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Ipotesi di lavoro

@ Nucleoni come gradi di liberta fondamentali.

@ Sistema a molticorpi non relativistico.

Il sistema nucleare & descritto dall’equazione di Schrodinger, e
I'interazione nucleone-nucleone da un potenziale.




L’interazione
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3H Binding energy

Exp 8.48 MeV
2 N potential 2N
CD Bonn 7.953
Nijm Il 7.709
Nijm | 7.731
Nijm 93 7.664
Reid 93 7.648
AV14 7.683
AV18 7.576
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3H Binding energy

Exp 8.48 MeV
2 N potential 2N 2N + 3N
CD Bonn 7.953 8.483
Nijm I 7.709 8.477
Nijm | 7.731 8.480
Nijm 93 7.664 8.480
Reid 93 7.648 8.480
AV14 7.683 8.480
AV18 7.576 8.479
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Monte Carlo

S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51 (2001) 53.
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Teoria perturbativa

H=Hy+ H;
Ho|®o) = Eo|®o)

HolPo) = > hi [T low) =D e T Iex)

i k=1,A i k=LA

o'} 1 n
E = <¢O|HO‘¢O>+<¢O|H12 (EO—H0H1> |¢O>C
n=0

= Eo+ (®o|H1|Po) + (Po|Hy Hi|®o)e + - - -

Eo — Ho
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CBF - Teoria della Funzione della Base Correlata

Principio Variazionale

W(1,2,..,A) = F(1,2,..., A)®(1,2, ..., A)
F=TIfr)
i<j
<VIHV >]  [<®|FTHF|® >T 0
<Vw> | < Vv > B

SE[V] =6 [

Correlazioni scalari

<O|FTVFIo > < |VF?|d >
= = [ dxidxpV
<OF2[d> < O[F%o > / badxe V(. x)glx, %)

A(A - 1)/ dX3 e dXA(D*(Xl, ce ,XA)F)'< F‘D(Xl,. .o ,XA)

g(x1, %) =
p2/dxldx2...dxA<D*(x1,...,XA)F* FO(x1,...,xa)
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=T (r)

F2(ry) = 1+ h(ry)
H fz(r,-j) = fz(rlz)[]. + h(r13)][1 + h(r14)]....[1 + h(r34)]....

i<j

J i J
/0 * - -
o o [e] o o o
1 2 1 2 1 2
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Risultati

12C 160 40Ca 48Ca 208Pb

T 27.13 32.33  41.06 39.64 39.56

VS body 2913 -38.15 -48.97 -46.60 -48.43

Vis -051 -070 -0.85 -0.79 -0.80

e + | Veou 067 086 19 157  3.97
Ux | T+V(2) -184 566 -6.83 -6.24 -580
V3_ body 066 086 176 161 1091

E -1.17  -480 -5.05 -462 -3.78

T 24.63 29.25 37.70 36.47 36.48

VS boqy 2708 -35.84 -47.16 -44.86 -46.87

Vis -0.06 -0.10 -0.10 -0.09 -0.08

via + | Veour 0.68 0.88 202 159  4.03
uvil | T+V(2) -183 -581 -754 -6.89 -6.44
V3_body 054 069 128 115 141

E -129 512 626 -574 -5.03

Eexp 768 -7.97 -855 -8.66 -7.86
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occupation numbers
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, Ph.D. Thesis Utrecht (Nederlands) (2001)



Stati eccitati

Wo(1,2,..,A) = F(1,2, .., A)®n(1,2, ..., A)

< &, |FtHF|®, > "
T <O, P20, > A 1@
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Stati di singola particella del 2°®Pb

Thoy (-3.798) 1g9p (-3.936)
€r
3512 (-8.001) 3pip (-7.3674)
protoni neutroni

Energie di eccitazione 4.20 e 3.43 MeV
Multipoli compatibili 4=, 5~
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Stati di singola particella del 2°®Pb

]h9/2 (—3798) ]g9/2 (-3936)
€r
3S1/2 (-800]) 3]7]/2 (-73674)
protoni neutroni

Energie di eccitazione 4.20 e 3.43 MeV
Multipoli compatibili 4=, 5~

Il primo stato eccitato del 2°8Pb & un 37 a 2.63 MeV. J
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Random Phase Approximation

v>=Ql0> QJ0>=0

Ql = Z Xpha;’)ah - Z thaLap
ph ph

(Ep — €ph — W)Xph + Z[Vphﬁ/h,XPIh’ + uPh,p’h/ Yp’h’] =0

p'H
(€p = en+w)Yor + D g Xt + Vohprir Y] = 0
p'H
Vohp'tt = < ph'|V|hp' > — < ph'|V|p'h >
Uphprty = < pp'|VIhH > — < pp/|V|W'h >

<v|TI0>= [Xpn < p|T|h> =Yy, < h|T|p >]
ph
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Calcoli RPA

Input richiesto

Energie e funzioni d'onda di singola particella.
Interazione tra nucleoni.
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Calcoli RPA

Input richiesto

Energie e funzioni d’onda di singola particella.
Interazione tra nucleoni.

@ Interazione a range finito.
@ Inclusione dei canali tensoriali.

@ Approccio fenomenologico.
Teoria di Landau dei liquidi fermionici.
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Spettro del 2%8Pb
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Densita di transizione del 3~ del 2%8Pb

208 208
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Spettro del %0
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14(6.74 MeV)  *®Pb(e,e/*Pb
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Spettro del 2C
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12C - 171 Isoscalare

17(12.71 MeV) ’Cle,e’)’*c
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12C - 11 |sovettoriale

17(15.11 MeV) 2Cle,e’)*c
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dc/dw [107 cm? MeV']

208Pb v,V’) 208Pb
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v [fm ]
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Continuum Random Phase Approximation

QIJ/[: Z Xph(EP)aJ;r;ah_ Z th(Ep)aLap

ph,ep<0 ph,ep<0

+ Z/derph(ep)aLah—Z/deprh(ep)aLap
ph

[plh

dis
(EP — €p — W)Xph(Ep) + Z[Vph,p’h’Xp/h/ + uph,p/h/ Yp/h/]
p'H
+ Z / d€p/[V(€p, G;))p[hp/h/xp/h/(E;)) + U(Ep, ei))ph,p’h’ Yp’h’(e;))] =0
p'H
(ep — €n+w) Yon(ep) + ... =0
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Continuum Random Phase Approximation

fip1,n(r) Z ph(€p) Ro(r 6p)"‘/dfpxph(‘?p)'E‘)p(’v €p)

P=¢€F

8[p],h Z ph(€p) Rp(r 6p)"‘/dfpyph(elv)Rp(r?€p)

p=¢€F

fion ()R (P ) RA(r) Ve i (1, ') =
i (r") Ry (r') R (r) v (7, r') +
g ()R (rYR(r) gy oy (r, ') =

) (
g1 (P RA( )R ()i (r. )| + BST
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Conclusioni

Stato Fondamentale Stati eccitati
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Conclusioni

Stato Fondamentale

Calcoli con interazioni

realistiche Stati eccitati
interazione a 3 corpi

funzioni di struttura
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Conclusioni

@ RPA con interazioni a range
finito e tensore

@ Trattazione degli spettri discreti
e continui

Stato Fondamentale o Calcoli autoconsistenti nel
discreto

Calcoli con interazioni
realistiche

Calcoli autoconsistenti nel
continuo

©

©

Electron e neutrino scattering
con CRPA

Eccitazioni di cambio carica
Estensione RPA (2p2h)

©

©
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Conclusioni

Stato Fondmentae - Stati eccitati
CaI(.:oI.| con interazioni 2p-2h RPA con interazioni effettive
realistiche

Costruzione dell’hamiltoniana effettiva dalla teoria CBF J
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