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Abstract

The momentum distributions, natural orbits, spectroscopic factors and quasi-hole wave functions

of the 12C ,16O ,40Ca ,48Ca , and 208Pb doubly closed shell nuclei, have been calculated in the frame-

work of the Correlated Basis Function theory, by using the Fermi hypernetted chain resummation

techniques. The calculations have been done by using the realistic Argonne v′8 nucleon-nucleon

potential, together with the Urbana IX three-body interaction. Operator dependent correlations,

which consider channels up to the tensor ones, have been used. We found noticeable effects pro-

duced by the correlations. For high momentum values, the momentum distributions show large

enhancements with respect to the independent particle model results. Natural orbits occupation

numbers are depleted by about the 10% with respect to the independent particle model values.

Spectroscopic factors are in good agreement with the experimental values. The effects of the

correlations are larger on the more deeply bound states.

PACS numbers: 21.60.-n; 21.10.Jx
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I. INTRODUCTION

One of the major achievements of nuclear structure studies in the last ten years is the

consolidation of the validity of the non relativistic many-body approach. The idea is to

describe the nucleus with a Hamiltonian of the type:

H = − h̄2

2m

A
∑

i

∇2
i +

A
∑

i<j=1

vij +
A
∑

i<j<k=1

vijk , (1)

where the two- and three-body interactions, vij and vijk respectively, are fixed to reproduce

the properties of the two- and three-body nuclear systems. The Schrödinger equation has

been solved without approximations for few body systems [1] and light nuclei [2], up to

A=12 [3]. The obtained results provide good descriptions, not only of the energies of these

nuclei, but also of other observables.

The difficulties in extending to medium and heavy nuclei the techniques used in few body

systems and light nuclei, favored the development of models, and of effective theories. The

basic idea of the effective theories is to work in a restricted space of the many-body wave

functions. Usually, one works with many-body wave functions which are Slater determinants

of single particle wave functions. The idea of single particle wave functions implies the

hypothesis of a mean-field where the various nucleons move independently one from the

other. This Independent Particle Model (IPM) is quite far from the picture provided by

the microscopic calculations quoted above, describing the nucleus as a many-body system of

strongly interacting nucleons. In the Hartree-Fock theory, which provides the microscopic

foundation of the IPM, the Hamiltonian is not any more that of Eq. (1), but it is an effective

Hamiltonian built to take into account, obviously in an effective manner, the many-body

effects that the microscopic calculations explicitly consider. The construction of effective

interactions starting from the microscopic ones, covers a wide page of the nuclear physics

history, starting from the Brueckner G-matrix effective interactions [4, 5], up to the recent

Vlowk interaction [6, 7] and the interaction obtained by applying the unitary correlation

operator method [8, 9].

The application of the IPM is quite successful, but there are evidences of the intrinsic

limitations in its applicability. For example, the measured spectroscopic factors are system-

atically smaller than one [10–12], which is the value predicted by the IPM. The (e,e’p) cross

sections in the quasi-elastic region need a consistent reduction of the IPM hole strength to
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be explained [13, 14]. The same holds for the electromagnetic form factors of the low-lying

states, especially those having large angular momentum [15, 16]. The emission of two like

nucleons in photon and electron scattering process cannot be described by the IPM [17, 18].

Also the charge density distributions extracted by elastic electron scattering data are, in the

nuclear interior, smaller than those predicted by the IPM [19, 20]. These examples indicate

the presence of physics effects, commonly called correlations, which are not described by the

IPM.

It is common practice to distinguish between long and short range correlations since

they have different physical sources. The long-range correlations are related to collective

excitations of the system, such as the giant resonances. The short-range correlations (SRC)

are instead connected to the strongly repulsive core of the microscopic nucleon-nucleon

interaction. The repulsive core reduces the possibility that two nucleons can approach each

other, and this modifies the IPM picture where, by definition, the motion of each nucleon

does not depend on the presence of the other ones.

Even though most of the calculations of medium heavy nuclei are based on the IPM,

and on the effective theories, various techniques, aiming to attack the problem by using the

microscopic Hamiltonian (1), have been developed. The Brueckner-Hartree-Fock approach

has been recently applied to the 16O nucleus [21]. No core-shell model calculations have

been done for nuclei lighter than 12C [22, 23]. The coupled cluster method has been used to

evaluate 16O properties [24, 25].

About fifteen years ago [26], we started a project aimed to apply to the description of

medium and heavy nuclei the Correlated Basis Function (CBF) theory, successfully used

to describe the nuclear and neutron matter properties [27, 28]. We solve the many-body

Schrödinger equation by using the variational principle:

δE[Ψ] = δ
< Ψ|H|Ψ >

< Ψ|Ψ >
= 0 . (2)

The search for the minimum of the energy functional is done within a subspace of the full

Hilbert space spanned by the A-body wave functions which can be expressed as:

Ψ(A) = F(1, ..., A)Φ(1, ..., A) , (3)

where F(1, ..., A) is a many-body correlation operator and Φ(1, ..., A) is a Slater determinant

composed by single particle wave functions, φα(i). In our calculations, we used two-body

3



interactions of Argonne and Urbana type, and we considered all the interaction channels up

to the spin-orbit ones. Together with these two-body interactions, we used the appropriated

three-body forces of Urbana type. The complexity of the interaction required the use of

operator dependent correlations. We consider correlations of the type:

F = S




A
∏

i<j=1

Fij



 , (4)

where S is a symmetrizer operator and Fij is expressed in terms of two-body correlation

functions fp as:

Fij =
6
∑

p=1

fp(rij)O
p
ij . (5)

In the above equation we have adopted the nomenclature commonly used in this field, by

defining the operators as:

Op=1,6
ij = [1,σi · σj , Sij] ⊗ [1, τ i · τ j ] , (6)

where σi and τ i indicate the usual Pauli spin and isospin operators, and Sij = (3r̂ij ·σir̂ij ·
σj − σi · σj) is the tensor operator.

We recently succeeded in formulating the Fermi Hypernetted Chain (FHNC) equations,

in Single Operator Chain (SOC) approximation, for nuclei non saturated in isospin, and

with single particle basis described in a jj coupling scheme. We presented in Ref. [29] the

binding energies and the charge distributions of 12C , 16O , 40Ca , 48Ca and 208Pb doubly

closed shell nuclei obtained by using the minimization procedure (2). These calculations

have the same accuracy of the best variational calculations done in nuclear and neutron

matter [27, 28].

In the present article, we show the results of our study, done in the FHNC/SOC computa-

tional scheme, on some ground state quantities related to observables. They are momentum

distributions, natural orbits and their occupation numbers, quasi-hole wave functions and

spectroscopic factors. We used the many-body wave functions obtained in Ref. [29] with

the Argonne v′8 two-nucleon potential, together with the Urbana XI three-body force. We

have calculated momentum distributions also with the wave functions produced by another

interaction, the Urbana v14 truncated up to the spin-orbit terms, implemented with the

Urbana VII three-body force. The results obtained with this last interaction do not show

relevant differences with those obtained with the v′8 and UIX interaction, therefore we do

not present them.
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The paper is organized as follows. In Sect. II we present the results of the One-Body

Density Matrix (OBDM) and of the momentum distribution. In Sect. III we discuss the

natural orbits, i.e. the single particle wave functions forming the basis where the OBDM

is diagonal. In Sect. IV we present our results about the quasi-hole wave functions and in

Sect. V we summarize our results and draw our conclusions.

II. ONE-BODY DENSITY MATRIX AND MOMENTUM DISTRIBUTION

We define the one-body density matrix, (OBDM), of a system of A nucleons as:

ρ(x1, x
′
1) ≡

∑

s,s′,t

ρs,s′;t(r1, r
′
1)χ

†
s(1)χ†

t(1)χs′(1
′)χt(1

′)

≡ A

< Ψ|Ψ >

∫

dx2 . . . dxAΨ†(x1, x2, . . . , xA)Ψ(x′1, x2, . . . , xA) . (7)

In the above expression, the variable xi indicates the position (ri) and the third components

of the spin (si) and of the isospin (ti) of the single nucleon. The χ(i) functions represent the

Pauli spinors. With the integral sign we understand that also the sum on spin and isospin

third components of all the particles from 2 up to A, is done. In our calculations we are

interested in the quantity:

ρt(r1, r
′
1) =

∑

s=±1/2

[

ρs,s;t(r1, r
′
1) + ρs,−s;t(r1, r

′
1)
]

, (8)

whose diagonal part (r′1 = r1) represents the one-body density of neutrons or protons, this

last one related to the charge density distribution of the nucleus.

We obtain the momentum distributions of protons or neutrons as:

nt(k) =
1

Nt

∫

dr1dr
′
1 e

ik·(r1−r′
1
)ρt(r1, r

′
1) , (9)

where we have indicated with Nt the number of protons or neutrons. The above definitions

imply the following normalization of n(k):
∫

dknt(k) = (2π)3 . (10)

We describe doubly closed shell nuclei, with different numbers of proton and neutrons,

in a jj coupling scheme. The most efficient single particle basis to be used is constructed

by a set of single particle wave functions expressed as:

φt
nljm(ri) = Rt

nlj(ri)
∑

µ,s

< lµ
1

2
s|jm > Ylµ(Ωi)χs(i)χt(i) = Rt

nlj(ri)Y
m
lj (Ωi)χt(i) . (11)
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In the above expression we have indicated with Ylµ the spherical harmonics, with < | > the

Clebsch-Gordan coefficient, with Rt
nlj(ri) the radial part of the wave function, and with Ym

lj

the spin spherical harmonics [30].

The uncorrelated OBDMs, those of the IPM, are obtained by substituting in Eq. (7) the

correlated function |Ψ > with the Slater determinant |Φ > formed by the single particle

wave functions (11). We obtain the following expressions:

ρt
o(r1, r

′
1) =

∑

s

[

ρs,s;t
o (r1, r

′
1) + ρs,−s;t

o (r1, r
′
1)
]

, (12)

ρs,s;t
o (r1, r

′
1) =

1

8π

∑

nlj

(2j + 1)Rt
nlj(r1)R

t
nlj(r

′
1)Pl(cos θ11′) , (13)

ρs,−s;t
o (r1, r

′
1) =

1

4π

∑

nlj

(−1)j−l−1/2Rt
nlj(r1)R

t
nlj(r

′
1) sin θ11′P

′
l (cos θ11′) . (14)

In the above equations θ11′ indicates the angle between r1 and r′1, Pl and P ′
l the Legendre

polynomials and their first derivative respectively. The presence of the second term of Eq.

(12), the antiparallel spin terms given in Eq. (14), is due the jj coupling scheme required

to describe heavy nuclei.

The correlated OBDM is obtained by using the ansatz (3) in Eq. (7). This calculation

is done by using the cluster expansion techniques as indicated in [31] and [32], where only

scalar correlations have been used, and in [33], where the state dependent correlations have

been used, but in a ls coupling scheme. We followed the lines of Ref. [33] but we consider, in

addition, the presence of the antiparallel spin terms and we distinguish proton and neutron

contributions. The explicit expression of the OBDM, in terms of FHNC/SOC quantities,

such as two-body density distributions, vertex corrections, nodal diagrams etc., is given in

Appendix A. The diagonal part of the OBDM is the one-body density, normalized to the

number of nucleons. Because of this, the momentum distribution satisfies the following sum

rules:

St
0 =

1

(2π)3

∫

dknt(k) = 1 , (15)

and

St
2 =

1

(2π)3

h̄2

2m

∫

dk k2 nt(k)/T t
FHNC = 1 , (16)

where we have indicated with T t
FHNC the kinetic energy of the protons (t = 1/2) or neutrons

(t = −1/2).
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We have verified the accuracy of our calculations by testing the exhaustion of the above

sum rules for each n(k). We found that the sum rules were always satisfied at the level of

few parts on a thousand. In any case, we found that the sum rules are even better satisfied

when only scalar correlations are used.

The surface shown in Fig.1 represents the proton OBDM of the 208Pb nucleus, for θ11′=0.

We have shown in [29] that the SRC lower the one-body proton distribution, and also that

of the neutrons, in the nuclear center. In order to highlight the effects of the correlations

on the density matrix, we show in Fig. 2 the quantity ρo(r1, r
′
1) − ρ(r1, r

′
1). It is interesting

to notice that the major differences between the OBDMs are not in the diagonal part, but

just beside it. The consequences of these, small, differences between the OBDMs on the

momentum distributions, are shown in Fig. 3. In this figure, we compare the 12C , 16O ,

40Ca , 48Ca and 208Pb momentum distributions calculated in the IPM model, with those

obtained by using scalar and operator dependent correlations.

The general behavior of the momentum distributions, is very similar for all the nuclei we

have considered. Correlated and IPM distributions almost coincide in the low momentum

region up to a precise value, when they start to deviate. The correlated distributions show

high momentum tails, which are orders of magnitude larger than the IPM results. The value

of k where uncorrelated and correlated momentum distributions start to deviate, is smaller

the heavier is the nucleus. It is about 1.9 fm−1 for 12C , and 1.5 fm−1 for 208Pb . We notice

that the value of the Fermi momentum of symmetric nuclear matter at the saturation point

is 1.36 fm−1.

The results presented in Fig. 3 clearly show that the effects of the scalar correlations are

smaller than those obtained by including the operator dependent terms. We shall see in the

following that this is a common feature of our results.

Since relatively small differences are compressed in logarithmic scale, we use the linear

scale in Fig. 4 to show, as examples, the proton momentum distributions for 16O and 208Pb

nuclei, multiplied by k2. This quantity, multiplied by a factor (2π)3, is the probability of

finding a proton with momentum k. We observe that the effects of the SRC on the quantity

shown in Fig. 4 are basically two. The first one is the already mentioned enhancement

at large values of k. This effect is less evident here than in Fig. 3. The second effect of

the SRC is a reduction of the maxima which appear approximately at k=1 fm−1 in both

nuclei, and it is hardly visible in Fig. 3. These two effects are obviously related, since all
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the momentum distributions are normalized as indicated by Eq. (15), therefore reductions

and increases must compensate.

In our calculations, we found that the proton and neutron momentum distributions for

nuclei with N = Z are very similar. For this reason we do not show the neutron momentum

distributions of 12C , 16O and 40Ca . On the other hand, we compare in Fig. 5 the proton and

neutron momentum distributions of 48Ca and 208Pb . In both nuclei, the difference between

these two distributions is mainly in the region where the IPM picture dominates. In an

infinite fermions system, the larger is the density, the larger is the Fermi momentum. This

property is present also in finite systems, even though the single particle wave functions are

no longer eigenstates of the momentum. In the figure, this fact is clearly shown by the shift

of the neutron IPM momentum distributions, with respect to that of the protons. When

the distributions start to be dominated by the SRC effects, the protons and neutrons results

are very close. This is an indication that shell and surface effects are irrelevant in the high

momentum region and the SRC effects are in the average the same for protons and neutrons.

The increase of the momentum distribution at large k values, induced by the SRC is a

well known result in the literature, see for example the review of Ref. [34]. The momentum

distributions of medium-heavy nuclei, have been usually obtained by using approximated

descriptions of the cluster expansion, which is instead considered at all orders in our treat-

ment. The importance of a complete description of the cluster expansion is exemplified in

Fig. 6, where, together with our results, we also show the results of Ref. [35], obtained

by truncating the cluster expansion to the first order in the correlation lines. In both cal-

culations the same correlation functions and single particle basis, those of Ref. [29], have

been used. The results obtained with the first order approximation, provide only a qualita-

tive description of the correlation effects. They show high-momentum enhancements which,

however, underestimate the correct results by orders of magnitude.

III. NATURAL ORBITS

The natural orbits are defined as those single particle wave functions forming the basis

where the OBDM is diagonal:

ρt(r1, r
′
1) =

∑

nlj

ctnljφ
∗ t,NO
nlj (r1)φ

t,NO
nlj (r′1) . (17)
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In the above equation the ctnlj coefficients, called occupation numbers, are real numbers. In

the IPM, the natural orbits correspond to the mean-field wave functions of Eq. (11), and

the ctnlj numbers are 1, for the states below the Fermi surface, and 0 for those above it.

In order to obtain the natural orbits, we found convenient to express the OBDM of Eq.

(17) as:

ρt(r1, r1′) = At(r1, r1′)ρ
t
o(r1, r1′) +Bt(r1, r1′) , (18)

where ρt
o(r1, r1′) is the uncorrelated OBDM of Eq. (12), and the other two quantities are

defined as:

At(r1, r
′
1) = 2Ct

ω,SOC(r1)C
t
ω,SOC(r′1) exp[N t

ωω(r1, r
′
1)] +

2Ct
ω(r1)C

t
ω(r′1) exp[N t

ωω(r1, r
′
1)]
∑

p>1

Ak∆kN t
ωω,p(r1, r

′
1) , (19)

Bt(r1, r
′
1) = −2Ct

ω,SOC(r1)C
t
ω,SOC(r′1) exp[N t

ωω(r1, r
′
1)]N

t
ωcωc

(r1, r
′
1) −

2Ct
ω(r1)C

t
ω(r′1) exp [N t

ωω(r1, r
′
1)]

×
∑

p>1

Ak∆k
{

N t
ωω,p(r1, r

′
1)N

t
ωcωc

(r1, r
′
1) +N t

ωcωc,p(r1, r
′
1)
}

. (20)

The meaning of the ωω, ωcωc labels used in the above equations have been defined in [33]

where the index k has been defined as p = 2k + l − 1 with l = 0, 1 and p = 1, . . . , 6. The

detailed expressions of the vertex corrections C and of the nodal functions N are given in

Appendix A.

We expand the OBDM on a basis of spin spherical harmonics Ym
lj , Eq. (11),

ρt(r1, r
′
1) =

∑

ljm

1

2j + 1

[

At
lj(r1, r

′
1) + Bt

lj(r1, r
′
1)
]

Y∗m
lj (Ω1)Y

m
lj (Ω′

1) (21)

where Ω1 and Ω′
1 indicate the polar angles identifying r1 and r′1. The explicit expressions of

the A and B coefficients are:

At
lj(r1, r

′
1) = (2l + 1)

∑

n2l2j2l

(2l2 + 1)(2j2 + 1)







l l1 l2

0 0 0







2








j2 l1 j

l 1/2 l2











2

Rt
nl2j2

(r1)R
t
nl2j2

(r2)A
t
l1
(r1, r

′
1) (22)

with

At
l(r1, r

′
1) =

2

2l + 1

∫

dΩAt(r1, r
′
1)Pl(cos θ11′) (23)

and

Bt
lj(r1, r

′
1) =

4π

2l + 1

∫

d(cos θ11′)B
t(r1, r

′
1)Pl(cos θ11′) (24)
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In the above equations we have used the 3j and 6j Wigner symbols [30]. The term A depends

on both orbital and total angular momenta of the single particle, l and j respectively, and

the term B depends only on the orbital angular momentum l.

As an example of our results, we show in Figs. 7 and 8 the proton and neutron occupation

numbers for the 48Ca nucleus. In the figures, the IPM results are indicated by the dashed

lines. The black bars show the values obtained by using scalar correlations only, the gray

bars those obtained with the complete operator dependent correlations.

The correlated occupation numbers are smaller than one for orbits below the Fermi

surface, and larger than zero for those orbits above the Fermi surface. This effect is enhanced

by the operator dependent correlations. We observe that for the states above the Fermi

surface the gray bars are larger than the black ones, indicating that also for these states the

operator dependent correlations, produces larger effects than the scalar ones.

We show in Fig. 9 some natural orbits for three neutron states in 48Ca . In this figure,

we compare the IPM results (full lines) with those obtained with scalar correlation only

(dotted lines), and with the full operator dependent correlation (dashed lines). The effect of

the correlations is a lowering of the peak and a small widening of the function. Despite the

small effect, it is interesting to point out that this is the only case where we found that the

inclusion of operator dependent terms diminishes the effect of the scalar correlation. This

fact is coherent with the results on the density distributions shown in Ref. [29].

IV. QUASI-HOLE WAVE FUNCTIONS AND THE SPECTROSCOPIC FACTORS

The quasi-hole wave function is defined as:

ψt
nljm(x) =

√
A

< Ψnljm(A− 1)|δ(x− xA)P t
A|Ψ(A) >

[< Ψnljm(A− 1)|Ψnljm(A− 1) >< Ψ(A)|Ψ(A) >]1/2
, (25)

where |Ψnljm(1, ..., A− 1) > and |Ψ(1, ..., A) > are the states of the nuclei formed by A− 1

and A nucleons respectively, and P t
A is the isospin projector. In analogy to the ansatz (3),

we assume that the state of the nucleus with A− 1 nucleons can be described as:

Ψnljm(A− 1) = F(1, ..., A− 1)Φnljm(1, ..., A− 1) , (26)

where Φnljm(1, ..., A − 1) is the Slater determinant obtained by removing from Φ(1, ..., A)

a particle characterized by the quantum numbers nljm, and the correlation function F
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is formed, as indicated in Eq. (5), by the two-body correlation functions fp obtained by

minimizing the A nucleon system. In an uncorrelated system the quasi-hole wave functions

coincide with the hole mean-field wave functions (11).

We are interested in the radial part of the quasi-hole wave function. We obtain this

quantity first by multiplying equation (25) by the vector spherical harmonics Y∗m
lj (Ω), then,

by integrating over the angular coordinate Ω, and, finally, by summing over m. It is useful

to rewrite the radial part of the quasi-hole wave function as [33]:

ψt
nlj(r) =

1

2j + 1

∑

m

∫

dΩYm
lj (Ω)ψt

nljm(x) =
1

2j + 1

∑

m

X t
nljm(r)[N t

nlj]
1/2 , (27)

where we have defined:

X t
nljm(r) =

√
A
< Ψt

nljm(A− 1)|Y∗m
lj (Ω) δ(r − rA)P t

A|Ψt(A) >

< Ψt
nljm(A− 1)|Ψt

nljm(A− 1) >
, (28)

and

N t
nljm =<

Ψt
nljm(A− 1)|Ψt

nljm(A− 1) >

< Ψt(A)|Ψt(A) >
. (29)

Following the procedure outlined in Ref. [33], we consider separately the cluster expan-

sions of the two terms N t
α and X t

α, where we have indicated with α the set of the nljm

quantum numbers. We obtain for X t
α the expression:

X t
α(r) = Ct,α

ω,SOC(r)

(

Rt
nlj(r) +

∫

d3r1R
t
nlj(r1)Pl(cos θ)

×
{

gtt,α
ωd (r, r1)C

t,α
d,pq(r1)

[

− ρt,α
o (r, r1) +N t,α

ωcc(r, r1)
]

+ρt,α
o (r, r1) −N t,α

ωcρ(r, r1) −N t,α
ρρ (r, r1) + X t

SOC(r, r1)

})

, (30)

and for N t
α the expression:

[

N t
α

]−1
=
∫

d3rCt,α
d,pq(r)

(

|φt
α(r)|2 +

∫

d3r1φ
t∗
α (r)φt

α(r1)

×2
{

gtt,α
dd (r, r1)C

t,α
d,pq(r1)

[

− ρt,α
o (r, r1) +N t,α

cc (r, r1)
]

+ρt,α
o (r, r1) −N t,α

xρ (r, r1) −N t,α
ρρ (r, r1) + N t

SOC(r, r1)
}

)

, (31)

The expressions of the functions N t
SOC(r, r1), X t

SOC(r, r1), are:

X t1
SOC(r, r1) =

3
∑

k=1

Ak
∑

t2=p,n

[

(1 − δk,1)X t1t2
2k−1,2k−1(r, r1)
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+χt1t2
1

(

X t1t2
2k−1,2k(r, r1) + X t1t2

2k,2k−1(r, r1)
)

+ χt1t2
2 X t1t2

2k,2k(r, r1)
]

, (32)

N t1
SOC(r, r1) =

3
∑

k=1

Ak
∑

t2=p,n

[

(1 − δk,1)N t1t2
2k−1,2k−1(r, r1)

+χt1t2
1

(

N t1t2
2k−1,2k(r, r1) + X t1t2

2k,2k−1(r, r1)
)

+ χt1t2
2 N t1t2

2k,2k(r, r1)
]

. (33)

where the indexes t refer to the isospin, and we have defined:

X t1t2
pq (r, r1) =

1

2

[

ht1t2,α
ω,p (r, r1)g

t1t2,α
ωd (r, r1)C

t2,α
d (r1)

(

− ρt2,α
o (r, r1) +N t2,α

ωcc (r, r1)
)

+gt1t2,α
ωd (r, r1)C

t2,α
d (r1)N

t2,α
ωcc,p(r, r1) −N t2,α

ωcρ,p(r, r1) −N t2,α
ρρ,p (r, r1)

]

∆k2 ,(34)

N t1t2
pq (r, r1) =

[

ht1t2,α
d,p (r, r1)g

t1t2,α
dd (r, r1)C

t2,α
d (r1)

(

− ρt2,α
o (r, r1) +N t2,α

cc (r, r1)
)

+gt1t2,α
dd (r, r1)C

t2,α
d (r1)N

t2,α
cc,p (r, r1) −N t2,α

xρ,p(r, r1) −N t2,α
ρρ,p (r, r1)

]

∆k2 , (35)

where k2 = 1, 2, 3 for q = 1, 3, 5. The expressions of the other terms are given in Appendix

A. All the quantities used in the above expressions depend on the set of quantum numbers

α characterizing the quasi-hole state, since we have written the various equations by using

[36]:

ρt,α
o (r, r1) = ρt

o(r, r1) − φt∗
α (r)φt

α(r1) . (36)

The knowledge of the quasi-hole functions allows us to calculate the spectroscopic factors:

St
nlj =

∫

dr r2
1 |ψt

nlj(r)|2 . (37)

The proton and neutron spectroscopic factors for the 12C , 16O , 40Ca , 48Ca and 208Pb

nuclei are given in Tabs. I and II for each single hole state. In these tables we compare the

results obtained by using scalar correlations (f1), with those obtained with the four central

channels (f4) and with the full correlation (f6). The inclusion of the correlations produce

spectroscopic factors smaller than one, the mean-field value. The f6 results are smaller than

those of f4, which are smaller than those obtained with f1.

We found that the effect of the correlations becomes larger the more bound is the state.

This fact emerges by observing that for a fixed set of lj quantum numbers the spectroscopic

factors increase with n, and, at the same time, that the values of the spectroscopic factors

become larger when n and the lj values increase. This effect is well represented in Fig. 10

where we show with the black points the proton spectroscopic factors of the 208Pb nucleus

as a function of the separation energies, defined as the difference between the energy of the

12



A-nucleons system and that of the correspondent A−1-nucleons system. We have associated

the spectroscopic factor of each level to its empirical separation energy.

In Fig. 10 our results are compared with the empirical spectroscopic factors [12], extracted

from (e,e’p) experiments, and represented by the white diamonds. The good agreement

indicates the importance of the correlations in understanding the empirical values of the

spectroscopic factors. However, for the more external shells, the data are smaller than our

results. We surmise that this difference is related to correlations, of long-range type, which

are not well described by our theory.

As example of correlation effects, we show in Fig. 11 the squares of the proton 3s1/2 and

neutron 3p1/2 quasi-hole wave functions. The correlations lower the wave function in the

nuclear interior. Also in this case, the effect of the correlations increases together with the

number of operator channels considered.

In Fig. 12 we show with a gray band the difference between the empirical charge distri-

butions of 206Pb and 205Tl [19]. The dashed dotted line, labeled as IPM, has been obtained

by considering that the difference between the two charge distributions can be described as

a single 3s1/2 proton hole in the core of the lead nucleus. This curve has been obtained by

folding the IPM line of Fig. 11 with the electric proton form factor in its dipole form. In

a slightly more elaborated picture, the ground state of the 205Tl is composed by the 3s1/2

proton hole in the 206Pb ground state, plus the coupling of the 2d5/2 and 2d3/2 proton levels

with the first 2+ excited state of 206Pb [37, 38]. This description of the 205Tl charge distribu-

tion, shown by the dotted line in the figure, is still within the IPM framework. The dashed

line has been obtained by adding to the dotted line the core polarization effects produced by

long-range correlations. These effects have been calculated by following the Random Phase

Approximation approach of Refs. [39, 40]. The full line has been obtained when our SRC

effects are also included.

The various effects presented in Fig. 12 have been obtained in different theoretical frame-

works, and the final result does not have any pretense of being a well grounded and coherent

description of the empirical charge differences. The point we want to make by showing this

figure is that the effects of the SRC are of the same order of magnitude of those commonly

considered in traditional nuclear structure calculations.
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V. SUMMARY AND CONCLUSIONS

In this work we have extended the FHNC/SOC scheme in order to calculate the OBDM’s,

the natural orbits and the quasi-hole wave functions of finite nuclear systems non saturated

in isospin, and in jj coupling representation of the single particle wave function basis. Our

results have been obtained by using the two-body realistic interaction Argonne v′8 and the

associated three-body interaction Urbana IX. The calculations have been done by using

operator dependent correlations which include terms up to the tensor ones.

We found that the correlations enhance by orders of magnitude the high-energy tail of

the nucleon momentum distribution. The occupation numbers of the natural orbits below

the Fermi level, are depleted, and the opposite happens for those above the Fermi level.

Also the values of the spectroscopic factors are depleted with respect to the IPM, and our

results are in good agreement with the empirical values. We have shown that the results of

models considering expansions up to the first order correlation lines, provide only qualitative

descriptions of the SRC effects. In the description of the charge density difference between

206Pb and 205Tl, the SRC effects are of comparable size of those commonly considered in

traditional nuclear structure calculations based on effective theories.

A general outcome of our study, is that the effects of the correlations increase with the

complexity of the correlation function. This means that operator dependent correlations

enhance the effects produced by the scalar correlations. This not obvious result, is valid

in general, not always. We have shown in Ref. [29], that scalar and operator dependent

correlations have destructive interference effects on the density distributions. We found in

the present study an analogous behavior regarding the natural orbits. These quantities

are related to the density distributions. It seems that the effects of the SRC are rather

straightforward on quantities which involve two-nucleons, while they are more difficult to

predict on quantities related to single nucleon dynamics. On these last quantities, however,

these SRC effects are very small, usually negligible.

In this work, we have highlighted a set of effects that cannot be described by mean field

based effective theories. The description of the nucleus in kinematics regimes where these

effects are relevant, requires the use of microscopic theories.
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APPENDIX A

For sake of completeness, we give in this appendix the detailed expression of the OBDM

for finite nuclear systems not saturated in isospin, and in jj coupling scheme of the single

particle wave function basis (11). The notation for the nodal functions N and for the vertex

corrections C is that used in Ref. [33]. The indexes t1, t2, t3 indicate protons and neutrons,

and the subscript j is related to the antiparallel spin states.

For the correlated OBDM we obtain the expression:

ρt(r1, r1′) = 2Ct
ω,SOC(r1)C

t
ω,SOC(r1′)e

Nt

ωω
(r1,r

1′
)
[

ρt
o(r1, r1′) −N t

ωcωc
(r1, r1′)

]

+ (A1)

2Ct
ω(r1)C

t
ω(r1′)e

Nt

ωω
(r1,r

1′
)

×
∑

p>1

Ak∆k
{

N t
ωω,p(r1, r1′)

[

ρt
o(r1, r1′) −N t

ωcωc
(r1, r1′)

]

−N t
ωcωc,p(r1, r1′)

}

.

In the above equation, k has been defined as in Eq. (20), and we have used ∆k=1,2,3 = 1−δk,3,

and Ak=1,2,3 = 1, 3, 6.

In the following we shall calculate the expectation value of the isospin operator sequence:

χt1t2
n = χ∗

t1
(1)χ∗

t2
(2) (τ 1 · τ 2)

n χt1(1)χt2(2) ,

by considering that

(τ i · τ j)
n = an + (1 − an)τ i · τ j ,

with

an+1 = 3(1 − an) and a0 = 1 .

By using the above equations we have that:

χt1t2
0 = 1 , χt1t2

1 = 2δt1t2 − 1 and χt1t2
n = 2an − 1 + 2(1 − an)δt1t2 .

The expressions of the vertex corrections are:

Ct1
ω,SOC(r1) = Ct1

ω (r1)
[

1 + U t1
ω,SOC(r1)

]

, (A2)
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U t1
ω,SOC(r1) =

3
∑

k=1

Ak
∑

t2=p,n

[

(1 − δk,1)U
t1t2
ω,2k−1,2k−1(r1)

+χt1t2
1

(

U t1t2
ω,2k−1,2k(r1) + U t1t2

ω,2k,2k−1(r1)
)

+ χt1t2
2 U t1t2

ω,2k,2k(r1)
]

, (A3)

where we have defined

U t1t2
ω,pq(r1) =

∫

dr2h
t1t2
ω,p (r12)

{

[

gt1t2
ωd (r1, r2)C

t2
d,pq(r2) + gt1t2

ωe (r1, r2)C
t2
e,pq(r2)

]

N t1t2
ωd,q(r1, r2)

+gt1t2
ωd (r1, r2)C

t2
e,pq(r2)N

t1t2
ωe,q(r1, r2)

}

, (A4)

ht1t2
ω,p (r1, r2) =

fp(r12)

f1(r12)
+ (1 − δp,1)N

t1t2
ωd,p(r1, r2) . (A5)

The expressions of the two-body distribution functions for p > 1 are:

gt1
ωω,p(r1, r1′) = gt1

ωω(r1, r1′)N
t1
ωω,p(r1, r1′) , (A6)

gt1t2
ωd,p(r1, r2) = ht1t2

ω,p (r1, r2)g
t1t2
ωd (r1, r2)

= N t1t2
ωd,p(r1, r2) +X t1t2

ωd,p(r1, r2) , (A7)

gt1t2
ωe,p(r1, r2) = ht1t2

ω,p (r1, r2)g
t1t2
ωe (r1, r2) + gt1t2

ωd (r1, r2)N
t1t2
ωe,p(r1, r2)

= X t1t2
ωe,p(r1, r2) +N t1t2

ωe,p(r1, r2) , (A8)

gt1
ωcc,p(r1, r2) = ht1t1

ω,p (r1, r2)g
t1
ωcc(r1, r2) + gt1t1

ωd (r1, r2)N
t1
ωcc,p(r1, r2)

= X t1
ωcc,p(r1, r2) +N t1

ωcc,p(r1, r2) . (A9)

Finally the nodals functions are expressed as:

N t1
mn(j),p(1, 2) = N t1

mnx(j),p(1, 2) +N t1
mρ(j),p(1, 2) +N t1

ρn(j),p(1, 2) +N t1
ρ,p(1, 2) , (A10)

with m,n = c, wc. The separation of the above nodal diagrams in four terms, corresponds

to the classification in the xx, xρ, ρx and ρρ parts [29], and it has been applied to the

quantities N t1t3
mn(j),pqr(1, 2) defined in the following.

N t1
mm,2k1−1(1, 1

′) =
3
∑

k2k3=1

∑

t3=p,n

[

N t1t3
mm,2k1−1,2k2−1,2k3−1(1, 1

′)

+ χt1t3
1 [N t1t3

mm,2k1−1,2k2,2k3−1(1, 1
′) +N t1t3

mm,2k1−1,2k2−1,2k3
(1, 1′)]

]

, (A11)

N t1t2
mm,2k1

(1, 1′) =
3
∑

k2,k3=1

∑

t3=p,n

χt1t3
2 N t1t3

mm,2k1,2k2,2k3
(1, 1′) , (A12)

N t1t2
ωn,2k1−1(1, 2) =

3
∑

k2k3=1

∑

t3=p,n

[

N t1t2t3
ωn,2k1−1,2k2−1,2k3−1(1, 2) (A13)
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+ χt1t3
1 N t1t2t3

ωn,2k1−1,2k2,2k3−1(1, 2) + χt2t3
1 N t1t2t3

ωn,2k1−1,2k2−1,2k3
(1, 2)

]

,

N t1t2
ωn,2k1

(1, 2) =
3
∑

k2,k3=1

∑

t3=p,n

N t1t2t3
ωn,2k1,2k2,2k3

(1, 2) , (A14)

N t1
ωcc(j),2k1−1(1, 2) =

3
∑

k2,k3=1

∑

t3=p,n

[

N t1t3
ωcc(j),2k1−1,2k2−1,2k3−1(1, 2) (A15)

+ χt1t3
1 [N t1t3

ωcc(j),2k1−1,2k2,2k3−1(1, 2) +N t1t3
ωcc(j),2k1−1,2k2−1,2k3

(1, 2)]
]

N t1
ωcc(j),2k1

(1, 2) =
3
∑

k2,k3=1

∑

t3=p,n

N t1t3
ωcc(j),2k1,2k2,2k3

(1, 2) . (A16)

with m = w,wc and n = d, e.

N t1t3
ωω,pqr(r1, r1′) =

[

X t1t3
ωd,q(r1, r2)ξ

k2k3k1

121′ Ct3
d,qr(r2)|X t3t1

dω,r(r2, r1′) +N t3t1
dω,r(r2, r1′)

]

+ (A17)
[

X t1t3
ωe,q(r1, r2)ξ

k2k3k1

121′ Ct3
e,qr(r2)|X t3t1

dω,r(r2, r1′) +N t3t1
dω,r(r2, r1′)

]

+
[

X t1t3
ωd,q(r1, r2)ξ

k2k3k1

121′ Ct3
e,qr(r2)|X t3t1

eω,sr(r2, r1′) +N t3t1
eω,r(r2, r1′)

]

,

N t1t2t3
ωn,pqr(r1, r2) =

[

X t1t3
ωd,q(r1, r3)ξ

k2k3k1

132 Ct3
d,qr(r3)|X t3t2

dn,r(r3, r2) +N t3t2
dn,r(r3, r2)

]

+ (A18)
[

X t1t3
ωe,q(r1, r3)ξ

k2k3k1

132 Ct3
e,qr(r3)|X t3t2

dn,r(r3, r2) +N t3t2
dn,r(r3, r2)

]

+
[

X t1t3
ωd,q(r1, r3)ξ

k2k3k1

132 Ct3
e,qr(r3)|X t3t2

en,r(r3, r2) +N t3t2
en,r(r3, r2)

]

(A19)

also in the above equations we used n = d, e. In the following equations we have that

m,n = c, wc.

N t1t3
mnx,pqr(1, 2) =

[

X t1
mc,q(1, 3)ξk2k3k1

132

∆k3

2
Ct3

e,qr(3)|X t3
cn(3, 2) +N t3

cnx(3, 2) +N t3
ρn(3, 2)

]

+

(1 − δr,1) × (A20)
[

X t1
mc(1, 3)ξk2k3k1

132

∆k2

2
Ct3

e,qr(3)|X t3
cn,r(3, 2) +N t3

cnx,r(3, 2) +N t3
ρn,r(3, 2)

]

−

δk11δk21δk31

{[

X t1
mcj,q(1, 3)

1

2
Ct3

e,qr(3)|X t3
cnj(3, 2) +N t3

cnxj(3, 2) +N t3
ρnj(3, 2)

]

+(1 − δr,1)
[

X t1
mcj(1, 3)

1

2
Ct3

e,qr(3)|X t3
cnj,r(3, 2) +N t3

cnxj,r(3, 2) +N t3
ρnj,r(3, 2)

]}

,

N t1t3
mρ,pqr(1, 2) =

[

X t1
mc,q(1, 3)ξk2k3k1

132

∆k3

2
Ct3

e,qr(3)| − ρt3
o (3, 2) +N t3

cρ(3, 2) +N t3
ρ (3, 2)

]

+(1 − δr,1)
[

X t1
mc(1, 3)ξk2k3k1

132

∆k2

2
Ct3

e,qr(3)|N t3
cρ,r(3, 2) +N t3

ρ,r(3, 2)
]

−

δk11δk21δk31

{[

X t1
mcj,q(1, 3)

1

2
Ct3

e,qr(3)| − ρt3
oj(3, 2) +N t3

cρj(3, 2) +N t3
ρj(3, 2)

]

+(1 − δr,1)
[

X t1
mcj(1, 3)

1

2
Ct3

e,qr(3)|N t3
cρj,r(3, 2) +N t3

ρj,r(3, 2)
]}

, (A21)
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N t1t3
ρ,pqr(1, 2) = −

[

ρt1
0 (1, 3)ξk2k3k1

132

∆k2

2
Ct3

e,qr(3)|N t3
cρ,r(3, 2)

]

(A22)

−
[

ρt1
0 (1, 3)ξk2k3k1

132

∆k2

2
(Ct3

e,qr(3) − 1)|N t3
ρ,r(3, 2) − δr,1ρ

t3
0 (3, 2)

]

+δk11δk21δk31

{[

ρt1
0j(1, 3)

1

2
Ct3

e,qr(3)|N t3
cρj,r(3, 2)

]

+
[

ρt1
0j(1, 3)

1

2
(Ct3

e,qr(3) − 1)|N t3
ρj,r(3, 2) − δr,1ρ

t3
0j(3, 2)

]}

,

N t1t3
mnxj,pqr(1, 2) = δk11δk21δk31

{[

X t1
mc,q(1, 3)

1

2
Ct3

e,qr(3)|X t3
cnj(3, 2) +N t3

cnxj(3, 2) +N t3
ρnj(3, 2)

]

+

(1 − δr,1)
[

X t1
mc(1, 3)

1

2
Ct3

e,qr(3)|X t3
cnj,r(3, 2) +N t3

cnxj,r(3, 2) +N t3
ρnj,r(3, 2)

]

+

[

X t1
mcj,q(1, 3)

1

2
Ct3

e,qr(3)|X t3
cn(3, 2) +N t3

cnx(3, 2) +N t3
ρn(3, 2)

]

+

(1 − δr,1)
[

X t1
mcj(1, 3)

1

2
Ct3

e,qr(3)|X t3
cn,r(3, 2) +N t3

cnx,r(3, 2) +N t3
ρn,r(3, 2)

]}

,

(A23)

N t1t3
mρj,pqr(1, 2) = δk11δk21δk31

{[

X t1
mc,q(1, 3)

1

2
Ct3

e,qr(3)| − ρt3
oj(3, 2) +N t3

cρj(3, 2) +N t3
ρj(3, 2)

]

+(1 − δr,1)
[

X t1
mc(1, 3)

1

2
Ct3

e,qr(3)|N t3
cρj,r(3, 2) +N t3

ρj,r(3, 2)
]

+
[

X t1
mcj,q(1, 3)

1

2
Ct3

e,qr(3)| − ρt3
o (3, 2) +N t3

cρ(3, 2) +N t3
ρ (3, 2)

]

+

(1 − δr,1)
[

X t1
mcj(1, 3)

1

2
Ct3

e,qr(3)|N t3
cρ,r(3, 2) +N t3

ρ,r(3, 2)
]}

, (A24)

N t1t3
ρj,pqr(1, 2) = −δk11δk21δk31

{[

ρt1
0 (1, 3)

1

2
Ct3

e,qr(3)|N t3
cρj,r(3, 2)

]

+
[

ρt1
0 (1, 3)

1

2
(Ct3

e,qr(3) − 1)|N t3
ρj,r(3, 2) − δr,1ρ

t3
0j(3, 2)

]

+
[

ρt1
0j(1, 3)

1

2
Ct3

e,qr(3)|N t3
cρ,r(3, 2)

]

+
[

ρt1
0j(1, 3)

1

2
(Ct3

e,qr(3) − 1)|N t3
ρ,r(3, 2) − δr,1ρ

t3
0 (3, 2)

]}

. (A25)

The values of the ξk1,k2,k3

ijk coefficients are given in Ref. [41].
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nlj 12C 16O 40Ca 48Ca 208Pb

f1 f4 f6 f1 f4 f6 f1 f4 f6 f1 f4 f6 f1 f4 f6

1s1/2 0.96 0.95 0.91 0.95 0.90 0.85 0.93 0.84 0.78 0.94 0.85 0.78 0.93 0.83 0.77

1p3/2 0.96 0.96 0.94 0.96 0.93 0.89 0.95 0.87 0.82 0.95 0.87 0.81 0.94 0.83 0.77

1p1/2 0.96 0.93 0.89 0.95 0.87 0.81 0.95 0.83 0.80 0.94 0.83 0.77

1d5/2 0.96 0.90 0.86 0.96 0.90 0.85 0.94 0.84 0.79

2s1/2 0.96 0.92 0.87 0.94 0.92 0.86 0.94 0.86 0.80

1d3/2 0.95 0.90 0.85 0.96 0.90 0.84 0.94 0.84 0.79

1f7/2 0.94 0.86 0.81

2p3/2 0.95 0.87 0.82

1f5/2 0.95 0.86 0.80

2p1/2 0.95 0.87 0.82

1g9/2 0.95 0.88 0.83

1g7/2 0.94 0.88 0.82

2d5/2 0.95 0.89 0.83

1h11/2 0.94 0.90 0.86

2d3/2 0.95 0.89 0.83

3s1/2 0.95 0.90 0.85

TABLE I: Proton spectroscopic factors of the 12C , 16O , 40Ca , 48Ca and 208Pb nuclei. We present

the results obtained by using the scalar correlation only (f1), the first four operator channels of

the correlation (f4) and the full correlation operator (f6).
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nlj 12C 16O 40Ca 48Ca 208Pb

f1 f4 f6 f1 f4 f6 f1 f4 f6 f1 f4 f6 f1 f4 f6

1s12 0.96 0.95 0.91 0.95 0.90 0.85 0.93 0.84 0.78 0.93 0.86 0.80 0.92 0.85 0.80

1p3/2 0.96 0.96 0.94 0.96 0.93 0.89 0.95 0.87 0.82 0.94 0.88 0.83 0.93 0.85 0.80

1p1/2 0.96 0.93 0.89 0.95 0.87 0.81 0.94 0.88 0.82 0.93 0.85 0.80

1d5/2 0.96 0.90 0.86 0.95 0.90 0.86 0.93 0.86 0.82

2s1/2 0.96 0.92 0.87 0.95 0.92 0.87 0.93 0.88 0.84

1d3/2 0.95 0.90 0.85 0.95 0.90 0.86 0.93 0.86 0.82

1f7/2 0.95 0.94 0.91 0.94 0.88 0.84

2p3/2 0.94 0.89 0.85

1f5/2 0.93 0.88 0.84

2p1/2 0.94 0.89 0.85

1g9/2 0.94 0.90 0.86

1g7/2 0.94 0.90 0.86

2d5/2 0.94 0.91 0.87

1h11/2 0.94 0.93 0.89

2d3/2 0.94 0.90 0.87

3s1/2 0.94 0.92 0.88

2f7/2 0.95 0.93 0.90

1h9/2 0.94 0.92 0.88

2f5/2 0.95 0.93 0.90

3p3/2 0.95 0.94 0.90

1i13/2 0.94 0.93 0.90

3p1/2 0.95 0.94 0.90

TABLE II: The same as Tab. I for neutron states.
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FIG. 1: The proton one-body density matrix, ρ(r1, r
′
1), for the 208Pb nucleus in FHNC/SOC

approximation, calculated for θ11′=0. The diagonal part ρ(r1, r1) is the proton density distribution.
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FIG. 2: The difference ρo(r1, r
′
1) − ρ(r1, r

′
1), between the proton IPM one-body density matrix of

the 208Pb nucleus, and that obtained with our FHNC/SOC calculations. The two density matrices,

have been calculated for θ11′=0. Note that the scale here is ten times larger than that of Fig. 1.
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FIG. 3: The proton momentum distributions of the 12C , 16O , 40Ca , 48Ca and 208Pb nuclei

calculated in the IPM model, by using the scalar correlations only (f1) and the full operator

dependent correlations (f6).
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FIG. 4: The proton momentum distributions of the 16O and 208Pb nuclei multiplied by k2. The

full lines show the IPM results, the dotted lines have been obtained by using scalar correlations

only, and the dashed lines with the complete correlation.
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FIG. 5: Proton (full lines) and neutron (dashed lines) momentum distributions of the 48Ca and

208Pb . The thick lines show the results of our calculations, the thin lines the IPM results.
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FIG. 6: Proton momentum distribution of 16O in various approximations. The thick lines are

those of the analogous panel of Fig. 3. The thin lines have been obtained by using the first-order

expansion method of Ref. [35].
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FIG. 7: Occupation numbers of the proton natural orbits of the 48Ca nucleus. The dashed line

indicates the IPM values. The black bars show the values obtained with the scalar corrrelation

and the gray bars those values obtained with the full correlation.
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FIG. 8: The same as Fig. 7 for the occupation numbers of the neutron natural orbits of the 48Ca

nucleus.
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FIG. 9: Natural orbits for some neutron states in 48Ca . The full lines show the IPM orbits, the

dotted lines those obtained with scalar correlations only and the dashed lines those obtained with

the complete operator dependent correlation.
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FIG. 10: Proton spectroscopic factors of the 208Pb nucleus as a function of the separation energies.

The black points show our results, and the white diamonds the empirical values extracted from

(e,e’p) experiments [12].
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FIG. 11: Proton 3s1/2 and neutron 3p1/2 quasi-hole functions, squared, of the 208Pb nucleus. The

various lines show the results obtained by using different type of correlations.
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FIG. 12: Differences between charge density distributions of 206Pb and 205Tl. See the text for the

explanation of the various lines.
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