlations.

We have shown in the previous section that the second step in obtaining the
FHNC equations consisted in eliminating the contribution of the reducible
diagrams. In the present case, this is no longer possible. We explain the prob-
lem by using the example of Fig. 9 which is analogous to Fig. 6 but with the
scalar correlations substituted by state dependent correlations, indicated by
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A B

Fig. 9. Diagrams analogous to those of Fig. 6 with state dependent correlations.

the wavy lines. We sould remark that in the graphical representation, the wavy
lines indicate a generic operator dependent term of the correlation. Diagrams
with various wavy lines, consider all the possible combinations and ordering of
operators. Back to the case of Fig. 9, we should consider that all the statistical
lines in a closed loop but one carry a spin-isospin exchange operator:

1 6
o7, j)=-1+0;-0;)(1+7; 7)) = ZZF”O” (58)

1] 7

A~ =

on the corresponding pair of particles [21] and with I'”? given in Tab. A.1 of
Appendix A. The spin and isospin dependent part of this operator is linear in
o and/or T, therefore its trace is zero when only scalar correlations are used,
as in the case of Fig. 6. In that case, the contributions of the two diagrams
were identical, with a sign difference, therefore, the global result was zero. In
the present case, the trace of the operator dependent part of the exchange
term is not always zero, but its value depends on the type of operators linked
to the points at the edges of the exchange loop. For this reason, the traces of
the A and B diagrams of Fig. 9 are in general different, therefore the global
result is, in general, different from zero.

This loss of irreducibility in the expansion of the TBDF joined to the non
commutativity among the operators makes it not possible to calculate all the
contributions of state-dependent correlations. This obliges us to use approxi-
mations. The difficulty in eliminating the reducible diagrams is overcome by
using an approximation, consisting in considering operator dependent dia-
grams with specific topological properties. These diagrams are classified as
Single Operator Chain diagrams. Since the calculations of these diagrams re-
quires the evaluation of traces of non commuting operators, we present first
the technique used to calculate these traces, and then the FHNC equations in
the SOC approximation.
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2.8.1 Traces

In the calculation of the TBDF, or of the energy functional, we have to cal-
culate expectation values of operators between the trial wave functions (2).
These calculations require the integration on the space coordinates and the
sum on the spin and isospin coordinates. We have called trace this last opera-
tion. There are no specific strategies for evaluating the space integrals, which
are done numerically. On the contrary, there are strategies to obtain the spin
and isospin traces. Here we shall present them for the specific case of the infi-
nite symmetric nuclear matter, and, later, we shall generalize them for finite
nuclei. We have emphasized the characteristics of the system under discussion,
because we want to point out that it is a spin and isospin saturated system,
therefore the traces of terms linear in o and/or T operators are zero.

We start our discussion with the simplest possible case, the matrix element
between two points only, 1 and 2, having a single operator O, acting between
them. Because of the Pauli principle we have direct and exchange terms. The
direct term is:

Olapo(1,1)po(2,2) =
p2% S xR @)X (D)X (2)0%xe (1) X (2)Xer (1) Xa (2)

$1,82,t1,t2

= p20(0€2) )

where we have used the expression (35) for po and the fact that the limit of
the Slater function (36) when its argument goes to zero, is one. In the above
expression we have indicated with C(OY,) the value of spin and isospin trace
relative to the operator OY, divided by the number of states, ©? in this case.
We call it the C-trace. The exchange term for the case under study is:

(kpr
Ohan(1.2)p0(2.1) = p? E1)

D X (XG 2)xa (DX (2)O0Tax0 (1) X (2) X1 (1) X2 (2)

$1,82,t1,t2

1
= p2£2(kp7’12) C <Z(1 +o;- U2)(1 + 71 T2>01172> )

where the term multiplying O, in the C-trace is the spin and isospin exchange
operator which has to be on the left of the rest of the operators.

The operators (49) are built to be scalar in the Fock space formed by the

product of configuration and spin, and isospin, spaces, therefore they are con-
structed as scalar product of spin, coordinates and isospin operators. For this
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reason, their contributions can be evaluated by using the Pauli identity:

(1 A)(a;-B)=A -B+ia; - (AxB), (59)

where @ = o, T and A and B are generic vector operators. By using this
identity, we can isolate the terms linear in 7 or o which do not contribute in
infinite and symmetric nuclear matter, as we have already stated.

The two examples we have discussed are the easieast ones to calculate. In
evaluation of the TBDF, or of the energy functional, we have to deal with
more complicated situations. Following Ref. [21] we consider three type of
situations.

a) Products of operators acting on the same pair, such as:
p>1 g>1 r>1
Oij Oij o Oij )

b) Products of operators acting on different connected points forming a ring,
such as:

p>1 ~Hg>1 r>1 s>1
012 023 ..... On—annl .

We call this situation Single-Operator Ring (SOR)
¢) The situation when more than two operators act on an internal point.
These are multipole operators terms.

2.3.1.a Products of operators
We analyze the trace algebra of the products of operators O%, acting on the
same pair of coordinates 1 and 2.

The C-trace of a single operator is:

C(O12) = 0pa (60)

since all operator linear in o and/or 7 have zero C-trace in a spin and isospin
saturated system, as we have already mentioned.

The C-traces of the product of two operators O%5 '0% " are obtained by using

the relations

(a1 ) =3 —2a; - ay
Si1201 - 02= 512,
S% =6420,-05 — 255 , (61)
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calculated by using the Pauli identity (59) and with & = o, 7. The values of
the C-traces in this case can be summarized as:

C(0%01,) = Br6,, , (62)

where the values of BP are given in Tab. A.2 of Appendix A. In [21], these are
called AP but we shall use this name for their spin parts.

The knowledge of the values of the C-traces of one operator and of the product
of two operators is enough to calculate the values of the C-traces for the prod-
uct of any number of operator. The relations (61) indicate that the product
of two operators 0% '0%" can be written as sum of operators O}, multiplied

by a coefficient. We can write:

6
szO(ﬁ - Z quTOJB ) (63>

r=1

where the values of the matrix KP?" are given in Tab. A.3 of Appendix A. For
example for three operators we have:

C(0%,01,04,) = i K7 C(0705,) = K™ B .

m=1

We would like to point out that since the operators OP=%¢ acting on the same
points commute, their ordering does not matter in the calculation of the C-
trace. This means that:

KP"B" = KPMB1 = KTPBP_ ...

Fig. 10. Example of Single Operator Ring (SOR).
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2.3.1.b Single operator rings
In Fig. 10 we show an example of Single Operator Ring (SOR). In the SOR
diagram each point is reached by two operators only. The ordering of these
operators does not change the value of the C-trace of the SOR. This is because,
due to the Pauli identity (59), the non commuting terms are linear in o or T,
therefore their trace is zero.

The basic step to evaluate of the C-trace of a SOR it is to calculate the C-
trace of two operators acting on a common point. We call O, and O, the
two operators, and 2 is the common point. All the variables relative to the
common point 2 should be summed or integrated. We sum on all the spin and
isospin third components and integrate on the azimuthal angle ¢:

6
> [ do 00,08 = [ o€l O, (64)
r=1

0272

The &5 functions depend on the angles of the triangle formed by the 1,2 and
3 points, and have the following properties:

2k1—1411 2ko—1+4+12 2ks—1+13 __ rkikoks
123 = (123”2 0131,01015

K2k — 110k 10ks1 Ok 20y 20k
+ P(713 - 723) (Or12 — Oky3)Ok30k53
+ Py (712 - 713)0k,3 (ka2 — Okp3)Oks3
+ P(T12 - 723)0k;30k,3(20k52 — Ops3)

Lo o e s
- 5 (9(7"13 : 7’23)(7‘12 : 7”13)(7‘12 : 7’23) + 1)5k135k235k33 s (65)

with Pp(z) = (322 — 1)/2 the Legendre polynomial of second degree and we
have used the separation in spin and isospin parts of the operators presented
in Eq. (51). The global contribution of the SOR is calculated by using Egs.
(64) and (65) for all the points of the ring.

I J
Fig. 11. Example of a multipole operator diagram where more than one operator

acts on the same two points.

2.3.1.c Multiple-operators diagrams
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The last type of diagrams we discuss is represented by the diagram of Fig. 11.
In this diagram two operators act on the same points ¢ and j. The diagram of
the figure represents the product of operators:

¢(01,03,050%) .

In this case, the value of the C-trace depends on the ordering of the operators.
It is possible to prove that this value is unchanged by a cyclic permutation of
the operators of the same type [21]. That is:

C(05(0505;.....)) = C((0405;....)O%) -
As a consequence, for the evaluation of the C-trace we have to consider only
two different orderings of operators. A first one where Of; and Of; are close
to each other, and a second one, where these two operators are separated by

another operators of the type O or Ob In the first case, by using Eqs. (63)
and (65) we obtain:

6
/d¢1 mn mn T iqn) = ZqutBt/d(élg:rffn . (66>
t=1

For the second case we have:

/d¢10 Omn ml mn 7811 Zqut/dQSlf:rffn ) (67)

where we have defined:

LP? = £ KPR (68)

The + sign is assigned if
c(0n,10%,,05,105) =0,
and the — sign if

( mn{Omn7 :nl}Oasml):

where we have indicated with the symbols [,] and {,} the commutator and
anticommutator respectively. The values of matrix LPY" are given in Tab. A.4
of Appendix A.
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Another important trace is that of

2

C(03,04,050%) .

which represents two SOR’s linked at the point 7. Also in this case the result
depends on the ordering of the operators and we distiguish the case when ij
and Of; are close together or not. In the first case, we obtain:

To evaluate the C-trace of the second case we consider the fact that:

> 05,0105 = 0,4B"(1 + Ep) O, (69)

0Ty

where, in the case of tensor operators, the above equation assumes an integra-
tion over the angle between r;; and ry; [21]. Then we obtain:

C(05,05,0501,) = BP8,4(1 + By B, (70)

with the values of E, given in Tab. A.5 of Appendix A. In [21] these are called
D but we shall use this name for their spin parts.

2.4 The Single Operator Chain (SOC) equations

The strategy to attack the problems arising when state-dependent correlations
are used, consists in separating the purely scalar, Jastrow, terms from those
depending on the operators OP for p > 1. The Jastrow part is treated by
using the set of FHNC equations (44) , (45) and (46). With respect to the
operator dependent part, we have learnt that we need at least two operators
arriving at a given point to get a C-part different from zero. As the operators
are dynamical correlations, there is no limitation in the number of them that
can arrive at every point. An increasing number of operators makes more
complicated the evaluation of the traces so the Single Operator Chain (SOC)
approximation is adopted. This supposes that only a pair of operators arrive
at every internal point of the diagrams, this makes the operators form closed
single chains and it allows the formulation of closed expressions to calculate all
the nodal operators and those composite ones within the approximation. The
reliability of the SOC approximation is tested afterwards, by controlling the
validity of sum rules exhaustion. Examples of SOC diagrams, of nodal type,
are given in Fig. 12.
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The SOC diagrams do not have limitations in the number of particles. The
discussion made in Sect. 2.3.1 has clarified that the contribution of the SOC
diagrams to the TBDF’s and/or to the energy, is independent of the ordering
of the operators. The single operator between two points of the SOC diagram,
can come from the correlation, from the hamiltonian, or from an exchange
line, whose contribution is considered by inserting the spin-isospin exchange
operator (58).

1y 2

Fig. 12. Some nodal diagrams considered in the FHNC/SOC compuational scheme.

The choice of considering SOC diagrams only, eliminates the problem of the
reducible diagrams, since all the SOC diagrams are irreducible. The equations
we should consider contain only irreducible diagrams. Also in this case it is
possible to show [21] that the composite diagrams can be obtained in terms
of simple diagrams classified again in nodal and elementary ones.

As in the FHNC case, the contribution of a nodal diagram N, ,(r;;), can
be obtained by doing the folding product of diagrams at the nodal point,
as can be deduced by observing the examples given in Fig.12. Here we used
mn to indicate the type of diagram mn = dd, de, ed, ee, cc. As already
discussed, the folding product in the r, point should be done between the
irreducible non nodal diagrams X, ,(7i) and Xy, o(7k;) + Nonnog(7j). From
the discussion made in the previous section, it appears clear that not all the
possible combinations of operators acting on the integration point provide
contributions different from zero. The allowed combinations are ruled by the
values of £P7" given in Eqs.(65).
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The sequence of Eqs.(44) giving the nodal diagrams, is generalized for the
state-dependent terms as:

N r(r12) = > Z ( mm? p(T13 5132’ (rs)[Xn'n,q(T%)+Nn'n,q(7’23)])a(71)

m’ n’ p,g=1

for m,n = d, e and with m'n’ = dd, ed, de. If we neglect the contribution of the
elementary diagrams, i.e. in approximation FHNC/0, we obtain the following
expresssions for the TBDF's for p > 1:

9p(T12) = 9ddp(T12) + 20dep(T12) + Geep(T12) (72)
Gddp(T12) = hp(112) he(112) = Xaap(ri2) + Naap(ri2) | (73)
Gdep(T12) = (hp(rl2>Nde(rl2) + f12(7’12)Nde,p(7”12))hc(7’12)

= Xdep(T12) + Naep(r12) (74)

Geep(T12) = [hp(rrm)(Nde(rl2>Ned(rl2) - Nee(Tm))
+ 12 (r12) (= VL2 (ri)T? + Neep(r1a)
+2Ne p(112) N (12) ) | e (712)
= Xeep(r12) + Neep(r12) (75)

where the N and X factor without index of the operator channel indicate the
scalar p = 1 term, I'? is given by Eq. (58), and we have defined:

hy(r12) = 2fp(r12) f1(r12) + f7(r12) Naap(r12) (76)
hc(7’12) = eXp[Ndd(le)] ) (77>
L(’l”lg) = NCC(’I“lg) — g(k‘p’l“lg)/l/ s (78)

For the calculation of the cyclic nodal diagrams within the SOC approxima-
tion, it is convenient to distinguish two cases [21]. Since all statistical lines
but one carry one spin-isospin exchange operator, we have to add a dynamical
operator to complete the operator chain. This no exchange operator may be
added to the left or to right of the chain. Example of these two cases is given
by the D and E diagrams of Fig. 12. In the D diagram the point 1 is con-
nected with an operator dependent correlation while the point 2 is connected
by the spin-isospin exchange operator. We label L this case. The situation is
reversed in the case of the E diagram, and we call R this case. By using this
classification we define for the cyclic case the quantities:

X5 (r12) = [hp(rio) L(ria) + f2(r12) N5 ()] helrio) = N5 (ro) |, (79)

ch(ﬁz) = [ff(rlz)hc(ru) - 1}1?(7’12) ) (80>
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Neep(ri2) = NE(r12) + NE (r12) (81)

NG = 3 (X @B Xt + L)) . (82
NE (r15) = Z_ (F Xee(r13)8732|p(r3)| 5q(7‘23)+qu(7”23)]> - (83)

The set of equations we have presented is called FHNC/SOC. In this case
the contribution of the elementary diagrams is neglected. Some example of
diagrams considered by these equations is given in Fig. 12. The diagram A is
a Ngap(r12) nodal diagram; the diagrams B and F are examples of Ny ,(r12)
diagrams and the diagram C of the N ,(r12) diagram. Finally, the diagrams
D and E are of N ,(r12) type.
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3 Finite nuclear systems

Two of the basic hypotheses done in the previous section, infinite number of
particles and translational invariance, are no longer valid in the description
of finite nuclei. In the literature the extension of the FHNC theory to finite
nuclear systems was first done by considering systems with equal number of
protons and neutrons with single particle wave functions produced by a unique
Mean-Field (MF) potential, within the [s coupling scheme [27,28,30,31]. This
situation allowed a straightforward use of the spin and isospin trace techniques
developed to describe symmetric nuclear matter [21]. The treatment of nuclei
not saturated in isospin and described in the jj coupling scheme, was done
in following works [29,33]. Here we do not follow the historical development
of the theory but we present directly the formulation of the FHNC theory
for double closed shell nuclei not saturated in isospin and in the jj coupling
scheme.

The changes of the OBDM expression, due to the loss of the translational
invariance, are presented in Sect. 3.1. We should point out that we consider
doubly magic nuclei only, which are spherically symmetric. In Sect. 3.2 we
present the calculation of the TBDF and we introduce vertex corrections and
the Renormalized FHNC (RFHNC) equations, for purely scalar correlations.
The extension of the theory when state dependent correlations are used, is
presented in Sect. 3.3.

3.1 The single particle basis

The nuclear system under study has Z protons, N neutrons and, therefore,
A = Z+ N nucleons. The set of single particles wave functions used to describe
this system is produced by solving the one-body Schrodinger equation:

hidi(x:) = €¢5(wi) (84)

where the one-body hamiltonian is composed by the kinetic energy term and
a spherical mean-field potentials different for protons (¢ = 1/2) and neutrons

(t=—1/2):

2

_ n
pimE2 —Q—mtvf + U ry) (85)

where we have indicated with m; the nucleon mass. Our calculations have been
done with single particle wave functions generated by a Wood-Saxon potential
of the form:
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Vo
1+ exp [(r — RB)/ag}

he 17 exp [(7’ — Rfs)/afs}
+ [ 2] Vis ¢ 112 o = Velr), 0
myC {1 —+ exp [(T — Rls)/als}}

where m, is the pion mass and the Coulomb term VZ(r), active only for
protons, is that produced by a homogeneous charge distribution.

Ul(r)=

i (Z —1)e?/r r > Re
Ve r) = (Z —1)e? r? : (87)
= [3— 53| r<Rc

The values of the parameters Vi, Vi, ab, al,, RL, R}, and Rc are fixed by
the variational principle (1). In an infinite system, the variational parameter
related to the single particle basis is the density of the system.

The eigenfunctions of the hamiltonian (85) are also eigenfunction of j? and j,
operators, where we have indicated with j the total angular momentum of the
single nucleon. The single particle wave functions are conveniently expressed
as:

Sagne) = Ry () X < g sljm > Vi@
= S (EX(0) = By (r) Y ()i (58)

where we have indicated with the symbol < | > the Clebsh-Gordan coefficients,
and with Y7,(€2;) the spherical harmonics. Here we used the symbol €; to
indicate both polar angles 6; and ¢;, characterizing the position of the nucleon
with respect to a fixed center of coordinates chosen to be the center of the

spherical nucleus. We have also defined the spin spherical harmonics Y77 (€2;)
42].

The uncorrelated OBDM (29) can be written as:

ol i) = Y oo (o m)xd (Dxe (DX (Dxe () (89)

8,8t

where the spatial part is defined as:

58 t rl’ r] Z Rnl] nl] )

nlj
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I L, . .
Y < l,u§s\]m >< lu'és'bm > Y7 () Yy () (90)

pp'm

We find it useful to consider separately the uncorrelated OBDMs of pairs of
particles with parallel or antiparallel third components of their spins. For these
OBDMs we obtain respectively the expressions:

11,
pO22 (ri> rj) _pé(rh I'])
= 8_ Z 2] + ]' Rnl]( )Rnl](T])B(COS 61]) ) (91>
nlj
1.1, .
pi 2 (Fi>1"j)5f)0j(ri>1"j)
1 .
= (=1 PR (ri) RY;(ry) sin 0P/ (cos 0;5) , (92)

nlj

where we have called 6;; the angle between r; and r;, and we have indicated
with Pj(z) the Legendre polynomial of Ith degree, and with P/(x) its first
derivative with respect to x. Some useful symmetry properties of these OBDMs
are:

: 11, _L 1,
pO(riurJ) :p02 2 (rlar]> - pO 22 (I'Z,I']> ) (93>
11, 11
ng(rurj) =p; ° (vi,rj) =—po*° (vi,15), (94)
pg(ri7rj) :pé(rﬁri) ) (95>
P (T 15) = —po; (15, 14) (96)

The uncorrelated OBDM’s describing finite nuclei do not depend only on
rij = |r; —r;|, as in the infinite systems case. However, the properties (30),
(32) and (33), relevant for the construction of the FHNC equations, remain
valid.

The Is coupling can be recovered by switching off the spin-orbit term V}!, =0
in Eq. (86). In this case, the single particle energies, ¢;, and the radial functions
do not depend on j, therefore the OBDM can be expressed as:

polxi, ;) = E;pé(ri, r;)xs ()6 () (D)xe(5) (97)
with
po(rl,rg = 4—2 2l +1 R ( )RZZ(T’Q)B(COS (912) i (98)
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showing that only the parallel spin OBDM survives. The calculations of Refs.
[27,28,30,31] have been done by using an [s coupling scheme and by assuming
equal number of protons and neutrons moving in a unique MF potential. With
these assumptions the expression of the OBDM can be further simplified as:

1 1
pg (I'l,rg) = Po 2 I'l,rg = —Z 2l +1 nl Tl)Rnl(’f’2>B(008612) i (99)

i.e. the spatial part of the uncorrelated OBDM is also independent of the value
of the isospin.

3.2 The vertex corrections

The construction of the FHNC equations for the finite systems follows the steps
used for the infinite systems. The minimization of the energy functional, Eq.
(1), with the ansatz (2) on the wave function and (3) on the correlation, leads
to the requirement of evaluating the TBDF (10). The loss of translational
invariance obliges us to calculate also the One-Body Distribution Function
(OBDF), which, in the present case, depends on the isospin third component:

Ny

t1
prre) = <U|U >

/de...dxA U* (21, 29,...,204) P
X U(xy,z9,...,24) , (100)

where N, indicates the number of protons (¢ = 1/2) or of neutrons (t = —1/2),
and the projector operator P! selects the particle with isospin third component

t. By using the above definitions, we can express the operator dependent
TBDF as:

/\/h (Mz - 5t1t2)

2 tyt tat _
1Y gq12(r17r2> Pg 12(r17r2> — < \I]|\IJ>
X/dxg...dxA\If*(ml,xg,..., A) PP OL PRV (21,20, ... 2 4), (101)

where the O? operators have been defined in Eq. (49). In the remaining part
of this section we shall be concerned only with the calculation of the scalar
TBDF, ¢ = 1. The evaluation of the other operator dependent TBDF's is
treated in Sect. 3.3.

The first steps to be done to calculate the one- and two-body density functions
defined above, are analogous to those used in the infinite systems case. We
start by defining an h-function as in Eq. (14) and we use it to make the cluster
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expansion of the numerator and the denominator of both OBDF and TBDF.
The various terms of the cluster expansions can be analyzed by using Mayer
diagrams. The topological analysis of these diagrams is done in analogy to
what we have discussed in the case of infinite systems.

The arguments used in Sects. 2.1 and 2.2 to show that the contributions of the
unlinked diagrams of the numerator are simplified by the denominator, can
be repeated also in the finite systems case [26]. The demonstration is done by
formally extending up to infinity all the sums of the various cluster terms, since
the property (33) of the sub-determinant A, ensures that diagrams containing
a number of particles greater than the number of particles forming the system,
do not contribute.

In the infinite systems case, the next step was the elimination of the reducible
diagrams. We have already said that this elimination is only approximated for
boson systems, up the 1/A order, but it is exact for infinite fermion systems.
The basic point of the demonstration for this latter case, was the possibility
to associate to each reducible diagram, another diagram containing only one
additional exchange loop. The contributions of these two diagrams to the
TBDF differ only by a sign, therefore they cancel each other. This cancellation
mechanism is produced by two specific characteristics of the infinite system.
The fact that for a given reducible diagram it is always possible to find another
diagram having one additional particle, and one additional exchange loop, is
ensured by the presence of an infinite number of particles. The translational
invariance is instead responsible for the fact that the additional exchange
loop contributes only an overall minus sign. In the finite nuclei the number of
particles is limited, and the translational invariance is lost, therefore there is
no cancellation of the reducible diagrams.

However, even in finite systems it is possible to recover the irreducibility of the
expansion by introducing the so-called vertex corrections [43,26]. A graphical
representation of this idea is given in Fig. 13. Every reducible diagram can be
thought as composed by two parts, as indicated by the diagrams A and B of
the figure. A first part contains the external points and is the irreducible part
of the diagram. A second, reducible, part contains only internal points, and
it is linked to the irreducible part through the articulation point a. The total
contribution of these connected, and reducible, diagrams to the TBDF can be
written as the folding integral of the irreducible part with a function taking
into account the contribution of all the diagrams connected to the articulation
point and it is directly related to the OBDF (100).

It is necessary to distinguish the case where the irreducible part is linked to
the articulation point only by dynamical correlations, as in the A diagram
of the figure, from the case when there are statistical correlations joining the
articulation point, as in the diagram B. To simplify the drawing, we show in
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Fig. 13. Graphical illustration of the vertex corrections. Since the Pauli exclusion
principle allows each point to be reached by no more than two exchange lines, we
have to distinguish the reducible parts of the diagrams. In C; the articulation point
a can be reached only by dynamical correlations, while in C? also by statistical
correlations.

=
o

the A diagram only a single dynamical correlation line connecting the irre-
ducible part to the articulation point. In reality, there are no limitations on
the number of dynamical correlations. In the case of the B diagram we show
only the statistical lines connecting the articulation point, but also dynamical
correlations may be present.

The fact to be considered is that the Pauli principle allows each point to be
reached by no more than two exchange lines. When the articulation point is
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of type d, i.e. linked to the irreducible part of the diagram only by dynamical
correlations, the Pauli principle is not active. In this case, the reducible part
of the diagram can reach the articulation point with both dynamical and
statistical correlations. We call C*(a) = p'(a) the sum of all the possible
linked diagrams containing the articulation point a which has isospin third
component t. This is really the OBDF (100) of the nucleons with isospin third
component t.

The situation changes when the articulation point is of type e, i.e. linked to
the irreducible part of the diagram also by statistical correlations. In this case,
because of the Pauli principle, the reducible part of the diagram can reach
the articulation point exclusively with dynamical correlations. We call Cy(a)
the sum of the diagrams reaching the articulation point @ with dynamical
correlations only.

The evaluation of Cy(a) can be performed by extending the diagrams classifi-
cation done in Sect. 2.1 to the case of a single external point. All the linked
diagrams, both simple and composite ones, contribute to Cy(a). As an exam-
ple, the contribution of the (I7) diagram of Fig. 13 is obtained by squaring
the contribution of the (I) diagrams and dividing by two, in order to avoid
double counting. The procedure used in Sect. 2.1 to calculate the contribution
of the composite diagrams can be applied also in this case. If we call Uy(a)
the sum of all the simple irreducible diagrams connected to the point a by
dynamical correlations only, we can write:

1

3!U§’(a) + - = exp|Uy(a)] (102)

Cala) = 1+ Us(a) + ;U3 a) +

It is understood that all the diagrams contained in U(a) are renormalized
by the vertex corrections, therefore they must be irreducible in each internal
point.

For the calculation of C*(a) we have to consider also the diagrams linked to
the articulation point a with statistical correlations. We call U!(a) the sum of
all these simple irreducible diagrams. Because of the Pauli principle, one can
construct composite diagrams with U!(a) combining it only with any number
of Uy(a) that produces Cy(a). By definition, C*(a) is given by all the diagrams
contributing to Cy(a), i.e. all those reaching a with dynamical correlations,
plus the diagrams constructed by associating those with U!(a):

C'(a) = Cala) |ph(a) + Ul(a)| = p'(a), (103)

where pf(a) indicates the uncorrelated one-body density for nucleons with
isospin ¢, and p'(a) is the corresponding OBDF. In the absence of correlations,
Uy and U! are zero, therefore C' is equal to the uncorrelated density, as is
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expected. The construction of the functions Uy (1) is done by integrating the
composite daigrams over the coordinate 2. This procedure requires a careful
attention to the avoid the possible overcounting problems [43]. The explicit
expressions of Uy (1) are given in Appendix B.

By introducing the vertex corrections idea, we recover the irreducibility of
the cluster expansion. Obviously the evaluation of the nodal diagrams is more
involved than in the case of infinite systems. However, the basic ideas used
to calculate the nodal diagrams in the infinite system, are still valid in the
present case, and the expressions of the Ngy(r1,19), N, % (r1,12), Ni2(r, r5)
diagrams, given in Appendix B, are a rather straightforward extension of those
presented for the infinite systems. We have shown the dependence on isospin
associated to the exchange. The only relevant differences are related to the
cyclic-cyclic N (ry,15) diagrams and they are worthy of a short discussion.

In analogy to the infinite system case, the nodal N!I(ry,ry) diagrams are
generated by the folding products of X7 (ry,ry) or of p(ry,r2). In the finite
system case, the presence of the vertex corrections generates the possibility of
having nodal diagrams where there are two consecutive statistical correlations
pb(rs,1;). We show in Fig. 14 an example of this situation. In the diagram A
the point 3 is reached by a statistical correlation on the left hand side, and by
a dynamical correlation on the right hand side. In the diagram B, the point
4 is reached on both sides only by statistical correlations. In infinite systems,
i. e. in the absence of vertex corrections, because of the property (30) of the
uncorrelated OBDM, the two diagrams give the same contribution, except
for a minus sign. For this reason, in order to avoid overcounting, we did not
consider diagrams of the B type in the evaluation of the N!! contribution
to the TBDF. In finite systems each point is vertex corrected, therefore Eq.
(30) cannot be applied to describe the integration over the point 4 in the
B diagram, and, consequently, the contribution of the diagram B is different
from that of the diagram A.

4 3

1 2
B

Fig. 14. Two Nc.(r1,r2) diagrams. In infinite systems they give opposite contribu-
tions since the integration over the point 4 in the diagram B recovers the diagram
A, except for a minus sign. In finite systems, because of the presence of vertex
corrections in the 3 and 4 points, the two diagrams give different contributions.

We take care of this fact by separating the contribution of NI in four different
terms:
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N (r1,12) = N2 (v, 12) + N2 (11, 12)
+ NG (r1, 1) + NI (11, 12) (104)

The superscripts x and p refer to the type of correlation reaching the external
points. With the label p we indicate that the point is reached by a statistical
correlation only, like the point 1 in Fig. 14, while with the label z we indicate
that also dynamical correlations are present, as in the point 2 of the figure.

The full set of FHNC equations containing the vertex corrections, called
Renormalized FHNC (RFHNC) equations, is given in Appendix B.

3.3 Treatment of the operator dependent correlations

In the discussion done so far for finite nuclei, we have considered scalar corre-
lations only. As in the infinite system case, the use of the operator dependent
correlations is treated in the SOC approximation. However, the treatment of
these correlations presented in Sect. 2.3 cannot be straightforwardly extended
to finite nuclear systems. First, the systems we want to describe are not sat-
urated in isospin, and this changes the treatment of the isospin dependent
terms. Second, the jj coupling of the single-particle wave functions modifies
the calculation of the spin traces. In any case, we tackle the problem by using
the strategy outlined in Sect. 2.3. We first reduce the product of operators to
a sum of single operators, and then we calculate the appropriated traces. We
find it convenient to treat separately the spin and isospin operators. For this
reason, we use Eq. (51), to express the operator dependent correlation (48)
as:

Fi; = pr(rij)afj Z “T;) Zf% 141( TZJ)Pk . (105)

As we have already pointed out in the case of infinite systems, we remem-
ber that, in addition to the product of operators coming from the dynamical
correlations and from the interaction, we have also to deal with the spin and
isospin exchange operator Eq. (58), coming from the statistical correlation.
Each exchange loop formed by n statistical correlations pg(x1, z2) carries n—1
spin-isospin exchange operators. By using the symbols defined in the above
equations, we express the operators generated by a single exchange loop as:

1 1 3

X0k = () Ak (106)

=0 k=1

where the values of I'? are those given in Tab. A.1 of Appendix A, from which
we see that A =1 — dj, 3.
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3.8.1 Spin traces

We consider a closed loop of statistical correlations (89), involving only two-
particles:

Po(xz’,xj)Po(Ijaxz') =
s18ht . . . .
Doopo U)X (D)xs ()X ()xn (7)) X

/
51,57,01

sasht ; ) ] .
D P02 ()X, ()X (9 (7) X (7)

52,8’2t2

/ /
= > > A )y () X

Sl,sll,tl SQ,SIQtQ
X, )X, X7 ()X (DT (4, 5) Xt () x5, () Xt () X2 (2)

where we have used the operator (58), to exchange the spins and isospin of
the bra. Fixing the isospins, which will be treated appart, the kernel of the
above equation is:

5,8’ t
Po

s,s’

= pb(rir) > xF(G)xs ()

003 (v, 15) Do (1) ()= () (107)

s

(rh rj)X:(j)Xs/ (])

where we used the uncorrelated OBDMs for parallel and antiparallel spins
defined in Egs. (91,92). The treatment of the parallel spin term is similar to
that of the infinite system case. The antiparallel term, which appears only in
the 77 coupling scheme, should be treated differently.

Following the scheme presented in Sect. 2.3 we evaluate the spin traces by
considering three cases: the product of operators acting on the same nucleonic
pair, the product of operator forming a ring (SOR) and the product of more
than one operator acting on an internal point. Consistently with the definitions
(51) of the operators, in the following expressions the upper indexes i, j, k can
assume the values 1,2 and 3, only.

3.3.1.a Parallel spin traces
In analogy to the infinite system we find that the trace of the product of two
operators P!, acting on the same pair of nucleons is:

C(Pf3Pl3) = B* oy, = A0y, (108)

where the values of BP are given in Tab. A.2. From this table we see that
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AP =k(k+1)/2.

We find that the product of two operators can be reduced to the following
sum of single operators:

szpfz = Z ]mkplkz ) (109)

k=1

where the matrix I“* is constructed by selecting only the values of the odd
indexes of the matrix KP?" given in Tab. A.3 of Appendix A:

1 0 0 01 0 0 0 1
I'""=10 3 o ,I?=[1-2 of,I"=|0 0 1 (110)
0 0 6 0 0 2 1 1-2

In analogy to Sec. 2.3.1 we can use recursively Eqs. (108) and (109). For
example, we find for the trace of the product of three operators the expression:

3
C(PLPLPY) = Y IMC(PR PY) = I'7FAN (111)

k1=1

The evaluation of the product of operators forming a closed loop (SOR) follows
the steps outlined for the infinite system case. In analogy to Eq. (64), we find
that also in the present case this product of operators can be written as a sum
of single operators as:

> [ de:PiyPl = 3 [ doa Gl Pl (112)
o2 k=1

where the values ({5 factors are given in Eqs. (65). By using the above equa-
tion we find that the trace of multipole operator diagrams, such as those of
Fig. 11, can be calculated as:

. / 3 . 1
[ d6:C (P, o s P = 30 0 [ el (113)

k1=1

The matrix J¥' is built by using the odd index values of the matrix L given
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in Tab. A.4 of Appendix A:

10 0 0 3 0 00 6
JUh=10 3 0|,J”=[3 6 0|, =0 0-6].(114)
00 6 0 06 6 —6 12

3.3.1.b Antiparallel statistical function.

Since the Eqgs. (109) and (112) involve only operators, they do not depend
upon the spin structure of the wave function, therefore they are valid also
in the antiparallel spin case. The change with respect to the parallel case, is
in the basic trace value (108) which is no longer valid. For the antiparallel
statistical function of Eq. (107) we write the trace of a single operator as:

1

Ci(P3) = 7 > (=1 (D () Plax s (Dx—5:(2) (115)

51,52

and we find the values

Cy(P) = 0z - (116)

We see that the contribution of the scalar operator is zero and that of the
spin operator is one, just the opposite results of those of the parallel case. The
result (116) for the tensor operator has been obtained under the hypothesis
of a spherical symmetry of the system.

3.3.2  Isospin expectation values

In a system not saturated in isospin, we should not sum on the isospin third
components, since the various diagrams, nodal, elementary, vertex correc-
tions, etc., depend on these quantum numbers. This means that the values of
these diagrams are different when they are calculated for protons, neutrons,
or mixed, clusters. We do not calculate isospin traces, but the expectation
values of products of isospin operators. In order to obtain these expectation
values we use the properties of the Pauli matrices which allows us to express
the product of n isospin operator pairs acting on the same pair of nucleons as:

(Ti-7)" =an+ (1 —an)7Ti 75, (117)

with:

ani1 = 3(1 —ay,) , and apg=1. (118)
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The recursive relation (117) expresses the product of isospin operator pairs as
a sum of a scalar term plus a term depending from a single isospin operator
pair. The expectation value of the operator sequence (117) is:

X = (DX (2) (71 72)" X (DX (2) - (119)

By using Eqgs. (117) and (118) we obtain:

g =1, and X =204, — 1, (120)

and by applying the recursive relations, we have the more general result:

Xith = Qa,n —1 —+ 2(1 — an)5t1t2 . (121)

This result is the contribution to the cluster expansion of terms like that
represented by diagram A of Fig. 15. In this figure we show the various types
of diagrams which appear in the calculation of the energy expectation value,
and more precisely in the calculation of the expectation value of the two-body
interaction:

<UWBIT > < O|FVLF|® >
<V > <V >

(122)

In the figure we indicate with the black area joining the external points 1 and
2, the product of the three operators O7,0%,07,, where O and O" come from
the dynamical correlations F, while 0%, always in the middle, comes from
the two-body interaction V5. All the isospin expectation values necessary for

the calculation of the energy expectation value are taken into account by Eq.
(121).

The case of the A diagram of Fig. 15 is an example of our procedure. We find
general recursive relationships connecting the expectation values of isospin op-
erators, and use them to obtain expectation values. The case of the A diagram
is the easiest one, but we apply an analogous procedure to calculate the cases
of the vertex correction, represented by the B diagram, and the case of the
nodal diagram, represented by the C diagram of the figure. The calculation of
the isospin expectation values for these two, more involved cases, is presented
in detail in Appendix C.

The rules that we have presented in this section to calculate the spin traces
and the isospin matrix elements have been used to evaluate the OBDF and the
TBDF in the SOC approximation. The expressions of the RFHNC equations
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1 2 1 2 1 2
A B C

Fig. 15. Example of diagrams contributing to the energy expectation value. The
black areas indicates the product of three operators O7,0%,07,. The two operators
OP, O come form the dynamical correlations, while O¢ comes from the interaction.
The dashed wiggly line of the diagram B indicate an operator dependent vertex
correction M. This implies the presence of a single operator coming from the cor-
relation, because of the SOC approximation, eventually associated with another
operator coming from the spin-isospin exchange term. The wiggly dashed and dot-
ted lines of diagram C indicate the correlated TBDF containing operators of the
correlations and those related to the spin-isospin exchange terms.

which allows us to calculate the cluster expansion of the TBDF in the SOC
approximation are given in Appendix B by equations (B.32-B.63). The cluster
expansion of the TBDF allows us to calculate the energy expectation value.
The details of this calculation are given in next section.
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4 The evaluation of the ground state energy

The discussion of the previous sections was devoted to the calculation of the
scalar TBDF defined by Eq. (101) when ¢ = 1. The TBDF contains all the
many-body effects independent from the two-body interaction, whose expecta-
tion value can be obtained as indicated by Eq. (11) for the infinite system. For
the calculation of the TBDF we developed the cluster expansion techniques
and we built a set of hypernetted chain equations which allows us to evaluate
in a closed form the contribution of all those diagrams we have called nodal
and composite. In this section, we apply these techniques to the calculation
of the energy expectation value (9) with a hamiltonian of the form:

A h2 A A
HZ—;%V?JF > Vit > Vi (123)

j>i=1 k>j>i=1
The two-body interaction is expressed as:

8
Vij =Y vP(ri;)OF (124)
p=1

where vP(r;;) are scalar functions of the distance r;; of the two interacting
nucleons, and the p = 1,...,6 operators are those defined in (49). We consider
in addition the spin-orbit operators

O™ = (L-8)ij, (L- 8)y5(7 - 75) (125)

where L is the relative angular momentum of the two interacting nucleons,
and S is the sum of their spins. We give in Sect. 4.3 the explicit expression of
the three-body interaction V;jy.

The calculation of the energy expectation values is done by using the trial
wave function:

UL, A) =F(1,. . A, A) =S(] Fy)e,...,A),  (126)

1<j

where the two-body correlation function consider only the first six operators
as indicated by Egs. (48) and (105). The uncorrelated state, ®, is a Slater
determinant composed by all the single particle wave functions (88) lying
below Fermi surface.

In the following, we treat together the kinetic energy and the two-body in-
teraction up to the tensor channels. All the other parts of the hamiltonian,
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two-body spin orbit interactions, three-body and Coulomb interactions, are
treated separately. In the following expressions the ¢ indexes run on protons
and neutrons, the p, ¢, r, s labels may assume values from 1 up to 6, and are
used to generically identify the different operator channels as in Eq. (49).
When we separate the spin and isospin dependence as in Eq. (51) we shall use
the indexes (=0,1, and £ =1, 2, 3.

4.1 Kinetic energy and Vi part

We evaluate the expectation value of the kinetic energy, by using the Jackson-
Feenberg separation scheme [44,45] as suggested in Ref. [39]. We obtain:

(T) =Ty +Tr —Tem. , (127)

where we have defined

2 A A
T, = _f—( <OFY VIO > — < (V;9%) - (F*V,;0) > ) , (128)
m i=1 i=1

2

sz—f—m<@*[ (ZW = ;VF” (129)

and for the contribution of the center of mass term we have:

h? A 2
Tem =5 —= <¥ (;v) > (130)

In the above equations we have used the symbol <>, which has been defined
as [27]:

[dxy...deaX(zq,...,24)

<X >=
< U >

(131)

Before attacking the problem of calculating (7) we define some useful quan-
tities:

PR = D (005, (r1) Vil (r1) = Vi, (r1) - Vadlh,, (r)] , (132)

nljm
t1to

P’ (v1,12) = pgt (11, 12) Vipg (r1,12) — Vipf (r1,12) - Vip(r1,12) , (133)

prs(r1,12) = 2VipG (r1,12) (134)
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(135)

The above expressions involve neither the interaction nor the correlations,
therefore they depend only on the uncorrelated many-body state, ®. The
expressions of these quantities in terms of single particle wave functions (88)
are given in Appendix D. In terms of these quantities the center of mass
contribution can be expressed as:

T, :—h2 Z(/dr tl(r)—/drdr a(r r)) (136)
cm AmA 1P\ 1a4Y2ppy\Ir1, 'y .

t1

The operator structure of T can be easily associated to that required by the
calculation of the interaction expectation value. For this reason, we calculate

together Tp and Vo = Y < vPOP >. The contribution of Tp + Vo = W is
p=1,6
also called interaction energy [30].

The structure of the SOC approximation generate various cases that we sep-
arate in four parts, i.e. :

W =Wy + W, + W+ W, . (137)

We sketch in Fig. 16 the characteristics of the four terms. The black bands
between the interacting points 1 and 2, indicate OPO?0", operators OP and
O™ coming from the correlation and O? from the interaction.

In the term W, we calculate the sum of all the diagrams connected to the
interaction points by scalar correlation functions only. The interaction point
are vertex corrected. If the product OPO?0O" produces a scalar term, the vertex
correction contains all the operators types. If, instead, the product O?O?0"
generates operator terms, the vertex correction contains scalar terms only. The
explicit expression of Wy is given in Appendix E.

With W, we consider the sum of operator rings touching a single interaction
point. These diagrams may include also the presence of scalar operator chains
such as those considered in Wj. The W, term is the sum of all the diagrams
forming a SOC between the two interacting points. We present in Appendix
E the derivation of the explicit expressions of the W, and W, diagrams.

The contribution of the W, term is given by the sum of all the diagrams with
operator rings reaching a single interaction point, and, in addition, the SOC
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WC WSC

Fig. 16. Graphical representation of the W terms of Eq. (137).

between the two interacting points. The W, term is obtained by the combina-
tion of the topologies of the W, and W, terms. Because of the large number of
operators present in W.,, we do not calculate explicitly its contribution, but
we rather estimate it by using the prescription proposed in [30]:

W W,

Wes ~ . 138
o (138)

Nuclear matter calculations [21] where, more refined computational schemes
are used, indicate that the largest contribution of W, is two orders of mag-
nitude smaller than those of the other W terms. We have compared nuclear
matter estimations of the values of W,, obtained with our prescription with
those calculated more accurately in [21], and we have found agreement up to
the second significant figure.

In the evaluation of the interaction energy W, the Tr part of the kinetic
energy is included. We describe now how we calculate the contribution of the
first term of the kinetic energy (127), the T}, term, where the V; operator
acts on the mean-field wave functions. In Ref. [27] we found it convenient to
separate the contribution of T}, in three parts:

T, =T" +T,) + T . (139)

where each part is characterized by the type of statistical correlations reaching
the interacting point 1. In Fig. 17 we show some diagrams which identify
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each term. We have denoted the interacting point 1, by an open circle. The
nomenclature interacting point is due to the fact that this is the point on which
the differential operator is acting. In the T(z()l) type of diagrams, the interacting
point is connected to the other points by means of dynamical correlations only.
In Tq(f), the statistical correlations reaching the point 1, form a closed loop
involving only another single %)oint. In the diagrams of Fig. 17 we call 2 this
other point. Finally, in the T¢3) type of diagrams the statistical correlations
reaching the point 1, form close loops which involve at least two other internal

points.
(1)
Ty
]

i
i
,

, \
, \
, \
éi::::ﬁ

2
T¢,0( )

2
Ty, C( )

3 3 3
Ty Ty Ty

Fig. 17. Graphical representation of the T} terms of Eq. (128).

The expression of the T(z()l) is the expectation value of a one-body operator
dressed by the vertex correction, and is given in Appendix E.

The calculation of the other two terms is more involved, since we have to calcu-
late the expectation value of a two-body operator. Nevertheless, the structure
of these operators is the same as the ones in the exchange terms of W. So we
further classify the Tf) and Tf’) terms in the same way that we did for the
W terms.

We consider Tfés) terms where the points 1 and 2 are connected to the other

nucleons by a scalar operator chain. As indicated in Fig. 17 this means that
these points are reached by scalar correlations only, whose contribution can
be calculated in terms of RFHNC diagrams. This is indicated by the f; label
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in the gray box. A second class of diagrams is that we labeled as 7> In this

case, we consider that, in addition to the scalar chains of ngg), the interaction
point is reached by a ring of p > 1 operator dependent dynamical correlations.
Finally, with ngg’) we indicate the sum of the diagrams where the points 1
and 2 form a SOC. In the figure, this is indicated by the wiggly lines and by
the fp~1 label in the gray box. As in the case of W terms, we may have also

diagrams which are the topological combination of T (?;3) and Tgc’g). We have
estimated that their contribution is negligible.

The separation of the T}, contribution in three parts, was proposed, and used,
in [27], where the finite nucleon systems treated were saturated in both spin
and isospin, and only scalar correlations were considered. The presence of
operator dependent correlations, requires a further classification of the various
terms. Clearly, T, depends on the isospin third components of the particles
1 and 2. Furthermore, since we work in a jj coupling scheme, we have to
distinguish in the calculation of the Tf’g) terms, the cases when the statistical
correlations have parallel and antiparallel spin components. The complete list
of expressions of the various terms composing Ty, is given in Appendix E.

4.2 Spin-orbit and Coulomb terms

The contribution of the Coulomb interaction is:

A 2

1/2 p1/2 €

< Voo >=< U* Y PP
j>i=1

U > 140
> (140)

where the Pil/ 2 projection operator selects the protons. The Coulomb inter-
action is added to the scalar part of the V;; interaction when two protons
interact. This means that its contribution is consistently calculated following

the methodology described in Sect. 4.1 for all the proton-proton W terms.

We calculate the contribution of the spin-orbit terms of the potential, i.e.
the p = 7,8 channels in Eq. (124), by considering only diagrams containing
scalar chains between the interacting points. In other words, for the spin-orbit
interaction, we calculate only the Wy term of Eq. (137). The explicit expression
of the spin-orbit contribution is given by Eq. (E.40) in Appendix E.
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Fig. 18. Fujita-Miyazawa term of the three-body force.
4.8 The three-body potential

In our calculation we use three-nucleon potentials of Urbana type [46]. The
explicit expression of this potential is:

Vige = 05 + Vi - (141)

The ’UZ]k, term, describes a threenucleon force produced when one of the in-
teracting nucleons is transformed into a A by a first interaction with another
nucleon, and it turns back to a nucleonic state after interacting with a third
nucleon (see fig. 18). This term called Fujita-Miyazawa [47] describes the long
range part of the three-body interaction and produces an attractive contri-
bution. The second term of Eq. (141), v Uk, has a shorter range and a phe-
nomenological origin. The explicit expressions of the two terms of Eq. (141)
are:

Vigs = Az > ({X317 XooH{1s 71,75 T2}

cycl
1
+Z[X31,X32][T3'7'1,7'3'7'2]) ) (142)
Ug?):UOsz(Tgl)Tz(’l“gg) . (143)

cycl

where the sums run on all the possible cyclic combinations of the 1,2 and 3
indexes. In the above equations we have used the terms 7" and X defined by:

e Hr 3 3 2
Tr(r) = I+ —+—|(1-e"), 144
="l (W] (1= ) (144)
Xij=Yo(rij)oi-oj+ Te(ry)S ZX’“ (rij) P, ” , (145)
where:

Yo(r) = (1 — ) (146)

w(r) = —e ,

ur
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where, as usual, 5;; indicates the tensor operator (50), and the symbols {, }
and [,] indicate the anticommutator and commutator operators, respectively.
The values of the constants of the v?3; term are: p = 0.7fm™!, and ¢ = 2fm~2.
The parameters Ay, and Uy of the v, term are fixed to reproduce the H
binding energy [46].

3 3

2.1) (2.2) (2.3)

(3.1) (3.2)

Fig. 19. Cluster diagrams considered for the three-body force expectation value. The
2.1, 2.2, 2.3 diagrams are related to the < U?ﬁ > part of the force, and the 3.1 and
3.2 diagrams are related to < vi]}k > . The points denote the particle coordinates.
The dashed, wavy, and double-wavy lines represent generalized scalar, operator and
single-operator ring correlation bonds, respectively.

In analogy to the calculations in nuclear and neutron matter [21,46,24,40,25],
we evaluate the contribution of the three-body interaction by considering only
the sum of the five diagrams presented in Fig. 19. In Ref. [46] it was shown
that the diagrams (2.1), (2.2) and (2.3), provide the relevant contribution to
< v, >. The other two diagrams are those important for < vf, >.

In the diagram (2.1) the pairs of nucleon connected by operators X;; (pairs
31 and 32) are dressed by scalar correlations, whereas the remaining pair (12)
is also dressed by all the other operator dependent correlations p > 1, in the
SOC approximation. In the (2.2) diagram, the pairs 31 and 32 are linked by
operator dependent correlations in the SOC approximation, while the pair
12 is dressed by the scalar correlation. In the (2.3) diagram there is a cyclic
permutation of the operator dependent correlations.

The < vfi; > term is calculated by evaluating the (3.1) and (3.2) diagrams.
We calculate the case where all the pairs are dressed by scalar correlations
at all orders, diagram (3.1) and the case when there is in addition a SOC
correction for a single pair of nucleons, diagram (3.2).
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The detailed derivation of the expressions of the three-body potential is given
in Appendix E.
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5 Specific applications

We have applied the formalism presented in the previous sections to the de-
scription of the 2C |, 160 | 4°Ca , *¥Ca and ?°*Pb nuclei. The only inputs
required by our calculations are the two- and three-body nuclear interactions.
In Sect. 5.1, we present those chosen for our studies. The single particle wave
functions, and the correlation functions, fixed by the minimization procedure
(1), are presented in Sects. 5.2 and 5.3, respectively. The theoretical and com-
putational reliability of our calculations has been tested by verifying the ex-
haustion of some sum rules. This discussion is developed in Sect. 5.4. After
that, we discuss in Sect. 5.5 the results regarding the most important observ-
able of our calculations: the binding energy. We compare results obtained by
using two different interactions. We continue our discussion by presenting a
set of quantities which we have chosen to investigate the effects, and the rele-
vance, of the short-range correlations. These quantities are: matter and charge
density distributions, Sect. 5.6, momentum distributions, Sect. 5.7, natural or-
bits, Sect. 5.8, two-body density distributions, Sect. 5.9, and, finally, quasi-hole
wave functions and spectroscopic factors, Sect. 5.10.

5.1 The nuclear interaction

The definition of the hamiltonian (123) requires the definition of both two- and
three-body forces. We use two-body forces constructed to reproduce the data
of the phase-shifts analysis of the large body of nucleon-nucleon scattering

[3,48].

We have used nucleon-nucleon interactions of the Argonne-Urbana family.
These interactions are local and non-relativistic, and are expressed as a sum
of operator dependent terms as indicated in Eq. (124). The most recent inter-
action of this type, fitting the phase-shifts of Refs. [3,48], is the Argonne ;g
interaction (AV18) [5], containing 18 operator terms, some of them breaking
the charge symmetry.

In our calculations we have considered interactions containing up to eight op-
erators channels, see Egs. (49) and (125). For this reason, we used a truncated
version of the AV18 potential, called Argonne v§ (AV8’), and introduced in
Ref. [7] because its simpler parameterization allowed a simplification of the
numerically involved quantum Monte Carlo calculations. This interaction is
not a simple truncation of the full AV18 interaction, but its parameters have
been slightly modified to simulate the effects of the missing channels. The
AVS’ interaction reproduces the results of the full interaction for the S and P
scattering waves and also the 2D; wave. The details of the construction of the
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AV8’ interaction are given in Ref. [7].
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Fig. 20. The AV8 and UV14 nucleon-nucleon interactions as a function of the
relative distance, in the channels used in our calculations. The continuous thin line,
show the behavior of the Argonne v1g potential.

The major part of our calculations have been done with the AV8’ interaction.
However, in order to test the sensitivity of our results to the nuclear inter-
action, we have also used the Urbana vy4 interaction, fixed in Ref. [49], to
reproduce the set of phase shifts data available at the beginning of the ’80s. In
reality we have used only the first eight channels of the interaction, without
any readjustment of the parameters values. For this reason, we shall refer to
this interaction as UV14, understanding that we used the operator channels
only up to the spin-orbit ones.

The two-nucleon interactions are implemented with the three-nucleon inter-
actions fixed to reproduce the 3H binding energy. This means that associated
to each two-nucleon potential there is a three-body force. Even though more
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elaborated versions of the three-nucleon forces have been recently proposed

[50], in our calculations, we use the original expression [46], as presented in
Sect. 4.3.

We use the Urbana UIX three-nucleon interaction [7] together with the AVS’
potential, and the Urbana UVII interaction [51] together with the UV14 po-
tential. The values of the parameters of Eqgs. (142,...,145), fixing these two
forces are given in Tab. 1.

UVIIL UIX
Aasr | —0.03330 | —0.02930
Up | 0.003700 | 0.004800

Table 1
Parameters used in Egs. (142,..., 145) to fix the three-body UVII and UIX inter-
actions. In both cases ;= 0.7fm ™" and ¢ = 2fm~2.

5.2 The single particle wave functions

120 160 4OCa 480& 208Pb
Vop -62.00 | -52.50 | -57.5 | -59.50 | -60.40

|74 -3.20 | -7.00 |-11.11 | -8.55 | -6.75

af 0.57 0.53 0.53 0.53 0.79

ay, 0.57 0.53 0.53 0.53 0.79

RbE | 286 | 320 | 4.10 | 4.36 | 7.46

2.86 3.20 4.10 4.36 7.46

Reoouw | 2.86 3.20 4.10 4.36 7.46

Vob | -62.00 | -52.50 | -55.00 | -50.00 | -44.32
v -3.15 | -6.54 | -850 | -7.74 | -6.08
ag 0.57 0.53 0.53 0.53 0.66

aj, 0.57 0.53 0.53 0.53 0.66
Ry 2.86 3.20 4.10 4.36 7.46
2.86 3.20 4.10 4.36 7.46

Table 2

The values of the parameters of the Woods-Saxon potential well, Egs. (86) and (87).
The superscripts p and n indicate protons and neutrons respectively. The values of
Vo and Vjs are expressed in MeV, those of all the other parameters in fm.
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In our calculations, the search of the minimum is done by making variations
on the correlation function and on the mean-field potential generating the
set of single particle states. We have already said in Sect. 3.1 that we used
a mean-field basis generated by two Woods-Saxon wells, one for protons and
another one for neutrons, both containing spin-orbit terms. The analytical
expressions of the Woods-Saxon wells, Egs. (86) and (87), involve thirteen
parameters. Variational calculations done by changing all these parameters
would be extremely heavy, from the computational point of view. In reality,
we found [31], that the energy minimum is more sensitive to the correlation
function, than to the single particle basis. To be more precise, we found that
when the correlation functions provides an energy minimum, changes of the
potential do not produce large differences of this value. In Ref. [31] it has been
shown that, in 1°0 | variations of 47% of the central well changed by only 1.2
% the energy value. In calculations of the 8Ca nucleus we found a change of
9% in the energy value by doubling the depths of the neutrons and protons
wells.

These findings induced us to make calculations by using, for each nucleus, a
fixed set of Woods-Saxon parameters. The values of these parameters, given in
Tab. 2, are taken from the literature [29]. They have been fixed to reproduce
the charge root mean square radii and the single particle energies around the
Fermi surface. One could consider the requirement of reproducing these data,
a further variational constraint. In any case, we have further verified that our
energy minima are only slightly modified by large changes of the potential.

5.8 The correlation functions

The correlation function is fixed by the minimization procedure (1), and the
result is independent of the starting expression of the correlation function. In
practice, however, in order to minimize the computational effort, it is conve-
nient to choose expressions of the correlation functions containing a limited
number of parameters, and behaving at large interparticle distances as intu-
itively expected. This means that asymptotically f; should reach the value
1, while the other correlation functions, should be zero. A commonly used
expression for the scalar term of the correlation is the gaussian form:

For) = 6y + ay et

where a, and b, are the free parameters to be changed in the variation proce-
dure. For example in Refs. [27-29] correlations of this type have been used.
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Fig. 21. Two-body correlation functions f,, obtained with the Euler procedure, as a
function of the two-nucleon distance. In this calculations the AV8'+UIX interaction
has been used.

In our calculations, we found more convenient, from the physical point of view,
and also in terms of number of variational parameters, to fix the correlation
functions by using what we called the Fuler procedure. The basic idea is to use
as variational parameters the distances where the correlation functions f,(r)
reach their asymptotic values. For fixed values d,, of these distances, that we
call healing distances, the functions f,(r) are obtained by doing a minimization
of the energy calculated up to the second order cluster expansion. This means
that we solve the FHNC/SOC equations when all the nodal diagrams are zero.
We give a detailed description of the Euler procedure in Appendix F.

The application of the Euler procedure involves a single variational parameter,
the healing distance d,, for each operator channel of the correlation, therefore
in our calculations we have to deal with six variational parameters. On the
other hand, it is know from nuclear and neutron matter calculations [21,24,25]
that the healing distances of the four central channels p < 4 are rather similar,
as are those of the two tensor channels p = 5, 6. For this reason, we performed
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our calculations by using only two variational parameters, a healing distance
d. for the four central channels p < 4, and another one d;, for the two tensor
channels.

The values of the healing distances providing the energy minima for the five
nuclei considered, are given in Tab. 3. In this table, we compare the values
obtained by using both interactions. In Fig. 21 we show the two-body corre-
lation functions obtained for the AV8+4UIX interaction as a function of the
two-nucleon distance.

1200 16() 400, 48C,  208ph
AV8 + |d. | 120 210 215 2.10 2.20
UIX di | 3.30 3.70 3.66 3.70 3.60
UvVl4 + | d. | 1.40 210 215 2.10 2.20
UVII di | 3.30 3.80 3.86 3.90 3.80

Table 3
Values, in fm, of the healing distances, which minimize the energy functional with
the two different interactions we have adopted.

Various remarks are in order after observing these results. The most evident
one is the scarce dependence on the type of nucleus, with the only exception of
120 . We shall see that, also in the calculations of other quantities, this nucleus
always produces anomalies in the general trend of our results. We think that
this is due to the fact that '2C is not really a good doubly closed shell nucleus,
therefore, open shell effects, not included in our calculations, are relevant. The
following observations are done by excluding the '2C results.

The results of Tab. 3 show the scarce dependence of the healing distances on
the interaction model. The values of d. are identical for both the interaction

models we have used. There are small differences in the d; values, those of the
UV14+4AVII, are slightly larger than those obtained with AV8 +UIX.

Also the dependence on the nucleus is rather weak. The variations of the
healing distances are very small, and, the curves of Fig. 21 relative to each
nucleus are rather similar for each considered channel.

The values of the scalar correlation functions f;, are one order of magnitude
larger than those of the other correlations. The behavior of the f; functions
reflects the presence of the repulsive core in the scalar channel of the nucleon-
nucleon force. The correlation function hinders two nucleons from approaching
each other too much.
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The healing distances of the tensor correlations are larger than those of the
central correlations. Also this effect reflects a characteristic of the interac-
tion where the tensor channels have slightly larger interaction range than the
central ones (see Fig. 20).

5.4  The sum rules

The numerical solution of the FHNC/SOC equations is not trivial at all. We
have to deal with a set of interrelated, hypernetted, integral equations. The
numerical technique used to solve this set of equation is based on an iterative
procedure. In analogy to what we have discussed in Sect. 2.1 for the HNC
equations (22,23,25), we started the calculation of the FHNC/SOC equations
by setting the nodal diagrams to zero. The various integrals equations are
calculated and they provide new values of the nodal diagrams that are used
again to solve the FHNC/SOC equations. The convergence test is done on
the energy, and we stop the iterative procedure when the energy calculated
in two different iteration loops differ by less than 1 keV. Every calculation
is done by using a fixed correlation function. The numerical convergence of
the solution does not ensure that this solution is acceptable from the physical
point of view. For example we found numerically convergent solutions which
provided a wrong number of nucleons.

In addition to these computational problems, we should remember that our
calculations do not solve exactly the many-body Schrédinger equation. The
solution of the FHNC/SOC set of equations does not include the elementary
diagrams. Furthermore, we do not consider the contribution of those operator
dependent terms which are beyond the SOC approximation.

An important tool used to verify the numerical, and theoretical, accuracy of
the calculations is, the test of the sum rules exhaustion. For this purpose, we
have evaluated the following sum rules:

1
Sh=__ / dript(ry) =1, (147)
1

t1

t1to
S2 =

= N g [ et )

1 Jorr =141 (112) fory—1415 (T12)
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-/\/;51 (-/\/;52 - 5151152) / rt f12(T12>
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In the above equations, a sum on the repeated indexes is understood. The
operator dependent TBDFs p? are defined in Eq. (101). The sum rule S;,
is related to the two-body density spin function. This sum rule is valid only
for spin saturated systems and for correlations not containing tensor operator
terms. For this reason, we expect Sy, to be exhausted in %0 and °Ca nuclei
only, and in the absence of the OP=55 operator terms in the correlation.

12C 160 4OCa 480& 208Pb

SP(f1) | 1.000 | 1.000 | 1.000 | 1.000 | 0.999
Sn(f1) | 1.000 | 1.000 | 1.000 | 0.999 | 0.999
SP(fs) | 0.998 | 0.996 | 0.993 | 1.005 | 1.008
Sn(fs) 1 0.998 | 0.996 | 0.993 | 1.004 | 1.004
SP(fs) | 0.997 | 1.006 | 1.008 | 0.994 | 1.002
S(fe) | 0.997 | 1.006 | 1.008 | 0.996 | 1.000
Sy(f1) | 1.004 | 1.003 | 1.001 | 1.000 | 0.998
Sy(f1) | 0.995 | 0.999 | 0.989 | 1.012 | 1.014
Sy(fs) | 0.996 | 0.998 | 0.978 | 0.994 | 1.003
Sae(f1) -0.95 | -0.929

Sae(f1) -1.080 | -1.101

Table 4
Sum rules exhaustion calculated for the AV8+UIX interaction. The indexes f,
indicate the number of operator terms of the correlation.

To obtain the expressions (147,...,149) of the sum rules, we have considered
all the possible types of correlation operator between the 1 and 2 coordinates,
which have been vertex corrected by the scalar correlations. This is the same
approach used to calculate the Wy term of the interaction energy Eq. (137).
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In Tab. 4, we show the sum rule values calculated with the AV8+UIX inter-
action, by using different types of correlations: purely scalar correlations, f7,
central correlation, fy, and correlations containing also tensor terms, fg. To
simplify the presentation of the results, we indicate with S, the quantity:

1

92 = JAC 1)

Z'/vtl('/\/tz - 5t1t2)551t2 ) (150)

ti1t2

which must be equal to one. The f; results give an indication of the error
made by neglecting the elementary diagrams. The differences with the other
sum rules, is a measure of the validity of the SOC approximation.

Apart from the Sy, values, which we shall discuss separately, the various sum
rules are satisfied at the level of few parts per thousand. The f; sum rules,
give the best results which are only slightly spoiled by the other correlations.

Fig. 22. Elementary diagram included in the RFHNC-1 calculations of Ref. [27].

Different remarks should be made for the spin sum rule Ss,. As already pointed
out, in our calculations, these sum rules have to be satisfied only for the 1¢O
and *°Ca nuclei, and for the f; and f; cases. The values of Tab. 4 indicate
that the S, sum rule is satisfied only at the 5-10% level. In Ref. [27], we
have verified that the inclusion of the elementary diagram shown in Fig. 22
improves the exhaustion of the Sy, sum rule up to few parts per thousand.
This is the same level of accuracy obtained for the other sum rules.

5.5 The ground state energies

The most important results of our work are summarized in Tab. 5 where
we give the values of the binding energies per nucleon, for all the five nuclei
considered. We show the results obtained with the two interactions AV8'+UIX
and U144-UVII, and we compare them with the experimental energies [52]. We

68



present the various terms contributing to the total energy: the kinetic energy
T, the two-body interaction, where the contribution of the first six channels
Vf_body and that of the spin-orbit interaction Vg are separately given, the
Coulomb interaction Vo, and the three-body force Vs_poq,. In the kinetic
energy term the spurious contribution of the center of mass motion, Eq. (130),
calculated as discussed in [27], has already been subtracted.

The various terms show some saturation properties. For example, the values of
the kinetic energies per nucleon, T, increase up to “°Ca and then they remain
almost stable. An analogous behavior is shown by the Vf_body terms whose
contribution per nucleon increases with increasing number of nucleons up to
40Ca , and afterword it remains almost constant.

We have mentioned the fact that the spin-orbit terms are not treated con-
sistently in the FHNC/SOC computational scheme, but they are evaluated
by using some approximation. In any case, in all the nuclei considered, their
contributions are of the order of a few percent with respect to the Vi, ; con-
tributions. We have done calculations in **O and °Ca after switching off the
spin-orbit terms in the mean field potential. In this case the spin-orbit partner
single particle wave functions are identical. The differences in the total spin-
orbit contributions, with respect to the values given in Tab. 5 are within the
numerical uncertainty:.

As expected, the results of Tab. 5 show that the binding is obtained by a
subtle subtraction between the repulsive kinetic energy term and the attractive
contribution of the two-body potential. The sum of only these contributions
for the AV’ interaction, provide -2.25, -6.20, -8.30, -7.31 and -9.32 MeV for
the 2C , %0 , ¥°Ca , ¥¥Ca and 2°*Pb nuclei respectively. The sum in the Ul4
model provide -2.40, -6.56, -9.25, -8.19 and -10.17 MeV. It is evident that
the Ul4 interaction is more attractive than the AV8’. This depends on the
intrinsic structure of the interaction and its parametrization.

The contribution of the Coulomb term Vi, is evaluated within the complete
FHNC/SOC computational scheme. As expected, the behavior with increasing
size of the nucleus does not show saturation because of the long range nature of
the interaction. The Coulomb terms behave as expected, their contributions
increase with increasing number of protons. The apparent inversion of this
trend from #°Ca to *Ca is due to the representation in terms of energy per
nucleon, which in this case is misleading, since the proton number is the same
for the two nuclei. In this case it is better to compare the total values of the
Coulomb energies, 78.80 MeV for °Ca and 75.36 for #*Ca . The 4.4% difference
between these two values is due to the different structure of the two nuclei.
The inclusion of the Coulomb repulsion reduces the nuclear binding energies.
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AV8+UIX 12¢ 160 | 40Ca | *Ca | 2%Pb

T 27.13 | 32.33 | 41.06 | 39.64 | 39.56
VS poay | 2013 | -38.15 | -48.97 | -46.60 | -48.43
Veou 0.67| 086 | 1.97| 157| 397
Vis -0.25 | -0.38 | -0.39 | -0.35 | -0.45
T+Vy | -158| -534| -6.34 | -5.74 | -5.35
Va_body 0.67| 086 | 1.76 | 1.61| 1.91
E -0.91 | -4.48 | -458 | -4.14 | -3.43

U14+UVII 12¢ 160 | 40Ca | *8Ca | 2%%Pb

T 24.63 | 29.25 | 37.32 | 36.12 | 36.07
VY body | -2708 | -35.84 | -46.65 | -44.40 | -46.28
Veoul 0.68 | 0.88| 2.01| 159 4.00
Vis 0.05| 0.03| 0.08| 0.09| 0.04
T + Vs 172 | -5.68 | -7.24 | -6.71 | -6.17
V3 body 054 | 069 | 1.46| 1.32| 161

E 118 | -4.99 | -5.77 | -5.27 | -4.55
Eezp -7.68 | -7.97 | -8.55| -8.66 | -7.86

Table 5

Energies per nucleon in MeV, obtained by using the AV8' +UIX and U144+ UV II
interactions. We have indicated with T the kinetic energy, with V26_body the contribu-
tion of the first six channels of the two-body interaction, with Vg the spin-orbit con-
tribution, with Vg the contribution of the Coulomb interaction and with V3_poq4y
the total contribution of the three-body force. The rows labeled T + V5 show the
energies obtained by considering the two-body interactions only. The experimental
energies are from Ref. [52].

In addition, there is the contribution of the three-body force. As discussed
in sect. 4.3 the two terms composing this interactions provide contributions
of different sign; the Fujita-Miyazawa term vig, is attractive, while the other
term vf%; is repulsive. In our calculations, the total contribution of the UVII
and UIX three-body interactions is always globally repulsive. This feature is

common to the FHNC/SOC nuclear matter results [24,25].

The comparison with the experimental energies indicates a general under-
binding of about 4.0 MeV per nucleon. This is roughly the same underbinding
obtained, at the saturation density, by the most recent FHNC/SOC nuclear
matter calculations [25].
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(0) (s) | (0 [(0)+(s)+(c)
7" | 16.05 16.05
7P | 416 | -0.35 | -0.13 3.68
7 | 042 |-0.08 0.34
Tr | 17.34 | 1.62 | 0.55 19.51
T | 047 0.17
Ty | -0.012 -0.012
Tr; | 0.0 0.0
Tem. | 0.02 0.02
ot | -0.03 | -0.10 | -0.47 -0.6
v? | -1.29 | 0.04 | -0.19 -1.44
v | -3.87 | 0.18 | -0.67 -4.36
vt | -17.57 | -0.41 | -1.49 -19.47
VP 0.11 | -0.02 | 0.04 0.13
00 | -21.42 | -1.37 | 0.10 -22.69
vj | 0.006 0.006
v 0.0 0.0
v | 0.004 0.004
v | 0.012 0.012
v 0.0 0.0
0§ ] -0.005 -0.005
vlt, 3.282
V23, -1.368

Table 6

Contributions, in MeV, of the various terms forming the 2°®Pb energy, calculated
with the AV8+UIX interaction. The various terms are defined in Sect. 4. The terms
T of the kinetic energy are defined by Eqs. (127, 128, 129, 139). The v? terms indicate
the six-channels of the two-body interaction. The three-body terms are defined in
Eqgs. (142,143). The subscript j indicate the contribution produced by antiparallel
spin densities. The labels (0), (s) and (¢) indicate the various approximation of the
energy related to the pieces Wy, Wy, and W, as defined in Eq. (137).

The behavior of the '2C nucleus is anomalous in this general trend. This
nucleus is barely bound in our calculations. Some crucial physics ingredient,
relevant in '2C , but negligible for the other nuclei, is missing in our approach.
Probably, this has to do with soft deformations of the 2C nucleus, effects
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which we are unable to treat.

The comparison between the two interactions indicates that the UV144-UVII
interaction is more attractive than the AV8'+UIX force. This fact is already
present when only the two-body interactions are considered, and it is enhanced
by the inclusion of the three-body force. The contributions of the spin-orbit
term in the two cases have different sign, they are attractive for AV8’ and
slightly repulsive for UV14. Globally, the differences in the total energies,
calculated with the two interactions, vary from a minimum of 5% (60 ) to a
maximum of 18% (*°*Pb ).

We have done a detailed study of the relevance of the various terms contribut-
ing to the energy, as they have been presented in Sect. 4. As an example, we
show in Tab. 6 the various contributions obtained in the calculation of the
208Ph energy with the AV8'4+UIX interaction. We have obtained analogous
results for all the other nuclei investigated and also for the other interaction.

The larger contributions to the energy come from the terms calculated with
what we have called the (0) approximation in Eq. (137). This is the contribu-
tion of those diagrams containing all the scalar dressings of the (1, 2) pair. The
(s) and (c) terms, more difficult to calculate, give much smaller contributions.

It is interesting to observe that, the contributions given by the terms depending
on one-body densities with antiparallel spins, i. e. the terms labeled with the
J subscript in the table, are very small. In Tab. 6 we show their largest values,

since we found their contributions to be even smaller for nuclei with saturated
[ shells such as 0 and “°Ca .

The study of the contributions of the various channels of the two-body in-
teraction, indicates that the spin-isospin (p = 4) and tensor-isospin (p = 6)
terms are the main source for the binding. This is a common feature for all
the nuclei we have considered [53].

The results for the UV144UVII interaction are analogous to those shown
in Tab. 6 for the AV8'+UIX interaction. In the remaining part of Sect. 5, we
shall present some quantities with the aim of studying the effects of the Short-
Range Correlations (SRC). We have found that the differences between the
results obtained with the two interaction models are smaller than the effects
we are looking for. For this reason, henceforth, we shall present only the results
obtained by using the AV8'+UIX interaction.
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5.6 The one-body distribution functions

The OBDF, pf(r), has been defined by Eq. (100). The physical meaning of
this quantity is the probability density of finding a nucleon of type ¢, in the
position r with respect to the nuclear center. Since we have assumed that our
systems are spherical, this probability depends only on the distance from the
center of the nucleus. The expression of the density distribution in terms of

the FHNC/SOC quantities is given by Eqs. (103) and (B.57).
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Fig. 23. Neutron density distributions. The full lines are the IPM distributions, the
dotted ones have been obtained by using scalar correlations only, and the dashed
lines show the results of the complete calculation.

We show in Fig. 23 the neutron density distributions for the five nuclei we have
considered. The full lines show the IPM results, the dotted lines those obtained
by using scalar, f;, correlations only, and the dashed lines show the results
of the full FHNC/SOC calculations. In an analogous way we show in Fig. 24
the charge distributions, obtained by folding the proton distributions with the
proton electromagnetic form factor. We have used a dipole form for this form
factor. In this figure the continous thick lines indicate the empirical charge
distributions extracted from elastic electron scattering experiments [54].

The results obtained with scalar interactions produce distributions which are
smaller at the center of the nucleus with respect to the mean-field distributions.
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Fig. 24. Charge density distributions, obtained by folding the proton distributions
with the electromagnetic form factor. The full thick lines show the empirical distri-
butions [54]. The other curves have the same meaning as in Fig. 23.

This effect is reduced when all the correlations are included in the calculation.
These findings are in agreement with the results of Ref. [55] where a first-order
cluster expansion was used.

We used the charge density distributions to calculate the elastic electron scat-
tering cross sections within a distorted wave Born approximation [56,57]. We
compare in Fig. 25 our results with the experimental data of the **Ca and
2%8Ph nuclei [58,59]. In Ref. [31] a similar figure for the '°O and “°Ca nuclei is
shown. It is evident that the main discrepancies with the data appear at large
scattering angles. The use of the correlations slightly improves tha agreement
with the experiment. The effects of the fg correlations go in the opposite di-
rection of those of the f; correlation (as has already been remarked) in the
neutron density, and in the charge distributions cases.

We would like to point out here that the density distributions are the only
quantities amongst those we have investigated where the use of operator de-
pendent correlations reduces the effects of purely scalar correlations. In all
the other cases, as we are going to show, the effects of the fgs correlations are
larger than those of the f; correlation.
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Fig. 25. Elastic electron scattering cross sections on *8Ca and 2°°Pb target nuclei, as
a function of the scattering angle. The theoretical cross sections have been calculated
in distorted wave Born approximation [56,57]. The full lines show the IPM results,
the dotted lines the results obtained with the fi correlations, the dashed lines with
the fg correlations. We have indicated with € the electron energy.

5.7 Momentum distributions

The momentum distribution is related to the probability of finding a nucleon

with a certain value of the momentum. This quantity is related to the Fourier
transform of the OBDM, which is defined in analogy to the OBDF (100) but
for different values of the non integrated variable:

plz,ah) = > p (rr el (D)x (1)xe (U)xe (1)

!
s,s',t

A
_ m/d@...dm U2y, 29, .. 2a) U2, @, xa) . (151)

The evaluation of this quantity merits some comments. For simplicity, we
consider in this discussion only scalar correlations. In order to perform the
cluster expansion of the OBDM, it is necessary to define a new dynamical
correlation function:

ho(rij) = fi(ryg) — 1, (152)
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where i can be either 1 or 1/, and 7 = 2,..., A. This takes into account the
fact that the coordinate x; is present only in the bra, while the coordinate
x) is present only in the ket. The coordinates describing the other particles
can appear in both bra and ket states, and generate the usual h = f2 — 1
dynamical correlation function. For the calculation of Eq. (151), we found it

convenient to define a new type of sub-determinant, in analogy to what has
been done in Eq. (31):

Po(xl,xl') Po(xl,@) pO(xlaxp)
To, Ty To, T To, T
A11,2, 0 p) = ol ? v) ol ’ 2) | ol ’ 2 (153)
po(Tp, x1)  polTp,x2) .. pol(p, Tp)

Also for this new sub-determinant the properties (32. .. 34) remain valid, there-
fore we can apply the usual cluster expansion techniques, developed for the
calculation of the TBDF. However, we have to consider that the separation
of the x1 and zy coordinates which refer to the same particle, implies the
absence of dynamical correlations between these two coordinates, as is shown
in the diagrams of Fig. 26. In addition, we should take care of the fact that
the statistical loops containing the coordinate x; must contain also x1, and
must be open in these two points, see again the diagrams of Fig. 26.

Fig. 26. Example of diagrams used to calculate the OBDM (151). The dotted lines
indicate the new dynamical correlation function h,, = f; — 1, while the dashed line
indicate the usual dynamical correlation function h = f12 — 1.

The calculation of the OBDM proceeds in analogy to that of the TBDF. The
denominator of Eq. (151) simplifies the contribution of the unlinked diagrams
of the numerator. At this point, we encounter a difficulty, since it is not possible
to cancel those reducible diagrams where the articulation point is one of the
points in the open statistical loop containing to 1 and 1’. This is not a specific
problem of the finite systems. Its solution is based on the use of the vertex
corrections which have been introduced for the first time to calculate the
momentum distribution of an infinite system of particles [43].
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Coming back to our specific case, we found that the calculation of the OBDM
requires the use of a new vertex correction, which we call Cy,(r;), understand-
ing that ¢ can be 1 or 1’. New types of diagrams appear. We call them wd, we,
ww, w.c, and w.w,.. The label w is associated to the new dynamical correlation
h.,, and, as d, denotes that no statistical line arrive at the corresponding point.
With the label w, we indicate diagrams analogous to those we have called ¢
in the calculation of the TBDF. These diagrams have an open statistical loop
with the h, dynamical correlations, as the diagrams of Fig. 26. The diagrams
contributing to the OBDM are of w.w,. type and the rest of classes diagrams
are auxiliary quantities needed to calculate them. The RFHNC/SOC expres-
sions of the different quantities involved in the calculation of the OBDM, are
presented in Appendix B where the parallelisms with the TBDF expressions
are also pointed out.

Because of the spherical symmetry of the systems we are describing, the quan-
tity of interest in our calculations is:

p'(ry,ry) = Z [pS’S;t(rbri)+P5’_S;t(r1’r,1)}’ (154)
s==£1/2

whose diagonal part, ri» = ry, is the OBDF. We obtain the momentum distri-
butions of protons or neutrons as:

1 1 1 _ik-(r1—r’ /
n'(k) = W/\—@/drldrlek( Vpt(ry, 1)), (155)

which is normalized:

/dknt(k) —1. (156)

The uncorrelated OBDMs are obtained by inserting in Eq. (89) the Slater
determinant, ®, formed by the single particle wave functions (88). We obtain
the expressions (91) for 8" = s and (92) for s’ # s.

For the correlated OBDM we obtain the expression:

p(r1, 1) = =207 11 (r1)C 11 (1) G, (11, 1)
_205;,22(r1)cfu,22(r1’) Z AFARg! (ry,r}) . (157)

g'wc'wc,p
p>1

with p = 2k — 1 + . All the FHNC/SOC quantities have been defined in
Appendix B.
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Fig. 27. The proton momentum distributions of the 2C , 160 | 4°Ca , **Ca and
208Pb nuclei calculated in the IPM model (full lines), by using the scalar correlation
only (dotted lines) and the full operator dependent correlations (dashed lines).

In Fig. 27 we compare the 2C | 150 | 4°Ca , **Ca and ?*Pb momentum
distributions calculated in the IPM model, with those obtained by using f;
and fg correlations.

The general behavior of the momentum distributions, is very similar for all the
nuclei we have considered. Correlated and IPM distributions almost coincide
in the low momentum region up to a precise value, when they start to deviate.
The correlated distributions show high momentum tails, which are orders of
magnitudes larger than the IPM results. The value of k of which uncorrelated
and correlated momentum distributions start to deviate is smaller the heavier
is the nucleus. It is about 1.9 fm~*! for 2C , and 1.5 fm~! for 2%®Pb . We recall
that the value of the Fermi momentum of symmetric nuclear matter at the
saturation point is 1.36 fm~!. The results presented in Fig. 27 clearly show
that the effects of the scalar correlations are smaller than those obtained by
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Fig. 28. Protons (full lines) and neutrons (dashed lines) momentum distributions of
the *®Ca and 2°8Pb . The thick lines show the results of our calculations, the thin
lines the IPM results.

including the operator dependent terms.

In our calculations, we have found that the proton and neutron momentum
distributions for nuclei with N = Z are very similar. For this reason, we show
in Fig. 28 the proton and neutron momentum distributions of the two nuclei
we have investigated with N # Z: the **Ca and 2°*Pb nuclei. The thicker lines
show the results of our REFHNC/SOC calculations, while the thinner ones the
IPM distributions. The main differences between the two distributions are in
the zone where the n(k) values drop by orders of magnitudes. This zone, cor-
responds, in the infinite systems, to the discontinuity region of the momentum
distribution, related to the Fermi momentum. In a finite system, the larger
number of neutrons implies that the neutron Fermi energy and, consequently,
the effective Fermi momentum, is larger than that of the protons. For this
reason, the discontinuity regions of the neutron momentum distributions are
located at larger values of k with respect to the protons momentum distribu-
tions.

After the discontinuity region, the behaviors of the distributions are dominated
by the SRC effects, and the protons and neutrons results are very close. In
terms of relative difference, the SRC effects are essentially the same for protons
and neutrons [60]. A discussion about the role of SRC effects on the proton
and neutron momentum distributions in asymmetric nuclear matter is open,
and our results are in agreement with the findings of Ref. [61], but disagree
with those of Ref. [62].

The increase of the momentum distribution at large k& values, induced by the
SRC, is a well known result in the literature, see for example the review of Ref.
[63]. The momentum distributions of medium-heavy nuclei, have been usually
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obtained by using approximated descriptions of the cluster expansion, which
is instead considered at all orders in our treatment. We found in [60] that the
results of the approximate treatment provide only a qualitative description
of the correlation effects. They produce a high-momentum enhancement, but
they underestimate the correct results by orders of magnitude.

5.8 Natural orbits

We have studied the effects of the SRC on the natural orbits which are defined
as those single particle wave functions forming the basis where the OBDM is
diagonal:

pl(ry,rh) = oMo (ry) o O (x)) (158)

nlj

In the above equation the czlj coefficients, called occupation numbers, are real
numbers. In the IPM the natural orbits correspond to the mean-field wave
functions of Eq. (88), and the c},;; numbers are 1, for the states below the
Fermi surface and 0 for those above it.

1.0

0.0

v (V 0V (V O (V v (v
\3\\ \»Q“)\ \Q\\ \&?\ q/g\\ \bh\ \\‘\\ %Qq)\

Fig. 29. Occupation numbers of the proton natural orbits of the *®Ca nucleus. The
dashed line indicates the IPM values. The black bars show the values obtained
with the scalar corrrelation and the gray bars those values obtained with the full
correlation.

In order to obtain the natural orbits we found it convenient to express the
OBDM of Eq. (158) as:

Pt(I'l; rl’) = At(rla rl’)pg(rla rl’) + Bt(rb rl’) ) (159)
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Fig. 30. The same as Fig. 29 for the neutron natural orbits of the **Ca nucleus.

where pf(rq,r1/) is the uncorrelated OBDM of Eq. (91), and the other two
quantities are defined as:

Al(ry,v)) =2C,, 11 (r1)Cy, 1 (1)) g, (T1, 7)) +
20;,22(1'1)050,22(1'/1) Z AkAkgztﬁw,p(rb rll) ) (160)

p>1
B'(r1,11) = =203, 11(r1)Cy, 11(r]) Gy (11, 77) Ny, (11, 77) —

20;,22(r1)cfu,22(r/1) Z AkAk [gfﬁw,p(rh r/1>N1tquC (rh rll) +

p>1

gfﬁw(rh rll)Nttucwc,p(rh r/l):| .

The expressions of the various FHNC/SOC quantities used in the above equa-
tions are given in Appendix B.

We expand the OBDM on a basis of spin spherical harmonics Y77 defined in
Eq. (88),

1 *m m
Pt(rb r)) = Z m { fj(rla ) + Bltj(rbri)} Y (Q)Ylj () (161)
ljm

where Q and (' indicate the polar angles identifying ry and r}. The explicit
expressions of the A and B coefficients are:
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Fig. 31. Natural orbits for some neutron states in “3Ca . The full lines indicate the
IPM orbits, the dotted lines those obtained with scalar correlations only and the
dashed lines those obtained with the complete operator dependent correlation.

2 2

L1 i1y i
Aj(r, ) =Q20+1) Y (2L +1)(2j2+1) 1 b2 go b1 j

nlllgjg 0 0 0 l % l2
Ry (r) Ry, (r2) Aj, (1, 77) (162)
with
Ay ) = —2— [ dQAt(x,, v,) Py(cos O11r) (163)
(\'1, 1 2l+1 1,41 ! 11
and
) = — T [ d(cos 01y) B! vy, 1) Pi(cos 0 164
L) = g [ dlcos i) B, x4) Pi(cos 1) (164)
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In the above equations we have used the 3j and 6j Wigner symbols [42] and
we have indicated with 6,1 the angle between ry and r},. The term A depends
on both orbital and total angular momenta of the single particle, [ and j
respectively, and B depends only on the orbital angular momentum /.

As has been done in Refs. [64] and [65] we identify the various natural orbits
with a number, «, ordering them with respect to the decreasing value of the
occupation probability. The general behavior of our results, is analogous to
that described in Ref. [64] where a system of 3He drops, composed by 70
atoms, have been studied. The orbits corresponding to states below the Fermi
level in the IPM picture, have occupation numbers very close to unity for
a = 1, and very small in all the other cases.

As example of our results, we show in Figs. 29 and 30 the protons and neutrons
occupation numbers for the natural orbits with a = 1 of the “®Ca nucleus. In
the figures, the IPM results are indicated by the dashed lines. The black bars
show the values obtained by using scalar correlations only, the gray bars those
obtained with the complete operator dependent correlations.

The correlated occupation numbers are smaller than one for orbits below the
Fermi surface, and larger than zero for those orbits above the Fermi surface.
This effect is enhanced by the operator dependent correlations. We observe
that for the states above the Fermi surface the gray bars are larger than
the black ones, indicating that also for these states the operator dependent
correlations, produce larger effects than the scalar ones.

We show in Fig. 31 some o = 1 natural orbits for three neutron states in *Ca .
In this figure, we compare the IPM results (full lines) with those obtained with
scalar correlation only (dotted lines), and with the full operator dependent
correlation (dashed lines). The effect of the correlations is a lowering of the
peak and a small widening of the function. Despite the small effect, it is
interesting to notice the inclusion of operator dependent terms diminishes
the correlation effect. This fact is consistent with the results on the density
distributions we have presented in Sect. 5.6.

In Tab. 7 we show the occupation numbers of the %O protons and neutrons
natural orbits also for & > 1, and we make a direct comparison with the results
of Ref. [65]. As already said in the discussion of the **Ca results, the inclusion
of the state dependent correlations increases the differences with respect to the
IPM. The occupation numbers of the orbits below the Fermi surface are smaller
than those obtained with scalar correlations only. The situation is reversed for
the orbits with a > 1 or above the Fermi level. For the states below the Fermi
surface, our full calculations produce correlation effects slightly larger than
those found in [65], whose results are closer to those we obtain with scalar
correlations only. For orbits above the IPM Fermi surface, our occupation
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State a=1 oa=2 a=3

fi fe  PMD | fi fe  PMD | fi fe  PMD

Isy5 (p) | 0.956  0.873 0921 | 0.011 0.038 0.013 | 0.002 0.007 0.002
(n) | 0.957 0.873 0.012  0.039 0.003  0.008

Ipsse (p) | 0.973  0.921  0.947 | 0.004 0.013 0.007 | 0.001 0.003 0.001
(n) | 0.973 0.924 0.004 0.014 0.002 0.004

Ipij2 (p) | 0970 0.923 0.930 | 0.003 0.012 0.008 | 0.001 0.003 0.002
(n) | 0.970 0.922 0.004 0.013 0.002  0.003

lds/o (p) | 0.001  0.005 0.016 | 0.013 0.003 0.003 | 0.000 0.000 0.000
(n) | 0.001 0.005 0.001  0.003 0.000  0.000

lds/s (p) | 0.002 0.005 0.019 | 0.001 0.003 0.005 | 0.000 0.000 0.001
(n) | 0.001 0.005 0.001  0.003 0.000  0.000

Table 7

Protons (p) and neutrons (n) natural orbits occupation numbers for 60O . The
PMD values are those of Ref. [65]. The f; values have been obtained with scalar
correlations only, and the fg values with the complete state dependent corrrelation
function.

numbers are always smaller than those of Ref. [65].

5.9 The two-body distribution functions

We have already defined the state dependent TBDF in Eq. (101). In our
FHNC/SOC computational scheme, we calculate the TBDF as:

2k3—1+13,t1to o f2k1—1+ll(7“12)f2k2—1+12 (7“12)
P2 (r1,19) = 2
Ii (7'12)

kiksko pko . tito t1t2
{I A X11+12+13/)2,d¢r(1"1= ry)

kakiks Tkskoks Aks tita
+[[ I A p2,ezc(r1?r2)

kakiks Tkskoke Thske2 tita
+1 I I P2 exci (rlﬁ 1'2)}

1
Ak Z Xﬁflz+zg+z4} (165)

14=0

where a sum is understood on every repeated index. The FHNC/SOC quan-
tities are defined in Appendix B.
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Fig. 32. Proton-proton scalar (q=1) TBDFs (101) as a function of the distance
between two nucleons The dotted lines show the uncorrelated TBDF obtained as a
product of two uncorrelated OBDMs. The full lines show the uncorrelated TBDF
obtained by using in Eq. (101) Slater determinants. The other lines have been
obtained with the scalar (f;) and full (fg) correlations.

We first discuss the case ¢ = 1 which, apart from some constant factors,
gives the probability of finding a nucleon in ry, and at the same time, another
nucleon in ry. The IPM two-body densities are obtained by inserting a Slater
determinant in Eq. (167). For ¢ = 1 TBDF we obtain the expression:

2 2
PR (x1,12) = P} (r0)pff (r2) — 20,0, { [ (1, 12)|” + [l (x1,12)] "}, (166)

where the pgl(j)(rl, ry) are the uncorrelated OBDMs defined in Egs. (91) and
(92).

The relevant information about the TBDF is contained in the function:

P51 (12) = [ ARz (re,v2) | (167)

where 119 = |r; — 13| is the relative distance and Ris = (r; +1r2)/2 the center-
of-mass of the nucleonic pair.

We show in Fig. 32 the proton-proton scalar, q=1, TBDF's, Eq. (167), for all
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the nuclei considered as a function of the relative distance of the pair. The
dotted lines represent the uncorrelated joint probability density of finding the
two nucleons at a certain distance, as often given in the literature (see e.g.
Ref. [66]). These lines have been obtained as a product of the uncorrelated
one-body densities. This definition of the uncorrelated two-body densities can
be meaningful from the probabilistic point of view, but it is misleading in our
framework, since it corresponds to using only the first, direct, term of Eq.
(166). In fermionic systems the uncorrelated two-body density is given by the
full expression (166) which contains also the exchange term. These complete
uncorrelated TBDF are shown by the full lines. The effects of the SRC can
be deduced by comparing these lines with the dashed-dotted lines obtained
with the f scalar correlations only, and with the dashed lines showing the full
FHNC/SOC results.

In all our results the correlations reduce the values of the TBDF at short in-
ternucleon distances. The exchange term of the uncorrelated density already
contributes to this reduction, but the major effect is produced by the SRC, and
mainly by the scalar correlations. We found similar results for the neutron-
neutron TBDF. When the TBDF are composed of different particles, the re-
sults change only slightly. Beside a strong reduction at small distances, the
correlations produce enhancements, with respect to the IPM results, around
2 fm, in all the nuclei considered [33].

To discuss the effects of the correlations on the other operator dependent
TBDFs (101) we show in Fig. 33 the TBDFs for the ?®*Pb nucleus, for the
various operators. We first notice that the tensor TBDF's, p = 5, 6, are different
form zero only when the fg correlation is used. This occurs because, in order to
get a spin trace different from zero in Eq. (101), at least two-tensor operatosr
are needed. Also the spin term p = 3 differs from zero in the fg case only.
Here there are different reasons why both terms of Eq. (166) are zero. The
first term is zero because of the spin trace, while the second term vanishes
because the two nucleons have different isospin.

The most remarkable feature is the range of the various TBDFs. The scalar
TBDFs of Fig. 32 and the isospin TBDF of Fig. 33 extend up to relative
distances comparable to the dimensions of the nucleus, 15 fm. In contrast, all
the other density functions have much smaller ranges, of the order of 3-4 fm.
We found similar results for all the nuclei considered [33,53].
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Fig. 33. Proton-neutron operator dependent (q>1) TBDFs (101) as a function of
the distance between two nucleons for the 2°Pb nucleus.

5.10 Quasi-hole wave functions and spectroscopic factors

The quasi-hole wave function is defined as:

nljm\ -

t
wtjm () <UL | >12< U0 172 ’

nljm

VA< A= D = 2a) P, o, A) > (165

where W), (1,..., A—1) and W(1, ..., A) are the states of the nuclei formed by
A —1 and A nucleons respectively, and P} is the isospin projector. In analogy
to the ansatz (2), we assume that the state of the nucleus with A — 1 nucleons
can be described as:

‘Ilt

nljm

(1, A=1) = F(1, .., A= D@L (1., A1), (169)

where @}, (1,..., A—1) is the Slater determinant obtained by removing from
®(1,..., A) a single state characterized by the quantum numbers nljmt. For
the system of A—1 nucleons we use the same correlation function fixed for the
system of A nucleons. In an uncorrelated system the quasi-hole wave functions

coincide with the hole mean-field wave functions (88).
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We are interested in the radial part of the quasi-hole wave function, which
we obtain by multiplying equation (168) by the vector spherical harmonics
Yl*]m(Q) and, then, by integrating over the angular coordinates €2, and sum-
ming over m. It is useful to rewrite the radial part of the quasi-hole wave
function as [32]:

fll] + Z/dQ Y*m nljm(x)

1 1/2
2] _i_l%:‘)(?fbljmt(r)[ ntlj] / ) (170)

where we have defined:

VA <UL (A= DY (Q)0(r — 14) P4T(A) >

Xt 171
nl]mt( ) < \Ijnljm‘\ljnljm ) ( )
and
nijmé < \If( s )]\IJ( ,...,A) > '

Following the procedure outlined in Ref. [32], we consider separately the cluster
expansions of the two terms A and X*. For X! we have:

X400) = i Rip )+ R ) Pcost) g, )

o) = N )|
Ol () [ driRly (r) Pu(cos )Xo (x, 1) | (173)

and for Nt we obtain:

=/ dr031?1<r>{\¢;<r>|2 + [ dridh (v)ol(r1)2 [gée%r, r1)Cai (1)

o) = N2
+ [ droli@)Ci5(0) [ dridl (m)Nboc(r,m) (174)

where we have indicated with a the set of the nljm quantum numbers. All
the FHNC quantities have a superscript « since these equations must be built
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by using:

P (r,11) = p(r,11) — 4 (1) (r1) (175)

instead of pf(r,r1). The expressions of N{,q(r,r1) and X§ (v, 1), are:

Xsoc r,r) ZAk Z { (1— 5k,1)X2tlit—21,2k—1(1">1"1)

t2 =p,n
tito ti1to ti1to
+X1 {X2k—1,2k(rv 1) + X5l 5 (T, rl)}

XA (r )} (176)
NSOC r,r) ZAk Z { - 5k,1)N2tiit—21,2k—1(rarl)
t2 =p,n
X1 {Nztiitgl 2 (T, T1)
+x;;;f5k_1<r,r1>} + B NGB () | (177)

where the indexes t refer to the isospin and the functions and we have defined:

1 «
Aot (e, 1) = S {32 (r,00) gl (. 00) Oy (1)
[ = o6 (x,1) + N2 (r, )]

o (0, 71) Oy (k1) N2 (7, 71) —
N (v, 1) AR (178)
Ny (1) = {2 (e, w0) g > (e, 1) O (1)

[ = P (e r0) + N2 (rry)
—|—gt1t2(r,r1)0t2’ (rl)Ntz, (I‘ r ) N(P)t% ( br)}AkQ ,(179)

d,pq ce,p ce,p

with ¢ = 2k — 1 4 [. The other terms are defined in Appendix B.

The knowledge of the quasi-hole functions allows us to calculate the spectro-
scopic factors:

Sty = [ drr® ()2 (180)

The inclusion of the correlations produce spectroscopic factors smaller than
one, the mean-field value. In general, this effect increases together with the
complexity of the correlation. The fg results are smaller than those of fj,
which are smaller than those obtained with f;.
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Fig. 34. Protons spectroscopic factors of the 2°*Pb nucleus as a function of the
separation energies.

We found that in our calculations the effects of the correlations are larger on
the internal shells [60]. This fact emerges by observing that for a fixed set of [j
quantum numbers, the spectroscopic factors increases with n and at the same
time, that values of the spectroscopic factors become larger when n and [j val-
ues increase. This effect is well represented in Fig. 34 where we show with the
black points the proton spectroscopic factors of the 2*Pb nucleus as a func-
tion of the separation energies, defined as the difference between the energy
of the A-nucleons system and that of the correspondent A-1-nucleons system.
We have associated the spectroscopic factor of each level to its empirical sep-
aration energy. The behavior of the black points of the figure indicates that,
in our calculations, correlation effects are larger on the more bound levels.

In Fig. 35, as example of the correlations effects on the quasi-hole wave func-
tions, we show the squares of the proton 3s;/o and neutron 3p;,» quasi-hole
wave functions. The global effect is a lowering of the wave function in the
nuclear interior, and this effect increases with increasing complexity of the
correlation.

In Fig. 36 we show with a gray band the difference between the empirical
charge distributions of 2°Pb and 2%TI [67]. The dashed dotted line, labeled
as IPM, has been obtained by using the fact that the difference between the
two charge distributions can be described as a single 3s;/, proton hole in the
core of the lead nucleus. This curve has been obtained by folding the IPM
line of Fig. 35 with the electric proton form factor in its dipole form. In a
slightly more elaborated picture, the ground state of the 2%Tl is composed
of the 3s1/5 proton hole in the **®Pb ground state, plus the coupling of the
2d5/, and 2d3/, protons levels with the first 2% excited state of 2°°Pb [68,69].
This description of the 2°Tl, charge distribution, labeled IPM*, and shown
by the dotted line, is still in a IPM framework. The dashed line has been
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Fig. 35. Square of the 28Pb proton 3s; /2 and neutron 3py/; quasi-hole functions.
The various lines show the results obtained by using different type of correlations.

obtained by adding to the dotted line the core polarization effects produced
by long-range correlations. These effects have been calculated by following
the Random Phase Approximation approach of Refs. [70,71]. The full line has
been obtained when our SRC effects are also included.

The various effects presented in Fig. 36 have been obtained in different the-
oretical frameworks, and the final result does not have any pretense of being
a well grounded and coherent description of the empirical charge differences.
The point we want to make by showing this figure is that the effects of the
SRC are of the same order of magnitude as those commonly considered in
nuclear structure calculations.
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6 Perspectives

In this section we give a short review of the possible developments of the the-
ory. We present only those topics which have been already formulated. Some
of these subjects have been already well studied in nuclear matter, and the
work to be done consists in adapting the formulation to the case of finite nu-
clei. Other topics are still at the level of a very abstract general formulation,
valid for any kind of many-body systems. We first present some possible ap-
plications of the theory, which do not require changes in its basic hypotheses.
Then, we discuss some extensions of the theory.

The main goal of the RFHNC/SOC equations is the evaluation of the hamil-
tonian expectation value, in order to apply the variational principle. Once
the parameters of the correlation function and of the mean-field potential
which minimize the energy functional, Eq. (1), have been found, it is relatively
straightforward to apply the RFHNC/SOC equations to evaluate expectation
values of other operators. This is the strategy used in Sect. 5, to calculate all
the quantities other than the energy.

So far our approach is aimed at the description of the nuclear ground state,
therefore we can only obtain expectation values of ground state observables.
On the other hand, a clever use of completeness relations allows us to get
information on excited states by calculating expectation values of operators
between ground states. This is, for example, the case of the sum rules. The en-
hancement factor of the electric-dipole sum rule has been calculated in nuclear
matter [72], and the same approach can be applied to finite nuclei.

Dynamical response functions and hole spectral functions have been calcu-
lated in nuclear matter by using the FHNC/SOC formalism [23,73-75]. The
responses of the system for a momentum transfer q and an excitation energy
w have been evaluated by using the expression [76]:

1 p'(a)p(q) 4
S =—1 <V Uy >< WUy|Wy > 181
(q,w) Wm< O‘H—Eo—w—in‘ 0 ol Wo ) (181)

where Wy and Ej are the ground state wave function and energy respectively,
H the nuclear hamiltonian and p the external operator exciting the system.
Analogous expressions have been used to calculate the spectral functions. Also
in this case the completeness of the excited states has been used, and the re-
sponse is expressed as the ground state expectation value of an operator. For-
mally, the cluster expansion and the RFHNC/SOC resummation techniques
can be applied without any major problems to evaluate these expectation val-
ues. However, from the pragmatical point of view, we have to consider that
the expression of the global operator is extremely involved, as is shown by Eq.
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(181). This global operator combines the operator describing the effect of the
external probe, usually a relatively simple one-body operator, with the hamil-
tonian (123) composed by one- two- and three-body terms. The effort will be
rewarded by the results, since the evaluation of the response functions gives
direct access to the calculation of the cross sections, and of other observables.

The RFHNC/SOC theory can be applied to describe hypernuclei by consid-
ering the hyperon as an impurity in the nucleonic fluid. The FHNC equations
for an impurity in homogeneous matter have been derived in Refs. [77,78] to
describe the presence of atomic *He in liquid 3He. A first application of this
theory to the case of single A hypernuclei has been done in Ref. [79]. In these
calculations we used simple interactions and correlations. The nucleon-nucleon
interaction contained only the first four central channels, and the A-nucleon
interaction the scalar and spin channels only. All the correlations were purely
scalar functions.

50.0 T T T T

40.0 |

30.0 -

B [MeV]

20.0

10.0 |

0.10 0.15 0.20 0.25
A-2/3

0 % 00 0. b5

Fig. 37. Binding energy of the A hyperon for the 1s, 1p and 1d states as a function
of A=2/3. The white circles are the energies calculated as indicated in Ref. [79] by
using a Woods-Saxon mean-field well for the hyperon. The experimental energies are
from Ref. [80] (triangles) and [81] (squares). The full lines connecting the theoretical
values have been drawn to guide the eye.

Despite the simple ingredients used in the calculations, the agreement with
the experimental A binding energies of Refs. [80,81] is rather good, as is seen
in Fig. 37. The extension of the formalism of Ref. [79] to the case of operator
dependent correlations, which allows us to deal with realistic hamiltonians, is
technically rather involved. On the other hand, the results of Fig. 37 are very
encouraging and the potentialities of our technology to make predictions are
wide, and rather unique.

In the introduction, we have mentioned that our approach is the lowest order
approximation of the CBF theory formulated at the beginning of the '60s [82—
84]. The starting point of the CBF theory is the construction of a basis of
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normalized, but in general non-orthogonal, state vectors of the type:

(e A)| (L, A) >

<O FTF|oy 12 (182)

where F' is the many-body correlation function acting on a complete orthonor-
mal set of model states |®,, >. The CBF theory constructs a coherent per-
turbation theory on the correlated basis formed by the states given by Eq.
(182), [13]. In the limit F — 1 the application of the variational principle
would provide the Hartree-Fock equations, and the excited states (182) would
be constructed as particle-hole excitations of the single particle basis. The
so-called residual interaction would mix these single particle excitations in a
perturbative expansion. It appears evident how our calculations, based on the
application of the variational principle (1), can be considered, in the CBF
framework, as the first step of a perturbation expansion. This first step is
necessary to fix the correlation function F' and the wave functions basis.

An improvement of our work consists in the inclusion of higher-order pertur-
bative terms in the CBF expansion. This has already been done for nuclear
matter, where perturbative corrections to the binding energy [85], momentum
distributions [22], responses [23,74,75], and spectral functions [73,86], have
been evaluated. With the help of the perturbative expansion, the nucleon-self
energy in nuclear matter has also been calculated and the optical potential
has been evaluated [87,85].

The use of the CBF theory allows the description of nuclear excited states.
In this respect, they can be treated within the correlated Random Phase
Approximation theory, whose basic equations have been obtained by using a
time-dependent Hartee-Fock approach [88-90,13].

Another line of development of our theory consists in modifying the Jastrow
anstaz (3). For example, correlation functions composed of scalar Jastrow func-
tion and linear state-dependent correlations have been proposed in Ref. [41].
These correlations have been applied to the description of light nuclei using
Variational Monte Carlo techniques with promising results [91,92]. With linear
state-dependent correlations, the structure of our RFHNC equations becomes
simpler. However, this approach has serious drawbacks, since it requires the
use of up to six-body distribution functions.

The developments described so far are thought to be applied to doubly closed
shell nuclei. The description of other nuclei is related to a change of the single
particle basis, which should consider open shell and deformations. Also in
this case, there are no problems in principal in applying our theory, but the
technicalities are rather involved.
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7 Closing remarks

The theory we have presented aims to describe the properties of medium-
heavy nuclei by solving the many-body Schrodinger equation with microscopic
nucleon-nucleon interactions. This is an ab initio calculation, since there are no
free parameters to be adjusted. However, the technique of solving the many-
body Schrodinger equation requires some approximations.

The most basic approximation is related to the use of the variational princi-
ple. The search for the minimum of the energy functional, Eq. (1), is done by
spanning the space of many-body wave functions which can be expressed as
a product of a correlation function times an independent particle model wave
function, see Eq. (2). The many-body correlation function is expressed as a
product of two-body correlation functions which hinder two nucleons from
approaching each other for distances smaller than the range of the strongly
repulsive core of the nucleon-nucleon interaction. The use of the ansatz (2)
allows an explicit treatment of a great number of correlations. However, these
are not all the possible correlations, and they are specifically related to the
strongly repulsive core of the interaction. Other types of correlations, such as
those produced by collective motions of the nucleons, are not so well described.
Since this is the starting hypothesis of the theory, we cannot test its validity
within the theory itself. The only possibility of making this test, is a compari-
son of our results with those obtained by other microscopic theories which are
approximation free, such as Quantum Monte Carlo calculations. The validity
of the variational ansatz has been tested in the literature by comparing Vari-
ational Monte Carlo and Quantum Monte Carlo results for light nuclei. This
comparison, done for nuclei with A<8, indicates a minimum difference of 0.1
MeV per nucleon in “He and a maximum one of about 1.0 MeV per nucleon in
8Li [93]. Hence, this difference seems to increase with the number of nucleons.

The evaluation of the variational energy functional (1) in Ref. [93] is done
with a Monte Carlo integration technique, i. e. without approximation. In
our approach we calculate the energy functional by doing a cluster expansion.
After a topological analysis of the various diagrams, we sum two categories
of diagrams, the nodal and the composite ones, in closed form, by solving the
RFHNC integral equations. The procedure we have used does not consider a
certain type of diagrams, the elementary ones. This is another approximation
of our computational scheme. The role of the elementary diagrams has been
studied in quantum liquids and in nuclear matter, and they have been found
to be more important in the former systems than in the latter ones. This is
because, in many-body jargon, liquid helium is denser than nuclear matter.
This means that the number of particles in a volume characterized by the
range of the repulsive core of the interaction, is larger in liquid helium than
in nuclear matter.
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We have calculated in Ref. [27] the contribution of the elementary diagram of
Fig. 8, the simplest one. The calculation has been done for a simple interaction,
the B1 force of Brink and Boeker [94], with scalar correlations and in model
nuclei with isospin degeneracy and single particle wave functions treated in
the Is coupling scheme. We obtained for 10 and “°Ca a repulsive contribution
of about 1.1 MeV per nucleon. This is about 2% of the contribution of the
potential energy produced by the interaction. However, the total energy is
obtained as a difference between kinetic and potential energies, and, in this
case, 1 MeV is not negligible. The contribution of the elementary diagrams
should be further investigated.

The third approximation of our computational scheme is the SOC. It is clear
that the ad hoc SOC approximation breaks the formal completeness of the
FHNC theory which holds when only scalar correlations are used. We have
difficulties in making estimates of the contribution to the energy of the dia-
grams excluded by the SOC approximation. We can only say that the sum
rules exhaustions are slightly worsened when the SOC approximation is used.
We are talking in any case of few parts on a thousand. On the other hand, we
cannot exclude that the diagrams not considered are irrelevant for the sum
rules, but not totally negligible for the calculation of the energy.

The three approximations just discussed are somehow intrinsic to the com-
putational scheme. We now talk about the simplifications we have done in
the specific applications of the RFHNC/SOC formalism. In our calculation
we have used a nucleon-nucleon interaction limited to the first eight chan-
nels. Modern interactions, with isospin symmetry breaking terms, have up to
eighteen channels. Our correlation functions are also limited to the first six
channels. We have estimated the contribution of these missing terms of the
interaction and of the correlation by doing a bold extrapolation of nuclear
matter results. The results of this estimate are shown in Tab. 8. The contribu-
tion of the neglected channels is small when compared with the contribution of
the interaction term, v ., in Tab. 5. However, since the energy is obtained
by a subtracting potential energy to the kinetic one, their contribution is not
negligible on the final result.

Our minimization procedure has been done on two parameters only, the heal-
ing distance for all the central correlation channels, and that of the two tensor
correlations. In principle, our model could handle six variational parameters
for the correlation, plus other thirteen describing the mean field Woods-Saxon
potential generating protons and neutrons single particle states. The choice of
using only two variational parameters, dictated mainly by computational rea-
sons, could seem rather limiting. In reality, we are confident that our minima
are rather close to the minima that a full minimization with all the variational
parameters could obtain. Concerning the correlations, there is a nuclear mat-
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12C 160 400& 480& 208Pb
<kgp>1] 109 109 1.19 1.19 1.21
E -0.91 -4.48 -458 -4.14 -3.43
AFE -0.93 -0.93 -1.37 -1.37 -1.48
E+AFE | -1.84 -5.41 -595 -5.51 -4.91

Table 8

Average Fermi momenta < kr >, in fm~!, used to estimate the corrections to the
binding energies produced by the interaction channels beyond the spin-orbit ones,
from nuclear matter calculations. All the energy values are expressed in MeV. The
E rows gives the results of Tab. 5 for the AV8+UIX interaction. The AE rows
values have been obtained by doing a local density approximation interpolation of
the nuclear matter results given in Tab. III of Ref. [31].

ter experience [21] indicating that the four central correlations heal at the
same distance, noticeably different from the tensor healing distance. We have
done some calculations in “°Ca by changing the healing distances of all the
correlations, and we did not find significant improvements of the energy value.
The case of the single particle basis has been discussed with some detail in
Sect. 5.2. Also in this case, we have tested that, when the minimization on
the correlation function has been done, even large changes of the mean-field
potential do not produce sensitive changes in the energy minimum.

At present, the most evident problem of our calculations is related to the
behavior of the three-body force. In few body and light nuclei the contribu-
tion of this part of the hamiltonian is attractive, while in our calculations
it is repulsive. This happens also in variational nuclear matter calculations
[24,25]. There are two possible solution of the puzzle. The one which should
be explored first, is that our present treatment of the three-body force is not
accurate enough. For example, we could find that the set of diagrams we are
now considering, see Sect. 4.3, is not sufficient, or that the inclusion of a three-
nucleon correlation function is necessary. If after improving the description of
the three-body force, its contribution remains repulsive, we have to deduce
that the three-body interactions we use, are tailored to provide good descrip-
tions of few body systems and light nuclei, but they are not adequate for
medium, heavy and infinite nuclear systems.

The three-body force puzzle, is an example of the potentiality of our approach,
and, in general, of all the microscopic calculations, in nuclear structure. These
calculations allows us to investigate phenomena that mean-field based effec-
tive theories cannot study. We have pointed out a few examples, by showing
the effects of the SRC on momentum distributions, natural orbits, quasi-hole
wave functions and spectroscopic factors. But the relevance of microscopic
calculations goes beyond that, since these calculations have reached such an
accuracy to put constraints on the nuclear hamiltonian itself. Microscopic nu-
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clear structure calculations will become more and more important in the near
future, and, among them, the RFHNC/SOC computational scheme will play
a relevant role.
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Final note

We had just started to write this article, when Adelchi Fabrocini passed away.
The reader who had the privilege of knowing him is certainly aware of the
absence of his touch in the writing of this article. Adelchi’s contribution to the
realization of the work presented here, has been enormous and fundamental.
We miss his talent, his leadership, his experience and, not least, his subtle
sense of humor.
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A Matrices of the spin and isospin traces

In this appendix we give the numerical values of the various matrices used to
calculate the spin and isospin traces, when state dependent correlations are
used.

rej1(11141/010

Table A.1
The values of I'? defined in Eq. (58). The values of p indicate the operator channel.

p|1|2]3]|4]5]6
B |1|3[3[9]6]18

Table A.2
The values of BP defined in Eq. (62).

KPpar q
p 1 2 3 4 5 6 1 2 3 4 5 6

r=1 1 1 0 O 0 0 0 r=2 0 1 0 0 0 0
2 0 3 O 0 0 0 1 -2 0 0 0 0

3 0o 0 3 0 0 0 0 0 0 3 0 0

4 0 0 O 9 0 0 0 0 3 -6 0 0

5 0 0 O 0 6 0 0 0 0 0 0 6
6 0 0 O 0 0 18 0 0 0 0 6 -12

r=3 1 0 0 1 0 0 0 r=4 0 0 0 1 0 0
2 0 0 O 3 0 0 0 0 1 -2 0 0

3 1 0 -2 0 0 0 0 1 0 -2 0 0

4 0o 3 0 -6 0 0 1 -2 -2 4 0 0

5 0 0 O 0 2 0 0 0 0 0 0 2

6 0 0 O 0 0 6 0 0 0 0 2 -4

r=>5 1 0 0 O 0 1 0 r=6 0 0 0 0 0 1
2 0 0 O 0 0 3 0 0 0 0 1 -2

3 0 0 O 0 1 0 0 0 0 0 0 1

4 0 0 O 0 0 3 0 0 0 0 1 -2

5 1 0 1 0o -2 0 0 1 0 1 0 -2

6 0 3 O 3 0 -6 1 -2 1 -2 -2 4

Table A.3

The values of the matrix KP9" defined in Eq. (63). The values of p,q and r indicate
the operator channel.

102



18
36
-18
-36
18
36
-18
-36
36
72

18
-18
18
-18
36

36
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-36

18
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18
18
36

18
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4
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18
18
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36
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par

The values of the matrix LP?" defined in Eq. (67). The values of p,q and r indicate

the operator channel.

Table A.4
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B The RFHNC/SOC equations for nuclear finite systems

We present here the set of RFHNC equations for finite nuclear systems with
different number of protons and neutrons, and in a jj coupling scheme. The
upper index t distinguishes the contributions of protons and neutrons. In this
appendix, in addition to the terms necessary to calculate the one- and two-
body density functions, which are used for the evaluation of the energy of
the system, we present also those terms which are required in the evaluation
of the OBDM), necessary ingredients for the calculation of the momentum
distribution.

We show the expressions of the various parts necessary to build the one-
and two-body density functions used in the calculation of the energy of the
nucleus, and also those parts required to obtain the OBDM necessary for the
momentum distribution evaluation.

The various terms can be written in general as Yy (r;,r;). An important
simplification in the writing of the equations is the property:

Yyt (g, r;) = Yi(ry, ;) (B.1)

We present first the set of RFHNC equations for the scalar part of the corre-
lation f;, and, in a second step, the equations involving operator dependent
correlations, i.e. the RFHNC/SOC equations.

We start our presentation by considering the dynamical diagrams, i.e. those
where the external points are reached only by dynamical correlations. We used
two types of dynamical correlations, hy = f2 — 1, and h,, = f; — 1. This last
correlation appears in the calculation of the OBDM, where it connects only
the external points. The dynamical TBDFs can be written as:

g (r1,19) = f7(r1z) exp [Nji? (x1,10) + Efff* (r1,12)| | (B.2)
9352( Iy, T ) ( ) €xp [ t1t2 (rlv 1'2) Etl 2(1'1, r2)] ) (B?))
93512( 1, T ) exp [ (1'1, 1'2) + Eztule (rh 1'2)} : (B4>

These distribution functions are related to the non-nodal diagrams X*% by
the equation:

g2 (ry,rg) = 14 N2 (ry,19) + X2 (ry,12) | (B.5)

with m,n = d,w. In the presence of purely scalar correlation functions, the
dynamical functions do not depend on the isospin of the external particles.
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However, in the above equations, we wrote the explicit isospin dependence in
view of the treatment with the state dependent correlations.

The next step is to consider the case when the dynamical correlations link only
one external point, let’s say point 1, while the other point is reached by the
statistical correlations, forming an exchange loop. In this case, the functions
to be considered are:

e’ (T1,T2) = gnf (11, T2) {Nﬁi? (r1, 1) + B (ra, 1‘2)}

:Nrtrh? (r17r2) +X222(I‘17I'2) ) (B6)
with m = d, w.

In the case when both the two external points are reached by exchange loops,
the equations are:

ger(r1,12) = 9015, (11, 72) + 2041, 904 2, (¥1, 72) + 2041, Gt 20 (1, T2)
= N (r1,1a) + X012 (11, 12) (B.7)
g3, (01, 72) = gltf? (r1,12) [ NI (01, 1) + B, (01, 12)
+ (NL2 (x1,12) + ElLf? (r1,12))
(Néétg(rla ro) + Eg?(ry, 1‘2))] ) (B.8)
92,o(r1,10) = giif? (x4, 15) [ ELL2, (11, 72)
— (NE(r1,m2) + ElL(r1,12) — pff (r1,12))
(N (r1,12) + Ef2(r1,12) — pf (r1,12) )| (B.9)
GiL2os(r1,12) = g2 (1, 12) [ B2,
- (théj(rh roy) + Epki(ry, ra) — pgi(ra, rz))

(NZ2j(r1,12) + E2;(r1,12) = py(r1,12))] (B.10)
In the above expression the subindex dir denotes the case when the two exter-
nal particles are linked to different statistical loops, and exc(j) when they are
connected to the same loop. In this last case, a spin-isospin exchange operator

is present, whose trace in the isospin space is 20;,4,. In the exc(j) case, we
further distiguish the parallel spin case, exc, from the antiparallel one, excj.

r17r2)

ccj

Finally, in the construction of the exchange parts, we have to introduce the
contribution of diagrams with open statistical loops. These open loops appear
in both the calculation of the energy and of the OBDM. We have to distinguish,
also in this situation, the case where the external particles have parallel or
antiparallel spins. In either case, the exchange loops may be combined with
the two kinds of dynamical correlations, therefore we define:
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922(;’)(1'17 ry) = géldtl (r1,12)
Ntl (I‘la I'2) + ECC(])(I'l, 1'2) — pél(j)(rl, 1'2)} s (Bll)
Gty (T1,T2) = gu};l (1"1, ro)
Ntl (.)(r17r2) + Efl)lcc(j)(r]-?rQ) - ,061(]-)(1‘1,['2)} 5 (B12)
gfulcwc(j)(rb ry) = 935} (r1,12)

NGy (T m2) + Bl (r, ) =l (r1,m2) |, (BL13)

where with (j) we have indicated the possible presence of the label j. For all
these six partial distribution functions we can write:

gmn( )(rb ry) = Nrtén(j)(rb ry) + X;:,n(j)(rl? ry) — pél(j)(rb rs) . (B.14)

The RFHNC expressions of all the nodal diagrams which do not have open
statistical loops, can be written in a compact form as:

Nlt12 (ry,ro) Z Z

t3=p,n m/n’
(X005 (v, 7) Vit (03) [ N2 22 (x5, 70) + X212 (v, 72) ) ,(B.15)

mm/ m

where m,n = d, w, e. In the previous equation, due to the diagrammatic rules,
the sums are limited to the values (m'n’) = dd, de, ed. Furthermore we have
defined:

o C' (i) for (mn) = dd
Ve (i) = : (B.16)
C% (i) otherwise

The expressions of the nodal diagrams with open statistical loops in the exter-
nal particles, such as the diagrams of Fig. 14, follow the classification presented
in Eq. (104):

NI (r1,12) = (X0 (r1,13) CF (r3) | 918, (x5, 7))
— (s (01, 15) Ol (x3)| g (x5, 7)) (B.17)
N (r1,70) = = (pff (1, 15) Ot (v9) NS (e, 70) + X fh (15, 15))
po(ry,r3)( C’tl(rg) 1)

~(
(pglj rl,rg r3 ‘ Cn] (I'3,I‘2) cnj(r37r2))
+ (s
)= (X

)tl(rs, ra) — pi (r3, 1‘2))

o+ (o8} (1,3 cf <r3 —1! N (e3,02) = o (r3,12) ) (B.18)

gcn r37r2 )
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t+ (X pi(r1,15)Cl (vs) |9l (x3,12)) (B.19)
Nyt (v1,72) = =t (r1, 1) Cff (1“3)}]\7(%”1 (1“37 ra) + X{h(rs, 1))
(poj(rl,rg )(CH (r3) ’ Y(rsz,ro) pgl(rg,rg))
— (Pl (r1,75)CL (x5 ’ cnj (r3>1"2)+chg(1"3,r2))
— (Po (r1,13)(CY (r3) ’Nc(ﬁjtl r3, Io) pglj(rg,rg)),(B.QO)

where m,n = ¢, w.. In the above equation, we have used the definitions:

N@h

mn(j)

(I’l, I'Q) chtl (I’l, I'Q) + N;Zf(lj) (I'l, I'Q) s

mn(j)

N(P)

mn(j

)(rlar2) Nsm(])(rlarﬂ +Nppé )(rl>r2) .

It is worth to point out that Eq. (B.18) indicates that N, (p)ia

mn(])(rl, ry) does not
depend on m.

The results of Sect. 3.2 indicate that the vertex corrections are given by:

Cor(r1) = exp[Up1 (r1)] (B.21)
O™ (r1) = Cg (r)[UZ (r1) + g (x1)] = p(r1) (B.22)

with m = d,w. In order to simplify the writing of the RFHNC expressions for
Uqw,e, we have defined the quantity:

1

S,%ff (r,r9) = QN,%ff(rl, ry) + Eﬁ;ff(rl, rs) . (B.23)

and we obtain:

(]t1 I'1 / dI'Q {Ct2 (rg) [XEZ? (I’l, I'Q) - Eféff (I’l, I'Q)

to=p,n

— S (r1, 1) (ghi17 (r1,72) — 1)]
+CUF (r2) [ X2 (r1, 12) — BB (x4, 12)
—Sh(ry,15) (grit? (r1,12) — 1)

— S (T1,T2) g (11, 1"2)} } + Ep(r1) (B.24)
U (ry) /dr2 {C’tQ(rg)[X;;tQ(rl,rg) — B (ry, 1)
to=p,n
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— S (1, 12) (g3 (r1,12) — 1) — Sgy” (r1,12) ey (1, 1"2)}
+CU7 (r2) [ X122 (r1, 12) — EL (r1,12)
—Se? (1, 12) (g3 (t1,12) — 1) — Se” (r1,12) g (11, 12)
de (rl’ r2)ged (rl? r2) - de (rl’ r2)gee (r17 rQ)}

+201,1, [Cff (r2)[Se(r1,12)gi2(r1, 12) 4 Seb; (r1, 12) 92 (r1, 1))

—p (01, 19) (N2 (11, 15) — pff (11, 72))

—Pélj(rla r2)(NC(£] (r1,13) — Pg?(rl, 1'2))” + Eél(rl) ) (B.25)
with m = w, d. The expressions (B.2-B.25) form the close set of RFHNC equa-

tions, valid for the scalar part of the correlation. In terms of these quantities
and defining other useful ones, we can express the TBDF and the OBDM as:

1,t1t2 t1to

Py (11, 10) = B2 (v1,12) + 201, (P52, (11, 72) + L2, (x1,12) ) (B.26)
P (11, 12) = C (1) (C*2 (r2) gty (11, 12) + O (r2) g3 (11, 1))

+ C3H(r1)(C™ (r2) gy (r1,13) + CE (r2)gen'i, (r1,12))
pore.(r1, 1) = O (r1) O (r2) get'2, (r1,12)
Pocne(T1, 1) = C“( )

p(r1,19) = =207 (

10 )tlt

Gee e:L‘CJ(rb r2) 3

(r
(r
r1)C, (r2) g0, (r1,12)

2)Ywewe

We discuss now the case of state-dependent correlations, in the SOC approx-
imation. We have mentioned in Sect. 3.3, the need of separating the spin and
isospin dependence of the TBDF in order to describe nuclei not saturated in
isospin. In these systems, the contribution of the linear isospin operators is not
zero, therefore we distiguish the proton and neutron dependence of the vari-
ous RFHNC/SOC terms. This affects the chain equations in the calculation
of the nodal N;;tfo(rl, ry) functions. In order to generate these chains, we have
to consider the following folding products: those of a function X, ,(r1,r3)
with another function X, ,(rs, r2), those of X, ,(r1,r3) with Ny, ,(r1,13),
and those of X, ,(r1,r3), or Ny ,(r1,13), with po(rs, r2). These combinations
are present also in isospin saturated systems. In addition, we should also con-
sider that the action of a single isospin operator on a single external point of
the nodal function, produces a non zero contribution.

We give in the following the expressions of the vertex corrections of the nodal
terms in SOC approximation, and also those of the various terms of the TBDF.
In these expressions we use the index k& which can assume the values 1,2 and
3 and the index [ which can be 0 or 1. The p, ¢ and r indexes indicate the
operator channels and can assume values from 1 up to 6.

The expressions of the nodal functions without open statistical loops can be
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written as:

tito t1t2t3
Nmn 2k —1 rl’ r2 Z Z [ mn,2k; —1,2ko—1,2k3— 1(r17 r2)
koks=1t3=p,n

+ (204,15 — )Nﬁiffé?cl 1,2k2,2ks — 1(r1,12)

+<26t2t3—1>N;;;2;zl Lok 12k (P15 T2) | (B.31)
N,%,?le(rl,rg Z Z Nﬁi?éil,%%%d(rb@% (B.32)

kg,kg 1t3=p,n

where we have defined:

Nzt (v, 1) = (X088, (r1, 1) CL382H Ol (r3) | X (52 (v, 1) + Nf32 (x5, 1) )

md,q dn,r dn,r
tits k2k3k1 t3t2 3t2

+ (Xme q( T ) 132 dqr ’anr I'3,I‘2 Ndn r(r37r2))
t1ts koksky t3to tato

+ (de q( )<132 qur Is ‘Xen r(r37r2> + Nen r(r37r2))'

(B.33)

In the above equations we have defined p = 2k; — 1+ 1y, ¢ = 2ko — 1+ 15, and
r = 2ks — 1 + l3. The sub-indexes m and n indicate the type of link with the
two external points, specifically m,n = d, w, e.

Since in the calculations of ww diagrams, we must include the isospin trace,
for this case, we substitute Eq.(B.32) with:

Nifw 2k1 (r1,12) Z Z thtSNztulzf;lgil,sz 2k5(r1’r2) . (B.34)

ko,ks=1t3=p,n

The expressions of the nodal diagrams with open statistical loops are:

Nf,;n,p( ,To) = N&%t;(r ro) + Nmnp(rl,rg) p=1,...,6, (B.35)
N?%nj p( 1'2) :NT()’T/T)LJ p(rb ) + NT()’T/??L] p(rl’ 1'2) p= 17 2 ) (B36)

with m,n = ¢, w.. We have used a symbology analogous to that of Egs. (B.18
- B.20), to indicate the parallel spin case, Eq. (B.35), and the antiparallel one,
Eq. (B.36). In this last case, we have considered only the contribution of the
first two channels of the interaction, p = 1,2, in order to simplify our calcu-
lations. This is a good approximation since the relevance of the antiparallel
loops is small. The explicit expressions of the nodal functions present in the
Egs. (B.35) and (B.36) are:
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3
(y)t Yt
ann(;)gkl—l(rhm): Z Z [ mn(; 32k1 1,2k —1,2ks— ((r1,19)
k2, ks=11t3=p

t1t
25t1t3 - 1) (N(y) (1 )52k1 1,2k2,2k3— l(r]-? r2) +

t1t
NT()’%QL(])kol 1,2k2— 121@3(1'171"2))} ; (B.37)
3
Ngr)fé) 2k1(r17r2) Z Z N(y t1t32k1 2k, 2k3(r17r2) 5 (B.38)

ka,ks=1t3=p,n

where y = x, p. The other terms are:

AFs|
Nr(rfr)zt;tt]i(rl 1'2) (ch q(rl’ I‘g) f??é%klcctlsqr( 3)7 gé%(r?n 1'2))
Ak ,
(1= 8 (08 (0, 1) -G O (1) 95, (0, 12))
f L.
- 5k116k216k31 [(Xfr},cj,q(rlv r3>C§l?qr(r3)§ géfﬁ,j(ri’n r2))
1
+(1- 6r,1>(Xi;cj<r1, ) Gl (1) 5|90 (3,72)) |, (B.39)
Nr(rfnt;lntﬁ(rla 1'2) = _(P(t)l (1'1, 1"3) <12k3k10d qr I'3 ‘Xcm« rs, 1'2))
- (061 (1'171"3) kadklcffqr } B8 (rg, 1 )
Ak koksk1 t3
- (pO (r17 1'3) 9 132 (Od qr(r3) - 1 ‘ ch (1‘3, rQ))
A 2
+0p1 (061 (re, r3)7<f§§3k1(0d o (T3) — 1)‘063(1“37 1'2))
Ok110k10k31 [( 1, : ‘
+ # |:(p6] (r17 r3>Cctl?qr(r3)‘X£f®j,r(r37 r2))
+ (p0j (rl> I'3)Cfd ,qr I'3 ’ cnj, r(r?n 1'2))
+ (pOj(rb r3)(Cd,qr(r3) - 1) Nﬁfzg‘,r(ri’n 1"2))
—0r1 (Pf)lj(rh r3)(Ce,(rs) — )‘PS‘}(T:’” 1‘2))} ; (B.40)
)t , I
Nty (01 72) = (01 (01, 13) Ol (1) 5 gl (03, 12) )
1
+ (1= 601) (XD, (r1, r3)C§f’st(r3)§ 955.4(r3, 1))
L,
(X1, 03) Ot (r3) 5|08 (13, 12))
1
+ (1= 0u0) (X (1, r3>c;35t<r3>5 ginelra,rs)) . (BAL)
N (1, m2) = = (r1,13) C (x5 2\ 5 5(xs,12) + NGE (r3,12) )
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+ 811 (b (r1, r3><cs;t<r3> - 1)5\p63»(r3, ra))
— (b e ) Ol e3) | X8 () £ NP (1, 72)
— (Pl (1, 13)(C e (rs) — 1) 2‘ ot (r3,12))
+ 61,1 (Pl (r1,13) (Cliy (v5) — 1>§yp03 (r5,12)) . (B.42)
In the above equations the symbols s and ¢ can assume the values 1 and 2.

In the calculations of w.w,. diagrams, we must include the isospin trace, there-
fore we use:

Nzi)cwc 2k1 (r1,12) Z Z thth&tzf;c,lesz 2k3(1"1>1"2) . (B.43)

kg,kg 1t3=p,n

The expressions of the TBDFs are rather similar to those of the symmetric
nuclear matter case. We define the quantities:

2/p(r12)
he? P2 4 N2 B.44
ddp(rla ry) = Fi(rio) ddp(rh ry) ( )
htltz fp (T12) Ntltg B45
wd,p(rla r2) fl (7’12) wd p(rh r2) ) ( )
hgfﬁp(rla ry) = Nfull?p(rb r7) , (B.46)

with p =2k — 141 > 1. We obtain:

gf?irfp(rl’ 1'2) = girljf (1‘17 r2)hn11712p(r1a 1'2)
tht2 (I’l, I'Q) .]tht2 (I'l, I'Q) s

mnp iy
girll?p(rlﬁ I‘2) 92? (rb I'Q)hmdp(rl, 1'2) + g (I‘l, I‘g)Nfrng(rl, r2)
= X2 (r1,10) + N2 (1, 13) (B.47)
get2(r1,10) = git'3,, (v, w2) 4+ gik2 (11, 12) + gk, (v, o)
= Xiét;(rl, ry) + N2 (ry,1s) (B.48)
GerZirp(T1,12) = gob'2, (1, mo) hily? (11, 12)
+ ga (v, o) NI 2(ry,T2)
+ g2 (r1,12) N2 (r1,15)
+ gy (r1, 12) N 2 (11, 1) (B.49)
Gettoep(T1 t2) = AlgL2, (11,12) (B.50)
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t1to _ k tita
Yee,exci, p(r17 r2) =A gee,emcj(rlv r2) )

with m,n = d, w.

For the other diagrams we can write:

gzé(j),p(rl’ ry) = gﬁi(j)(rh r2)hﬁzldt,}(r1, ry)
+ gtlt (rh rQ)Ntl( i),p (rh r2) 5
gf"lcc(j)vp(rl’ 1'2) gw cc(j )(rl’ r2)hwd p(rla 1'2)
+gt1t (r17r2>chc( ) (rl,rz) y
gfvlcwc(j)m(rl’ 1'2) = gw cwe(5) (rl’ r2)h1;w p(rb r2)

+ Guww no (r17 r2)Nw1c'wc(j),p(r1’ r2) .

(B.51)

(B.52)

(B.53)

(B.54)

All the TBDFs can be expressed in terms of nodal and non nodal diagrams,

and for all of them, we can write:

giflm(j)m(rl’ ry) = Xirin(j)m(rl’ ry) + N:rin(j)m(rla ry) .

(B.55)

The expressions of the vertex corrections for the operator dependent part of

the correlations are:

Ctl,pq( 1)=Cp(r1) {1 + 5pq,11Ufri,SOC(rl)} )
(1) = ity (v1) [ 6 (v1) + UL (1)
+ 0510y (rl)[U;lsoc(rl) + UJSOC(rl)} ,

with m = w, d and where we have used:

UmSOC r) Z AF Z { 1_5k11)UE,t22k1—1,2k1—1(r1)
k1=1 to=p,n
X2 UG 1o (01) + Uy, o (1))

t1t2 t1t2
Um 2k1,2k1 (r1>} ?

k1ko2 tltg
U6] SOoC I'1 Z I Z { ej,2k1—1,2ko— 1(1‘1)
kle 1 to= =p,n

X1 [U;ltfkl Lok (00) + UG5 gy 1(r1)}

t1t2 t1t2
Ue] 2k1 2k2 (rl)} ?
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(B.57)
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(B.59)



and we have considered m = d,w, e, the relation p = 2k; — 1 +1; and ¢ =
2ky — 1+ I5. The expressions of the U coefficients are:

U3tstr) = [ ot e v s e vl
+ gfllet2 (r17 r2)Cz§?pq (r2)} hZItQ (r17 r2)

+ 040" (11, 12) C g (r2) (1 = & )Ndeq(rbr?)}a (B.60)

+ gl (r1, 12) O, (12) | NI (r1,72)

+9352<r1,r2>cs?,,q<r2>fvmq<r1,r2>} , (B.61)

Uit = [ ot e e [ i

+ gLt (01, 12) O (12) | I 2 (1, 12)
+ g2 (01, 12) P2 (12) (1 — 8,0) NLH2 (r1, 1) + g2 (11, 12) O (r2)
X (1= 0y1) [NI2 (xy,12) + N2 (x4, 1) NJ32 (11, 12)

ee,q de,q

+N£§lt§(1‘1,1‘2)Nde (rbr?)}}
—+ (]_ — /dI' {htth(r r )2923 (Qi:r,‘c(rhrz)Cgpq(rz)

- Ncc p(rb r2)gcc(r1’ r2)0d pq(r2)

NS ) [V 1) = om0} (B.62)

Uéjlt;q - (]' - /dI' {htl 2 (rh I'2) 2 géletzzcj(rh r2>Cz§?pq(r2)
- Ncc p(rb r2)gccj (rla r2)0d pq(r2)

+ Nccp ( )|:NC(£] (r27 I'1> - 0623'(1'17 r2)}} (B63>

In the above equations we have used the functions

h;ltg (rq,ry) = +(1- 5(171)]\751112 (ry,12)

hiﬁ(rl, ry) = +(1 =4 )Nwldq(rl’ ra) -
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In addition we remark that, since there is no contribution in the case p = ¢ = 1,
we have

Cr2 pg(r2) = 02,22(1'2) :

m,pq
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C The isospin matrix elements

In Sect. 3.3.2 we have shown how to calculate the expectation value of the
diagram A of Fig. 15 by using the properties of the Pauli matrices. We found
a recursive relation which allowed us to express a set of n pairs of isospin
operators as a scalar term plus a single isospin operator pair, Eq. (117). This
recursive relation was used to evaluate the expectation value of a set of n
isospin operator pairs between two external points, Eq. (121).

In this Appendix we calculate the isospin expectation value for the situations
represented by the B and C diagrams of Fig. 15. We call these diagrams vertex
correction and nodal diagram, respectively.

The starting point is a general expression for the expectation value of a product
of isospin operators between the external points 1 and 2, and a generic internal
point, we label it as 3. Since this expression is symmetric in the external points,
we write it in a general manner and we understand that the ¢ and j points
can be either 1 or 2. We define the expectation value:

T (i, 5) = x5 (DX, Q)xEB) (71 - 72) (7 75)"
(T1-72)(7; - 73)" (71 - 72)" Xe, (1) X0 (2) x12 (3)
=0y 4 V50,4, 4+ 50¢05 + Uy0tty + 504200t 15 000t (C.1)

where the b’175 coefficients are real numbers depending on /; 5 which indicate
the number of isospin pairs appearing in the expression. For the properties of
the Kronecker’s 6 symbol we have that:

1
6t1t26t1t35t2t3 - 5 (5151152 + 5t1t3 + 5t2t3 - 1) ) (02)

therefore we obtain:

T0%8 (i, 7) = by + balsyey + b30s,65 + baliyty (C3)

l1l2l3l4l5

where we have defined by = 0] — b./2 and b, = b}, + b,/2 for k = 2,3,4. By
exchanging the coordinates 1 and 2 in Eq. (C.1) we find that:
Toee (3—i,3—j)=T50%, (i.]) . (C.4)

1l2l3lals l1l2l3l4l5

Eq. (C.1) represents the most general expression for all the cases we want to
treat. All the possible combinations of isospin operator pairs of our calcula-
tions, can be reconducted to this expression, by appropriately redefining the
values of the [ powers, and those of the i and j coordinates. The structure of
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the sequence of operator pairs can be interpreted as follows. The isospin pairs
with exponent /; and [5 represent the operators coming from the dynamical
correlations, and, eventually those coming from a statistical correlation line
applied to the points 1 and 2. The pair with I3 represents the operator of the
interaction. The isospin pairs with power [y and [, are associated to the oper-
ators of the vertex correction in the case j = i, and to the nodal diagram in
the case j = 3 —1. Since we work in SOC approximation, there is only a single
pair of isospin operators acting on these particles, therefore l,l, = 0,1. On
the other hand, there are no limitations on the values that the other [ indexes
can assume. We discuss below the three possible cases, compatible with the
SOC approximation.

When 5 = [; = 0 we have a structure analogous to that treated in Sect. 3.3.2
and therefore:

with x;%% ., given by Eq. (121).

For the case [y # 14, obviously one of the [ indexes is 1 and the other one is 0.
The expression of Eq. (C.1) can be written, with an appropriated redefinition
of the power indexes, to an expression of the kind:

T2 (1) = Xt (Dxgh (2 (3)
(71 72)" (7 T3) (71 72)2x0, (D) X2 (2) X1 (3) - (C.6)

These coefficients are related to the 7 coefficients by the relations:

Tt (i,5) =T (5)

7;?1%8;5 (iaj) - 1?12235 (’4) . (C‘8>

By using the recursive relation (118), we find for J}tlllt;t?’ (1) the following ex-
pression:

T2 (1) = ag a, T (4) + [, (1 — agy) + (1 — g, )ag,] T35 (3) +
(1 —a,)(1 — ag,) TH™="(3) . (C.9)

The values of the b coefficients for each term of Eq. (C.9) are given in Tab.
C.1 and have been calculated by using the expression:

T TiXe ()X (7) = 2x¢ (D)X, (5) — xe (x4, (7) - (C.10)
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Table C.1
The values of the b coefficients of Eq. (C.3) used to calculate the basic T, ltlll?k(l)
terms of Eq. (C.9).

The values presented in Tab. C.1 refer to the ¢ = 1 case. By using Eq. (C.4)
we have:

T}tlllt;t?, (2) — t2t1t3(1> )

l1l2

The last case we have to analyze is: [ = I, = 1. In this case, we can write:

TR i 5) = anar, [a, TG G, 5) + (1— ) TG, 5)] + (C.11)
(1= an)au o, TG G, 3) + (1= an,) TR 6L 5)] +
a, (1= ay,) |, T (0, 5) + (1= @) T30 (0, 5) | +
(1= an)(1 = ay,) [a, TR (0 5) + (1= ) TR G 4)] -

The values of the matrix elements 7 of the previous equations are given in
Tab. C.2 fori = 1 and j = 1, 2. The other cases are calculated using Eq. (C.4).

TR (L) | TR (,2)
i I3 Iz | by by by by by by by by
0 0 O 5) 0 4 0] -1 2 0 0
1 0 01 6 0 4 5 4 4 4
0O 1 0]-1 —2 0 4 5 4 -4 4
0O 0 1|-1 6 0 4 5 4 -4 4
1 1 0 )|-7 4 4 0 11 -2 0 -8
1 0 1|17 -12 4 8|-13 14 0 O
0O 1 1]|-7 4 4 0 11 -2 -8 0
1 1 111 -14 8 4 -7 16 -4 -4

Table C.2
The values of the b coefficients of Eq. (C.3) used to calculate the basic ’Tligfga 15 (1,7)
terms of Eq. (C.11) with j =1,2.
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In order to simplify the notation in the calculation of the energy, we rename
the matrix elements in the isospin space:

Xt1t2t3 (Z): titats (’L,Z) (C.12)

l1l2l3l4ls l1l2l3l4l5
t1tats -\ __ titats ; ;
nl1l2l3l4l5 (7'> T “l1Lsal3Lyls (7'7 3 - Z) (013)

In the above definitions, the limitations related to the SOC approximation in
the possibilities of linking isospin exchange operators, have been considered
by defining Lo = 0d;1ls + ;204 and Ly = ;104 + 0;0l5. This implies that the
isospin term of Eq. (C.1) with exponent [y acts on the pair 13, and the term
with exponent [, on the pair 23.
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D The uncorrelated one-body densities

In this appendix we present the general expressions of the uncorrelated one-
body densities involved in the calculation of the kinetic energy for systems not
saturated in isospin. We use a set of single particle wave functions expressed
as indicated by Eq. (88).

The one-body density p, is given by:

péll(rl): Z (qbfmll;m(rl)v ¢nl]m( ) Vi iLll;m(Ij) : vlqbfmlljm(rl))

nljm

:%Z(QjJrl)[Rm]( D) (Dl (1) —

nlj

l(l+1)R,( )

R >12] , (D.1)

where we have carried out the trace in the spin space and we have defined:

z<z+ 1

7"1

Dyi(r1) = Ryfj(r1) + = Rfiz;( 1) — =Ry, (D.2)

For the one-body density matrices pro and pro ; we find:

t1to

Py’ (r1,12) = p’ (1‘17 r2)Vipg (1, t2) — Vipg (r1, 1) - Vipg (re,r2)

( ™)? Z: ,(2j+1)(2j,+1)Rf~313( )Rg’l’j’(@){
{Rill]( 1) D% (1) — Ry (r )Rfjglj/(rl)}Pz(COS@)Pp(COS@)

sin? 6

SO R >Rf;l/j/<n>ﬂ’<cose>ﬂc<cose>}, (0.3

1 iy
p?éj(rl,m) (47)? Z (- 1>J+J e anl]( )Rff/l/j’(m){
nljn’l’'j’

[Rnl]( )Dz%l’ /( ) Rnlj (T1>Rf12’;’j/ (Tlﬂ Ql(COS 6) Ql' (COS 6)

2
_sin (6) Ryl () R0 (1) Qi (cos ) Qi (cos 9)} ’ (D4)

where P, are Legendre polynomials, 6 is the angle between the vectors r; and
ro and we have defined:

Qi (cos ) =sin 6P/ (cosh) ,
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Q;(cos ) = 11119 (cos 0P/ (cosf) — I(l + 1)Py(cos 9))

For the pr3 densities we have:

p?g(l“l, ry) = 2V%P§f (r,r3)

=— Z 2j+1) Rf;lj )Dﬁjlj(rl)Pl(cos 0) , (D.5)
nl]
P?:a,j(rla ry) = 2V1,00j(1"1a ry)
1 1
=52 (=1) TR (r2) Dy (r1) Qu(cos 0) (D.6)
nlj

The last density that appears in the calculation of the center of mass energy
can be written as:

PE.F14(1“1= ry) = pt716(r17 ry) — Pél (r1, I‘2)PE.F15(1“17 ry)
_pglj(rl’rz)pél&j(rhlé) ) (D7>

where we have defined:
P%ﬁ(rb ry) = 2(V1061 (ry,12) - V2P€)1(1“1, ry) +
leélj(rlar2) : Vnglj(rblb)) ; (D.8)

p?S,(j)(rb ry) =2V - V2061(j)(1"1> o) . (D.9)

The explicit expressions of the above defined quantities are:

1 , ,
Phs(ry, 1) = yy 2(23 +1) Rf;lj( )Rzl](rg) cos P (cos ) + (D.10)

nlj
Rtl ) Rtl
<Rf}llj( 2) i (1) + Rfjl;( )7””( )> sin® O P/(cos ) +
1 )
Rl ()R
i (1) By (72) (sin2 0P/ (cos @) + I(l + 1) cos O P(cos 9))] :
rire
1 . ,
pé{f)yj(rl, ry) = 5 Z(—l)]_l_l/2 [Rfjl] (rl)Rm] (r9) cos8Q(cos @) + (D.11)
nlj

l l
nlyj r nlj o

<Rt1’( )L"ll( ) R (r )L"U( >>sin28Q;(cos@)+
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pélﬁ (rla 1‘2)

Rflllj( )Rill] (7“2)

{ sin? 0Q)(cos )

rre

+
1
(l(l +1)— sin29) cos 6Q);(cos 0)

1 .
Ty 3 (20 DT+ DR ) Ry ()

/l/ !
{COSQ[R%( 2) Ry (r1) Py(cos 0) Py (cos 6) —

Rnlj( )R 3 /(Tl)
T2
Rnlj( )
T2
Rzlll/j/('rl)
™

/
27T 5/ \2 Z ]+] - 1R£Lll_]( )Ratml’l’j’(/rl)

nlj
ll/ !

sin’ @

P/(cos 0) P (cos 9)] +

sin? l R i (1) P/ (cos 0) Py (cos 0) +

Rf;l'j( 2) Pi(cos 0) P} (cos 9)] } +

{cos 6 [Rfjl; (ro) Ry (1) Qu(cos 0) Qu (cos ) —
(r2) Ry jo(r1)

172
R
sin? 9[ nis (72 )Rt,l, 4 (r1)Q)(cos 0)Qp (cos 0) +

T
Rfll’l’j’ (7’1)

r1

R

. 1
sin? #—242

Q;(cos 0)Q}(cos 9)] +

Rtl/» (7’2)

nlj

Qeost)Qiteost)]| |
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E The expressions of the energy expectation value

The interaction energy defined in Sect. 4 as Tr + Vo = W, can be expressed
in terms of:

1 h?
HiE (ro) = ft(r12) {_%5‘1’1 [fp(T12)V2fr(r12) = Vfp(ri2) - Vfi(r12)
_%fp(rm)fr(rm)(éns +6,6) (1 + 6,5 + 51,,6)}
1

+fp(7’12)vq(7“12)fr(7“12)} : (E.1)

In the following, we shall use the separation of the spin and isospin operators
as was done in Eqs. (51) and (105). We shall identify the various isospin
independent operators by using the £ and w indexes, which can assume the
values 1,2, and 3. The [ indexes can assume the values 0 and 1.

As in Sect. 4, the expectation value of the interaction energy is calculated in
four parts, see Eq. (137) and Fig. 16. The first contribution, called Wy, is given
by:

1 1l
Wy [ deyde st etz 1“5(7«12){ (E.2)

kikoks pks tita ti1to
I A p2,dz’r(r17 1"2)X11+12+z3

kaki1ks Tkaoksks pks A Kka tita t1t2
+ 1 I APA pzewc(rbr2)Xh+l2+l3+l4

kakiks Thkokske Thkske2 A ka tit2 t1ta
+ ] ] ] A p2,excj(r17 r2)Xl1 +lo+13+1y

: (E.3)

and corresponds to the case when p > 1 operators act between the external
particles only. These operators are associated to f,, v? and f, functions in
Eq. (E.1) for the direct terms. In addition, we should recall that the exchange
terms have additional spin and isospin dependent operators because of the
presence of the exchange operator 1197(1, 2), see Eq. (58). By definition, this
operator may act on the bra or on the ket. In our conventions we make it act
on the ket so it is always to the left of the rest of the operators. The sequence
of the three operators we have mentioned above, plus the exchange operators,
are present in all the terms we are going to analyze, therefore we shall always
use the same set of indexes. Furthermore, we should point out that in Eq.
(E.3) a sum on all the k,[ and ¢ indexes is understood. This convention will
be used in all the equations of this appendix.

The expressions of the densities used in Eq. (E.3) are given in Eqgs.(B.27-B.29)
defined in Appendix B, and include only state-independent vertex corrections.
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In this way, the p functions consider all the direct and exchange central dress-
ing linked to the external points. As discussed in Sect. 3, A¥=123 =1, 3,6 and
AF =1 — 6y 3. The values of [¥1*2ks and J*1*2ks are given by Egs. (110) and
(114). The x{** functions give the isospin traces and their values are given by
Eq. (121).

u1k1koksus Ik1k2k3Ak3A“15uluQ

urkikougks | I¥1%2K3 AR3(1 4 Dy YAM Gy
Eyugkoksug | IF1%2k3 AR (1 4 Dy ) A" 6y
Eyugkougks | IF1%2k3 Ak (1 4 Dy Y A™ 6y

Table E.1
Spin traces of the operators in Eq. (E.4).

We now discuss the effects produced by one SOR linked to one of the interact-
ing particles. This is the W diagram of Fig. 16. The operator structure that
we must analyze, for the direct case, is:

1 1
§{k1> Ul}k‘2§{k3, Uz} =

i (U1k1k2k3U2 + u1k1k2u2k3 + klulekqu + k1u1k2u2k3) 5 (E4>
In the above equation, the k£ and u indicate the operators P* and P*, Eq.
(51). The kq, ko and k3 operators act on the pair of particles 1 and 2. The
uy and uy operators act, instead, on the particles pair 1 and 3, or 2 and 3.
The symbol {, } indicates the anticommutator. The values of the traces of the
various terms of Eq. (E.4), are given in Tab. E.1.

urkykokzug | TF4F1ks [Raksks Aks (1 1 Dy YA™M S, 0,
urk1kougks | I*akrks [haksks Aks (1 4 Dy YA, 0,
Eyuykoksug | TFekiks pkeksks Aks (1 1 Dy Y A™M S, 0,
Eyuykougks | TF4kiks [keksks Aks (1 1 Dy Y A™M Sy 0,

Table E.2
Spin traces for the parallel spins case of the operators of Eq. (E.4).

In the exchange case, an additional k; operator must be included on the left
hand side, following our conventions. Since we work with single particle wave
functions expressed in a jj coupling scheme, antiparallel spin terms are usually
contributing. For this reason in the exchange case, we have to distinguish the
parallel and antiparallel spin situations. For the case of parallel spins between
the interacting points, by following Ref. [21], we obtain results given in Tab.
E.2.
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k4u1k1k‘2k‘3u2 Ik4k1k5lk2k3k61k5k62(1 + Dk4u1)A 1§

kquykikougks | TFakiks [haksks rhske2(1 4 Dy Y A™§

k4k1u1k2k3uz Ik4k1k5lk2k3k6fk5k62(1 4 Dle)A 15u1u2
( A4S

kakiugkougks Tkakiks pkakske pkske2 (1 +Dk2u1 Aw

Table E.3
Spin traces for the case of antiparallel spins between particles 1 and 2 in Eq. (E.4).

u1k1k2k3u2 Ik1k2k3AkSIu1u22
u1k1kousks Ik1k2k3Ak3Iu1u22(1 + Dk3u1)
w1 kiuskoks Ik1k2k3AkSIu1u22(1 + Dklul)

u1u2k1k2k3 Ik1k2k3AkSIu1u22

Table E.4
Spin traces for the case of antiparallel spins between the particles in 1 and 3 or 2
and 3 in Eq. (E.4).

For the antiparallel spin term, we have to distinguish the case when the an-
tiparallel spins are those of interacting points, whose results are given in Tab.
E.3, from the case when they are those of the 1 and 3 particles, or those of
the 2 and 3 particles. In this last case u; must be an exchange operator acting
on the left hand side of the operator product. This produces the results given
in Tab. E.4.

In the Tabs. E.2, E.3, E.4, we have used the following values of the D terms:

0 0 0
Dy =0 —-4/3 —4/3 | , (E.5)
0 —4/3 —4/3

which corresponds to the odd values of £, defined in Tab. A.5 of Appendix A.

All the isospin parts of the above operators can be written by using the
X0\ 1203 0. (4), function defined in Eq. (C.12). The contribution of the SOR to
the interaction energy is:

2k1—1+4+11,2ko—1+12,2ks—1+1 . .
/d[‘ld 2H 1—1+11,2ko—1+12,2k3— +3 12)<[k1k2k3Ak3

{pglsml, r2) [MEERES (1)) + ME2EES (1)
+ [ (11, 72) I3 (1) + gl (01, 12) Ol (x2) | Cltyo (1) MU (1)
+ (g2 (01, 72) Gl (11) + L2 (11, 12) Clitya (1) | Citan(r2) ML 2R (x2)
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+ |96 (e1,72) O35 (v2) + g (v1,12) O (v2) | ity (r1) M ELE (1)
[0, 72) O () g8 (4, 02) Ol (1) it 02) MEE 2 1)
- IRk photoks AR AR phits (), wg) [ MR (v0) + M2 (x)]
+ Ik4k1k5 ]k2k3k61k5k62Ak4pgl,ch (1'1, 1'2)

[k () 4+ Dttt <r2>}) | (E6)

where we have defined

M R (e) = MG 0(8:) + (14 Digu )M G, 1, (1)

+(1+ Dklul)M:ﬁ,tlﬁlz+lg,0(rz‘)

+ (1 + Diguy ) M2 (17) (E.7)
MRS (1) = M3 G572 10, (1) 4 (14 D )MEGTE, 1, (v2)

+ (]‘ + Dkl“l)Mz;,tOQ,qlLll,’llL;-i-lg, (rl) + Mé;fg,?;ﬁlz—i—b,o (rz) ’ (E8>

kokak
é,lltf,l;zf,zf(ri) =1+ Dksu1)(Mctz,lz?flll,zerlg,o(ri) Mé,ll?lullJrlQ,lg(ri))
+(1+ Dk4“1)Mfl,llixl+l2+l3,0(ri)
+ (]‘ + Dk2“1>MCtl,1l€12—gl11,l2,l3 (rz) Y (E9>

Mﬁitﬁul;ld(rz) = A" (1 - 5u1,1)X§:éﬁ%lg (i)Uﬁf,%ul_l,zul_1(ri)
+ Xfiﬁ;éh (Z)U#Lt,%ulﬂul—l (rl) + X;ié%ztilg (Z)Ur/ﬁ%ul —1,2uy (rl)

XL, (DU by 20 (T3) | (E.10)

titouiuz (o, \ __ Juiu2? | titats . uts ) titats . uts )

Mej,ll,lg,lg (rs) =1 X11015013 (Z)Uej,2u1—1,2u2—1(rl> + X11 115005 (7’>Uej,2u1,2uz—1(rl>
titats  (\7THE3 titots (-\77HE3

+ Xl10l21l3 (7’>Uej,2u1—1,2u2 (rl) + Xllllgllg, (Z)UEj,QU1,2U2 (rz) Y (E11>

In the above equations we have considered that : = 1,2, m =d,e , and u = t;

for i = 1 and ju = t, for i = 2. The expressions of the U2 (r;) and U (r;)

] ) m,pq ej,pq
functions are given by Eqs. (B.63).

The structure of the W, term is more involved. We calculate separately the
various terms according to the direct or exchange nature of the correlations
reaching the external points.

W, = W.(dd) + W.(ed) + W.(de) + W,(ee) + W,(cc) . (E.12)

125



Direct Exchange

ulkl kg k3u2 Ik1k2k6 Ik3k5k6 Akﬁ Ik1 kokeg Ik6k3k7 Jk4k5k7

Ulkl kQUng Ik’lkzks Jk3k5k’6 Iklkzks Ik3k4k7 Jk’7k’5k6
k1u1k2k3u2 Ik2k3k6 Jk1k5k6 Ik2k3k6 Ik4k1k7 Jk7k5k6
k1u1k2u2k3 Ik3k1k6 Jk2k5k6 Ik3k4k6 Ik6k1k7 Jk2k5k7

UL U kl k‘Qk‘g Ik’lek’G Ik3k5k’6 Ak@ Ik4k5k’6 Ik1k2k71k6k7k3 Ak5
k1U1UQk2k3 Ik1k2k6 Ik3k5k6 Akﬁ Ik4k5k6 Ik1 k2k71k6k7k3 Akg
U1k1UQk2k3 Ik2k3k6 Jkl kske Ik2k3k6 Ik6k4k7 Jkl ksky

ky k‘zk‘gul’LLQ Jkikaks rkakske Ake | [kakske [kikakr rkekrks Aks

kl kQU]_Ung Iklk2k6 Ik3k5k6 Akg Ik4k5k6 Ikl k2k7[k6k7k3 Akg

kl k2u1k3u2 Ik1k2k6 Jk3k5k6 Ik4k1k6 Ik6k2k7 Jk3k5k7

Table E.5
The traces obtained for the W,(dd) term.

The operator structure that we must analyze in the dd direct case is:

171 1

1 h{k‘b uy fho{ks, ug} + Z{kla ug }ko{ks, ur} +
1

6 ({{ul, UQ}, ]{31} + Ulk}ﬂm + nglul)kgkg +

1
6]{?1]{32 ({{Ul, UQ}, k‘g} + Ulk’g’ng + ng’gul)] s (E13)

where the various symbols have the same meaning as in Eq. (E.4).

We calculate the value of this term by using the result of Eq. (67), and the
results are given in Tab. E.5. In this table, the factors ({442*5 are not present,
since they will be included in the expressions of the nodal diagrams terms N
which we shall define in analogy to Eq. (71). The value of the spin traces are
the same if we exchange u; and us. For this reason, we have only shown the
results when wu; is on the left hand side of us. The isospin traces do not have
this property and their values are given by the coefficients /2% | (i) defined
in Eq. (C.13). Since we have observed that the exchange contribution from
antiparallel spins is much smaller than that from the parallel ones, we have

neglected the contribution of the antiparallel spins in the SOC terms.

By using the above definitions we can write:

1
Wc(dd> _ ﬂ / drldI'QH;I;-vl_1+l172k2_1+1272k3_1+l3 (7’12) (pglfﬁr(rl, r2) |:
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kikoke Thkskske Akes t1toks
I I A Ml,dd,ll,lg,lg(rbr?)

kikoke Thskske titaks
+1 J M2,dd,l1,l2,l3(r17 1'2)

kokske Tk1kskes t1toks 3 kskike Tkokskeg t1toks
+1 J M3'5370 1505 (T1,T2) + 51 J Mgyt 15 (1, 12)

3
kq tito k1koke Tkekskr Thkakskr titaks
+A p2,exc(r17 1"2){5 [I I J Mdd,l4,l1+l2+l3,0(r17 ry)

kikoke Thskak? 7k7kske titoks
+1 I J Mdd,l4,l1+l2,l3 (r,r3)

kokske Tkak1k7 Th7kskes ti1toks

+1 I J Mdd,l4+ll,l2+lg,0 (r1,12)
kskake Thek1kr Thakskr g rtitaks

+1 1 J Mdd,l4+ll,l2,l3 (r1,12)

kakske Tkikok? Thkek7ks Aks titaks
+1 I I A M4,dd,ll,l2,l3,l4(r17r2)

kokske Thekakr yk1kskr g rtitz2ks
+1 I J Mg i 0 1otis (Y1, T2)

kaki1ke Thekokr Thskskr titaks
+I [ J Mdd7l4+l1+l27l370(1‘1,I'Q)} 9 (E14)

where we have defined

1
Mctlbffl]flsg,lg, (r17 r2) = 5 |: éllifflk,lsg,lg, (rl? r2; 1) + Mctlbf;l]flsg,l?, (r17 rz; 2):| ? (E15>

t1toks _ t1toks t1taks
Lddls 1o (T1,T2) = 3 Q.00 41a115.0(T1, T2) + Mah 0y 4 (11, T2) +

t1toks t1toks
Mah1 01015 (T1,T2) + Mgh7 11 0.0(r1, T2) +

Méél?lk—is-lg,OJ:; (r17 r2) ) (E16)

M 0y () = S MRS (v )+ MES ofram) . (BT

M?Tj?lﬁilg,lg (r1,12) = g étlifflka-i-lg,O(rl’ o) + Mflél%f;i,lg—i-lgg (ri,19) (E.18)
Miﬁﬁi,l%l&h (rr,r2) = ctlél?f4lfg,ll+lz+l3(r1= ry) + Mctlgl?szl,o,lgﬂg, (r1,12) +

titoks t1taks
Mdd,l4+l1+lg+13,0,0(r1’ o) + Mdd,l4+l1+lg,0,13 (r1,12)(E.19)

and

3
M:)’}J:L?lkﬁlg,l;g (r17 rz; 7’) = Z Z |:77;11f12,€§,1,l3 (7;>Nfr11§2,531‘€5,2u1,2u2 (rl? r2)
u1,u2=1t3=p,n

+ nfjfffzi,o,lg (i)N2£%§z5—1,2u1,2u2—1 (r1,12)
+ nffféﬁi,l,zg (i)NEZQ,ﬁrl,zul—mm (r1,12)
+ (]‘ - 5k51)n;11fg,§z,0,l3 (7:>N:r%2,§?€5—1,2u1—1,2ug—1(rl? r2) ? (E20>

The mn labels indicate that this last equation is valid not only for the dd case
but also for the ed, de and ee ones.
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So far, we have calculated diagrams where only dynamical correlations reach
the external points 1 and 2. The statistical correlations, labeled with e, are
treated by using the spin-isospin exchange operator. In the ed part, the oper-
ator structure is:

1 1 1
§U1 §k1k2{k37u2} + §{I€1,U2}k2k3 ) (E.21)

since w7 is the spin-isospin exchange operator acting always on the left hand
side. The various terms have already been calculated in the evaluation of the
dd part (see Tab. E.5). We obtain:

W,(ed) = % /drldr2H3_I;::1—1+ll,2k2—l+l2,2k3—1+13 (r19) - (E.22)
(9a* (r1,72) C33(r2) + g2t (11, 12) Gy (12)) Cilya (1)
{ Jh1kake phsksks gk [Mziz,téffﬂgﬂg,o(rb ro; 1) + M;li%fz)fh—i-lz-‘rlg (r1,19; 1)]
 [Fheho Jhskoke ppivfeks (1,103 1)

e

kokske Tkikske p rtiteks .
+1 J My 1y, (rr,ros 1) ¢

The de term of Eq. (E.12) has the same operator structure as the ed term when
uyp and ugy are interchanged. This does not change the spin traces, therefore
the result is:

W,(de) = % / drydry H35 12kl 2hs =14l ), ) (E.23)
[958 (1, 22) O (1) + 9582 (11, 12) Ol (1) Cl ()
{ [kt phaksks Ao [Méé%,?f+l2+l3,0(r17 ry;2) + Méé%,%s,ll—i-lg—i-lg (11,125 2)}
A [k phakske g p e 1, (1,723 2)

kakske 7kikske p rtit2ks .
+1 J Mde,O,ll,lg+l3(r17r272) .

Since u; and us are spin-isospin exchange operators, in the ee term, the only
possible ordering of operators is 1/2{uy, us}kikaoks. We obtain:

1 ok
1—1411,2ko—14+12,2k3—1+13
Wlee) = / dridry H2 (12)

Clln(02)glf? (14, 72) it r2) 9045 0 41
1

5 (MR, eas 1) o MG, gy, (r1,12:2)] (E.24)
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To calculate the W,(cc) term of the eq. (E.12) we found it useful to consider
separately the situations where the p > 1 operators appear on the left, or on
the right hand sides of the folding integrals. Specifically we define non-nodal
diagrams as:

Xcht;l)(rla ry) = [2fl(7"12)fp(7’12) + Ngiia(ra, 1"2)} giL(ry,ro) +
[gibl(rl,rz) = 1] NZM(r, 1) (E.25)

where the label Z can be L (for left) and R (for right). By using Eqgs. (B.37)
and (B.38) we define the left and right nodal diagrams as:

NS (ry, 1) =

XLtl koksky Ot;g AkS
ccq( )C132 dqr( ) 2

Nf&éi(rb r2) -

203,2)+ N2(3.2) - 5 (3,2)) . (E26)

cc,r Ccc,T

Ak2
(Xi2(1,3) S O, (X 2(3,2) + NE2(3,2) ) (B27)

The above equations (E.25),(E.26), (E.27) form a set of hypernetted equations
which can be solved iteratively. For example, one may start by setting the
nodal diagrams equal to zero in Eq. (E.25). The (cc) nodal diagrams to be
used in the evaluation of W,(cc) are those where the left and right nodal
diagrams are subtracted:

Nmt“(rl,m) =N (ry,19) — NEa (rl,r)—NL (ri,ra) . (E.28)

cc,p cc,p cc,p cc,p

The operator structure of the spin-tensor terms of the R diagrams is:

1 1 1
Z{]{Z4,U1} 5{]€1,U2}]€2]€3 + éklkg{kg,UQ} . (E29>

The terms related to the diagrams L are obtained by exchanging u; and wus.
The various possibilities are given in Tab. E.6.

By putting together the various terms we obtain

Wo(ce) = —- /drldrgH%l Tl ko=t 265 —1Hs ).y
Cd,22 (rl)gcc(r17 r2)02?22 (r2)Ak4

kokske Tkikekr Thvkaks int,to
[81 I J Xt +s-+a Vee 3k — 1415 (T1, T2)
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Traces

kaujuokikoks
kaurkqugkoks
kaui k1kousks
kaui k1 koksus
ui kguoki koks
w1 kakiuskoks
w1 kakikousks

(75} k‘4k‘1k‘2k‘3’LL2

Ik2k3k61k6k4k7_[k1k7k5 Ak5
Ik2k3k61k6k4k7 Jk1k7k5
Ik1k2k6Ik3k4k7Jk7k6k5
Ikgkgkg[k1k6k7 Jk4k7k5
Ikzkgk@ Ik1k6k7 Jk4k7k5
Ikgkgkg[k4k1k7 Jk6k7k5
Ik1k2k6Ik4k6k7Jk7k3k5

Ik’zkgk@ Ik4k1 k7 Ik’() krks Aks

Table E.6
Tensor-spin traces for the Eq. (E.29).

kokske Thekakr Thik7ks Aks g rteks
+ ‘[ ] ] A Mcc,l4,0,l1 +lo+l13 (rl? r2)

(r1,19)

(r1,12)

Mi2hs

cc,la,ly,lo+13

k1koke Thkskak? Thk7keks toks
+1 I J MCCJ4711 +l2,l3

toks
Mcc70,l4,l1 +lo+13

toks
MCC7l4,ll +12+13,0

)

(ry, o)

+Ik2k3k6]k4k1k7Jk6k7k5Mt2k5 (r1 1'2)
(ry, o)

+ Ik2k3k’6[k’6k’4k7 Jk1k7k’5

+ Ik2k3k6[k1k6k7 Jk4k7k5 (I.I’ Ty

+ Ik2k3k61k1k6k7 Jk4k7k’5 Iy, T

ce,0,la+11,l2+13

M2Fs

ki1koke Tkakek? Thk7ksks
+1 I J e,0la+11+12,l3

ry, I

kakske rkakikr Tkekrks Aks g rt2ks
+1 I I AP M 4154150

(r1, rz)] , (E.30)

with

t1ks
cc,li,la,ls

l {MRtl ks

. Lt1ks
2 Ccvll,l2,l3(r17 ro; 1) + M,

cc,ly,la,ls

(r1,15) = (r1,12;2)] . (E:31)

In the above equation the R and L functions are defined as in Eq. (E.20) by
substituting the nodal diagrams N with the left and right nodal diagrams of
Egs. (E.26) and (E.27).

We give now the expression of the kinetic energy terms. For the qul) term we
obtain:
(1) h? ¢ ¢
T =~ [ draph () Cli () (E.32)

where p,(r1) has been defined in Eq. (132) and a sum on #; is understood.
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As indicated in Sect. 4.1, we separate the remaining terms in three parts:

T =T + T + TS n=2,3. (E.33)

,C

In order to express the above quantity in a closed form, we define the function:

r r\T
htltz(rb 2) = %g%? (I'l,rg) _5p,15r,1 0222(1'1)02?22(1'2) s (E34)

where we have included the scalar dressing of the correlation operator acting
on the external particles. We can see an analogy with the kinetic energy part
in Eq. (E.1). In addition, we have to consider a spin-isospin exchange operator
acting on the external particles. By associating the indexes ki and I; to p, k3
and [3 to r and k4 and l4 to the exchange operator, we can use the results ob-
tained for the traces of the interaction energy in the case ¢ = 1, corresponding
to ky =1 and I, = 0.

Consequently, for T (z%) we get:

T¢(>,20 ——/drldr2{h2k1 l+l1,2k3—1+13(r1’r2)Ak4X§112l3+l4 (E.35)
[ g ) T 2 )]
200 P15 (51, 12) o P 4, 2) | Cli (1) [Clf(r) = 1]}

ng = _% /drldr2 <hglkt12—1+ll,2k3—l+l3 (r1, r2)Ak4Xflli2z3+z4 (E.36)

[kakiks gks gtz (p) ) )N (1y, 1) +
[’f4’f1’“51’“5’“2p§1§2](r1,rz)Ncq(Flarz)} +201,6,Cilaa (v ){

P82 e, 1) NS (13, m0) 02 (00, 02N (10, 10) |l (2) +
e N 1)+ 81 5N )

_Cd?22(r2) - 1} }) )

where the one-body densities pr2, pr2j, prs and prs; have been defined in
Appendix D. A comparison with Eq. (E.3) shows that we have only the ex-
change terms. We have substituted pgepc;) With pry, ;) and we have used
Itksks — 6 .. The term without operators that appears in the above equa-
tions is caused by the different vertex correction that must be used when no
dynamical correlations reach the particle 2.

Using the property mentioned above for the I matrices, we get the following
expressions for the SOR contributions:
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(2 2 kq
T dI‘ldI'Q h2k1—1+ll,2k3—l+l3 (rl> rQ)A (E37)
kak1ks Aks tit kakiks Tksks2 tit
I akiks g 5,01122(1'1,1'2)4—[ akiks rksks p122](1‘1,1‘2)}
t1tolksks titolkaks

Mdll,o i, (r1) + Mgh2 st (1 )} +
2011, | P42 (11, 72) + pifg? (r1, 12) |l (1)

Usisoc(en) [Clim(rs) = 1] + Clin(®:)Ufisoc(ra)| |

h? 1

:]k4k1k3Ak5pt,1}§2 (I‘l’ rz)NtQ (r17 I'Q) +

]k4k1k5 Ik5k32p31§2] (rl, I'Q)NCCJ (rla r2)}

MRS (e1) + ME2EES (15)] + 2000, Cllgo (v >(

P (01, To) NI (r1,2) + pIEEE (v, T NE2, (r1, 1)

Cy "2 (T2 )Ud Soc(r2) +U; SOC(rl){

P, T1) + i (01, 12) N (12, 11) | ity (1) +

ra, 1) + g (v, 22) NG (v, 1)

t1ta

PTs Iy, I'o )

tz

(
tltg(

2 (
o (
e

In the evaluation of the Ty, terms we neglect qugg This approximation is

1‘171"2

justified by the fact that the contribution of the Tg&s terms are much smaller

than those of the T(f&s terms. The structure of the Tq(fc) term is analogous to
that of the exchange case of W,.(dd) when ky = 1 and [y = 0. In this case, we
use JWHskt = ARs g, and obtain the expression:

7:L2
ch) =" 1’8m /drldTQP%SQ (r1,12) fory —1401 (712) fors 1115 (T12) -

A Gt (1) g (12) g (11, 2) {2 [T 1ol )

+ [kskake Jkekski Méiltlik?l,lg (I.h I.2> + JFakike sheksks Méél?f—is-ll,lg,O(rl’ 1'2)
Ik4k3k6 ]k6k1k5 Ak5 Méllitlikf_ll 0ds (rb r2>] + Ik3k4k6 Jklkska Mclz(litlz‘lklsl Is (rl, I'Q)
Ik4k5k6 ]k6k1k3Ak3 Miljczlkl?io aida (1'17 I-2> (E39>

kaki1ke Tkskskes t1toks
+1 J My datly,ls, 0(1“171'2) .
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We present now the contribution of the spin-orbit terms. In our calculations
we use correlations up to the tensor channels, therefore the presence of spin-
orbit operators is only due to the interaction. We consider only the case of
spin-orbit operators acting on the external particles. In this case we write:

< U?-Hz >0 = —9/d1‘1d1‘2 f5+ll (T12)07+12 (r12)f5+l3 (T12)

ft(r12)
{ o e, e\, + (E.40)

ti1to

1 t1t tit
Q[Pél,etzfcc(rb o) + §p2,5xcj(rl? 1'2)} |:Xli-ﬁlg+lg + Xli-ﬁlg-i—lg—i—l}} ;
where we have used the relation:

C[PB(L-8)1n P3| = —1801,30k,5 - (A1)

Finally, we analyze the expressions used to calculate the contribution to the
energy of the three-body potential, Eq.(141). The diagrams we consider in
this calculation have been presented in Fig. 19. We start by considering the
vfh, term of the three-body force, Eq. (143), which is a scalar function. The
diagram (3.1) of Fig. 19, is the leading term, and its contribution can be
expressed as:

t1tots

1
< Ugs >31= 6 /drldTer3Ug3p3 (I’l, ro, r3) s (E42>

where a sum on the ¢ indexes is understood, p3 is the three-body density that
can be written as:

t1tats _ litats t1tat3
P3 (rh Iy, I'3) - p3,dir (r17 Iy, r3) + 5t1t25t1t3p3,ezc (r17 rs, I'3)

= Yo g (ryrs) Vit (rs) g2 (vs, 1) Vo2 (12) g2 (x2, 1) Vok o (1)

mm/ nn’ ll'=dd,de,ed

2011500, 902 (11, 13) Vo2 (r3) gi2 (13, 12) V2 (r2) gk (ro, 11) Vot (r1) . (E.43)

where Vi (r;) has been defined in Eq. (B.16). We have separated the direct
and the exchange parts of the three-body density, and we have neglected the
contribution of the Abe diagrams [95]. These Abe diagrams are simple non-

nodal ones with three external points that play the same role as elementary
diagrams in the TBDF.

The expressions of the diagram (3.2) is:

f2k:1—1+l1 (7“12)f2k2—1+l2 (7“12)

[f1(ri2)]?

1
< ng; >39 = §/d1‘1d1‘2d1‘3
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Akl(skl,b X;iflngléiig’ (rb rs, I'3) + (E'44>

A phatuke ARy il e (v, 1, 1"3)} -
where, as in all the previous equations, a sum on the operator channels, here
indicated by the indexes k and [, is understood. As indicated in diagram
(3.2) of Fig. 19, the various operators act between the 1 and 2 particles. In
this respect, we should point out that the scalar operator term, i. e. the case
ki = ko =1 and l; = Iy = 0, is not considered in Eq. (E.44), since this would
produce a double counting with the contribution of the (3.1) diagram, Eq.
(E.43).

We consider now the contribution of the v, term of the three-body force, Eq.
(142). We define first two effective potentials:

)= > s [ v gt (va, ) Cli(ra) gt (s, v2)

k1,k2=2 t3
+g1t5(r1,r3)0d22(r3)g (I'3a1'2)
+ gt (r1,13) Oy (r3) g (rs, 1‘2)]

C11k2k3Xk1( 5) X "™ (rs) (E.45)
Uf;}tlcC(rl’rz Z Z4A27F/dr3gcc r17r3>Cd22(r3)gcc(r37r2)

k1,ko=2 t3

Ciga ™ X5 (r15) X2 (rg,) (E.46)

with m,n = d,e and X*(r) defined in Eq. (145). With the help of the above
defined quantities we express the contribution of v?7,, related to the (2.1)
diagram of Fig. 19, as:

r r
<vf§3 Sy == Z/dh/d Jory—141 ( 122)f2k2 141 (T12)
tltg f (7’12)

ki1ksko pko | tit2
- A X11+12+1{

VEFF R (v, T) [ A2 (01, 72) Ol (1) C3 (r2)
+ gt1t2 (ry, I'2)022 (rl)cd 2o (T2) + gt1t2 (rq, I'2)0222 (rl)céa(lé)
+ g1 (11, 12) Clga (1) Gl (1)
+obf7ie (1, 72) Cifaa (v2) [ 9142 (1, 72) Cl3 (r1)
+ e (r1,12) Ol (rl)}
LU (01, 12) Clty (r1) [ gltf2 (r1, 72) CE3 (12)
+ g2 (ry, 1"2)02?22(1‘2)]
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+ Ufjs”;lete2 (r1, 1) g0 (r1, 1"2)02}22 (I'1)Cff22(r2)}
_%/drl/dr2f2k1—1+l1(le)f2k2—1+l2(7“12)g$2(rl,r2)
+ Cilan (1) O (r) T B AR (G2, Ly 4 X012, 40) A
{vf}fﬁj (ry,ro) [Nﬁé (r1, 1) — pht(r1, 1"2)}
[N2(r1, 1) — pg(re,12)]

2003 (1, w0) [N () — plp ()]} (E.47)

In the above expression, we have considered only the contribution of the an-
ticommutator term.

In the (2.2) diagram of Fig. 19, the operators act on the 13 and 23 particle
pairs. In this case, the operator structure is:

Irl s S9 1 S92 s1
1 [5{011737 033 H013033)+ + 5( 13, 033) £ {O13033
+0%3(0%, 033) 034 + 03(0%, 033) 0% (E.48)

where we have defined:

(013, 033)+ = 01,053 + 03307,

The contributions of Eq. (E.48), with p = 2ks—1+1y, ¢ = 2k, 51 = 2ks— 1415
and sy = 2ks, are given in Tab. E.7, where we used the matrix R*1#2*3k1 defined
as [96]:

RRek = C (Pl Py P PY) (E.49)
= Akl5k1k3Ak25k2k4(1 + Dkzks) + 12P2(7A’13 ’ f23) X

{1 - (1 - 5k13)(1 - 5/633)} {1 - (1 - 5k23)(1 - 5/643)} :

The plus signs in the table correspond to the anticommutator terms and the
minus signs to the commutator ones.

When the isospin traces are included we obtain:
Qt1t2t3:|: o 1 Rk3k4k1k2 + Ak3(5 Ak4§
k1kokska,l1la — 8 k3k1 kako

X E1R0(2) £ X{1821 (2) £ X672 110(2)

135



Traces

kaky(ky, ko)s | RRskakikzy Akss, - Akag, .
kaks(ky, ko)x | AF30p,p, AF4Gp 0, RFFsk2k
(k1 ko)hsky | RFkzkakay Aksg o Akagy,
(ki, ko)rkaks | AR36p,p, AF40,p, + RF1k2kska
k3 (k1 ko)xky | ARGy 0, ARy g, £ RFsk2kika
ka(ky, ko)hs | REMRRog ARGy ), ANy,

Table E.7
Tensor-spin traces of the operator of Eq. (E.48).

Pt (2) + xRt (2) £ X L0(2) £ Y2 (2)
PG (2) 4+ 2x0 0tz (2) 2 (2) 4 2x 5l (2)
2% 11 (2)] (E.50)

where we have defined the Q?E;z;‘[h .11, Symbols which allows us to express the
contribution of diagram (2.2) of Fig. 19 as:

< 03y 20 = Ao | ey gy 25t (T138) s Tt (728) sy

f1(7“13) f1(7’23)
P§1t2t3 (rb rs, rB)(Qzlltlgili:k4,lllg + Zﬁ?fﬁﬁigh,llzz) ) (E-51)

where the sum over all the k, [ and ¢ indexes is understood.

In the diagram (2.3) of Fig. 19, the operator dependent correlations act on
the 1,2 and 1,3 particle pairs. This implies that the only contribution comes
from the commutator term of Eq. (142). In this case, the operator structure
is:

1/1 1
(300t oot 05 + ot 0z1(0k. o)

LOL[0%, 02]0% + 0B[0%, 03] ) (E52)

The spin and tensor traces of this set of operators are given in Tab. E.8, where

we have not written a function (F452%5 that is present in all the traces.

After considering the isospin traces we obtain the expression:
L hskik kskiks pks\ [, titat titst titst
g(J IR A 5){771111251%0(1) = M15011 (1) = Moiyty 3110(1)
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Traces
kegkalky, ko) | Jkskiks — [kakiks gks
liakslky, ko] | —Jkskiks o Thakiks gks
[k1, kalksky Jkskiks _ [kskiks gks
[k, kolkaks | —Jkskiks o [hakiks gks
kalky, kolky | —Jkskiks o hskiks gks
kalky, kolks | Jkskiks _ phskiks ks

Table E.8
Tensor-spin traces of the operators of Eq. (E.52).

i (1) + nfiii3(2) — niiiE (2) — ni2 1(2)
Fon i (2) = 20 010(2) + 20 1250(2) + 2m6305, (1)
—2fit, 1 (1)] (E.53)

: —titats Tt
Calling =/ 2%, 1,1, the above trace, we can write:

m 141 (713) 141, (712)
o Ay foks—141,(713) <1 Joks—1+15(T12
< >._—/drdrdr—X17‘ == 7
128 723 4 s fi(r13) (r1s) fi(ri2)

X52(1gp) a2 ph2s (ry, 1o, 1g) SRR (E.54)
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F The Euler procedure

In this Appendix we present the method used to fix the correlation function.
We have named this method FEuler procedure. The starting point is the cal-
culation of the hamiltonian mean value, considering only cluster terms up to
the second order. In this case, the contribution to the W terms of Eq. (137)
is given only by the W} term, since the other terms are produced by clusters
of higher order. In analogy, only the terms Tq(,l’m contribute to the Ty term of
Eq. (128). Therefore, the total energy in the two-body cluster approximation
is given by:

By =Wat Ty + Tas (F.1)

where the expression of the various terms are:

2k1—1+11,2ko—1+12,2k3—1+I:
/drldrH 1—1401,2ko—1412,2k3— +5(7’12)

{pél”“ (r1,11) P52 (12, 12) X1 (L)X (2) Pl P P X, (1) X6, (2)

X (DX (2) (71 - 12) By (1)x, (2)
— g2 (11, 12) 4 (ra, )X (L)X, (2) Pl Pl3 Pl X (1) X2 (2)

X:E(UXZEQ)(H : 72)l1+l2+l3xt2(1)xt1(2)} : (F.2)
«%% /dr P ( rlarl)/dr2/)8384t2(r2,r2)

(f2k:1—1+l1 (7“12)f2k2—1+l2 (7“12) - 52k1—1+11,152k2—1+l2,1)
X (DX (2) Pi3 P xs, (1) x4 (2)
Xi (DX (2) (71 72) 2, (1), (2) (F.3)

7:L2
2 S$152838
Tq(,’% = R/drldrgpr_@2 854t (1) 1)

(f2k1—1+11(7”12)f2k2—1+12 (r12) — 52k1—1+11,152k2—1+12,1)
Xa (DX (2) P P xs, (1) x5, (2)
X (DX (2) (71 72)" 2 x0, (D)x (2) - (F.4)

As in the calculation of the energy expectation values, the k indexes can
assume the values 1, 2 and 3, and the [ indexes the values 0 and 1. The
s = 4+1/2 indexes indicate the spin third component and the ¢ = +1/2 the
isospin third component. A sum on all the third components of spin and isospin
and on the repeated indexes is understood in the above equations, and in the
following ones.
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The other quantities of the above equations are the two-body correlation func-
tions f,, H}% defined in Eq. (E.1) and the isospin independent P}, operators,
see Eq. (49). We use the expressions of the one-body densities (132) and (133)
where the spin dependence is explicit:

p(r) =D pF vy, r) G, (1) Xse (1) (F.5)
51,582
S$1528384t1t9 s189t1 v2 S384t2
P12 (ri,ro) = Po (ri,12) 1Po (r ri)
—V1p5 % (r1,12) - Vg2 (g, 1) (F.6)

We obtain the optimal correlation functions f, by solving the Euler-Lagrange
equation:

d(Ey — Cy)

=0 (F.7)

where we have indicated with C5 the contributions of the constraints. The
expression of Cy is analogous to that of W after substituting H7% with f,\, f.,
Mg being the Lagrange multipliers. The values of these multipliers, are fixed
by imposing the conditions that the various terms of the two-body correlation
function assume their asymptotic values after a certain internucleon distance
d,, called healing distance:

filr > dy)=1, (F.8)
fp>1(r > dp) =0, (F.9)
In addition we impose the condition:
ofp
—= =0. F.10
or red, ( )

Since we use correlation functions composed by six operator channels, the min-
imization procedure (F.7) should be applied to fix the values of six healing
distances d,. This produces a system of six interconnected differential equa-
tions. It is possible to separate these equations by using a representation of
the Euler equations in terms of the total spin and isospin S and T of the
correlated nucleon pair. We use the projection operators:

1

I}, = 725+ 1+ (=)o - 09] (F.11)
1

I, = Z[QT + 14 (=) 7y, (F.12)
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with S,7 =0, 1. In the (T,S) representation we can write:

6
Z l’pOf2 = Z (ZL’TS -+ 65,1$Tt512) H{2Hf2 y (F]_B)
p=1 S, T=0,1

where x, can be the scalar part of the correlation, f,, that of the interaction
vP, or the Langrange multiplier A\,. The relation between the expressions of
these quantities in the two representations is:

rsT =T1 + (4T - 3)1’2 + (45 - 3)1’3 + (4T - 3)(45 - 3)1‘4 y (F14)
rr=x5+ (47 — 3)zg . (F.15)

As discussed in Sect. 5.3, in our calculations we have used only two healing
distances, one for the four central channels, d,—1234 = d., and the other one
for the two tensor channels, d,—5¢ = d;. In terms of these quantities, we can
rewrite the boundary conditions as:

fsr(r>d.)=1 Ofst =0, (F.16)
or .
0
fri(r>dy) =0 g:t =0. (F.17)
r=d;

After some algebra, and by using the properties of the Pauli matrices, we
obtain for F, the following expression:

E,= ) {/drldr2 Bv:rs(ﬁz)f%s(rm)

$1828384t1t2
2

_f—m(fTs(mz)szTs(?”lz) - (VfTS(“?))z)

+85s,1< (%UTI(TH) — UTt(7“12)> f70(r12) + vre(r12) fri(r12) fre(ria)
h? 9 12 2
—R(th(Tm) <V th(7’12) - TTth(T12)> - (Vth(le)) ))]

12

[p(s)mtl (r1,11) p52"" (r2, 19) — (=1)TH5 o512 (ry, 1) 527 (x4, 1‘2>]
7:L2
—R/drl/drg (f%s(’l“lg) + 8(5371f12~t(’f’12) — 1)

[ (4, 10) 2 (1, 1) — (—1)T+5 oot <r1,r2>}}
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%(5515255384 + (_1)S+15815458253)%(1 + (_1)T+15t1t2) : (F'18)

In order to make the variation on Fs,, we found convenient to rewrite the above

expression as a function of two new quantities Prg(ri,rs) and Qrg(ry,ra),
defined as:

27“%+.1 léTl[Pg(rl)ﬂg(r2)<+-08(r1)p8(r2)

+(=1)%4(pf(r1, T2)pb(r1,12) + pf (1, 12) 0 (1, 12) )|

+% [pg(rl)pg(I'Q) + g (r1)ph(r2)

VA e ) + (et

16(—1)T
@S+U@T+U{

011 (ph;(v1,2)pb; (2, 11) + b (1, 7)o (v, 71 )

5 (o ey (2, 0) g ()] (F.19)

n? 1 T+1
Qrs(ry, o) =—— Z —(1—1-(—1) 5t1,t2)

Am 5= 0 2

4
[7271 1 (,05111(1"1)062(1"2) — 4(=1)T+5 (pél(rl, r9)Vipl2 (1o, 11)

~Vip (r1,12) - Vipg (ra, rl)))]

16(—1)T " 5 4
(25 +1)(2T + 1) (poj(rl, r2)Vipg;(r2,11) (F.20)

Prg(ri,ro) =

1

—V1pg;(r1,12) - Vipgs(ra, 1'1))] + §PTS(I'17 r2)vrs(r12),

where we have explicitly written the sum over the spin and the isospin. In order
to obtain a quantity depending only on the relative distance r15 between the
particles 1 and 2 we integrate Eq. (F.18) over r; and r5 by keeping fixed the
value of r15. We define the quantity:

00 [ro+ri2]
. 2m
Prs = /dI'QPTS(I'bI'Q) = — [ radry / ridri Prs(ri, r2) (F.21)

T12
0 |ra—ri2]

and an analogous expression for (g, therefore we write Ey as:
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~ 2 ~
E, :/dr12 [QTSfj%S - f—mPTS (fTszfTS - (VfTS)Q) (F.22)

2

3 3 3R - ~
+85s,1< <QT1 — Privpy + WPT1> f# + Privr fri fre

12
h? - - 1 -
_%PTl (thVQth — (Vfr)’ )) + Qrs + §PTS'UTS] -

where we must understand that all the functions and the operators act on the
ri coordinate. The expression of the variation of E5 with respect to frg and

fre is:

h? -
d(Ey — Cy) :/dr12 |:6fTSP%é2{ — EV2FTS + (VTS — )\TS) Frs

h2
51 (vre = Are) Frep + 80510 fre Pry*{ = V2 Fy +
~ 6h2
VTl — )\Tl — QUTt + 2>\Tt + 2 FTt +
m7‘12
(vr1 — A1) FTl} =0, (F.23)
where we have defined
Frs = frsPH2 (F.24)
Fre= fre P37 (F.25)
- 1 [~ h? - (V Pgp)?
Vig=—=—— 12 — 2Ppg — 2 . F.26
TS = Frg [ Qrs + T <V TS Brs ( )

The fact that Eq. (F.23) has to be valid for every variation of f75 or fr;, implies
that both expressions included in the braces has to be zero. By imposing this
condition we obtain the Euler-Lagrange equations:

h? ~
_EV2FTS + (VTS — )\Ts) Frs+0s1 (v — Apy) Fre =0,

——V Fri+ | Vi1 — Ar1 — 2vpy + 20 + —— | Py
m mriy

+ (’UTl - )\Tl) FTI =0. (F27)

The expressions (F.27) represent a system of differential equations, the two
equations corresponding to S = 0 are not coupled, while the other equations
are coupled. The solution of the above equations gives the optimal value for
frs and fr; and by using Eq. (F.13) we obtain the correlation functions f,
in the representation used in the FHNC calculations.
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In the case of infinite systems, nuclear and neutron matter, these equations
have been generalized to include the spin—orbit channels in the correlation
with vg [21] and vy4 [97] potentials.
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G Acronyms

AFDMC Auxiliary Field Diffusion Monte Carlo

AVE’ Argonne v} nucleon-nucleon potential
AV18 Argonne v;3 nucleon-nucleon potential
CBF Correlated Basis Function

FHNC Fermi HyperNetted Chain
FHNC/SOC  Fermi HyperNetted Chain/Single Operator Chain
GFMC Green’s Function Monte Carlo

HF Hartree-Fock

HNC HyperNetted Chain

IPM Independent Particle Model

MBCF Many-Body Correlation Function

MF Mean Field

NN Nucleon-Nucleon

OBDF One-Body Distribution Function
OBDM One-Body Density Matrix

RFHNC Renormalized Fermi HyperNetted Chain
QCD Quantum ChromoDynamics

SOC Single Operator Chain

SOR Single Operator Ring

SRC Short Range Correlations

TBCF Two-Body Correlation Function
TBDF Two-Body Distribution Function
TBDM Two-Body Density Matrix

U14 Urbana v14 nucleon-nucleon potential
UVII Urbana VII three-nucleon interaction
UIX Urbana IX three-nucleon interaction
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H Symbols

Symbol

()

<|>

Meaning

folding product
Clebsch-Gordan coefficient
number of particles

B2k—1

parameters of the WS potential
C-trace of two operators

sum of the composite diagrams
C-trace

vertex corrections

vertex corrections

sub-index for cyclic-cyclic

Eoky —12ky—1

sub-index for dynamical-dynamical
sub-index for dynamical-exchange
contribution of elementary diagrams
matrix used in SOC calculations
sub-index for exchange-exchage
many-body correlation function
operator dependent correlation function
two-body correlation function

state dependent correlation function
two-body distribution function
State dependent TBDF

state dependent part of the TBCF
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Note

Eq. (24)

Eq. (86)

Tab. A.2

Eq. (20)

Sect. 2.3.1

Eq. (B.21-B.22)
Eq. (B.56-B.57)

Sect. 2.2
Eq. (D.2)
Sect. 2.2
Sect. 2.2
Tab. A5
Sect. 2.2
Eq. (2)

Eq. (57)
Eq. (3)

Eq. (48)
Eq. (10)
Eq. (53)
Eq. (56)
Eq. (E.1)



hy(r)

Iz'j k

Jij k

K par

L (’f’ 12 )
Lpar

()
M2t (i)
Mgy

N

N(’f’12)
Nzz NP

cc ) cc ! NCpCp
ntljm(r)

n'(k)

o

Py(cost)

Py

P

Ré, R!. . Rc

Rﬁzlj(r)

Rk1k2k3k4

r;

S(’f’lg)

Sii

v

Spp pm,nn
2

52,0

two-body h-function

used in SOC Egs.

used in SOC Eqgs.

spin part of KP4

spin part of LPI"

used in the product of two operators
used in SOC Egs.

used in the product of four operators

Slater function

pion mass
number of neutrons

contribution of nodal diagrams

used in the quasi-hole wave function
momentum distribution

interaction and correlation operators
Legendre polynomials

proton / neutron projector operator
o1

parameters of the WS potential
radial part of ¢(z)

spin C-traces

spatial coordinate of the particle ¢

tensor operator
one-body sum rule
two-body sum rule

spin sum rule
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Eq. (B.37-B.42)
Eq.(172)
Eq.(155)
Eq. (49)

Eq. (100)
Eq. (51)
Egs. (86, 87)
Eq. (88)

Eq. (E.50)

Eq. (B.23)
Eq. (50)

Eq. (147)
Eqgs. (148)
Eq. (149)



St

nlj

S

T Tp, T,
¢ » 4 Fy Lem.
Tt1t2t3(i)

l1l2

Tt1t2t3 (71)

lilalslals
U'(r)
U, (1)
Unipa(1)

v
Vo Vs

s

vP(r1a)

27
V123

Vb
X (r12)
Xij
Xt

nljm
T

Vi, ($2)
Ym

lg

WO Ws Wc Wcs
Z

Ak

A1, ..., p)

ti1tats .
Milalslals (4)

1IN

v

par
123

—titats
“kiksks,l1l2

ki1koks
123

spectroscopic factor
symmetrizer operator
kinetic energy terms
used in the isospin traces
used in the isospin traces

mean-field potential

volume of the system
parameter of the WS potential
scalar parts of the interaction
part of the three-body force
part of the three-body force

contribution of non-nodal diagrams

used in the quasi-hole states

generalized coordinate of particle ¢

spherical harmonics

spin spherical harmonics
interaction energy terms
number of protons

[2k-1

sub-determinant

used in the isospin traces
matrix used in SOC Egs.
spin-isospin degeneracy

function used to calculate SOR

spin part of {795
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Eq. (180)

Eqgs. (128-130)
Eq. (C.6)

Eq. (C.1)
Eqgs. (85,86)
Egs. (B.24-B.25)
Egs. (B.58-B.63)

Eq. (86)

Eq. (88)
Eq. (137)



G
P

PT1,..,T4

PT5,T6

p(r1)

Po

Pf)j

Py (1,2)
ngfilii?ezc,ezj(17 2)
P r,r2)

O(1,..., A)

8,5/;t(

t1to

X5
U(1, ..., A)

;ljm(x)

Q;

titatst
k1kokska,lilo

spin-isospin exchange operator
particle density

kinetic energy densities
kinetic energy densities

OBDF

parallel spin OBDM
antiparallel spin OBDM
operator dependent TBDF

OBDM

independent particle wave function
single particle wave function
natural orbit

Pauli spinors

used in the isospin traces

correlated many-body wave function
quasi-hole wave function

the polar angles 0; and ¢,
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Eq. (58)

Egs. (132-135)
Egs. (D.8, D.9)
Eq. (100)

Egs. (91,93)

Egs. (92,93)

Eq. (101)

Eq. (B.27 - B.29)
Eq. (151)

Eq. (158)
Eq. (27)
Eq. (121)

Eq. (168)

Eq. (E.50)
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