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Abstract

The momentum distributions, natural orbits, spectroscopic factors and quasi-hole wave functions
of the 12C ,160 ,4°Ca ,%8Ca , and 2°*Pb doubly closed shell nuclei, have been calculated in the frame-
work of the Correlated Basis Function theory, by using the Fermi hypernetted chain resummation
techniques. The calculations have been done by using the realistic Argonne v nucleon-nucleon
potential, together with the Urbana IX three-body interaction. Operator dependent correlations,
which consider channels up to the tensor ones, have been used. We found noticeable effects pro-
duced by the correlations. For high momentum values, the momentum distributions show large
enhancements with respect to the independent particle model results. Natural orbits occupation
numbers are depleted by about the 10% with respect to the independent particle model values.
Spectroscopic factors are in good agreement with the experimental values. The effects of the

correlations are larger on the more deeply bound states.

PACS numbers: 21.60.-n; 21.10.Jx



I. INTRODUCTION

One of the major achievements of nuclear structure studies in the last ten years is the
consolidation of the validity of the non relativistic many-body approach. The idea is to
describe the nucleus with a Hamiltonian of the type:

p2 A A A
H=—3o 3 Vit 2oyt 3 vge ()
g 1<j=1 i<j<k=1

where the two- and three-body interactions, v;; and v;j; respectively, are fixed to reproduce
the properties of the two- and three-body nuclear systems. The Schrodinger equation has
been solved without approximations for few body systems [1] and light nuclei [2], up to
A=12 [3]. The obtained results provide good descriptions, not only of the energies of these
nuclei, but also of other observables.

The difficulties in extending to medium and heavy nuclei the techniques used in few body
systems and light nuclei, favored the development of models, and of effective theories. The
basic idea of the effective theories is to work in a restricted space of the many-body wave
functions. Usually, one works with many-body wave functions which are Slater determinants
of single particle wave functions. The idea of single particle wave functions implies the
hypothesis of a mean-field where the various nucleons move independently one from the
other. This Independent Particle Model (IPM) is quite far from the picture provided by
the microscopic calculations quoted above, describing the nucleus as a many-body system of
strongly interacting nucleons. In the Hartree-Fock theory, which provides the microscopic
foundation of the IPM, the Hamiltonian is not any more that of Eq. (1), but it is an effective
Hamiltonian built to take into account, obviously in an effective manner, the many-body
effects that the microscopic calculations explicitly consider. The construction of effective
interactions starting from the microscopic ones, covers a wide page of the nuclear physics
history, starting from the Brueckner G-matrix effective interactions [4, 5], up to the recent
Viewr interaction [6, 7] and the interaction obtained by applying the unitary correlation
operator method [8, 9].

The application of the IPM is quite successful, but there are evidences of the intrinsic
limitations in its applicability. For example, the measured spectroscopic factors are system-
atically smaller than one [10-12], which is the value predicted by the IPM. The (e,e’p) cross

sections in the quasi-elastic region need a consistent reduction of the IPM hole strength to



be explained [13, 14]. The same holds for the electromagnetic form factors of the low-lying
states, especially those having large angular momentum [15, 16]. The emission of two like
nucleons in photon and electron scattering process cannot be described by the IPM [17, 18].
Also the charge density distributions extracted by elastic electron scattering data are, in the
nuclear interior, smaller than those predicted by the IPM [19, 20]. These examples indicate
the presence of physics effects, commonly called correlations, which are not described by the
IPM.

It is common practice to distinguish between long and short range correlations since
they have different physical sources. The long-range correlations are related to collective
excitations of the system, such as the giant resonances. The short-range correlations (SRC)
are instead connected to the strongly repulsive core of the microscopic nucleon-nucleon
interaction. The repulsive core reduces the possibility that two nucleons can approach each
other, and this modifies the IPM picture where, by definition, the motion of each nucleon
does not depend on the presence of the other ones.

Even though most of the calculations of medium heavy nuclei are based on the IPM,
and on the effective theories, various techniques, aiming to attack the problem by using the
microscopic Hamiltonian (1), have been developed. The Brueckner-Hartree-Fock approach
has been recently applied to the 0 nucleus [21]. No core-shell model calculations have
been done for nuclei lighter than >C [22, 23]. The coupled cluster method has been used to
evaluate 90O properties [24, 25].

About fifteen years ago [26], we started a project aimed to apply to the description of
medium and heavy nuclei the Correlated Basis Function (CBF) theory, successfully used
to describe the nuclear and neutron matter properties [27, 28]. We solve the many-body

Schrodinger equation by using the variational principle:
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The search for the minimum of the energy functional is done within a subspace of the full

Hilbert space spanned by the A-body wave functions which can be expressed as:
VU(A)=F(@1,..,A)e(Q1,...., A, (3)

where F(1, ..., A) is a many-body correlation operator and ®(1, ..., A) is a Slater determinant

composed by single particle wave functions, ¢,(7). In our calculations, we used two-body
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interactions of Argonne and Urbana type, and we considered all the interaction channels up
to the spin-orbit ones. Together with these two-body interactions, we used the appropriated
three-body forces of Urbana type. The complexity of the interaction required the use of
operator dependent correlations. We consider correlations of the type:
A
i<j=1
where § is a symmetrizer operator and Fj; is expressed in terms of two-body correlation

functions f, as:
6
Fij =Y folriy)O; . (5)
p=1
In the above equation we have adopted the nomenclature commonly used in this field, by

defining the operators as:
OZ-:LG: []_,O'ZO'],SZ]®[1,TZT]] s (6)

where o; and 7; indicate the usual Pauli spin and isospin operators, and S;; = (3t;; - oL -
o; —o; - 0;) is the tensor operator.

We recently succeeded in formulating the Fermi Hypernetted Chain (FHNC) equations,
in Single Operator Chain (SOC) approximation, for nuclei non saturated in isospin, and
with single particle basis described in a jj coupling scheme. We presented in Ref. [29] the
binding energies and the charge distributions of 2C , 0 | 1°Ca , #*Ca and 2°*Pb doubly
closed shell nuclei obtained by using the minimization procedure (2). These calculations
have the same accuracy of the best variational calculations done in nuclear and neutron
matter [27, 28].

In the present article, we show the results of our study, done in the FHNC/SOC computa-
tional scheme, on some ground state quantities related to observables. They are momentum
distributions, natural orbits and their occupation numbers, quasi-hole wave functions and
spectroscopic factors. We used the many-body wave functions obtained in Ref. [29] with
the Argonne vg two-nucleon potential, together with the Urbana XI three-body force. We
have calculated momentum distributions also with the wave functions produced by another
interaction, the Urbana wvy4 truncated up to the spin-orbit terms, implemented with the
Urbana VII three-body force. The results obtained with this last interaction do not show
relevant differences with those obtained with the v§ and UIX interaction, therefore we do

not present them.



The paper is organized as follows. In Sect. II we present the results of the One-Body
Density Matrix (OBDM) and of the momentum distribution. In Sect. III we discuss the
natural orbits, i.e. the single particle wave functions forming the basis where the OBDM
is diagonal. In Sect. IV we present our results about the quasi-hole wave functions and in

Sect. V we summarize our results and draw our conclusions.

II. ONE-BODY DENSITY MATRIX AND MOMENTUM DISTRIBUTION

We define the one-body density matrix, (OBDM), of a system of A nucleons as:

plar,ay) = 30 (e r) xH)xd (1)xe (1) x (1)

8,8t
A
= W/d:cg...dxA\I/T(xl,x2,...,xA)\If(x’l,xg,...,xA) : (7)

In the above expression, the variable x; indicates the position (r;) and the third components
of the spin (s;) and of the isospin (¢;) of the single nucleon. The x (i) functions represent the
Pauli spinors. With the integral sign we understand that also the sum on spin and isospin
third components of all the particles from 2 up to A, is done. In our calculations we are
interested in the quantity:

f(ryrh) = > [PS’S’t ry, 1)) + p" (1, ri)} ) (8)

s=+1/2

whose diagonal part (rj = ry) represents the one-body density of neutrons or protons, this
last one related to the charge density distribution of the nucleus.

We obtain the momentum distributions of protons or neutrons as:

1 - /
n(k) = 7 [ dedet <O ) 0

where we have indicated with N; the number of protons or neutrons. The above definitions

imply the following normalization of n(k):

/ dkn'(k) = (27)% . (10)

We describe doubly closed shell nuclei, with different numbers of proton and neutrons,
in a jj coupling scheme. The most efficient single particle basis to be used is constructed

by a set of single particle wave functions expressed as:

nijm (T0) = Ry (ri Z <lpg Sljm > V()X ()X (6) = Ry (ri) Y75 (Qi)xe(i) - (11)



In the above expression we have indicated with Y}, the spherical harmonics, with < | > the
Clebsch-Gordan coefficient, with R}, (r;) the radial part of the wave function, and with Y77
the spin spherical harmonics [30].

The uncorrelated OBDMs, those of the IPM, are obtained by substituting in Eq. (7) the
correlated function |¥ > with the Slater determinant |® > formed by the single particle

wave functions (11). We obtain the following expressions:

ph(rn ) = 37 [y (e, v) + o ()| (12)
) 1 )
Pyt (ry, 1) = %Z(Q‘j + 1)R$sz(7°1)R$Llj(7°/1)Pl(COS911’) ) (13)
nlj
. 1 . )
Py (e, 1) = 1 2= TR () Ry (1) sin 6110 P (cos fy) (14)
nlj

In the above equations 6y indicates the angle between r; and r}, P, and P/ the Legendre
polynomials and their first derivative respectively. The presence of the second term of Eq.
(12), the antiparallel spin terms given in Eq. (14), is due the jj coupling scheme required
to describe heavy nuclei.

The correlated OBDM is obtained by using the ansatz (3) in Eq. (7). This calculation
is done by using the cluster expansion techniques as indicated in [31] and [32], where only
scalar correlations have been used, and in [33], where the state dependent correlations have
been used, but in a ls coupling scheme. We followed the lines of Ref. [33] but we consider, in
addition, the presence of the antiparallel spin terms and we distinguish proton and neutron
contributions. The explicit expression of the OBDM, in terms of FHNC/SOC quantities,
such as two-body density distributions, vertex corrections, nodal diagrams etc., is given in
Appendix A. The diagonal part of the OBDM is the one-body density, normalized to the

number of nucleons. Because of this, the momentum distribution satisfies the following sum

rules:
St — (271T)3/dknt(k:) _ (15)
and ,
Sy = g | AR 0 The = 1. (16)

where we have indicated with Tk v the kinetic energy of the protons (¢ = 1/2) or neutrons

(t=—1/2).



We have verified the accuracy of our calculations by testing the exhaustion of the above
sum rules for each n(k). We found that the sum rules were always satisfied at the level of
few parts on a thousand. In any case, we found that the sum rules are even better satisfied
when only scalar correlations are used.

The surface shown in Fig.1 represents the proton OBDM of the 2°Pb nucleus, for 6, =0.
We have shown in [29] that the SRC lower the one-body proton distribution, and also that
of the neutrons, in the nuclear center. In order to highlight the effects of the correlations
on the density matrix, we show in Fig. 2 the quantity p,(r1,r]) — p(r1,7;). It is interesting
to notice that the major differences between the OBDMs are not in the diagonal part, but
just beside it. The consequences of these, small, differences between the OBDMs on the
momentum distributions, are shown in Fig. 3. In this figure, we compare the 2C , 160 |
40Ca , ®Ca and 2Pb momentum distributions calculated in the IPM model, with those
obtained by using scalar and operator dependent correlations.

The general behavior of the momentum distributions, is very similar for all the nuclei we
have considered. Correlated and IPM distributions almost coincide in the low momentum
region up to a precise value, when they start to deviate. The correlated distributions show
high momentum tails, which are orders of magnitude larger than the IPM results. The value
of k where uncorrelated and correlated momentum distributions start to deviate, is smaller
the heavier is the nucleus. It is about 1.9 fm~! for 12C , and 1.5 fm~! for 2°®Pb . We notice
that the value of the Fermi momentum of symmetric nuclear matter at the saturation point
is 1.36 fm~!.

The results presented in Fig. 3 clearly show that the effects of the scalar correlations are
smaller than those obtained by including the operator dependent terms. We shall see in the
following that this is a common feature of our results.

Since relatively small differences are compressed in logarithmic scale, we use the linear
scale in Fig. 4 to show, as examples, the proton momentum distributions for O and 2%Pb
nuclei, multiplied by k?. This quantity, multiplied by a factor (27)3, is the probability of
finding a proton with momentum k. We observe that the effects of the SRC on the quantity
shown in Fig. 4 are basically two. The first one is the already mentioned enhancement
at large values of k. This effect is less evident here than in Fig. 3. The second effect of
the SRC is a reduction of the maxima which appear approximately at k=1 fm~! in both

nuclei, and it is hardly visible in Fig. 3. These two effects are obviously related, since all



the momentum distributions are normalized as indicated by Eq. (15), therefore reductions
and increases must compensate.

In our calculations, we found that the proton and neutron momentum distributions for
nuclei with N = Z are very similar. For this reason we do not show the neutron momentum
distributions of 12C , 10 and *°Ca . On the other hand, we compare in Fig. 5 the proton and
neutron momentum distributions of *Ca and 2*Pb . In both nuclei, the difference between
these two distributions is mainly in the region where the IPM picture dominates. In an
infinite fermions system, the larger is the density, the larger is the Fermi momentum. This
property is present also in finite systems, even though the single particle wave functions are
no longer eigenstates of the momentum. In the figure, this fact is clearly shown by the shift
of the neutron IPM momentum distributions, with respect to that of the protons. When
the distributions start to be dominated by the SRC effects, the protons and neutrons results
are very close. This is an indication that shell and surface effects are irrelevant in the high
momentum region and the SRC effects are in the average the same for protons and neutrons.

The increase of the momentum distribution at large & values, induced by the SRC is a
well known result in the literature, see for example the review of Ref. [34]. The momentum
distributions of medium-heavy nuclei, have been usually obtained by using approximated
descriptions of the cluster expansion, which is instead considered at all orders in our treat-
ment. The importance of a complete description of the cluster expansion is exemplified in
Fig. 6, where, together with our results, we also show the results of Ref. [35], obtained
by truncating the cluster expansion to the first order in the correlation lines. In both cal-
culations the same correlation functions and single particle basis, those of Ref. [29], have
been used. The results obtained with the first order approximation, provide only a qualita-
tive description of the correlation effects. They show high-momentum enhancements which,

however, underestimate the correct results by orders of magnitude.

III. NATURAL ORBITS

The natural orbits are defined as those single particle wave functions forming the basis

where the OBDM is diagonal:

Py, rh) =S choniNO(e) ol O (rh) (17)
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In the above equation the ang coefficients, called occupation numbers, are real numbers. In
the IPM, the natural orbits correspond to the mean-field wave functions of Eq. (11), and
the c;,;; numbers are 1, for the states below the Fermi surface, and 0 for those above it.

In order to obtain the natural orbits, we found convenient to express the OBDM of Eq.
(17) as

pH(ry,ry) = Al(ry, v pl (ry, v1) + Bl (r,ry) (18)

where pl(ry,ry/) is the uncorrelated OBDM of Eq. (12), and the other two quantities are
defined as:

At(r1>1“/1) = 205;,500(1"1)0&; soc(r1)eXp[N (r1>r1)] +
2C¢ (r1)CL(r}) exp[NL, (11, 1)) D AFARNL, (ry, 1)) (19)

p>1

B'(ry,ry) = _QCf;,SOC(rl)Cw soc(r1) exp[Ny, (r1, TN, (11, 1) —
20 (r1) CL(rh) exp [NE, (r1,17)]

X Z AkAk{ ww p(rlﬁ rll)Ntf;cwc(rlﬁ rl) + Nf; we p(rla rll)} : (20)

p>1
The meaning of the ww, w.w, labels used in the above equations have been defined in [33]
where the index k has been defined as p =2k +1—1 with [ =0,1 and p =1,...,6. The
detailed expressions of the vertex corrections C' and of the nodal functions N are given in
Appendix A.
We expand the OBDM on a basis of spin spherical harmonics Y7} , Eq. (11),
1 *m m
p(e1r) = 3 g (A ) + Bl )] i (@) Y3 (@) (21)
lym
where €2; and ] indicate the polar angles identifying r; and r{. The explicit expressions of

the A and B coefficients are:

2 2
I o L
ylrur) = (20+1) 3 (212+1)(29'2+1)( : 2) ol g

nalajol 000 I 1/2 1y
Ry, (r1) Ry, (r2) Ay, (1, 7) (22)
with
Al(ry, 1)) = 21L+1 [ anat(er,x) Pu(cos i) (23)
and
Blj(rl, r) = 21+1/d cos 11/ ) B (r1, r})) Py(cos 0;1/) (24)
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In the above equations we have used the 3j and 6§ Wigner symbols [30]. The term .A depends
on both orbital and total angular momenta of the single particle, [ and j respectively, and
the term B depends only on the orbital angular momentum /.

As an example of our results, we show in Figs. 7 and 8 the proton and neutron occupation
numbers for the *Ca nucleus. In the figures, the IPM results are indicated by the dashed
lines. The black bars show the values obtained by using scalar correlations only, the gray
bars those obtained with the complete operator dependent correlations.

The correlated occupation numbers are smaller than one for orbits below the Fermi
surface, and larger than zero for those orbits above the Fermi surface. This effect is enhanced
by the operator dependent correlations. We observe that for the states above the Fermi
surface the gray bars are larger than the black ones, indicating that also for these states the
operator dependent correlations, produces larger effects than the scalar ones.

We show in Fig. 9 some natural orbits for three neutron states in **Ca . In this figure,
we compare the IPM results (full lines) with those obtained with scalar correlation only
(dotted lines), and with the full operator dependent correlation (dashed lines). The effect of
the correlations is a lowering of the peak and a small widening of the function. Despite the
small effect, it is interesting to point out that this is the only case where we found that the
inclusion of operator dependent terms diminishes the effect of the scalar correlation. This

fact is coherent with the results on the density distributions shown in Ref. [29].

IV. QUASI-HOLE WAVE FUNCTIONS AND THE SPECTROSCOPIC FACTORS

The quasi-hole wave function is defined as:

Wt (2) = VA < Ujm(A = 1)]0(z — 24) P4V (A) >

v T A= DA — D) >< v v 7

where |W,;;m(1,...,A—1) > and |¥(1, ..., A) > are the states of the nuclei formed by A —1
and A nucleons respectively, and P} is the isospin projector. In analogy to the ansatz (3),

we assume that the state of the nucleus with A — 1 nucleons can be described as:
\Ifnljm(A -1 =F1,..,A- 1)<I>nljm(1, L A=1), (26)

where ®,;m(1,..., A — 1) is the Slater determinant obtained by removing from ®(1, ..., A)

a particle characterized by the quantum numbers nljm, and the correlation function F
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is formed, as indicated in Eq. (5), by the two-body correlation functions f, obtained by
minimizing the A nucleon system. In an uncorrelated system the quasi-hole wave functions
coincide with the hole mean-field wave functions (11).

We are interested in the radial part of the quasi-hole wave function. We obtain this
quantity first by multiplying equation (25) by the vector spherical harmonics Y;{"(€2), then,
by integrating over the angular coordinate €2, and, finally, by summing over m. It is useful

to rewrite the radial part of the quasi-hole wave function as [33]:

1
wizl] 2 +1 Z/dQYlj nljm( ) = 2] +1 ZX:Ll_]m(T>[ rtLlj]l/2 ) (27>

m

where we have defined:

’ S V(A= DY) 0(r —ra) PA[PH(A) >
anjm( ) N \/Z < \Ilnl]m( )‘\I]nljm( - 1) > 7 (28>
and
t \Ilnl]m( )‘\I]nl]m( - 1) > (29>

o = < V(AW (A) >
Following the procedure outlined in Ref. [33], we consider separately the cluster expan-
sions of the two terms N! and X!, where we have indicated with « the set of the nljm

quantum numbers. We obtain for X! the expression:
X4(r) = o)y r) + [ Erif () Pcost)
x&%an%@@nkww< £ + N (e, 1)
o) = M) - N ) + Bocr ) (0
and for ! the expression:
N = i (e s [ anotmee

X2{gdcéa(r7 rl)CZ/l:Zq(rl) { - pi’a(ru I'1) + Nzéa(rv rl)}

_l_ptova(r’ I'l) — Ni’;)x(r, rl) — N;’pa(r’ I‘1) ‘I‘Néoc(r, r1)}> 5 (31)

The expressions of the functions N,q(r,r1), X0 (r, 1), are:

Xoc(r,11) ZAk Z {1_5161) o %1 2k—1(T,T1)

to=p,n
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AL (Xg,;”l (T, 1) + th;ifék_l(r,rl)) + X“”Xz?ét%k(r’rl)} - (32)

soc r, r1 ZAk Z [ 1 - 5k,1)/\[2tllcl:21,2k—1(r’r1)

to=p,n

X (VB2 e () + X523 (1)) + XB A S ()| (33)
where the indexes t refer to the isospin, and we have defined:

1
Xpt(r,ry) = —[hijtz’ (r, 1) gl (r, 1) (1) (= P (r,10) + N2 (x, 1) )
g (e ) Ol (e NS (1) — Nizgs (x,01) = N2 (e, )] A% (34)

WetP Wepp pPP
N2 (r,ry) = [hmz’ (r,11) g (r, 1) O (x )( e (r r) + N2 (r 1“1)
g (e, T O () NS (r,10) = NS (r,11) = N2o(r, 1) | AR

ce,p

xp,p PoP

where ko = 1,2,3 for ¢ = 1,3,5. The expressions of the other terms are given in Appendix
A. All the quantities used in the above expressions depend on the set of quantum numbers
a characterizing the quasi-hole state, since we have written the various equations by using
[36]:

P (r,11) = po(r,11) — 0 (1) (r1) - (36)

The knowledge of the quasi-hole functions allows us to calculate the spectroscopic factors:

Ly = [dri et (37)

The proton and neutron spectroscopic factors for the 2C , 10 | ¥°Ca , **Ca and 2*Pb
nuclei are given in Tabs. I and II for each single hole state. In these tables we compare the
results obtained by using scalar correlations (f;), with those obtained with the four central
channels (f;) and with the full correlation (fg). The inclusion of the correlations produce
spectroscopic factors smaller than one, the mean-field value. The fg results are smaller than
those of f4, which are smaller than those obtained with f;.

We found that the effect of the correlations becomes larger the more bound is the state.
This fact emerges by observing that for a fixed set of [ quantum numbers the spectroscopic
factors increase with n, and, at the same time, that the values of the spectroscopic factors
become larger when n and the [j values increase. This effect is well represented in Fig. 10
where we show with the black points the proton spectroscopic factors of the 2°*Pb nucleus

as a function of the separation energies, defined as the difference between the energy of the
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A-nucleons system and that of the correspondent A — 1-nucleons system. We have associated
the spectroscopic factor of each level to its empirical separation energy.

In Fig. 10 our results are compared with the empirical spectroscopic factors [12], extracted
from (e,e’p) experiments, and represented by the white diamonds. The good agreement
indicates the importance of the correlations in understanding the empirical values of the
spectroscopic factors. However, for the more external shells, the data are smaller than our
results. We surmise that this difference is related to correlations, of long-range type, which
are not well described by our theory.

As example of correlation effects, we show in Fig. 11 the squares of the proton 3s;/, and
neutron 3p;/; quasi-hole wave functions. The correlations lower the wave function in the
nuclear interior. Also in this case, the effect of the correlations increases together with the
number of operator channels considered.

In Fig. 12 we show with a gray band the difference between the empirical charge distri-
butions of ?*°Pb and 2%TI [19]. The dashed dotted line, labeled as IPM, has been obtained
by considering that the difference between the two charge distributions can be described as
a single 3s;/» proton hole in the core of the lead nucleus. This curve has been obtained by
folding the IPM line of Fig. 11 with the electric proton form factor in its dipole form. In
a slightly more elaborated picture, the ground state of the **T1 is composed by the 3s1 2
proton hole in the ™Pb ground state, plus the coupling of the 2ds,, and 2d;/» proton levels
with the first 27 excited state of 2°Pb [37, 38]. This description of the 2**T1 charge distribu-
tion, shown by the dotted line in the figure, is still within the IPM framework. The dashed
line has been obtained by adding to the dotted line the core polarization effects produced by
long-range correlations. These effects have been calculated by following the Random Phase
Approximation approach of Refs. [39, 40]. The full line has been obtained when our SRC
effects are also included.

The various effects presented in Fig. 12 have been obtained in different theoretical frame-
works, and the final result does not have any pretense of being a well grounded and coherent
description of the empirical charge differences. The point we want to make by showing this
figure is that the effects of the SRC are of the same order of magnitude of those commonly

considered in traditional nuclear structure calculations.
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V. SUMMARY AND CONCLUSIONS

In this work we have extended the FHNC/SOC scheme in order to calculate the OBDM’s,
the natural orbits and the quasi-hole wave functions of finite nuclear systems non saturated
in isospin, and in jj coupling representation of the single particle wave function basis. Our
results have been obtained by using the two-body realistic interaction Argonne v and the
associated three-body interaction Urbana IX. The calculations have been done by using
operator dependent correlations which include terms up to the tensor ones.

We found that the correlations enhance by orders of magnitude the high-energy tail of
the nucleon momentum distribution. The occupation numbers of the natural orbits below
the Fermi level, are depleted, and the opposite happens for those above the Fermi level.
Also the values of the spectroscopic factors are depleted with respect to the IPM, and our
results are in good agreement with the empirical values. We have shown that the results of
models considering expansions up to the first order correlation lines, provide only qualitative
descriptions of the SRC effects. In the description of the charge density difference between
206Ph and 29571, the SRC effects are of comparable size of those commonly considered in
traditional nuclear structure calculations based on effective theories.

A general outcome of our study, is that the effects of the correlations increase with the
complexity of the correlation function. This means that operator dependent correlations
enhance the effects produced by the scalar correlations. This not obvious result, is valid
in general, not always. We have shown in Ref. [29], that scalar and operator dependent
correlations have destructive interference effects on the density distributions. We found in
the present study an analogous behavior regarding the natural orbits. These quantities
are related to the density distributions. It seems that the effects of the SRC are rather
straightforward on quantities which involve two-nucleons, while they are more difficult to
predict on quantities related to single nucleon dynamics. On these last quantities, however,
these SRC effects are very small, usually negligible.

In this work, we have highlighted a set of effects that cannot be described by mean field
based effective theories. The description of the nucleus in kinematics regimes where these

effects are relevant, requires the use of microscopic theories.

14



VI. ACKNOWLEDGMENTS

This work has been partially supported by the agreement INFN-CICYT, by the Spanish
Ministerio de Educacién y Ciencia (FIS2005-02145) and by the MURST through the PRIN:

Teoria della struttura dei nuclei e della materia nucleare.

APPENDIX A

For sake of completeness, we give in this appendix the detailed expression of the OBDM
for finite nuclear systems not saturated in isospin, and in jj coupling scheme of the single
particle wave function basis (11). The notation for the nodal functions N and for the vertex
corrections C' is that used in Ref. [33]. The indexes t1, ¢, t3 indicate protons and neutrons,
and the subscript j is related to the antiparallel spin states.

For the correlated OBDM we obtain the expression:

pl(ry,ry) = QCz,soc(rl)Cf;,soc(rl’>€NLW(“7T1,) [PZ(rlarl’) - Naicw(rlarl’)} + (A1)

20&2 (rl)CfJ (r1/>€N£Jw (rl,rll)

X Z AkAk{Niwm(rl, I‘1/) [pi([‘l, I‘ll) — Nj}cwc (I‘l, I‘ll)} — Nf)cwc’p(rl, rll)} .

p>1
In the above equation, k has been defined as in Eq. (20), and we have used AF¥=123 = 1§ 5,
and AF=123 =1 3 6.

In the following we shall calculate the expectation value of the isospin operator sequence:

X't = Xi, (D)X, (2) (71 - 72)" X (D)X, (2)
by considering that
(i 1)" =an+ (1 —a,)7Ti 75,
with
an1 = 3(1 —ay) and ag=1.
By using the above equations we have that:
o =1 | "2 =20, —1 and x2"? =2a, — 1+ 2(1 — a,)d4, -

The expressions of the vertex corrections are:

Cllsoc(ry) = CL(r1) [1+ Ulisoe(ry)] | (A2)
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Ul

w,80C (r1)

where we have defined

ZAk Z {1_5k,1)Uf;1;k 1,26-1(T1)

ta=p,n

X1 (Uf;léi 126(T1) + Uj;l,%c,%—l(rl)) X5 Uf;léi 2T )} )

(A3)

Uta(e) = [ deshli (o) {[gwd (11, 02)Cifg (1) + 9182 (11, 72) Ol () | NG (1, 12)

+gf;;2<r1,r2>c;pq<r2>N5§z<r1,r2>} |

fp(T’m)
fi(r12)

hoi2(ry, 1) =

+ (1 —6,1)NLY

(1'1, 1'2) .

The expressions of the two-body distribution functions for p > 1 are:

gﬁ;lw p(r17 I'y)

gf}ji}(rla r2)

t1t2

Ywe p(r17 r2)

gﬁ}cc,p(rh r2)

= guu(ri,re) NI, (rr,100)

= hﬁj;f (r1, r2)gw1d2 (ry,12)

= N (ry, 1) + X2 (ry,12)

= (1, 1) gl2 (11, r2) + glg? (r1, ) N2 (11, 179)
= X2 (ry,r9) + NLY2 (1, 12)
= h23(r1,ma)glt (r1, 1) + gogt (r1, 1) N, (11, 19)

= ijccp(rl, 1'2) + N:’}ccp(rl, I'2) .

Finally the nodals functions are expressed as:

t t t t
N ,p(l 2) = T\ p(l, 2) + Nrrip(jm(l, 2) + N

with m,n =

(1,2) +

Nyb(1,2)

(A4)

(A5)

(A8)

(A9)

(A10)

¢, w.. The separation of the above nodal diagrams in four terms, corresponds

to the classification in the zx, zp, pxr and pp parts [29], and it has been applied to the

quantities /V, tlti ) par

N:ﬁm,zkl—1 (17 1/) =

Ntlf??, 2k (1’ ]‘/) =

m

Ntlrf22k1 1(1 2) =

w

(1,2) defined in the following.

Z S [N ket 1 (L 1)

kokz=1t3=p,n

t1t3 [N;%?tﬂ? 2k1—1 2/6272]63—1(1’ ]‘/) + Nmm 2k1—1,2ko—1 2k3(1’ 1,)]:| ) (Al]‘)

Z Z thtBN?%?ii 2k1,2k2,2k3(1? 1,) )

ko ,ks 1iz=p,n

DS L AP W)

kok3=1t3=p,n
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+ thtS NLZ%QZt]gl 1,2ko,2k3— l(]‘ 2) + Xt2t3 N(f)lrfzt/gl 1,2ko—1 2k3(1? 2):| )
3
NLZ%QZIQ (]‘? 2) = Z Z N(f)lrfzt/gl 2k22,2k3(1’ 2) ) (A14)

k2, k3 1t3=p,n

Nitc(j),2k1—l(172) = Z Z [ Zlctcg(] 2k1—1,2kp—1,2ks— 1(1,2) (A15)

ko,k3=1t3=p,n
1t t1t
+ X?m [Nwlcf( 3),2k1—1,2k 2k3—1(1’ 2) + Nwlcc3(j)72k1—1,2kz—l,2k3(17 2)”

Nlecc(])2k1(1’2): Z Z ffctc 2k12k22k3(1>2)' (A16)

ko,ks=1t3=p,n

with m = w,w. and n = d, e.

N (T, 1) = X

ww,pqr wd,q

3R Ol (ra) | XL (2, 710 ) + NI (02, 110) | + (A7)

ry |Xt3t1 (1'2, rl’) Nt3t1 (1'2, r1/>:| +

ry, Iy

kakski
121/

t3

we,q dw,r dw,r

I ti1ts
X r17 r2 qr

[ t1t3
_de q Iy, Ie ew,sr ew,r

)
Cetgr(r2)
GE L, (102) [ X0 (ra, T0) + NI (v, 70|
Clp e (b3) | X (52 (x5, 12) + N2 (xs, 1) |+ (A18)
(rs)
(r3)

wn,pqr wd,q

thtB r;,rs

we,q dn,r

koksk t t3t t3t
BN Ol (rs) X[ (x5, 12) + N2 (rs, 1) | +
2k3k10t3

e,qr

thts

wd,q

(r1, )€}
(r1,ra)
(r1,r2)¢
NL (r,10) = [ XIS (r0, 1a) 3500
(r1,rs)
(r1,r3)&)

) [ X502 (15, 1) + NI32(r3, 1)

ry, I3 en,r en,r

(A19)

also in the above equations we used n = d,e. In the following equations we have that

m,n = ¢, We.

Nut L (1,2) = [X5,,(1,3) %C( 3)|X15(3,2) + N2,(3,2) + N&.(3,2)] +
(1 —=6.1) X (A20)
[, (1, etz & czzx X5, (3,2) + i3, (3,2) + N5, (3,2)] -
5k115k215k31{[xam< 3)= %( )IX5,(3,2) + Ni2,5(3,2) + N2y (3,2)]
+(1 = 6r1) [ X (1,3) Cézr( )IXE,,(3,2) + N2, (3,2) + Ny (3,2)] ]
N (1,2) = [Xf;cqu,a i B2 (3)] - 05(3,2) + N3(3.2) + N9 (3.2)
0 [ X1, 3)etgi Bt (B)IN,(3,2) + N2 (3,2)] -
5k115k215k31{{Xfﬁqq C?qr( ) = p(3,2) + N23i(3,2) + N;3(3=2)}
0r1) [ X e (1,3 ozzr( JING;(3,2) + Ni3(3,2)]} (A21)
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N (1.2) = — [l (1L 3)elg s 20t (BN, (3.2)] (A22)

p\PqT e,qr cpsr

AF2
[t (1, 3)¢t55 = 5 (Cr(3) — 1)INE(3,2) = 6,106 (3,2)]

e,qr

+6k116k216k31{[p0;<1 3)> ozzx )N (3,2)]
+1p(1,3)5 <Cézr< >—1>|N,§3r<3 2) = 0,106(3,2)] }
NES o (1,2) = Ory10010051 { [ X1k o (1, 3)5 Lot (3)1X5,(3,2) + N5, (3,2) + N2y (3,2)] +

mnxj,pqr mc,q e,qr cnj cnxj pnj

(1=, )[X“( 3)50,(8)|X15,..(3,2) + N

9 T ear cng,r cnxzj,r

t
(3,2) + Nia,,(3,2)] +
mej,q €,qr cnx

(X001 350 BXG3,2) + Nt (3,2) + Na(3,2)] +

(1-9, )[th (1.3); Lot (3)1X5 (3,2) + N5, (3,2) + N (3, 2)|},

mC] €, qr cn,r cnx,r pn,Tr
(A23)

Nt1t3 (172) = 519115192151931{[th ( ) Cta ( )| _p23]_(3’2)_|_Nt3

mpj,pqr me,q e,qr cpj

(3,2) + Ni2(3,2)]
+(1 -4, >[X“< 3)= szx )INE;(3,2) + Nf3 (3,2)]
X (1.3)3 o <>|—p?<3,2>+N§;<3,2>+N;3<3,2>}+

(1-36, >[X:f,1q< >023qr< )INE,(3,2) + N2.(3,2)]} (A24)
Nyt ar(L, 2>=—6k116k216k31{[ (1, >czsqr< )N, (3,2)]
+[pi(1,3)5 <c;3qr< ) — 1IN (3.2) — 6.1085(3,2)]
+[oty (1, >cz3qr< )INE(3,2)]
+1el (1, ><c;zr<> 1)IN%,(3,2) = 6,105 (3,2)]} . (A25)

The values of the ffjl,;kz’k3 coeflicients are given in Ref. [41].
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nlj 120 16() 001, 4801y 208pt,
fi Jo fe| 1 fo fe| L fa fe| i fa fe| i fa fo
Ls1/2 | 0.96 0.95 0.91] 0.95 0.90 0.85/ 0.93 0.84 0.78| 0.94 0.85 0.78] 0.93 0.83 0.77
Ipg/p | 0.96 0.96 0.94| 0.96 0.93 0.89| 0.95 0.87 0.82| 0.95 0.87 0.81| 0.94 0.83 0.77
1p1/2 0.96 0.93 0.89| 0.95 0.87 0.81| 0.95 0.83 0.80| 0.94 0.83 0.77
1ds o 0.96 0.90 0.86| 0.96 0.90 0.85( 0.94 0.84 0.79
2812 0.96 0.92 0.87| 094 0.92 0.86| 0.94 0.86 0.80
1ds /o 0.95 0.90 0.85| 0.96 0.90 0.84| 0.94 0.84 0.79
Lf7/2 094 0.86 0.81
2p3/9 0.95 0.87 0.82
Lfs/2 0.95 0.86 0.80
2p1/2 0.95 0.87 0.82
1gg/2 0.95 0.88 0.83
Lg7/2 0.94 0.88 0.82
2d5 9 0.95 0.89 0.83
1hy1/2 094 090 0.86
2d3 /9 0.95 0.89 0.83
3812 0.95 0.90 0.85
TABLE I: Proton spectroscopic factors of the 12C | 160 |, 4Ca | 8Ca and 2°®Pb nuclei. We present

the results obtained by using the scalar correlation only (f1), the first four operator channels of

the correlation (f4) and the full correlation operator (fs).
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nlj

Is12
1p3 /o
1p1y2
Lds
2812
1d3 /9
Lf7)2
2173/2
1f5)2
2p1 /2
199/2
1g7/2
2d5 /o
1hy1/2
2d3/9
3s1/2
2f7/2
Lhg /o
2fs5/2
3p3/2
Liyz/2

3p1/2

h

120
fa

160
fe | f1 [fa

0.96 095 0.91] 0.95 0.90

0.96 096 0.94] 0.96 0.93

0.96 0.93

fe
0.85
0.89
0.89

h
0.93

0.95
0.95
0.96
0.96
0.95

400&
fa
0.84
0.87
0.87
0.90
0.92
0.90

fe
0.78

0.82
0.81
0.86
0.87
0.85

h
0.93

0.94
0.94
0.95
0.95
0.95
0.95

480&
fa
0.86
0.88
0.88
0.90
0.92
0.90
0.94

fo
0.80

0.83
0.82
0.86
0.87
0.86
0.91

h
0.92

0.93
0.93
0.93
0.93
0.93
0.94
0.94
0.93
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.95
0.94
0.95
0.95
0.94
0.95

208pt,
fa
0.85
0.85
0.85
0.86
0.88
0.86
0.88
0.89
0.88
0.89
0.90
0.90
0.91
0.93
0.90
0.92
0.93
0.92
0.93
0.94
0.93
0.94

s
0.80
0.80
0.80
0.82
0.84
0.82
0.84
0.85
0.84
0.85
0.86
0.86
0.87
0.89
0.87
0.88
0.90
0.88
0.90
0.90
0.90
0.90

TABLE II: The same as Tab. I for neutron states.
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FIG. 1: The proton one-body density matrix, p(ri,7]), for the 2°*Pb nucleus in FHNC/SOC

approximation, calculated for 611,=0. The diagonal part p(ry,r1) is the proton density distribution.
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FIG. 2: The difference p,(r1,7]) — p(r1,7}), between the proton IPM one-body density matrix of
the 2°8Pb nucleus, and that obtained with our FHNC/SOC calculations. The two density matrices,

have been calculated for 611:=0. Note that the scale here is ten times larger than that of Fig. 1.
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FIG. 3: The proton momentum distributions of the 2C , 160 | 40Ca , 48Ca and 2°®Pb nuclei
calculated in the IPM model, by using the scalar correlations only (fi) and the full operator

dependent correlations (fs).
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FIG. 4: The proton momentum distributions of the %0 and 2°®Pb nuclei multiplied by k2. The
full lines show the IPM results, the dotted lines have been obtained by using scalar correlations

only, and the dashed lines with the complete correlation.
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FIG. 5: Proton (full lines) and neutron (dashed lines) momentum distributions of the 4*Ca and

208P} . The thick lines show the results of our calculations, the thin lines the IPM results.
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FIG. 6: Proton momentum distribution of 0O in various approximations. The thick lines are
those of the analogous panel of Fig. 3. The thin lines have been obtained by using the first-order

expansion method of Ref. [35].
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FIG. 7: Occupation numbers of the proton natural orbits of the Ca nucleus. The dashed line
indicates the IPM values. The black bars show the values obtained with the scalar corrrelation

and the gray bars those values obtained with the full correlation.
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FIG. 8: The same as Fig. 7 for the occupation numbers of the neutron natural orbits of the *¥Ca

nucleus.
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FIG. 9: Natural orbits for some neutron states in *®Ca . The full lines show the IPM orbits, the
dotted lines those obtained with scalar correlations only and the dashed lines those obtained with

the complete operator dependent correlation.
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FIG. 10: Proton spectroscopic factors of the 2®Pb nucleus as a function of the separation energies.
The black points show our results, and the white diamonds the empirical values extracted from

(e,e’p) experiments [12].
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FIG. 11: Proton 3s;/; and neutron 3p; /5 quasi-hole functions, squared, of the 208ph nucleus. The

various lines show the results obtained by using different type of correlations.
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FIG. 12: Differences between charge density distributions of 2°Pb and 2°°T1. See the text for the

explanation of the various lines.
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