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Abstract

The formalism of the Continuum Random Phase Approximation theory which treats, without
approximations, the continuum part of the single particle spectrum, is extended to describe charge-
exchange excitations. Our approach is self-consistent, meaning that we use a unique, finite-range,
interaction in the Hartree-Fock calculations which generate the single particle basis and in the
Continuum Random Phase Approximation which describes the excitation. We study excitations
induced by the Fermi, Gamow-Teller and Spin-Dipole operators in doubly magic-nuclei by using
four Gogny-like finite-range interactions, two of them containing tensor forces. We address our
attention on the importance of the correct treatment of the continuum configuration space, and

on the effects of the tensor terms of the force.

PACS numbers: 21.60.Jz; 25.40.Kv



I. INTRODUCTION

The understanding of the astrophysical nucleosynthesis, especially that induced by r-
processes, requires the knowledge of charge-exchange excitations also in unstable nuclei
which, at least at the moment, have not been experimentally investigated [1]. For this
reason, there is a remarkable effort to construct nuclear structure models that can be applied
in all the regions of nuclear chart, even to those nuclei where the experimental information
is absent.

The Random Phase Approximation (RPA) theory [2], is one of the approaches more
often used to describe nuclear collective excitations, and the original formulation for its
application to nuclear systems [3] has been extended to study charge-exchange excitations
[4-7]. The largest part of the first applications of the RPA used phenomenological inputs.
In the spirit of the Landau-Migdal theory of finite Fermi systems [8], the parameters of
the mean-field potential, generating single particle (s.p.) wave functions and energies, and
those characterizing the interaction were suitably chosen to reproduce some experimentally
known properties of the nucleus under study. Despite its success [9-11], the application of
this phenomenological approach is limited to those nuclei whose ground state properties are
experimentally known.

The so-called self-consistent approaches overtake these limitations. The s.p. wave func-
tions and energies are produced by Hartree-Fock (HF) calculations which use the same
effective interaction employed in the RPA. The only input here is the effective interaction,
and the values of the parameters characterizing the force are chosen once forever in a global
fit of ground state properties involving a large set of nuclei distributed in the various regions
of the nuclear chart [12]. Once the force parameters have been selected by the fit proce-
dure, the self-consistent calculations are parameter free and they can be applied to evaluate,
and predict, the properties of every nucleus, independently of the experimental information
about it.

Self-consistent studies of charge-exchange excitations have been conducted mainly with
zero-range interactions of Skyrme-type [13, 14]. Recently, these interactions have been imple-
mented with tensor terms, and the effects of these new terms on charge-exchange excitations
have been studied [15-20]. Zero-range effective interactions have the great merit of simpli-

fying the calculations. There are however various drawbacks in their use, many of them



discussed already in Ref. [21] where the D1 parameterization of the finite-range Gogny
interaction was proposed.

From the physics point of view, the present article is the natural continuation of the work
of Ref. [22] where we presented results of charge-exchange responses calculated within the
HF plus RPA (HF+RPA) framework with finite-range interactions. In that work, the s.p.
configuration space was artificially discretised by setting boundary conditions at the edge of
the radial integration box in the HF calculation. The RPA calculations were carried out by
using this discrete s.p. configuration space whose dimensions are large enough such as the
results obtained are independent on the eventual enlargement of this space. We call discrete
RPA (DRPA) this type of calculations.

In Ref. [22] we applied our DRPA model to study charge-exchange excitations in **Ca,
9071 and 2°*Pb nuclei, and we obtained satisfactory results in the description of the exper-
imental centroid energies of these excitations. Since part of the charge-exchange strength
lies above the particle emission threshold, we are wondering whether the use of a discrete
configuration space could affect our results. This worry is more relevant for neutron rich
nuclei where the particle emission threshold is lower than in the doubly-closed shell nuclei
we had investigated.

From the theoretical point of view the present work is the natural extension of Ref. [23]
where we introduced an RPA formalism that fully considers the continuum s.p. configuration
space in the description of charge-conserving excitations. In the present article, for the
reasons discussed above, we extend this continuum RPA (CRPA) method to the description
of charge—exchange excitation modes. To the best of our knowledge, these are the first self-
consistent CRPA calculations for charge-exchange excitations carried out with finite-range
interactions.

In Sec. IT we present the set of equations which defines our HF+CRPA model for charge-
exchange excitations. The technical details of the calculations and the effective interactions
used in our investigation are described in Sec. III. In Sec. IV we show, and discuss, the
results we have obtained by applying our model to a set of medium-heavy nuclei, and we
address particular attention to the role played by the tensor force. Finally, in Sec. V we

summarize the main results of our investigation and we draw our conclusions.



II. THE MODEL

The CRPA formalism presented in Refs. [23-27] is constructed to handle the continuum
s.p. configuration space without approximation, even when finite-range interactions are
used. Its extension to charge-exchange excitations does not require new hypotheses, or
approximations, however it is not straightforward and it deserves to be presented with some
detail.

The basic idea of our formalism is to rewrite the usual RPA secular equations [28], where
the unknown variables are the X and Y amplitudes, in terms of new unknowns called channel

functions defined as
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The definition of the f and ¢ functions is given by the ﬁrst equalities where the symbol
j indicates the sum on discrete s.p. energies and the integration on the continuum part
of the spectrum, and R, is the radial part of the particle wave function. The label pyhy
indicates the elastic channel, defined as the specific channel where the particle is emitted.
The number of elastic channels does not, usually, coincide with that of the particle-hole (ph)
pairs, since the particle channel must be open; in other words, in an elastic channel the
energy of the particle state must be positive, i.e. in the continuum. This implies that the
excitation energy w of the full system must be larger, in absolute value, than the energy of
the hole state ¢;,. The CRPA equations are solved by imposing, every time, that the particle
is emitted in a different elastic channel.

The second equalities of Egs. (1) and (2) indicate that, in our approach, we expand the
channel function on a basis. Specifically, we use a set of orthonormal Sturm functions [29]
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In Egs. (1) and (2) the superscripts 4+ and — indicate that the Sturm functions are calculated

for €, = €, + w or €, = €, — w, respectively, and we have dropped the explicit dependence

on the open channel label pohg of all the cgh expansion coefficients to simplify the writing.



The charge-exchange excitations can be classified as isospin lowering T_, when the hole
is a neutron and the particle is a proton, and isospin rising T, in the opposite case. We use
the convention of indicating with 7 and v a proton and a neutron state, respectively, and
with a bar a hole state. Therefore, we have 77 pairs in T_ | and v7 pairs in T excitations.

We show in the Appendix A that charge-exchange CRPA (pn-CRPA) secular equations

for T_ excitations can be expressed as
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The explicit expressions of the A and B interaction matrix elements of the above equations
are given in Appendix A, where it is shown that they depend on the excitation energy. Since
Egs. (4) and (5) are, separately, inhomogeneous sets of linear algebraic equations, they have
solutions, different from the trivial one, for each value of w above the nucleon emission
threshold. As already stated, these equations are solved for each elastic channel, whose
number is always equal to that of the open channels. The knowledge of the expansion

coefficients ¢#* allows us to reconstruct the channel functions, as indicated by Egs. (1)

and (2). In particular, for a T_ excitation we have ¢/ ,JL = ¢!, = 0, therefore only f7o%°
and g’r,oi’,o are different from zero. On the contrary, if the reaction is of T, type, we have
it = !, =0, consequently only f“7° and g*7° are different from zero.

For a given excitation energy, and for each elastic channel, the full set of CRPA function
channels f and g allows us to calculate the nuclear response induced by an external operator

QNE T In our calculations, we consider one-body operators of the form
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where the dependence on the radial, angular-spin, and isospin quantum numbers is factor-

ized. For the transition matrix element we obtain the expression
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where with the double bar we indicate the reduced matrix elements, as defined in [30].
In the previous equations we used t+ = 74/2 where 7, and 7_ are the isospin operators
transforming, in our convention, a proton into a neutron and vice versa.

In the present work we consider the Fermi (N = F),

and the Gamow-Teller (N = GT),

A A
AR Z ou(i)t=(i) = Vir Z[Yo(i)®0(i)]}wti(i), (9)

operators that excite 0 and 17 states, respectively. In the above equation we have indicated
with Y} the spherical harmonics and with o the Pauli matrix operator acting on the spin
variable. The symbol ® indicates the usual tensor product between irreducible spherical
tensors [30].

Finally, we have also studied the excitations induced by the spin dipole (N = SD) operator

A
Q5 = D riM@) @ o (@)l te(i), (10)
i=1
which excites the multipoles 07, 1~ and 2. In this case, we calculate the strength functions
corresponding to each individual multipolarity and also the total SD strength
P (W) = Z 0 (w) . (11)
JI=0-,1- 2~
In our study we have verified the sum rule exhaustion, an important tool to investigate

the global properties of the charge-exchange excitations. For this purpose, we have defined

the sum rule exhaustion function
SR (w) = / du TN (') (12)
0

We also found convenient to formulate the sum rules in terms of energy moments defined

as
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According to these expressions, we define the centroid energy of an excitation induced by

the N-type operator as

m
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In the case of the SD transitions, we have calculated the centroid of the distributions of the

individual multipolarities

spe i) (17)
cen,J1I mo(l—\ilgzl:) ’

and also their corresponding variances. We carried out the numerical evaluations of Eq.
(14) in a restricted energy range of which we shall indicate the minimum (F.), and the

maximum (E-) values.

ITI. DETAILS OF THE CALCULATIONS

The only input required by our self-consistent approach is the effective nucleon-nucleon

force. In our calculations we consider a two-body NN interaction of the form
V(i) =Y ulr — 1) OF, (18)
U

where v, are scalar functions of the distance between the two interacting nucleons, and O”

indicates the type of operator dependence
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In the above expression we have indicated with 7 the Pauli matrix operator acting on the

isospin variable, with s;; the total spin of the interacting nuclear pair, with 1;; its orbital

angular momentum, and with
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the usual tensor operator. The terms n = 7,8 include the spin-orbit contributions of the

S(i,) =

—o(i)-a(j) (20)

force.



In this work we carried out calculations with four Gogny-like interactions: the D1M force
[31], the more traditional D1S [32] parameterization, and also with other two forces D1IMT2c
and D1ST2c [22] which we built by adding tensor terms to the two basic parameterizations.

For complete self-consistent calculations, also the Coulomb and spin-orbit terms of the
interaction should be considered in both steps of our approach, the HF and the CRPA
calculations. The Coulomb term is obviously not active in charge-exchange excitations.
The spin-orbit term is neglected in our CRPA calculations. We have recently studied the
relevance of these two terms of the interaction in charge-conserving HF+DRPA calculations
and we found that their contribution is very small [33].

The first step of our calculations consists in constructing the s.p. basis by solving the HF
equations with the bound-state boundary conditions at the edge of the discretization box.
The technical details concerning the iterative procedure used to solve the HF equations for a
density-dependent finite-range interaction can be found in Refs. [34, 35]. In our HF+CRPA
formalism, we solve the HF equations only for those states under the Fermi surface.

The second step is the solution of the CRPA equations. The formalism developed in the
previous section leads to a set of algebraic equations whose unknowns are the expansion

coefficients ¢&. The number of coefficients, and therefore the dimensions of the complex

ph'
matrix to diagonalize, is a numerical input of our approach. Since the expansion on a
basis of Sturm functions is a technical artifact, the solution of the CRPA secular equations
must be independent of the number of expansion coefficients. We tested the convergence of
our results by controlling the values of the total photoabsorption cross section in °O and
40Ca nuclei. We reached the stability up to the fifth significant figure with 10 expansion
coefficients, independently of the multipolarity and of the energy of the excitation [25].
With this HF4+CRPA model, we have carried out calculations for the 2C, 160, 220, 240,

40Ca, ¥8Ca, *°Ni and ®®Ni. In these nuclei the hole s.p. levels are fully occupied and this

fact eliminates deformations and minimizes pairing effects.

IV. RESULTS

In this section we present some results obtained in our investigation of charge-exchange
excitations induced by the F, GT, and SD operators in the aforementioned nuclei. We shall

be concerned about the part of the strength lying above the emission particle threshold.



We give in Table I the energy thresholds for proton and neutron emission, for the various
nuclei we have considered in the present work. In our model, these values are those of the s.p.
energies of the last occupied level. By using the physical interpretation of s.p. energies given
by the Koopman’s theorem [28], we have calculated the experimental values as difference
between the binding energies of the indicated nucleus and those of the nuclei with a nucleon
less. The binding energies have been taken from the compilations of Refs. [36, 37]. This
comparison with the experimental values gives an idea of the level of accuracy of our mean-
field model in the description of measured quantities. The quality of our approach in the
description of the ground state properties of the nuclei under investigation is discussed in
detail in Ref. [38].

Before discussing the RPA results, we point out some features of our approach related to
the need of the proper treatment of the continuum part of the s.p. configuration space. All
the calculations have been carried out by using the four interactions presented in Sect. III,
but, to simplify the discussion, we present here only the results obtained with the D1M and
D1MT2c forces, since the results obtained with the other two forces do not show relevant
differences.

We show in Fig. 1 the strength function for the T_ excitation of the 0~ state induced
by the SD operator in Q. This is a typical situation we have encountered. The full line
represents the CRPA results obtained with the D1M interaction, and all the other lines the
DRPA results folded with a Lorentz function of 3 MeV width. The various lines show the
sensitivity of the DRPA results to the choice of the maximum energy of the s.p. configuration
space, €max. Lhe figure clearly shows that the convergence of the DRPA results is reached
already for €,,x = 40 MeV. The folding of the DRPA results cannot reproduce the smooth
behaviour of the CRPA strength above 20 MeV.

The limitations of the folding procedure are clarified in Fig. 2 where we show the results
related to all the multipole excitations induced by the SD operator in the 2*O nucleus. In this
figure, we indicate the original DRPA results, at convergence, with dotted vertical lines, to be
compared with the full black curves representing the CRPA results. For each multipolarity,
the position of the DRPA main peaks coincides with the maxima of the CRPA results. The
two descriptions are rather similar in the lower energy region, but above 20 MeV, the DRPA
produces peaks, while the CRPA responses have a rather smooth behaviour. These peaks

are clearly a consequence of the use of discrete s.p. basis.
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The dashed red lines of the figure have been obtained by folding the DRPA with Lorentz
functions. In the left panels the results have been obtained by using a width of 3 MeV,
chosen to reproduce at best the CRPA 0~ response, while in the right panels the width is of
1.2 MeV because this value is more adequate to reproduce the CRPA 2~ response. The first
choice generates a too large smoothing for the 2~ state, which is the dominant contribution,
therefore the total SD™ response is much more spread than that of the CRPA. The second
choice produces a global strength more similar to that of the CRPA, but fails in describing
the CRPA results of the 0~ and 1~ excitations.

After having clarified the relation between the DRPA and CRPA results, we shall discuss,
in the following order, the GT, F and SD excitations of the nuclei under investigation.
In an extreme Indipendent Particle Model (IPM), N = Z nuclei with all the spin-orbit
partner levels occupied cannot produce GT excitations. In our approach, which considers
1p-1h excitations only, the GT excitations for these nuclei are not prohibited but strongly
hindered. The GT strength measured in 'O [39] is about one order of magnitude larger
than our RPA strength. As pointed out in Ref. [40] only calculations considering, at least,
4p-4h excitations can produce the correct amount of strength.

In Fig. 3 we compare the results of our RPA calculations with the spectrum of °F
obtained in charge-exchange experiments on the 10 target [39, 41-43]. The order of mag-
nitude of the excitation energies is reproduced, but the detailed structure of this spectrum
is not well described. This requires the inclusion of excitations beyond the 1p-1h.

Our RPA calculations are more adequate for nuclei where the GT excitation is related
mainly to a 1p-1h excitation. We show in Fig. 4 the energy distribution of the T_ GT for
18(Ca. The experimental data are those of Ref. [44]. The full blue and dashed vertical lines
show the DRPA results for the D1M and D1MT2c forces, respectively.

The GT responses are dominated by the peaks shown in the main part of the figure.
The strengths in the region above these main peaks are much smaller. We present in the
inset of Fig. 4, the responses of the CRPA calculation in the region above 20 MeV, by
using a different scale. The CRPA results obtained with D1M and D1MT2c¢ interactions are
indicated by the full blue and dashed red curves, respectively.

The DRPA calculations exhaust the so-called Tkeda sum rule at 1% level for the DIMT2¢
force and much better, one part over 100 thousand, when the D1M interaction is used. For

each of the two interactions, the DRPA calculations generate two peaks. The peak located
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at the lower energy, below the emission particle threshold, is dominated by the transition
from the neutron 1f7,; level to the bound proton 1f7,; level. The second peak, whose
excitation energy is above the emission particle threshold, is dominated by the transition
from the neutron 1f7/, level to the proton 1fs,, level, which, in our calculations, is bound.
This kind of RPA solutions with energy eigenvalues in the continuum but dominated by
bound s.p. transitions are not well described by our CRPA formalism, tailored for the
continuum. A meaningful comparison between DRPA and CRPA results should be done in
the region beyond the two main peaks. In the region above 20 MeV, the DRPA and CRPA
total strengths are very similar. The global DRPA strength of the T_ GT transition for the
D1M interaction is 24.17. The contribution of the region above the main peak is 1.05 to
be compared with the CRPA integrated strength of 1.08. The agreement between DRPA
and CRPA results for the DIMT2c interaction is not so precise. The total DRPA T_ GT
strength is 24.04 of which 1.18 is beyond the main peak. In this region, the CRPA total
strength is 1.58.

The width of the experimental strength is much larger than that of the RPA calcula-
tions. We have already encountered this kind of problems in the comparison of our charge-
conserving CRPA results with total photoabsorption cross sections [23]. It is a common
feature of the RPA description of the giant resonances [45] and it is attributed to its in-
trinsic limitation of considering one-particle one-hole excitations only. It is evident that
the RPA strength needs a redistribution which will be provided by the inclusion of 2p-2h
degrees of freedom [46]. The results presented in the inset show a sudden increase of the
CRPA responses above the 35 MeV due to the opening of the channels related to the emis-
sion of neutrons from the 1s;/, s.p. level. This sharp peak of the CRPA response would be,
probably, smoothed by the inclusion of 2p-2h excitations.

The total experimental strength is 15.36 £ 2.16, corresponding to about 60% of the
theoretical strength only. The measurements stop at an excitation energy of about 30 MeV,
and our calculations indicate that there is GT strength above this energy. The presence of
strength above the maximum energy measured in the experiment is probably the explanation
of the missing GT strength. For example, analysis of the “°Zr (p,n) ®*Nb data [11] indicates
that all the GT strength is present in the excitation, much of it above the main peak.

The difference between the positions of the main peaks of the DRPA results in **Ca,
calculated with the D1IM and D1IMT2c forces is essentially due to the effect of the tensor
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force on the energy of the proton 1f5/, level. Otsuka and collaborators [47] pointed out that
the tensor force when acting on s.p. levels with different isospin lowers the energy of the
state with j = [ — 1/2 and increases that of the state with j = [ 4+ 1/2. In this case the
energy of the proton 1fs/, level is lowered, and that of the 1f7/5 is enhanced by the tensor
force. The RPA results shown in Fig. 4 are clearly affected by this effect. The energy of the
first excited state, where the main p-h transition is on the proton 1f7/, level, is increased,
while that of the second state, that with the 1f5/, level, is lowered. The effect of the tensor
force on the RPA calculation in itself is negligible as compared with the effect on the s.p.
energies.

The points discussed for the GT excitation in **Ca can also be considered for the *Ni nu-
cleus. We show in Fig. 5 the energy distribution of the T_ GT strengths obtained with our
DRPA and CRPA calculations and we compare them with the experimental data of Ref.
[48]. The meaning of the various lines is analogous to that of the previous figure.

Contrary to the *8Ca, the *Ni nucleus is a N = Z nucleus, and, differently from O and
40Ca , not all the spin-orbit partner levels are occupied. For this reason there are large GT
excitation strengths from the 1f7,, hole to the 1f5/, particle state, in both the neutron-
proton and proton-neutron cases. In effect the zero value predicted by the Ikeda sum rule
for the N = Z nuclei is obtained by subtracting the T_ and T, total strengths which are
of about 12, much larger than the values ~ 0.05 and ~ 0.1 we found in 'O and “°Ca |,
respectively.

Differently from the “8Ca case, we observe in Fig. 5 that also the CRPA strength dis-
tributions present large peaks coinciding with the main peaks of the DRPA results. This
is because the 1f5/; s.p. states are unbound for both protons and neutrons, independently
of the interaction, considered. Our CRPA formalism treats these states in the continuum,
even though they appear as sharp resonances and produce rather narrow peaks in the energy
distributions.

The comparison with the data indicates the need of considering in the calculations also
the spreading width. The integrated experimental strength is about 3.6, i.e roughly the
30% of our RPA strength. On the other hand, the results of the figure show that there is
considerable strength above the maximum measured energy. In our calculations this strength
is about 10% of the total one in both calculations with and without tensor. Finally, we should

recall that in our model *°Ni is a doubly closed shell nucleus, but there are indications that
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pairing effects could be relevant [49].

In analogy with what we have already discussed for the GT transitions, also the F tran-
sitions are hindered in N = Z nuclei. For nuclei with neutron excess the main peak is
concentrated in the transition between the occupied neutron s.p. state and the empty iso-
baric analog proton state. Our DRPA calculations identify strong 0" states at 3.35, 3.28,
6.96 MeV in 220 , 22O and “8Ca nuclei, respectively. All these states are below the continuum
energy threshold. Unfortunately, in the low-energy spectra of the ?F, *F and **Sc nuclei
these states have not been identified. In the nuclei with neutron excess we have investigated,
the T_ F strength allocated in the continuum region is less than 1% of the total one. For
the N = Z nuclei studied, all the T_ F strengths appear above the continuum threshold,
and their total values are comparable to those found in the continuum part of strength of
the nuclei with neutron excess.

As example of our results, we show in Fig. 6 the T_ F responses for the 2C , 60 ,
40Ca and %°Ni nuclei which have the same number of protons and neutrons. The responses
of the “°Ca and °Ni nuclei show two large peaks. These are due to the importance of
different particle-hole transitions in the RPA response. In °°Ni the lower energy peak is
characterized by a p-h pair related to the f7/5 s.p. states, while the peak at higher energy
by a p-h pair related to the ds/; hole. In the case of the 40Ca, both peaks are dominated by
the ds/5 p-h pair. The residual interaction in the RPA theory mixes this pair with the ds/,
p-h pair in the lower energy peak and with the p3/; p-h pair in the higher energy peak.

In the figure the full black lines show the F strenghts obtained with the D1M interaction
and the dashed red lines those found with D1MT2c. In this case, the tensor force does not
produce remarkable effects.

We show in Figs. 7, 8 and 9 the T_ SD strength distributions for all the nuclei we have
considered. We present separately the contribution of each multipole, and also the total
strength. As in the previous figures, the full black lines show the results obtained with the
D1M interaction, while the dashed red lines those obtained with D1MT2c. In these cases the
size of the strength is comparable with that obtained in DRPA calculations [22], since the
main part of the strength is above the particle emission threshold. All the cases investigated
indicate that the largest contribution to the total strength comes from the 27 excitation
which is about one order of magnitude larger than that of the 0™, but for the ®Ni nucleus

where it is, only, three times larger.
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The inclusion of the tensor force has a small influence on the 1~ and 2~ strength distribu-
tions, while the changes on the 0~ strength, the smallest one, are remarkable. In all the 0~
cases considered, the tensor force moves the peak of the resonance toward higher energies.
In order to present a more quantitative information of this effect, we show in Table II the
values of the centroid energies and of the variances of the 0~ main resonances shown in Figs.
7, 8 and 9. In general, the shift of the centroid energies is relevant and reaches a value of
about 9MeV, in the case of the 220, and ?*O nuclei. The effects on the variance, indicating
a larger spreading of the 0~ width, are significant only in the oxygen isotopes.

In our calculations with the D1MT2c interaction, the tensor is active on both HF and
RPA. In order to disentangle these two effects, in Fig. 10, we show the 0~ excitations for
all the nuclei we have investigated. The dashed red curves have been obtained by using the
DIMT2c interaction in both HF and CRPA calculations and coincide with those shown in
Figs. 7, 8 and 9. The solid black curves indicate the results obtained in CRPA calculations
by using the D1MT2c¢ interaction but with the HF s.p. wave functions generated with the
DIM force. The comparison between these results and the full lines of the 0~ excitations of
Figs. 7, 8 and 9, indicates that the effect of the tensor is mainly present in the RPA, rather
than in the modification of the s.p. wave functions.

A crucial test of the validity of the theoretical results is the exhaustion of the sum rules
obtained for the F, GT and SD excitations by evaluating Eq. (12) for large values of the
excitation energy, and comparing them with the expected values. In Ref. [22], we have
shown that our DRPA self-consistent approach satisfies the sum rules within the 0.1%. An
analogous test with the CRPA calculations is more difficult, since large part of the strength is
distributed below the emission particle threshold, where this approach is not applicable. For
this reason, we have added to the CRPA sum rule exhaustion functions (12), the contribution
of the DRPA below threshold and compared with the DRPA asymptotic values.

As example of this procedure, we show in Fig. 11 the results obtained with the three
multipole excitations of the SD operator for the 220 nucleus. The curves show the CRPA
sum rule exhaustion functions (12) as a function of w, the upper limit of the integral. The
full red curve has been obtained with the D1M interaction while the dashed red curve with
the D1IMT?2c interaction. The horizontal black lines indicate the asymptotic values we have
obtained with the analogous DRPA calculations.

The agreement between the results of the two calculations is remarkable, even though we
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observe a slight overshooting in the T, responses for 1~ and 27. For the 0~ multipolarity, the
asymptotic value is reached more quickly in the D1M case than in the D1MT2c one. This is
due to the shift of the peak of the resonance towards larger energy and to the bigger spreading
of the strengths when tensor terms of the interactions are active, as we have already stressed
and shown in Fig. 7 . It is remarkable the increase of the T_ and T, strengths generated
by the tensor term. We recall that the theoretical sum rule asymptotic value limiting the
strength is obtained as a difference between the T_ and T, strengths, which is conserved

in all the 0~ calculations, with or without tensor force.

V. SUMMARY AND CONCLUSIONS

We have extended the CRPA formalism of Ref. [23], which handles finite-range interac-
tions and continuum s.p. configuration space without any approximation, to the description
of charge-exchange excitations. In our calculations we used four Gogny-like finite-range in-
teractions, two of them containing tensor terms, and we applied our formalism to describe
the F, GT, and SD excitations in the 2C, 160, 220, 2*0, %°Ca, *®Ca, *°Ni and %®Ni nuclei.

The goals of our work were:

1. the presentation of the non trivial extension of the charge-conserving CRPA formalism

to treat charge-exchange excitations;
2. the comparison of CRPA results with those obtained in DRPA calculations;
3. the study of the effects of the tensor interaction in charge-exchange excitations, and
4. the comparison with the available experimental data.

Concerning the first goal, we have shown that it is possible to formulate the pn-CRPA
secular equations in a form which allows us to obtain simultaneous solution of proton-neutron
and neutron-proton excitations. This is analogous to the commonly used formulation of the
pn-DRPA [4], as it has been used, for example, in Ref. [22].

The comparison between CRPA and DRPA results has been carried out to test the
stability of the DRPA calculations against the dimensions of the s.p. configuration space.
We have obtained a very good agreement between the position of the DRPA peaks and that
of the maxima of the CRPA strength. For a given multipole excitation, by using a folding

16



procedure with a Lorentz function of appropriated width, we obtained agreement also with
the CRPA strength distribution. Furthermore, we have also verified that the two types of
calculations satisfy the sum rules with the same degree of accuracy.

We have pointed out the ambiguities of the folding procedure commonly used to generate
continuous responses out of DRPA solutions. We have shown that the three CRPA com-
ponents of the SD response cannot be simultaneously described by using a single Lorentz
function. Having established the agreement between CRPA and DRPA results, we are con-
fident on the use of DRPA calculations in situations where we cannot carry out CRPA
calculations. These are, for example, the cases of excitations below the particle emission
threshold, and the calculations for nuclei heavier than those treated in the present article.

Our formalism allows the use of effective nucleon-nucleon interactions of finite-range type
which include tensor terms. In Ref. [22] we presented charge-exchange results obtained with
the same interactions used here. The results shown in this reference have been obtained
within the DRPA framework. The present work can be considered to complement that of
Ref. [22] by considering the continuum.

The tensor force does not produce remarkable effects on the continuum part of the F
and GT strengths, which, for nuclei with neutron excess, is only a small part of the total
strength. The situation is different for the SD excitations whose strength develops mainly
in the continuum. We have analyzed the 07, 17 and 2~ multipoles composing the SD

responses for various nuclei and we found that the 27 excitation is the most important of
the three, dominating the total response. On the other hand, the 0~ strength is extremely
sensitive to the tensor term. Its inclusion in the CRPA calculations moves the maxima of
the 0~ responses towards higher energies. This shift is particularly remarkable in the oxygen
isotopes where we found changes of the centroid energies of up to 9 MeV, and a significant
widening of the width. We have verified that this large sensitivity of the 0~ to the tensor
force is mainly related to the RPA calculations, and not to the modifications of the s.p.
energies.

The last, fourth, goal of our work was the comparison with the available data, which
we have found mainly for the GT transitions. In our approach, which considers only 1p-1h
excitations, the GT excitations are strongly hindered in nuclei with equal number of protons

and neutrons and with spin-orbit partner levels fully occupied. The experimental strength

of 1%0 [39] is one order of magnitude larger than that of our CRPA calculations. Also the
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experimental spectrum of F obtained in charge-exchange experiments on the O target
[39, 41-43] is not described in detail by our approach, even though the order of magnitude of
the excitation energies is reproduced. These are indications of the need of including higher
order particle-hole excitations to improve the description of these data.

The comparison with the GT data in **Ca and 5°Ni shows the need of including the
spreading width to obtain a detailed description of the experiment. On the other hand, the
position of the main peaks of the resonance is rather well reproduced. The experimentally
measured strengths in these two nuclei satisfy only part of the sum rule. Our calculations
indicate that the G'T strength above the measured highest excitation energy is not negligible.
This finding is in agreement with the study of °Zr (p,n) “°Nb data [11], where, by considering
the strength lying beyond the main resonance, all the expected GT strength has been found.

Despite the limitations we have pointed out, our CRPA model, which considers all the
continuum s.p. space without the need of artificial cuts, is a further step towards the
construction of a parameter free mean-field approach describing nuclei in all the regions
of the nuclear chart. We do not aim to a detailed description of low-lying spectra and
strength distributions, however peak positions and global strengths can be well predicted by
our approach, which can be applied also to unstable nuclei. This offers a great potentiality
for the study of neutrino cross sections in the energy region around the emission particle

threshold, in analogy to what has been done in Ref. [50] for stable nuclei.

Appendix A: CRPA matrix elements.

In this Appendix we recall the basic equations of our CRPA formalism. A more detailed
description can be found in Refs. [23-25].
For each excited state |a) = |J,II,w), characterized by its total angular momentum J,

parity II and excitation energy w, we write a set of algebraic equations whose unknowns are
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the ¢/, expansion coefficients [24, 25]

> 2 {[é O (G — (@) UIDLT) + (@) TIWIT@L")

l'l‘ /h/

£ 3 Gl — en — ) (@) R (R 01

At

— (@) RV [Ra®lT) — (@) Ruel Voo, | 95T R ) | et

- (((@g‘*)*cbg,_|U1;];f;fh,|Rth/> - <(<1>g+)*<1>;;,—|U1;,’;§;§fh,|Rh,Rh>) (cg,;,)*} -

= (") Rao Voo B B (e90)) = (B ™) Rig [V | B (€00) Fin) (A1)

ph,poho

and

> {[5 e (Bua — (@7 IUIRLT) + (@) TIWTRL)

wo p'H
i Z Oip (€ — € + W) ((@;‘_)*|Ri><(Ri)*|¢g_>>

€;<€R

— (@) B Vi | Ra®) — (@) e Vi |80 R ) |

/h/

- (((53*)*55,+IU1;’,;‘};5M|Rth,> — (@7 @ﬂ*\U;;;jfh,|Rh,Rh>)( W)*} -

= ((B57)" Roo ()| Upfipono B Bno) = ((P7)" R (6p0) [ Uiy | Rio o) (A2)

D ph,poho

In the above equations we have indicated, respectively, as U and W the Hartree and Fock-
Dirac potentials as they are commonly defined in the HF formalism [28]. The symbols U
and V indicate the matrix elements of the nucleon-nucleon interaction, R the s.p. radial
wave function of a hole state of €, energy, and, R,(e,) the s.p. radial wave function of a,

continuum, particle state.
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We simplify the writing of Eqs. (A1) and (A2) by defining the following quantities:
At = By O (B — ((@FF)TUIRES) + (55) WL DLY)

+ Y b (e — o F ) (@55 R(R)|95%) )

€;<€p
— (@) Ru Vi [Ra®l) — (B35 Ruel Vs |80 R
B = (9 BET UG IRy Ry) — (R95) @UF UL | Ry Ry)

(
( (

Cph7p0h0 = <((I> +) Rho"/;;lidz;;ho’Rth()(Epo» <( ) Rho|VJeXC |Rpo<6p0)Rh> (A5
) — (

ph,poho
J,dir Jexc
Dphapoho = <((I) ) Po (EP0)|Uph p0h0|Rth0 <( ) RP0(6P0)|Uph p0h0|RhoRh> , (A6
and we obtain
Azftp’h’ _Bgfip’h’ Cﬁfﬁf _ Gph,poho ( A7)
—(Bhpn ) (A )™ | | (cpn)” (Dph,poho )"

where the sums over p and (p'h’) are understood.
In the case of charge-exchange excitations, the ph pairs may be either 77, for T_, or v,

for T,. The extended expression of Eq. (A7) is:

A A =B =BT T T Coone
Ay AL =B =Bl A | | Comaene A8)
(Bl ) (B (A (A ()] | (Daspon)”
(B ) —(B ) (A ) (A L@n)] [(Dompone)”.

The requirement of charge-conservation implies

A= = BrE = AP = BFE =0, (A9)

7TVV7T TV, TV | ISy VTI'VTI'

therefore Eq. (A8) reduces to

A 0 0 B[ dn ]| Coan
0 Aﬁ;r V7! _Bg;r,n/ﬁ’ 0 CZ'J%’ _ Cﬁ,poho ‘ ( Al())
0 —(Bowm) (Agem)” 0 ()" (Dr,poho)*
L~ (Bl )’ 0 0 (Ar,=)] Lzl [(Dimpono)

This equation can be separated in two matrix equations:

i;r 'y -B 7;:; v Ci';’ _ Cﬂﬁ,po ho ( Al 1)
(Bz/? a7 ) <A57:1/ f’>* (05’;’)* (DVﬁPOhO)*
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and

pt _ RAut Ht _
Auﬁ,u'ﬁ’ B vE, v Corzt _ er,poho ( A12)
M= * H— * M= \*x *
- (B oV T ) (Awﬁ,yr'ﬁ’ ) <C7r'§’ ) (D mv,poho )
For T_ transitions, the elastic channel is pohy = mo¥y and ¢, = ¢, = 0, therefore
only Eq. (A11) survives. For the T, transition, we have pohg = 197y and 7, = ¢, =0,

therefore only Eq. (A12) must be considered.
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proton

neutron

nucleus s.p. level DIM D1Mt2c exp

s.p. level DIM D1Mt2c exp

120

160y

22(y

240y
0Ca
BCa

56Ni

1p3 /o
1p1/2
1p1/2
Ip1/2
ld3z/o
ld3/o

Lf7)2

13.82
11.94
23.67
25.69
8.86
16.69
6.86

13.56
12.66
25.49
27.65
9.58
18.38
6.54

15.96
12.13
23.26
28.64
8.32
15.81
7.16

1p3 /o
1]91/2
Lds o
2512
Lds /o
Lf7/2
Lf7)2

16.36
15.14
6.38
4.11
15.74
9.33
16.00

16.09
15.88
6.80
4.07
16.49
9.72
15.67

18.72
15.66
6.67
4.19
15.65
9.94
16.62

Table I: Energy thresholds, in MeV, for proton and neutron emission of the nuclei considered in this

work. The experimental values have been obtained as explained in the text by using the binding

energies values taken from the compilations of Refs. [36, 37].
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Wi (MeV) V5P (MeV)

cen,0—

nucleus E. (MeV) Es (MeV) DIM DIMT2c¢ DIM DIMT2c

160 20.0 60.0 32.82 3645 7.00 7.34
20 16.7 60.0 26.35 35.28 7.57  8.67
240 15.0 60.0 24.18 3344 7.68 9.15
12¢ 29.6 60.0 38.67 43.62 7.38 7.64
40Ca 26.0 60.0 34.32 3757 5.68 5.80
48Ca 214 60.0 30.63 39.12 6.42 6.79
56N7i 30.0 60.0 39.43 45.36 5.86  5.69
68Ni 20.0 50.0 30.33 35.24 4.62  4.60

Table II: Values of the centroid energies and variances, as given by Eqgs. (17) and (16), respectively,
for the T_ SD, J = 0~ multipole excitations, for the DIM and D1MT2c interactions. We have

indicated with E- and E-, in MeV, the extremes of the energy integral in Eq. (14).
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[P~ (w) (MeV~! fm?)

Figure 1: The contribution of the 0~ multipole to the T_ SD response in 240, calculated in DRPA
for different values of the s.p cut off energy €n.x compared with the CRPA result shown by the

full black line. The DRPA results are folded with a Lorentz function of 3 MeV width.
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Figure 2: Energy distributions of the T_ SD strengths for the 24O nucleus obtained with the D1M
interaction. In the upper panels we show, separately, the strengths of the 07, 1~ and 27 excitations,
and in the two lowest panels, (g) and (h), their sums. The CRPA results are represented by the
black solid curves. The vertical dotted blue lines show the DRPA results that generate the dashed
red lines after a folding with a Lorentz function. The results obtained by using, in the folding
procedure, a 3 MeV width are shown in the left panels, i.e. the (a), (c), (e) and (g) panels, and

the results obtained with 1.2 MeV width are shown in the right panels.
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Figure 3: Spectrum of the '°F nucleus as obtained from charge-exchange experimental experiments

[39, 41-43]. The energies are referred to the °0O ground state.
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Figure 4: Energy distributions of the T_ GT strength for the “®Ca nucleus. The vertical lines
show the results of the DRPA calculations carried out with the DIM (full blue lines) and D1MT2c
(dashed red lines) interactions, respectively. The full blue and dashed red curves indicate the
CRPA results for the DIM and D1MT2c interactions, respectively. In the inset we show only the

CRPA results. The experimental data are taken from Ref. [44].
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Figure 5: Energy distributions of the T_ GT strength for the Ni nucleus. The meaning of the

lines is the same as that of Fig. 4. The data are taken from Ref. [48].
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Figure 7: Energy distributions of the T_ Fig(w) and TSP (w) strengths for 1°0 , 220 and 24O nu-

clei obtained in CRPA calculations.

The solid black curves have been obtained with the D1M

interaction while the dashed red curves with the D1MT2c¢ force.
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w (MeV)

Figure 10: Energy distributions of the T_ Fg_D (w) obtained in CRPA calculations for the various
nuclei studied. The dashed red curves correspond to the D1MT2c force. The solid black lines have

been obtained by using the D1M s.p. wave functions together with the D1MT2c¢ interaction in the
CRPA calculations.

35



------ DIMT2c

A
py A i
An 10 171+
o' L H - ! i
U) 0 1 1 L 1 L 1 I((—‘) 0 L] L | L 1 L (f)
0 20 40 60 80 20 40 60 80
w (MeV)

w (MeV)

Figure 11: SD sum rule exhaustion, as given by Eq. (12), obtained in CRPA calculations for
the 220 nucleus. Left (right) panels correspond to the T_ (T,) transitions. The full red curves
show the results obtained with the D1M force and the dashed red curves those obtained with the

D1MT2c force. The full and dashed horizontal black lines indicated the asymptotic values of the

analogous DRPA results taken from Ref. [22].
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