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Abstract We rewrite the Random Phase Approximation secular equations in a form which allows the
treatment of the continuum part of the single particle spectrum without approximations. Within this
formalism finite-range interactions can be used without restrictions. We present some results, obtained
with Gogny interactions, where the role of the continuum is relevant.
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1 Introduction

The description of the nuclear response at energies
above the particle emission threshold should consider a
continuos excitation spectrum. Usually, the theories de-
scribing the nuclear excitations are based on mean-field
models where the continuous part of the single particle
(s.p.) spectrum is artificially discretized by imposing bound
boundary conditions to all the s.p. wave functions. The use
of discrete s.p. bases simplifies the description of the nu-
clear excited states, but it misses all the physics related to
the emission of nucleons. Even in the investigation of the
global properties of the excitations, the so-called escape
width, which is not considered in discrete models, should
be considered, since it is important for the proper descrip-
tion of giant resonances, especially in light and medium
nuclei.

One of the theoretical approaches widely used to de-
scribe nuclear excitations is the Random Phase Approxi-
mation (RPA). The most common formulation of this the-
ory is done by considering a discrete s.p. basis [1]. We shall
call Discrete RPA (DRPA) this type of approach.

The limits of the DRPA have been overcome already
since the beginning of the '70s. There are various ap-
proaches which solve the RPA equations by treating the
continuum. They use Green’s function [2,3,4,5,6,7], coor-
dinate representation [8], coupled channel [9] or Fourier-
Bessel [10] formulations. All these treatments heavily ex-
ploit the use of zero-range interactions to avoid the ex-
plicit evaluation of exchange matrix elements. Even the
application of the RPA in infinite systems is based on this
approximation, and the name RPA is used to indicate the
sum of all the ring diagrams only [11].

Based on the work of Ref. [12], we propose here an RPA
formalism which treats the continuum without approxi-

mations. This Continuum RPA (CRPA) approach can be
applied to the use of finite-range interactions, since both
direct and exchange matrix elements are explicitly calcu-
lated. To the best of our knowledge, our calculations are
the first ones describing the nuclear ground state with the
Hartree-Fock (HF) method and the excited states with the
CRPA formalism, by using, in both type of calculations,
the same finite-range interaction.

In the first part of this contribution, we present the
main steps leading to the new formulation of the secular
RPA equations which allows the treatment of the contin-
uum. A more detailed derivation of the CRPA equations
can be found in Refs. [13,14,15]. Some selected results
which point out the need of properly treating the contin-
uum are presented in the second part of the paper.

2 The model

The starting point of every many-body theory is the
definition of the s.p. configuration space. In our approach
we build this space by solving the Hartree-Fock equations

H[9u(6)] = 2 V20u(x) + Ulr) 64(x) 1)

_ / B Wr,t') di(r) = ex du(r),

where we have indicated with k the set of quantum num-
bers identifying the s.p. state. Since we deal with spheri-
cal nuclei only, these quantum numbers are the principal
quantum number n, the orbital angular momentum I, the
total angular momentum j, its projection on the quanti-
zation axis m, and the third component of the isospin t.
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In Eq. (1) we have named the s.p. energy and wave func-
tion as €, and ¢y, respectively, and we have defined the
Hartree,

8
U = Yo 3 [ G Valrr) ),
a=1 k<F
and the Fock-Dirac potentials
8
Wir,r') = 3 % 6i() Valr,r') dur)
a=1 k<F

where the sums are limited to those s.p. states with ener-
gies smaller than the Fermi energy.
We use finite-range interactions of the type

Valr,r') = vallr — 1)) 0%, a=12,....8,

where the various channels considered are

o*:1, 717, o0-0,0 077,81, Sk, )T -7

1-1)-(e-0"),01-1) (o

In the above equation the symbols o, 7, S, 10’/ 7/, S’ and
I’ indicate, respectively, the spin, isospin, tensor and or-
bital angular momentum operators of the two interacting
particles.

The Gogny interaction [16,17], which we have used in
our calculations, considers finite range functions v, for all
the channels up to «=6, and in the scalar, O, and isospin,
O?, terms it includes a dependence on the density of the

o)t -7,

system. Furthermore, it contains a spin-orbit term, O7, of

zero-range type and does not include the last channel, O%.
In the original parameterizations the tensor terms, 0%,
were not considered. We have developed new parameter-
izations containing these terms and a discussion related
to them is done in another contribution of this confer-
ence [18]. In the present article we shall consider only re-
sults obtained by using parameterizations without tensor
terms.

Since we study spherical nuclei, we found convenient
to express the s.p. wave functions as a product of a radial
part and an angular momentum and spin dependent term

(b);c(r) = (Z):Lljm(r) = szlj(r) Yln;(Q) )

where Y is the spin-spherical harmonics [19]. We recall
that with & we indicate all the quantum numbers but
the s.p. energy. The s.p. wave functions we consider are
bound if € is smaller than zero, while they have oscilla-
tory asymptotic behavior in the other case, i.e. when they
are in the continuum part of the energy spectrum. The ra-
dial part of these s.p. wave functions satisfies the closure
relation

S Rilroe) R e)

ep<e€r

+ i Ri(rex) Ri(r ) = 8(r — 1) |
€ >€ER

where the symbol in the second term indicates the sum on
the bound levels above the Fermi energy and the energy
integral of the s.p. continuos states. The sums and inte-
grals must be done for a fixed set of quantum numbers
k= (n,l,j,m,t).

The presence of s.p. states in the continuum requires
to make explicit the dependence on the s.p. energy of the
particle, €,, in the expression of the RPA operator

= X (ep) a;[,(ep)a -Y, (Ep)CLJr ap(€p)|
pzh iep |: h h h h

here the subscript p, for particle, indicates all the quantum
numbers characterizing a particle state with the exclusion
of the energy ¢,, while the subscript h, for hole, consid-
ers also the s.p. energy €,. The RPA operator applied to
the RPA ground state |0) generates the excited state |v)
characterized by the total angular momentum J, parity
II and excitation energy w
V) = |1 01.w) = Q}10)

By using traditional techniques [1] it is possible to obtain
the RPA secular equations

(ep —€n —w) X;h(%) +

SY W) o) @

p'h!

+uph,p’h' (61)761)/) Yplfh/ (€p/)] =0 ,

(€p — €n +w) Ypl;L(ep) +

Z i ph v (€ps €pr) Yyini (€p) (3)

p'h’ €p/
—&—ug;:’p,h,(ep,ep/)Xg,h,(ep/)] =0.

In the DRPA equations, the X and Y amplitudes, and
the interaction matrix elements u and v, do not depend
explicitly on €,. In that case, the RPA secular equations
are a homogeneous system of linear equations whose di-
mension is given by the number of particle-hole (ph) pairs.
To be precise the dimension of the system is two times the
ph number, because we have two unknowns, X and Y.

The CRPA equations depend on the continuous vari-
able ¢€,, therefore, the above expressions represent an in-
finite set of equations and it is necessary to rewrite these
equations on a different form suitable to be solved. For
this reason, we define two new functions:

iX (ep) R
i ph 617

In order to express the secular equations in terms of the
new variables we multiply them by R,(r,¢,). For example

(ryep),

gph T 617)
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the first term of Eq. (2) becomes

(€p — €n —w) Ry(r, €p) X;h(ep) =
H [RP(Ta €p) X;l;h(ep)]
—(en +w) Ry(r, Ep) X;I;h(ep) )

where we have used Eq. (1). By summing and integrating
on €, we obtain

S 9 [Rulr ) Xple)] = 3¢ [£50)]

P

By applying these operations to all the terms of the secular
equations we obtain

H {fph(r)] — (en + w) fpu(r) = —S"gh(r) (4)
+ Z dip Ri(r) /dﬁ i Ry (r1) F(r1)

3 g ()] = (en = @) gy () = = G () (%)
+ Z 6ip Ri(’l“> /d?"l 7“% Rf(rl) ggh(rl) R

where we have defined

Z /d?"g 5

p'h’

. J,dir
{Rh/ (r2) [Vinin (r,72) Ra(r) fyrne ()
Voo (1,12) frne (1) Rh(w)}
+ gopi () {Uz;j;fg,h, (r,72) Ry () Ry (12)

- U;z;]he;?h' (r,72) Ry (1) Rh(’l’g):| } ,

The term 9Jh is obtained from the above equation by in-
terchanging the f and ¢ functions.

By using the procedure outlined above, we rewrote the
original algebraic RPA secular equations as a finite set
of integro-differential equations with unknowns depending
on r. The solution of these equations requires the choice
of appropriate boundary conditions. The physical process
described by the CRPA secular equations is a many-body
scattering process where a particle is emitted in the con-
tinuum. For a given value of the excitation energy w, only
those nucleons whose s.p. energy satisfies |ex| < w can be
emitted. The set of ph pairs where a particle can be emit-
ted in the continuum is the set of the open channels. We
solve the CRPA secular equations by imposing that the
particle is emitted one at the time in a specific ph open
channel which we specify as pohg and call elastic channel.
From the mathematical point of view we solve Eqgs. (4)
and (5) by imposing the following boundary conditions
for each open channel. For the f,; function we have

prhO (r) — Ry, (7, epo) 51’7[)0 Onho + )‘H;: (en +w,r),

T—00

with €,, = w+e€p,. Here A is a complex normalization con-
stant, and H, (€5, + w,7) is the incoming Coulomb func-
tion for protons, and a Hankel function for neutrons. The
boundary condition for g, which is related to the contri-
bution of correlations in the RPA ground state, is

1
1 2mlep, — w|\ 2

From the physics point of view the problem is now well
defined, but the solution of the CRPA secular equations
(4) and (5) is rather involved. We solved this problem by
carrying out an expansion of the fp, and g, functions
on a basis of Sturm-Bessel functions. These functions are
solutions of the following differential equation [20]

1d

£ (1) o]

rdr r
e
= —U,(r)®,(r),

where 8
—u “+wp,1fr<a
UP(T) {0, ifr>a,

and 8 and 7 are real constants. In our calculations the
values of a have been chosen to be the maximum values
of the numerical integration box more than two times the
nuclear radius. The Sturm-Bessel functions satisfy the or-
thogonality relation

(Bngi’y]’;)/O drr%ﬁﬁ(r)@Z(r) = 6.

Since the Sturm-Bessel functions are not, in general,
orthogonal to the hole s.p. states, we found more conve-
nient to use modifed Sturm-Bessel functions defined as

> 6kpR;z<r>/ "2 Ry(r) D)

€ <€EF

PH(r) =

where the Kroneker’s ¢ indicates that the quantum num-
bers identifying the hole s.p. state Ry must be the same
as those of the particle state p.

Using these functions we write the f,, and gp, un-
knowns as

h,
fpo O( ) Ry, (7, 6100) Oppo Ohhy + Z C,H_ ¢H+( )7
m
)= 5

where the superscripts + and — indicate that the Sturm-
Bessel functions are calculated at energies €, = €, +w and
€p = €5, — w, respectively.

By inserting the above expressions in the CRPA secu-
lar equations (4) and (5), and exploiting the orthogonality
properties of the modified Sturm-Bessel functions we ob-
tain a set of algebraic egﬁuations whose unknowns are the
expansion coefficients c . The explicit expression of these

equations is given in Refs. [13,14,15]. From the numerical
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point of view the limitation of this approach is related to
the truncation of the number of expansion coefficients of
the fpn and gpp functions. We have verified that already
5 or 6 expansion coefficients provide convergence of the
results of the responses at the third significant digit. In
all the calculations we used 10 expansion coefficients.

The knowledge of the f,,; and g, allows a straightfor-
ward evaluation of observables. We consider, at the mo-
ment, observables which can be described by one-body
operators as

A

Tyar(r) = Y Fy(ri) 050(2) 6(r; — 1)
i=1

where r and (2 indicate, respectively, the radial and an-
gular components of the spherical polar coordinates. For
each elastic channel, we can write the transition amplitude
related to this operator as:

<J||TJ||O>Poh0 =
-y [<jp|ej||jh> [ ) B Batr)

ph

(1) H I (G165 ) / drr® Ry (r) Fy(r) g7 (r)

The observables we have considered are obtained by car-
rying out incoherent sums on all the elastic channels of
the square of the transition amplitudes

o~ > TN ]10)pone | -

poho

3 Results

In this section, we discuss some selected results of our
calculations with the aim of emphasizing the need of a
detailed description of the continuum excitation.

A direct comparison between DRPA and CRPA results
is presented in Fig. 1, where we show the contribution of
the 1~ and 2T multipole excitations to the total photoab-
sorption cross section of the **O nucleus. The vertical lines
indicate the DRPA results while the red dashed curves cor-
respond to CRPA. These results have been obtained with
two different parameterizations of the Gogny interaction:
the D1S [16] and the DIM [17].

We observe that the positions of the main peaks of the
DRPA correspond to those of the maxima of the CRPA
responses. In particular, the DRPA results for the 1~ exci-
tation indicate the presence of the giant resonance region.
Obviously, the CRPA results shape much better the pres-
ence of this resonance. The main failure of the DRPA is
in the region above the giant resonance where the DRPA
peaks form cluster while the CRPA results have a smooth
behavior. The clustering of the DRPA solutions is a facti-
tious feature which does not have any physical meaning.
The situation is even more evident in the excitation of the
27 mode.

160
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Wl sbeotlen
30 40 50 60

o (mb)
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0.0 > -
100 120 0 20 40 60 80 100 120

w (MeV)

0 20 40 60 80
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Figure 1. (Color on line) Contribution of the 1~ and 2* mul-
tipole excitations to the total photoabsorption cross section

- in 0. The vertical lines and red dashed curves show, respec-

tively, the DRPA and CRPA results obtained with two different
parameterisations of the Gogny interaction.

The integrated DRPA and CRPA strengths, obtained
with the same interaction, coincide within the numerical
accuracy. This indicates that by properly treating the con-
tinuum we do not produce additional strength, but we
smooth the global strength by considering that the (con-
tinuum) particle wave functions have an escape energy
width. The contribution of the 27 strength to the total
photoabsorption cross section is one order of magnitude
smaller than that of the 17, as it is shown by the different
scales on the y-axes of Fig. 1. The 2T strength is more
spread than that of the 1~. The value of the 1~ cross
section at 60 MeV is about 2% of that at the maximum,
around 23 MeV. The value of the 2% cross section at 60
MeV is half that of the maximum, at about 40 MeV. At
excitation energies above 100 MeV we obtain values of few
percent

In the panel (a) of Fig. 2 we compare the results of our
calculations with the experimental data of Ref. [21]. The
blue dashed and green solid curves have been obtained
by using the D1M interaction; the red dashed-dotted and
black dotted lines correspond to the D1S force. The green
solid and black dotted curves show the Independent Par-
ticle Model (IPM) results that have been obtained by
switching off the residual interaction in the CRPA calcu-
lations. It is evident that the presence of the collectivity
induced by the residual interaction in the CRPA calcula-
tion generates the resonant behavior of the cross section.
The position of the peak is rather well reproduced, espe-
cially by considering that these are parameter free calcu-
lations. The limits of the RPA theory become evident by
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Figure 2. (Color on line) Panel (a): Total photoabsorption
cross section experimental data [21] compared with the results
of various calculations. The D1S and D1M labels indicate the
force used in the CRPA and IPM calculations. Panel (b): Sum
rule exhaustion function, as defined in Eq. (6), for the results
shown in panel (a). The grey area indicates the results obtained
by using the experimental data. The horizontal lines in the
right upper corner show the expected asymptotic values in the
CRPA calculations for the D1S and D1M forces.

observing that the experimental width is larger than the
theoretical one. This can be appreciated by observing the
behavior of the sum rule exhaustion functions calculated
as

SR(w) = /Ow dw' o(W') (6)

and shown in the panel (b) of Fig. 2. At 60 MeV the sum
rule value for the results obtained with the D1M force, al-
most coincides with the experimental one, while the sum
rule value obtained with the D18 force is about 10% larger
than the experimental value. This indicates that the ma-
jor discrepancy with the experimental results is not due to
the total strength but rather to its distribution which is
too much concentrated in the resonance region between 20
and 40 MeV. The CRPA curves in panel (b) have a much
steeper behavior than the experimental one, even though
they reach almost the same values at 60 MeV. The source
of this discrepancy is attributed to the fact that the RPA
does not consider the so-called spreading width, which, in
our formalism, would correspond to consider particle-hole
excitations beyond one-particle one-hole. Discrete RPA
calculations which include the spreading width improve
the agreement with the experimental data. To the best of

240 — 24p
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Figure 3. (Color on line) Neutron-proton spin dipole excita-
tion strengths in 2*O. All the multipole excitations indicated
in the labels contribute to the total strength which is obtained
as sum of their contributions and it is shown in the (g) and
(h) panels. The DRPA results are indicated by the blue dotted
vertical linew while the CRPA results by the black full lines.
The red dashed lines have been obtained by folding the DRPA
results with Lorentz functions of widths 3.0 MeV (left panels)
and 1.2 MeV (right panels).

our knowledge there are not calculations which consider
on the same ground continuum and spreading width.

The results of Fig. 2 could induce to consider that the
effects of the continuum can be simulated by spreading
the DRPA results with a Lorentz function which, by con-
struction, conserves the total cross section.

The results of Fig. 3 point out the problems related to
this procedure. In this figure, we show the charge-exchange
excitation transforming 240 in ?*F induced by the spin-
dipole operator

T5P% =3 rVi(i) @ o (i)t (),
=1

(7)

which can excite the 07, 1~ and 2~ multipoles. The total
strength, which, in our case, is shown in the panels (g)
and (h), is obtained by summing the strengths of each
individual excitation.
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The black full lines show the CRPA results. They are
repeated in the left and right panels. The blue vertical dot-
ted lines show the results of DRPA calculations, and they
are also repeated in the left and right panels. Evidently,
the DRPA solutions appear at discrete energies and this
makes impossible their sum to obtain the global response.
The usual procedure consists in folding the various DRPA
responses with a Lorentz function which, by definition,
conserves the integrated value of the strength. The DRPA
responses we obtain after the folding are shown in the fig-
ure by the red dashed lines. The results of the left panels
have been obtained by using a value of the Lorentz width
of 3.0 MeV. This value has been chosen to reproduce the
0~ CRPA strength. The right panels show the results we
obtain by using a Lorentz width value of 1.2 MeV which
has been selected to reproduce the 2= CRPA strength.
None of the two choices produces satisfactory results. The
global CRPA strength is not well reproduced since the
good description of one of the multipole excitations makes
worst the description of the other ones.

6. 0 T T T T

0.0

w (MeV)

Figure 4. (Color on line) Total photoabsorption cross section
in “He. The experimental data are taken from Refs. [22,23,
24]. The red dotted line shows the CRPA result and the blue
dashed line the IPM result. With the black full line we show
the LIT results of Ref. [25].

Since the main limitation of our RPA approach is the
lack of spreading width, we have applied our computa-
tional scheme to a system where it is negligible, the *He
nucleus. The HF calculations do not provide a good de-
scription of the ground state. For the binding energy, we
obtain 30.28 MeV and 29.54 MeV for the D1S and D1M
forces respectively, to be compared with the experimental
value of 28.29 MeV. The theoretical rms charge radii are
2.04 fm and 2.02 fm for the D1S and D1M respectively,
against the experimental value of 1.68 fm.

Despite the poor description of the ground state prop-
erties our approach provides a reasonable description of
the excitation of this system. We show in Fig. 4 the com-
parison of the results of our calculations with the experi-
mental data [22,23,24] and with the results of the Lorentz
Inverse Transform (LIT) method [25] obtained by using a
microscopic nucleon-nucleon interaction. In the figure, the

red dashed line shows the CRPA result which, in the peak
region, compares rather well with the data and also with
the LIT results (black solid curve). The discrepancy in the
high energy tail could be due to phenomena such as the
disintegration of *He in two deuterons, effects which are
not included in the RPA which considers 1p-1h excitations
only. Also, it is worth pointing out that our calculations do
not consider tensor force and short-range correlations and
they could also produce relevant effects in this kinematic
region. In any case, the agreement with the data is cer-
tainly better than that of 60 shown in Fig. 2. The IPM
(blue dashed curve) fails badly in describing the presence
of the resonance also in *He.

[1073 MeV ™}

(1073 MeV ]

[1073 MeV ™}

(1073 MeV ]

T 200 50 Yo 200 300
w [MeV] w [MeV]

Figure 5. Electron scattering longitudinal, Ry, and trans-
verse, Rr, responses for different values of the momentum
transfer indicated in the labels of the various panels in MeV/c
units. The experimental data are those of Refs. [27,28,29].
The black full lines show the CRPA results, the blue dashed-
dotted correspond to the IPM calculations and the black dotted
lines are the PWIA results. When available, we show with red
dashed lines also the LIT results [30,31,32].

The calculation of the electron scattering responses re-
quires the evaluation of many multipole excitations. We
show in Fig. 5 the longitudinal, R, and transverse, R,
responses for different values of the momentum transfer.
The details of the calculation of the electron scattering
responses are given in Ref. [26].
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The experimental data of Refs. [27,28,29] and the re-
sults of LIT [30,31,32] are compared with various types
of calculations. The black full lines indicate the CRPA re-
sults obtained with the D1M calculations. It is remarkable
the agreement of our effective theory with the LIT theory
which is based on microscopic interactions. The agree-
ment with the data of the longitudinal response is very
good. The transverse response data are, however, under-
estimated. This is the same situation we have encountered
in heavier nuclei where we had to insert a phenomenolog-
ical spreading width. Clearly in the case of *He the role of
the spreading width is negligible.

The black dotted curves show results where we use a
plane wave to describe the wave function of the emitted
particle. We call these results as Plane Wave Impulse Ap-
proximation (PWIA). These responses are very different
from those of the CRPA calculations. The blue dashed-
dotted lines show the IPM responses. The difference be-
tween the IPM responses and those of the CRPA becomes
smaller with increasing value of the momentum transfer.
In a model which considers the RPA as sum of all the ring
diagrams with a finite-range interaction for large value of
the momentum transfer the interacting response is equal
to the free one [33]. Even though the free and interact-
ing responses are equal for large values of the momentum
transfer, their difference is remarkable at lower values.

160(1/7 67)16]_:\

10" g T

I I I

T T T

(1072 cm? MeV~tsr™!)

107k
N 10°
o |2 107k
=\ w0tk
10° F
5 E
10 3
107 & o
E — / . — [
0% § e=060MeV; 0=0.5
10° k
1010 £ I I I
10 20 30 40
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Figure 6. (Color on line) Charge exchange neutrino cross sec-
tions on '°0 nucleus for different values of the incoming energy
e and scattering angle 6. The various coloured lines indicate
the contribution of each excitation multipole to the total cross
section represented by the black line.

The potentiality of our approach can be seen in Fig.6
where we present the charge-exchange neutrino cross sec-
tion on the 'O nucleus, calculated as indicated in Ref.
[34]. The two panels show the cross sections for two dif-

ferent kinematic conditions. The energy of the incoming
neutrino e is different and also the scattering angle 6. The
color codes indicate the contribution of the different mul-
tipoles to the total cross sections which are represented by
the black solid lines. The calculations have been carried
out by using the CRPA wave functions obtained with the
D1M interaction.

The relative contribution of the various multipoles con-
sidered changes deeply in the two cases. For example the
0~ cross section which is five order of magnitude smaller
than the total cross section when ¢ = 600 MeV, is a fun-
damental component of the cross section for ¢ = 60 MeV
where it becomes the most important component for ex-
citation energies w above 30 MeV.

4 Conclusions

In this contribution we have reformulated the CRPA
secular equations by using new unknowns which are func-
tion of the nucleon coordinate. These equations form a
set of integro-differential equations which we solve by us-
ing a technique based on an expansion on a Sturm-Bessel
function basis.

The proper treatment of the continuum is necessary to
describe nuclear excitations at the giant resonance ener-
gies and above. The commonly adopted technique of fold-
ing the DRPA solutions with Lorentz functions can pro-
duce errors when different multipole excitations must be
considered.

The comparison with the photon and electron scatter-
ing cross sections in *He is remarkably good, much better
than for the 0 nucleus. This is related to the intrin-
sic limitation of the RPA which consider only 1p-1h ex-
citation and, therefore, it neglects the so-called spreading
width. The presence of the spreading width is negligible
in “He, but relevant in heavier nuclei.
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