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Abstract

Superscaling properties of 12C , 16O and 40Ca nuclear responses, induced by electron and neutrino

scattering, are studied for momentum transfer values between 300 and 700 MeV/c. We have defined

two indexes to have quantitative estimates of the scaling quality. We have analyzed experimental

responses to get the empirical values of the two indexes. We have then investigated the effects

of finite dimensions, collective excitations, meson exchange currents, short-range correlations and

final state interactions. These effects strongly modify the relativistic Fermi gas scaling functions,

but they conserve the scaling properties. We used the scaling functions to predict electron and

neutrino cross sections, we tested their validity by comparing them with the cross sections obtained

with a full calculation. For electron scattering we also made a comparison with data. We have

calculated the total charge-exchange neutrino cross sections for neutrino energies up to 300 MeV.
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I. INTRODUCTION

The properties of the Relativistic Fermi Gas (RFG) model of the nucleus [1–3] have

inspired the idea of superscaling. In the RFG model, the responses of the system to an

external perturbation are related to a universal function of a properly defined scaling variable

which depends on the energy and from the momentum transferred to the system. With the

adjective universal we want to indicate that the scaling function is independent on the

momentum transfer, and also on the number of nucleons. These properties are respectively

called scaling of first and second kind. Furthermore, the scaling function can be defined in

such a way to result independent also on the specific type of external one-body operator.

This feature is usually called scaling of zeroth kind [4–6]. One has superscaling when the

three kinds of scaling we have described are verified. This happens in the RFG model.

The theoretical hypothesis of superscaling can be empirically tested by extracting re-

sponse functions from the experimental cross sections and by studying their scaling be-

haviours. The responses of the nucleus to electroweak probes can be extracted from the

lepton-nucleus cross sections by dividing them by the single-nucleon cross sections properly

weighted to account for the number of protons and neutrons. In addition, one has to divide

the obtained responses by the adequate electroweak form factors.

Inclusive electron scattering data in the quasi-elastic region have been analyzed in this

way [4, 7, 8]. The main result of these studies is that the longitudinal responses show

superscaling behaviour. To be more specific, scaling of second kind, independence on the

nucleus, is better fulfilled than the scaling of first kind, independence on the momentum

transfer. The situation for the transverse responses is much more complicated.

The presence of superscaling features in the data is relevant not only by itself, but mainly

because this property can be used to make predictions. In effect, from a specific set of

longitudinal response data [9], an empirical universal scaling function has been extracted [4]

and has been used to obtain neutrino-nucleus cross sections in the quasi-elastic region [5].

We observed that this universal scaling function is quite different from that predicted by

the RFG model. This indicates the presence of physical effects not included in the RFG

model, but still conserving the scaling properties. We have investigated the superscaling

behaviour of some of the effects not considered in the RFG model. They are: the finite size

of the system, its collective excitations, the Short-Range Correlations (SRC), the Meson
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Exchange Currents (MEC) and the Final State Interactions (FSI). The inclusion of these

effects produce scaling functions rather similar to the empirical ones.

Before presenting our results, we recall in Sec. II the basic expressions of the superscaling

formalism. We show how the scaling functions are related to the electromagnetic and weak

response functions, and to the inclusive lepton scattering cross sections.

In Sec. III we discuss the scaling properties of our nuclear models. To quantify the

quality of the scaling between the various functions obtained with different calculations, we

define two indexes, R and D. From the data of Ref. [9] we extract empirical reference values

of these two indexes which indicate if scaling has occurred. From the same set of data we

also extract an empirical universal scaling function. We analyze the scaling properties of all

the effects beyond the RFG model, by comparing the values of the two indexes R and D
of the theoretical scaling functions with the empirical ones. We choose a theoretical scaling

function obtained by including all the effects considered as a theoretical universal scaling

function.

In Sec. IV we study the prediction power of the superscaling hypothesis. Our univer-

sal empirical and theoretical scaling functions are used to calculate electron and neutrino

inclusive cross sections. These results are compared with those obtained by calculating

the same cross sections with our nuclear model. We discuss results for double differential

electron scattering processes, and compare our cross sections with experimental data. We

calculate also total neutrino cross sections for neutrino energies up to 300 MeV. In Sec. V

we summarize our results and present our conclusions.

II. BASIC SCALING FORMALISM

Scaling variables and functions have been presented in a number of papers [1, 4–8, 10–

13]. The purpose of this section is to recall the expression of the scaling variable used in our

study and the relations between scaling functions, responses and cross sections.

In this work we have considered only processes of inclusive lepton scattering off nuclei. We

have described these processes in Plane Wave Born Approximation and we have neglected the

terms related to the rest masses of the leptons. In this presentation we indicate respectively

with ω and q the energy and the momentum transferred to the nucleus.

In the RFG model the scaling variables and functions are related to the two free pa-
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rameters of the model: the Fermi momentum kF and the energy shift Eshift. We define the

quantity:

Ψ0 =
2m

kF





√

(

ω − Eshift

2m

)(

1 +
ω − Eshift

2m

)

− q

2m



 , (1)

where q ≡ |q|, and m = (mp + mn)/2 indicates the average nucleon mass. The scaling

variable is then defined as:

Ψ = Ψ0



1 + Ψ0
kF

2q

√

q2

m2
+ 1



 . (2)

The RFG model provides a universal scaling function which can be expressed in terms of

the scaling variable Ψ as [5, 6]:

fRFG(Ψ) =
3

4

(

1 − Ψ2
)

θ
(

1 − Ψ2
)

, (3)

where θ(x) indicates the step function. The RFG scaling function (3) is normalized to unity.

In the electron scattering case, the inclusive double differential cross section can be written

as [14]:

d2σ

dθ dω
= σM

{

(ω2 − q2)2

q4
RL(ω, q) +

[

tan2

(

θ

2

)

− ω2 − q2

2q2

]

RT(ω, q)

}

, (4)

where θ is the scattering angle, σM is the Mott cross section, and we have indicated with RL

and RT the longitudinal and transverse responses, respectively defined as:

RL(ω, q) = 4π
∑

J=0

|〈Jf ||CJ ||Ji〉|2 , (5)

and

RT(ω, q) = 4π
∑

J=1

(|〈Jf ||EJ ||Ji〉|2 + |〈Jf ||MJ ||Ji〉|2) . (6)

In the above equations we have indicated with |Ji〉 and |Jf〉 the initial and final states of the

nucleus characterized by their total angular momenta Ji and Jf . The double bars indicate

that the angular momentum matrix elements are evaluated in their reduced expressions,

as given by the Wigner-Eckart theorem [15]. We have indicated with CJ , EJ and MJ

respectively the Coulomb, electric and magnetic multipole operators [14, 16].

The scaling functions are obtained from the electromagnetic responses as:

fL(Ψ) = kF
q2 − ω2

q m

RL(ω, q)

Z(Gp
E)2 +N(Gn

E)2
, (7)

fT(Ψ) = 2 kF
q m

q2 − ω2

RT(ω, q)

Z(Gp
M)2 +N(Gn

M)2
, (8)
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where Z and N indicate, respectively, the number of protons and neutrons of the target

nucleus, and we have indicated with Gp,n
E,M the electric (E) and magnetic (M) form factors of

the proton (p) and the neutron (n). In our calculations we used the electromagnetic nucleon

form factors of Ref. [17]. In Eq. (8) only the magnetic nucleon form factors are present.

This implies the hypothesis that in RT only the one-body magnetization current is active.

In the range of momentum transfer values investigated, from 300 to 700 MeV/c, we found

that the contribution of the convection current is of few percents that of the magnetization

current.

Since our calculations are done in a non relativistic framework, we have modified our

responses by using the semi-relativistic corrections proposed in [6, 18]:

ǫ → ǫ
(

1 +
ǫ

2m

)

, (9)

RL(q, ω) → q2

q2 − ω2
RL(q, ω) , (10)

RT(q, ω) → q2 − ω2

q2
RT(q, ω) , (11)

where ǫ indicates the energy of the emitted nucleon.

The above discussion can be extended to the case of the inclusive neutrino scattering

processes. For example, for the (νe, e
−) reaction we express the differential cross section as

[19–21]:

d2σ

dΩdω
=

G2 cos2 θC
(2π)2

|kf | ǫf F (Z ′, ǫf)

{(

l0l
⋆
0 +

ω2

q2
l3l

⋆
3 −

ω

q
l3l

⋆
0

)

RV
CC(ω, q)

+ l0l
⋆
0 R

A
CC(ω, q) + l3l

⋆
3 R

A
LL(ω, q) + 2 l3l

⋆
0 R

A
CL(ω, q)

+
1

2

(

~l ·~l⋆ − l3l
⋆
3

) [

RV
T(ω, q) +RA

T(ω, q)
]

− i

2

(

~l ×~l⋆
)

3
RV A

T′ (ω, q)
}

. (12)

In the above equation we have indicated with G the Fermi constant, with θC the Cabibbo

angle, with ǫf and kf the energy and the momentum of the scattered lepton and with F (Z ′, ǫf)

the Fermi function taking into account the distortion of the electron wave function due to

the Coulomb field of the daughter nucleus of charge Z ′. The expressions of the factors lil
⋆
i ,

related only to the leptons variables, are given in Refs. [19–21].

The nuclear response functions are expressed in terms of multipole expansion of the

operators describing the various terms of the weak interaction. They are the Coulomb

CJ , longitudinal LJ , transverse electric EJ and transverse magnetic MJ operators. The
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responses are defined as:

RV
CC(ω, q) = 4π

∑

J=0

|〈Jf ||CV
J ||Ji〉|2 , (13)

RA
CC(ω, q) = 4π

∑

J=0

|〈Jf ||CA
J ||Ji〉|2 , (14)

RA
CL(ω, q) = 2π

∑

J=0

(

〈Jf ||CA
J ||Ji〉⋆〈Jf ||LA

J ||Ji〉 + 〈Jf ||CA
J ||Ji〉〈Jf ||LA

J ||Ji〉⋆
)

, (15)

RA
LL(ω, q) = 4π

∑

J=0

|〈Jf ||LA
J ||Ji〉|2 , (16)

RV
T(ω, q) = 4π

∑

J=1

(

|〈Jf ||EV
J ||Ji〉|2 + |〈Jf ||MV

J ||Ji〉|2
)

, (17)

RA
T(ω, q) = 4π

∑

J=1

(

|〈Jf ||EA
J ||Ji〉|2 + |〈Jf ||MA

J ||Ji〉|2
)

, (18)

and

RVA
T′ (ω, q) = 2π

∑

J=1

(

〈Jf ||EV
J ||Ji〉⋆〈Jf ||MA

J ||Ji〉 + 〈Jf ||EV
J ||Ji〉〈Jf ||MA

J ||Ji〉⋆+

〈Jf ||EA
J ||Ji〉⋆〈Jf ||MV

J ||Ji〉 + 〈Jf ||EA
J ||Ji〉〈Jf ||MV

J ||Ji〉⋆
)

, (19)

where we have separated the vector (V) and the axial-vector (A) contributions.

We found that the terms related to the axial-Coulomb operator CA
J give a very small

contribution to the cross section, and, in our study, we neglected them. This means that

our scaling analysis has been done for the RV
CC, RA

LL, RV
T, RA

T and RVA
T′ responses only. The

corresponding scaling functions have been defined as:

fV
CC(Ψ) = kF

q2 − ω2

q m

RV
CC(ω, q)

N(G
(1)
E )2

, (20)

fA
LL(Ψ) = 4 kF

q m

4m2 + q2 − ω2

RA
LL(ω, q)

N(GA)2
, (21)

fV
T (Ψ) = 2 kF

q m

q2 − ω2

RV
T(ω, q)

N(G
(1)
M )2

, (22)

fA
T (Ψ) = 2 kF

q m

4m2 + q2 − ω2

RA
T(ω, q)

N(GA)2
, (23)

fVA
T′ (Ψ) = 2 kF

q m√
q2 − ω2

√
4m2 + q2 − ω2

RVA
T′ (ω, q)

NG
(1)
M GA

, (24)

where we have indicated with G
(1)
E,M the isovector electric (E) and magnetic (M) nucleon form

factors, and with GA the axial-vector one. We have used the electromagnetic form factors
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of Ref. [17], and the dipole form of the axial vector form factor with an axial mass value of

1030 MeV.

The relativistic effects are taken into account by using semi-relativistic corrections similar

to those of Eqs. (9)-(11). In this case the responses are obtained by doing the following

changes with respect to the pure non relativistic case:

RV
CC(q, ω) → q2

q2 − ω2
RV

CC(q, ω) , (25)

RA
LL(q, ω) →

(

1 +
q2 − ω2

4m2

)

RA
LL(q, ω) , (26)

RV
T(q, ω) → q2 − ω2

q2
RV

T(q, ω) , (27)

RA
T(q, ω) →

(

1 +
q2 − ω2

4m2

)

RA
T(q, ω) , (28)

RVA
T′ (q, ω) →

√

q2 − ω2

q2

√

1 +
q2 − ω2

4m2
RVA

T′ (q, ω) . (29)

The extension of these expressions to antineutrino charge exchange scattering processes

is straightforward. The treatment of charge conserving processes is slightly different.

III. SUPERSCALING BEYOND RFG MODEL

The basic quantities calculated in our work are the electromagnetic, and the weak, nuclear

response functions. We obtain the scaling functions by using Eqs. (7) and (8) for the electron

scattering case, and Eqs. (20)-(24) for the neutrino scattering. The scaling properties of the

scaling functions have been studied by a direct numerical comparison. We thought necessary

to define some numerical index able to quantify the quality of the scaling.

Let us consider the problem of comparing a number M of scaling functions

{fα, α = 1, . . . ,M}, each of them known for K values of the scaling variable

{Ψi, i = 1, . . . , K}. For each value of Ψi we found the maximum and minimum of the

various fα scaling functions:

fmax
i = max

α=1,...,M
[fα(Ψi)] , (30)

fmin
i = min

α=1,...,M
[fα(Ψi)] . (31)

We define the two indexes

D = max
i=1,...,K

[

fmax
i − fmin

i

]

, (32)
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and

R =
1

Kfmax

∑

i=1,...,K

[

fmax
i − fmin

i

]

, (33)

where fmax is:

fmax = max
i=1,...,K

[fmax
i ] . (34)

The two indexes give complementary information. The D index is related to a local property

of the functions: the maximum distance between the various curves. The value of this index

could be misleading if the responses have sharp resonances. For this reason we have also

used the R index which is instead sensitive to global properties of the differences between

the functions. Since we know that the functions we want to compare are roughly bell shaped,

we have inserted the factor 1/fmax to weight more the region of the maxima of the functions

than that of the tails.

The perfect scaling is obtained when both D and R are zero. This is achieved only in the

RFG model. In our calculations the perfect scaling is obviously violated, as it is violated

by the empirical scaling functions. In order to have reference values of the two indexes we

have determined the values of R and D for experimental scaling functions extracted from

the longitudinal and transverse electromagnetic response data of 12C, 40Ca and 56Fe given in

Ref. [9]. This is the same set of data used in Ref. [4] to extract a universal scaling function.

The definition of the scaling variable Ψ, Eqs. (1) and (2), requires to fix the values of

kF and Eshift for each nucleus. We used values of kF obtained by doing an average on the

nuclear density, and values of Eshift that, in a Fermi gas calculation, reproduce the peak

position of the experimental response functions [22]. We used Eshift=15 MeV for all the

nuclei and kF=215 MeV/c for 12C and 16O and kF=245 MeV/c for 40Ca and 56Fe.

The details of the procedures we have used to extract the experimental scaling functions

and to calculate the empirical values of R and D are given in Appendix A. We present in

Fig. 1 the experimental longitudinal and transverse scaling function data for 12C, 40Ca and

56Fe for each value of the momentum transfer given in Ref. [9]. In Table I we give the values

of D and R obtained by comparing the experimental scaling functions shown in each panel.

We analyze the empirical scaling functions by studying the three different kinds of scaling

defined in the Introduction. The presentation of the data of Fig. 1 and Table I gives direct

information on the scaling of second kind. It is immediate to observe that, in this case, the

fL functions scale better than the fT ones. The fT scaling functions of 12C, especially for
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the lower q values, are remarkably different from those of 40Ca and 56Fe. This is confirmed

by the values of R and D given in Table I.

The other two kinds of scaling are not so well fulfilled by the experimental functions.

It is evident, from the figure, the poor quality of the scaling of zeroth kind. Longitudinal

and transverse scaling functions are remarkably different, not only in size, but even in their

shapes. The excitation of subnucleonic degrees of freedom, mainly the excitation of the ∆

resonance, strongly affects fT, while it is almost irrelevant in fL. Also the quality of the

scaling of first kind is rather poor. These observations are in agreement with those of Refs.

[4, 7, 8] where also data measured at large q values have been used.

From the analysis of the scaling properties of the experimental functions, we have ex-

tracted two benchmark values of R and D that we have used to gauge the quality of the

scaling of our theoretical functions. The values we have chosen are those related to the fL

functions at q=570 MeV/c, see Tab. I, where the quasi-elastic scattering mechanism works

better. In the following, we shall consider that the scaling is violated when R >0.096 or

D > 0.11. These numbers are obtained by adding the uncertainty to the central benchmark

values. The non scaling regions will be indicated by the gray areas in the figures.

From the same set of data we extracted, see Appendix A, an empirical universal scaling

function represented by the thin full line in the lowest left panel of Fig. 1. This function,

which we called f ex
U , is rather similar to the universal empirical function given in Ref. [4].

We start now to consider the scaling of the theoretical functions. The thick lines show

the results of our calculations when various effects beyond the RFG are introduced. These

scaling functions have been obtained by considering the nuclear finite size, the collective

excitations, the short-range correlations, the final state interactions, and, in the case of the

fT functions, the meson-exchange currents.

The results presented by the thick lines have been obtained for three different nuclei.

The full lines represent the 12C results, while the dotted and dashed lines show, respectively,

the results obtained for 16O and 40Ca. The differences between these curves become larger

with decreasing q values. We obtain R=0.03 and D=0.05 for fL at 570 MeV/c and R=0.05

and D=0.15 at 300 MeV/c. The scaling of the fT functions is not as good. In this case we

obtain R=0.03 and D=0.06 at 570 MeV/c and R=0.10 and D=0.13 at 300 MeV/c. In any

case, these numbers are smaller than our empirical reference values, and we can state that

the scaling of second kind is satisfied.
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On the contrary, the curves of Fig. 1 show a poor scaling of first kind. The comparison

between the fL functions calculated for the three q values indicated in the figure, gives a

minimum R value of 0.13, found for 12C nucleus, and a maximum value of 0.15, found for

the 40Ca nucleus. The minimum and maximum values of the other index, D, are 0.18 and

0.30. We found similar, even if few percents larger, values also for the fT functions.

The scaling of zeroth kind is rather well satisfied. By comparing the fL and fT for each

nucleus and each q value we found 0.04 as a maximum value of R. We found 0.11 for D,

slightly large even if below our empirical limiting value. This relatively large value of D is due

to the presence of sharp resonances in the longitudinal and transverse responses at q=300

MeV/c which appear at different excitation energies. We have chosen the longitudinal scaling

function obtained for 16O at q = 570 MeV/c as the theoretical universal scaling function

that we called f th
U .

In Fig. 1 the thin dashed lines show the RFG scaling functions. It is evident that he

inclusion of the effects beyond the RFG we have considered, produce relevant modifications

of the RFG scaling functions. These modifications remarkably improve the agreement with

the experimental scaling functions. On the other hand, the effects we have considered do

not heavily modify the scaling properties of the fL and fT functions. In the remaining part

of the section, we first discuss the consequences of each effect beyond RFG, and then we

analyze the scaling properties for neutrino scattering processes.

A. Finite size effects

The starting point of our calculations is the continuum shell model. In this model, the

scattering processes are described by using some assumption on the nuclear structure which

are also used in the Fermi gas model. We refer to the fact that both nuclear models consider

the nucleons free to move in a mean-field potential. The continuum shell model takes into

account the finite dimensions of the system, the finite number of nucleons, and the fact that

protons and neutrons feel different mean-field potentials. In our calculations, the mean-

field is produced by a Woods-Saxon well. The parameters of this potential are taken from

Refs. [23] (for 12C) and [24] (for 16O and 40Ca) and have been fixed to reproduce the single

particle energies around the Fermi surface and the rms radii of the charge distributions of

each nucleus we have considered.
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The scaling properties of this model have been verified in Ref. [6] for q values larger

than 700 MeV/c. We are interested in the region of lower q values, and we have calculated

longitudinal and transverse responses for momentum transfer values down to 300 MeV/c.

Our results are summarized in Fig. 2. In the (a) and (b) panels of the figure the thick lines

show the fL scaling functions obtained respectively for q=300 MeV/c and q=700 MeV/c,

the extreme values used in our calculations. The full, dotted and dashed lines indicate the

12C, 16O and 40Ca results, respectively, while the thin dashed lines show the RFG model

ones. As expected, for q=300 MeV/c, shell model and RFG produce rather different scaling

functions. The shell model results present sharp resonances, and the figure indicates that the

scaling of second kind is poorly satisfied. The situation changes with increasing momentum

transfer. For q=700 MeV/c the fL show excellent scaling of second kind and the agreement

with the RFG results has largely improved. Our scaling functions do not have their maxima

exactly at Ψ=0 and present a small left-right asymmetry.

A more concise information about the scaling properties of these results, is given in the

other two panels of Fig. 2. In the panel (c) the values of R and D are calculated by

comparing the fL and fT scaling functions of the same nucleus, for a fixed q value. The

results shown in panel (c) give information how the scaling of zeroth kind is verified at

each q value. In this panel, the black circles show the 12C results, the black triangles the

16O results and the white squares the 40Ca results. The general trend is an increase of the

indexes values at low q. In any case, all the values of the indexes shown in this panel are

well below the empirical ones, indicating the good quality of the scaling.

The results shown in the panel (d) have been obtained by using the following procedure.

For each nucleus, we have calculated the scaling functions from q=300 MeV/c up to q=700

MeV/c, in steps of 50 MeV/c. The curves show the values of the indexes R and D obtained

by considering in Eqs. (32) and (33) all the fL calculated from the q value indicated in the

figure, up to q=700 MeV/c. Evidently, these curves are zero at q=700 MeV/c and increase

continuously with decreasing q values. The panel (d) shows the evolution of the scaling

of first kind with decreasing q values. In panel (d) the full lines show the 12C results, the

dotted and dashed lines those of 16O and of 40Ca respectively. If the scaling of first kind is

verified, the values of R and D in this panel are constant. We observe that all the curves are

below the empirical benchmark limits until the scaling function obtained for q=400 MeV/c

is included. This could be considered the lower q limit where the scaling of first kind is
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broken by the nuclear finite size effects.

B. Collective excitations

By definition, mean-field models, such as the RFG model or the shell model, do not

describe collective excitations of the nucleus. We have considered the contribution of these

excitations within a continuum Random Phase Approximation (RPA) framework. Details

of our RPA calculations are given in Ref. [23]. In the present work, we used two effec-

tive nucleon-nucleon interactions. They are a zero-range interaction of Landau-Migdal type,

called LM1 in [23], and the finite-range polarization potential of Ref. [25], properly renor-

malized as indicated in [23], and labeled PP.

Before discussing the results of the RPA calculations, we want to point out a technical

detail of our calculation. The semi-relativistic prescription (9) cannot be coherently imple-

mented in the continuum RPA equations. We have calculated the continuum RPA responses

without the semi-relativistic correction. The scaling functions have been obtained from these

responses by using the non relativistic definition of the scaling variable [2]:

Ψ =
1

kF

[

m(ω −Eshift)

q
− q

2

]

. (35)

With this scaling variable, the superscaling function of the non relativistic Fermi gas model

assumes again the expression of Eq. (3) (see Ref. [2]).

The comparison between the Fermi gas scaling function and fL and fT calculated with

the RPA is presented in Fig. 3. In this figure, we show the 12C scaling functions obtained

for the two extreme values of q considered in our calculations. The thick full lines show the

mean-field results, the dotted lines the results obtained with the LM1 interaction, and the

dashed lines those obtained with the PP interaction.

The scaling functions at q=300 MeV/c are strongly affected by the RPA. This was ex-

pected, since for this value of the momentum transfer, the maxima of the electromagnetic

responses are very close to the giant resonance region. The situation is rather different for

the case of 700 MeV/c where the mean-field and RPA scaling functions are very similar.

Here, the RPA effects are larger for zero-range, than for finite-range interaction. The ex-

planation of this fact becomes evident if one considers the ring approximation of the RPA

12 (November 28, 2006)



propagator for a infinite system [26]:

ΠRPA(q, ω) =
Π0(q, ω)

1 − V (q)Π0(q, ω)
, (36)

where Π0 indicates the free Fermi gas polarization propagator, and V (q) is a purely scalar

interaction. Finite-range interactions vanish at large q values, therefore the RPA propagator

become equal to that of the Fermi gas. This does not happen if contact interactions are used,

since these interactions are constant in momentum space. We found that for q values larger

than 500 MeV/c, the RPA effects are negligible if calculated with a finite-range interaction.

The scaling properties of continuum RPA fL and fT calculated for 12C are summarized

in Fig. 4. The lines in this figure have been calculated with the same procedure used in the

panel (d) of Fig. 2. The full lines represent the mean-field results, the dotted lines the results

obtained with the finite-range interaction and the dashes lines have been obtained with the

zero-range interaction. The figure shows that the scaling of first kind is well preserved by

RPA calculations up to q=400 MeV/c. In the panel (c) the fL and fT scaling functions

have been put together in the calculation of the two indexes. We observe a worsening of the

scaling, especially for the polarization potential results. This indicates that the scaling of

zeroth kind is slightly ruined by the RPA. This is understandable, since the effective nucleon-

nucleon interaction acts in different manner on the longitudinal and on the transverse nuclear

responses. Finally, the scaling of second kind is well preserved also in the RPA calculations.

C. Meson exchange currents

We have seen that collective excitations are different in longitudinal and transverse re-

sponses and this breaks the scaling of zeroth kind. However, our RPA results show that

these effects are too small to explain the large differences between experimental fL and fT

shown in Fig. 1. Another possible source of the breaking of the zeroth kind scaling are the

MEC. Their role in the longitudinal responses is negligible [27], while it can be relevant in

the transverse responses.

We have calculated the transverse response functions by adding to the one-body convec-

tion and magnetization currents the MEC arising from the exchange of a single pion. In Fig.

5 we show the Feynman diagrams of the MEC we have considered. They are the seagull,

or contact, term, represented by the (a) diagram of the figure, where the virtual photon
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interacts at the pion-nucleon vertex, and the pionic, or pion in flight term, represented by

the (b) diagram of the figure, where the virtual photon interacts with the exchanged pion.

In addition we consider also the ∆ current terms where the photon excites, or de-excites a

virtual ∆ resonance which interacts with another nucleon by exchanging a pion. These ∆

current terms are represented by the (c) and (d) diagrams of Fig. 5. A detailed description

of our MEC model is given in Refs. [28–30].

We show in panels (a) and (b) of Fig. 6 the fT scaling functions of the 12C nucleus

calculated for the extreme q values we have considered. The full lines have been obtained

by using one-body currents only, the dotted lines by including seagull and pionic currents,

and the dashed lines by adding the ∆ currents. As usual, the thin dashed lines show the

RFG scaling function.

The effects of the MEC on the scaling functions are analogous to those found on the

responses in Ref. [31]. The seagull and pionic terms produce effects of opposite sign,

therefore, the changes with respect to the one-body responses are rather small, and almost

vanish for the largest values of q we have considered. The inclusion of the ∆ currents slightly

decreases the values of the scaling functions. The presence of these currents becomes more

relevant with increasing q value.

The panel (c) of Fig. 6 shows the values of R and D, calculated for fT as in panel (d) of

Fig. 2, for 12C. The meaning of the different curves is the same as in the two upper panels

of the figure. In panel (d) we show the behaviour of the two indexes calculated for the fT

scaling functions when all the MEC are included. The full lines show the 12C results, the

dotted lines the 16O results and the dashed lines the 40Ca results.

Our MEC conserve rather well the scaling properties of fT. The shapes of the fT, shown

in the upper panels of Fig. 6, are rather different from those of the empirical fT, given in

Fig. 1. Our MEC model considers only virtual excitations of the ∆ resonance which become

more important at large q values. All these observations indicate that the origin of the high

energy tail of the experimental transverse scaling functions is the real excitation of the ∆

resonance, with the consequent production of pions.
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D. Short-range correlations and final state interactions

As already mentioned, we have also investigated the influence of SRC. Our results are

summarized in Fig. 7, where, in the panel (a), we show, as example, the fL scaling function

of 12C calculated for q=700 MeV/c with (dashed lines) and without (full curves) SRC. The

same curves are plotted in both linear and logarithmic scales, to show the eventual effects

in the tails of the distributions.

The calculation of the responses with the SRC is done as described in [32], by considering

all the cluster terms containing a single correlation line. This implies the evaluation of two

and tree points cluster terms which produce contributions of different sign. The calculations

have been done with the scalar correlation function labeled EU (Euler) in [24]. The effects of

the correlations on the momentum distribution of 12C are shown in the panel (b) of Fig. 7.

Also this momentum distribution has been calculated in first order approximation [33]. This

example show that the scaling functions, in the kinematics of our interest, are insensitive to

the high momentum tail of the momentum distribution, and, in general, to the SRC.

All the results we have so far presented, did not include the FSI which produce the

largest modifications of the mean-field responses [34]. We treat the FSI by using the model

developed in Refs. [35, 36]. The mean-field responses are folded with Lorentz functions

whose parameters have been extracted from optical potential volume integrals, and from

the empirical spreading widths of single particle states. This approach has been successfully

used to describe quasi-elastic electromagnetic responses [31, 35], and, more recently, it has

been applied to calculate neutrino scattering cross sections [23, 37, 38].

In the two upper panels of Fig. 8 we show the shell model fL scaling functions corrected

for the presence of the FSI. Again, we show here the results obtained for the two extreme

values of q considered in our calculations. The thin dashed lines show the RFG results. It is

evident that the FSI are responsible for the largest modifications of the mean-field results.

The values of the maxima of the scaling functions in Fig. 2 are around 0.8. After the

inclusion of the FSI, these maxima are of the order of 0.6. The FSI lower the values of the

maxima of the responses, and, since the total area is conserved, increase their widths.

The presence of the FSI slightly worsen the almost perfect scaling of zeroth kind shown

in Fig. 2. The FSI act differently on the two responses. The longitudinal responses are

insensitive to the spin and spin-isospin terms of the nuclear interaction. This fact is consid-

15 (November 28, 2006)



ered in our FSI model. Even though in the panel (c) of Fig. 8 the values of R, calculated

for each q value, are slightly larger than the analogous ones of Fig. 2, they are below the

empirical value. The case of the D index is curious, since it shows almost constant values.

This is because D indicates the maximum difference between the various curves considered.

The FSI produce a smoothing of these curves and cancels the sharp resonant peaks which

appear at low q values.

The curves in the panel (d) are obtained in the same way as those of the analogous panel

in Fig. 2. The values shown in Fig. 8 are clearly larger than those of panel (d) of Fig. 2.

For the R index, the non scaling gray area is reached when the q value is about 500 MeV/c.

In conclusion, the FSI produce large modifications of the mean-field responses, but do not

strongly violate the scaling.

E. Neutrino scaling functions

Up to now, we have discussed the scaling properties of the electromagnetic scaling func-

tions. We present in Fig. 9 the scaling functions defined in Eqs. (20)-(24), for the (νe, e
−)

charge exchange reaction. The thick lines of the two upper panels show the five scaling func-

tions calculated, in a continuum shell model, for the 16O nucleus, and for the two extreme

values of q considered in our work. The five curves are rather well overlapped at q=300

MeV/c, and almost exactly overlapped at q=700 MeV/c. The agreement with the RFG

result, indicated as usual by the dashed thin lines, is rather good at q=700 MeV/c.

In panel (c) we show the R and D indexes calculated by comparing the five scaling

functions at each q value indicated in the x axis. The black circles show the 12C results, the

black triangles those of 16O and the white squares the 40Ca results. These values are of the

same order of magnitude as those of the (c) panel of Fig. 2. This confirms the observation

that the scaling of zeroth kind is well satisfied in continuum shell model calculations.

In panel (d) the values of the two indexes are evaluated by doing a comparison of the

scaling functions calculated at q=700 MeV/c with those obtained for lower q values. This

indicates the validity of the scaling of first kind. The index R shows that there is a reasonable

scaling down to q=400 MeV/c. This value is analogous to that found for the electromagnetic

functions. The index D shows much rapid variations and, already at q=500 MeV/c, its value

is over the empirical limiting value. This is due to the presence of sharp resonances at low

16 (November 28, 2006)



q values in some of the responses.

We studied the effects beyond the RFG for charge exchange neutrino responses, by fol-

lowing the same steps used for the electromagnetic responses. To be precise, we did not

calculate responses with SRC or with the MEC, since from the results obtained for the

electromagnetic responses, we do not expect large changes of the mean field results due to

these effects. We found effects of RPA and FSI analogous to those of the electromagnetic

case.

IV. SUPERSCALING PREDICTIONS

In the previous section we have studied how the effects beyond the RFG model modify the

scaling function. We found that the main effects are produced by the FSI. Despite the large

modifications of the RFG scaling functions, the scaling properties are not heavily destroyed.

For momentum transfer values above 500 MeV/c, our scaling functions present values of

the scaling indexes smaller than the empirical benchmarks. After having established the

range of validity of the superscaling hypothesis, we investigate, in this section, its prediction

power. The strategy of our investigation consists in comparing responses, and cross sections,

calculated by using RPA, FSI and eventually MEC and SRC, with those obtained by using

our universal scaling functions, both f ex
U and f th

U . All the RPA calculations presented in this

section have been done by using the PP interaction.

The first test case of our study is done on the double differential electron scattering cross

section. We show in Fig. 10 the inclusive electron scattering cross sections calculated with

our model including the MEC and the FSI effects (full lines), those obtained with f th
U (dashed

lines) and the cross sections obtained with f ex
U (dotted lines). These results are compared

with the data of Refs. [39–41].

The first remark about Fig. 10, regards the excellent agreement between the results of

the full calculations with those obtained by using f th
U . This clearly indicates the validity of

the scaling approach in this kinematic region. This result was expected from the studies of

the previous section, since in all the cases shown in Fig. 10, the value of the momentum

transfer is larger than 500 MeV/c. The differences with the cross sections obtained by using

the empirical scaling functions, reflect the differences between the various scaling functions

shown in Fig. 1.
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A second remark regarding Fig. 10, is about the fact that our results underestimate the

data. Probably this is because the excitation of the ∆ resonance is not considered in our

calculations. The behaviour of the data of the figure in the higher energy part, show the

presence of the ∆ resonance. The low energy tail of the excitation of this resonance affect

also the quasi-elastic peak.

The situation for the double differential cross sections is well controlled, since all the kine-

matic variables, beam energy, scattering angle, energy of the detected lepton, are precisely

defined, and, consequently, also energy and momentum transferred to the nucleus. The

situation changes for the total cross sections which are of major interest for the neutrino

physics. The total cross sections are only function of the energy of the incoming lepton,

therefore they consider all the scattering angles and the possible values of the energy and

momentum transferred to the nucleus, with the only limitation of the global energy and

momentum conservations. This means that, in the total cross sections, kinematic situations

where the scaling is valid and also where it is not valid are both present.

In order to clarify this point with quantitative examples, we show in Fig. 11 various

differential charge-exchange cross sections obtained for 300 MeV neutrinos on 16O target.

In the panel (a) we show the double differential cross sections calculated for a scattering

angle of 30o, as a function of the nuclear excitation energy. The full line show the result

of our complete calculation, done with continuum RPA and FSI. We have shown in the

previous section that the effects of MEC and SRC are negligible, in this kinematic regime.

The dashed line show the result obtained with f th
U and the dotted line with f ex

U . The values

of the momentum transfer vary from about 150 to 200 MeV/c. Evidently this is not the

quasi-elastic regime where the scaling is supposed to hold, and this evidently produces the

large differences between the various cross sections.

The cross sections integrated on the scattering angle are shown as a function of the

nuclear excitation energy in the panel (b) of the figure, while the cross sections integrated

on the excitation energy as a function of the scattering angle are shown in the panel (c).

The three panels of the figure illustrate in different manner the same physics issue. The

calculation with the scaling functions fails in reproducing the results of the full calculation

in the region of low energy and momentum transfer, where surface and collective effects are

important. This is shown in panel (b) by the bad agreement between the three curves in

the lower energy region, and in panel (c) at low values of the scattering angle, where the q
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values are minimal.

Total charge-exchange neutrino cross sections are shown in Fig. 12 in both linear and

logarithmic scale, as a function of the energy of the incident neutrino ǫi. As in the previous

figure, the full lines show the result of the full calculation, while the dashed and dotted

lines have been respectively obtained with f th
U and f ex

U . The scaling predictions for neutrino

energies up to 200 MeV are unreliable. These total cross sections are obviously dominated by

the giant resonances, and more generally by collective nuclear excitation. We have seen that

these effects strongly violate the scaling. At ǫi =200 MeV the cross section obtained with f th
U

is about 20% larger than those obtained with the full calculation. This difference becomes

smaller with increasing energy and is about 7% at ǫi = 300 MeV. This is an indication that

the relative weight of the non scaling kinematic regions become smaller with the increasing

neutrino energy.

V. SUMMARY AND CONCLUSIONS

We have investigated the scaling properties of the electron and neutrino cross sections

in a kinematic region involving momentum transfer values smaller than 700 MeV/c. Since

our working methodology implies the numerical comparison of different scaling functions,

we defined two indexes, Eqs. (32) and (33), to have a quantitative indication of the scaling

quality.

We have first analyzed the scaling properties of the experimental electromagnetic re-

sponses given in Ref. [9] for the 12C, 40Ca and 56Fe nuclei. We found the better scaling

situation for the longitudinal responses at 570 MeV/c. By considering these data we ob-

tained empirical values of the two indexes which we consider the upper acceptable limit to

have scaling. From a fit to the same set of data we have also obtained an empirical scaling

function, f ex
U .

Our study of the role played by effects beyond the RFG model on the scaling properties

of the electroweak responses consisted in comparing the values of the indexes obtained in our

calculations with the empirical values. We found that finite size effects conserve the scaling

of first kind, the most likely violated, down to 400 MeV/c. We have estimated the effects of

the collective excitations by doing continuum RPA calculations with two different residual

interactions. The RPA effects become smaller the larger is the value of the momentum
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transfer. At momentum transfer values above 600 MeV/c the RPA effects are negligible

if calculated with a finite-range interaction, while zero-range interactions produce larger

effects. Collective excitations breaks scaling properties. We found that scaling of first kind

is satisfied down to about 500 MeV/c.

The presence of the MEC violates the scaling of the transverse responses. From the

quantitative point of view, MEC effects, at relatively low q values, are extremely small. In

our model, MEC start to be relevant from q ∼ 600 MeV/c, especially these MEC related

to the virtual excitation of the ∆ resonance. In our calculations the real excitation of the

∆ resonance, and the consequent production of real pions, is not considered. Our nuclear

models deal with purely nucleonic degrees of freedom. Experimental transverse responses,

such as those shown in Fig. 1, clearly show the presence of the ∆ resonance peak, with

increasing value of the momentum transfer. Our model indicates that MEC do not destroy

the scaling in the kinematic range of our interest.

We have also investigated the effects of the SRC, which could also violate the scaling.

However, the size of these effects are so small to be negligible. The main modifications of

the mean-field responses are due to the FSI. When we applied the FSI we obtain, even for

q=700 MeV/c, scaling functions very different from those predicted by the RFG model or

by the mean field model, and rather similar to the empirical one. In any case also the FSI do

not heavily break the scaling properties. We found that the scaling of first kind is conserved

down to q=450 MeV/c.

We have presented in detail only the results obtained for the electromagnetic transverse

and longitudinal responses since we found for the weak responses, related to the neutrino

scattering processes, analogous results. We can summarize the main points of this first part

of our investigation by saying that the effects beyond the RFG model we have considered,

strongly modify the scaling functions, but do not destroy their scaling. This explain the good

scaling properties of the experimental longitudinal electromagnetic responses, which are not

affected by the excitation of the ∆ resonance, an effect not included in our calculations.

After studying the scaling properties of the various responses we have investigated the

reliability of the cross sections predicted by using the scaling functions. The idea is to assume

that superscaling is verified, i.e. all the three kinds of scaling we have considered, and then to

use the scaling functions to predict the cross sections. The cross sections calculated with our

complete model have been compared with those obtained by using as superscaling functions
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the empirical scaling function fitting the 570 MeV longitudinal data of Ref. [9] f ex
U , and our

longitudinal scaling function f th
U . We have chosen this last scaling function as a theoretical

universal scaling function.

We have verified that, in the quasi-elastic peak, the electron scattering cross sections

obtained with the full calculation are very close to those obtained with f th
U . Also the com-

parison with the data is rather good. These calculations have been done for momentum

transfer values larger than 500 MeV/c, therefore these results confirm the validity of the

superscaling in the quasi-elastic regime. The problems arise in the evaluation of the to-

tal neutrino cross sections. In these cross sections, together with the contribution of the

quasi-elastic kinematics, where superscaling is satisfied, there is also the contribution of

kinematics regions where there is not scaling. We found that the scaling predictions of the

total neutrino cross sections are unreliable up to neutrino energies of 200 MeV. At this point

the scaling cross sections are 20% larger than those obtained by the full calculation. This

difference become smaller with increasing neutrino energy, and we found to be reduced to

about the 7% at 300 MeV. We stopped here our calculations of the total cross section, since

our model is not any reliable for larger neutrino energies. The comparison between double

differential cross sections calculated at excitation energies of 150 and 200 MeV, for neutrino

energies up to 1 GeV, gives an indication that the difference between the total cross sections

becomes smaller with increasing neutrino energy. It is worth to point out, however, that for

neutrino energies larger than 300 MeV, the contribution of the ∆ resonance is not any more

negligible, as we have implicitly considered in our calculations.
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APPENDIX A: THE EXPERIMENTAL SCALING FUNCTIONS

In this appendix we describe the procedure followed to obtain the experimental Scaling

Functions (SF), and also the empirical values of the indexes D and R, from the electromag-
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netic response data of Ref. [9].

The SF data have been obtained by inserting in Eqs. (7) and (8), the values of the

experimental responses. The uncertainty on the SF data has been evaluated directly from

the same equations, taking into account the uncertainties of the original response data.

The evaluation of D and R, Eqs.(32) and (33), requires the knowledge of the various SF

at the same Ψ points. Since the SF data are given for different values of Ψ, we fixed a grid

of Ψ values, and we produced pseudo SF data by doing a quadratic interpolation of the SF

data previously obtained.

The uncertainties of these pseudo SF data have been obtained by using a Monte Carlo

strategy. Associated to each experimental SF point we have generated a new point compati-

ble with the Gaussian distribution related to the experimental uncertainty. These new data

formed a set of SF points used to obtain pseudo data on the grid by quadratic interpolation.

We repeated this procedure thousand times, and obtained, for each value of Ψ of the grid,

a distribution of SF points which allowed us to determine the corresponding uncertainty.

After having determined the uncertainties of the pseudo SF data, we calculated the

uncertainty of the D index as:

σD =
√

[fmax
i (ψimax)]

2 + [fmin
i (ψimax)]

2 ,

where Ψimax is the value where the difference fmax
i − fmin

i reaches the maximum value.

We have calculated the uncertainty on R in two steps. We first evaluated the uncertainty

of the sum

S =
∑

i=1,...,K

[

fmax
i − fmin

i

]

,

in the numerator of Eq. (33) by using a procedure analogous to that used to obtain σD.

That is,

σS =
√

∑

i=1,...,K

([fmax
i ]2 + [fmin

i ]2) .

To obtain the global uncertainty, we used again a Monte Carlo strategy, and we calculated

the ratio in Eq. (33) thousand times by sampling the values of S and of fmax within the

corresponding Gaussian distributions.

The empirical SF represented by the thin full line in the fL panel at 570 MeV/c in Fig.

1, has been obtained as a best fit of all the experimental points shown in the panel. The
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expression of our fitting function is:

f ex
U (Ψ) =

A exp(−Ψ2) +BΨ2 + CΨ +D

(Ψ + E)2 + F 2
. (A1)

with A= 0.971, B=-0.067, C= 0.385, D= 0.145, E= 0.366, F= 1.378.
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fL fT

q [MeV/c] D R D R

300 0.107 ± 0.002 0.152 ± 0.013 0.223 ± 0.004 0.165 ± 0.017

380 0.079 ± 0.003 0.075 ± 0.009 0.235 ± 0.005 0.155 ± 0.014

570 0.101 ± 0.009 0.079 ± 0.017 0.169 ± 0.003 0.082 ± 0.007

TABLE I: Values of the D and R indexes, Eqs. (32) and (33), calculated by comparing the empirical

fL and fT scaling functions shown in Fig. 1 for each value of the momentum transfer q. The values

provide information about the scaling of second kind. The values of the D and R for fL at q=570

MeV/c, in boldface, are taken as our reference values.
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FIG. 1: Empirical longitudinal, fL, and transverse, fT, scaling functions obtained from the exper-

imental electromagnetic responses of Ref. [9] as explained in Appendix A. The numbers in the

panels indicate the values of the momentum transfer in MeV/c. The full circles refer to 12C, the

white squares to 40Ca, and the white triangles to 56Fe. The thin black line in the fL panel at 570

MeV/c, is the empirical scaling function obtained by fitting the data. The thick lines show the

results of our calculations when all the effects beyond the RFG model have been considered (see

text). The full lines have been calculated for 12C, the dotted lines for 16O, and the dashed lines

for 40Ca. The thin dashed lines show the RFG scaling functions.

FIG. 2: Continuum shell model results. In the panels (a) and (b), the thick lines represent the

fL scaling functions calculated for the various nuclei: full lines 12C, dotted lines 16O, dashed lines

40Ca. The thin dashed lines represent the RFG scaling function. The number inside the panels

indicate the values of the momentum transfer in MeV/c units. In the panel (c) we show fr each

nucleus the values of the indexes R and D obtained at a fixed q value by comparing the fL and

fT functions. The black circles indicate the 12C results, the black triangles those of 16O and the

white squares those of 40Ca. In the panel (d) we show the value of the two indexes obtained by

considering the fL functions calculated for all the momentum transfer values ranging from the

indicated q value up to 700 MeV/c. Details of the procedure are given in the text. As in the panels

(a) and (b), the full lines refer to 12C, the dotted ones to 16O, and the dashed ones to 40Ca. The

grey areas, drawn above the empirical values of R and D, indicate the non-scaling region.

FIG. 3: Scaling functions calculated for the 12C nucleus. The thin dashed lines show the Fermi gas

results. The full lines show the mean-field results. The other lines have been obtained by using

the continuum RPA. The thick dotted lines show the results obtained with the PP interaction,

while the thick dashed lines have been obtained by using the LM1 interaction. The numbers in

the panels indicate the values of the momentum transfer in MeV/c units.
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FIG. 4: The R and D indexes calculated as in panel (d) of Fig. 2. In the panels (a) and (b)

the fL and fT scaling functions calculated for the 12C nucleus are separately shown. In the panel

(c) the indexes have been calculated by comparing the fL and fT scaling functions. The full lines

represent the mean-field results, while the dotted and dashed lines have been obtained by doing

continuum RPA calculations respectively with the polarization potential and with the Landau-

Migdal interaction.

FIG. 5: Feynman diagrams of the MEC terms considered in our calculations. The (a) and (b)

diagrams represent, respectively, the seagull and pionic currents, while the other two diagrams the

∆ currents.

FIG. 6: Transverse scaling functions for the 12C nucleus. In the (a) and (b) panels, the thin dashed

lines show the RFG model. The other, thick, lines have been obtained by using the continuum

shell model. The full lines show the results obtained by using one-body currents only. The dotted

lines have been obtained by inserting the pionic and seagull terms of the MEC, and the dashed

lines show the results obtained by including also the ∆ currents. The numbers inside the panels

indicate the values of the momentum transfer in MeV/c. The curves in the panels (c) and (d)

are calculated as in panel (d) of Fig. 2. The curves in (c) compare the results obtained in 12C

by using one-body currents only (full line) with those obtained by adding seagull and pionic MEC

(dotted line) and by adding also the ∆ currents (dashed lines). In panel (d) we compare the results

obtained with all the MEC for the three nuclei considered. The full line show the 12C result, the

dotted line the 16O result and the dashed line the 40Ca result.

FIG. 7: In the panel (a) we show the longitudinal scaling function of 12C calculated for q=700

MeV/c. The full lines show the mean-field result, the dashed lines have been obtained by including

the SRC. In the insert, the same results are shown on a linear scale. In the panel (b) we show the

momentum distribution of 12C calculated with the mean-field model, full line, and with the SRC,

dashed line.

FIG. 8: The same as Fig. 2 but showing the results of the mean field model with FSI.
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FIG. 9: The same as Fig. 2 for the neutrino scaling functions. In both panels (a) and (b) the five

scaling functions defined in Eqs. (20)-(24) and calculated for the 16O nucleus are shown by the

thick lines. These lines are almost exactly overlapped. Again the dashed thin lines show the RFG

scaling functions. In panel (c) the indexes are calculated by comparing the five scaling functions

calculated at each q value indicated on the x axis. The black dots show the 12C results, the triangles

the 16O results and the white squares the 40Ca results. The values the two indexes shown in panel

(d) have been calculated as in the analogous panel of Fig. 2. The full line refers to 12C, the dotted

one to 16O and the dashed one to 40Ca.

FIG. 10: Inclusive electron scattering cross sections. Here, the numbers in the panels indicate, in

MeV, the energy of the incoming electron. The 12C data [39] have been measured at a scattering

angle of θ=37.5o, the 16O data [40] at θ=32.0o and the 40Ca data [41] at θ=45.5o. The full lines

show the results of our complete calculations. The cross sections obtained by using f th
U are shown

by the dashed lines, and those obtained with f ex
U are given by the dotted lines.

FIG. 11: Neutrino charge exchange cross sections on 16O. All the results shown in the various

panels have been obtained for neutrino energy of 300 MeV. In all the panels the full lines show

the result of our complete calculation, while the other lines show the results obtained by using

the scaling functions. Specifically, the dashed and the dotted lines have been obtained respectively

with f th
U and f ex

U . In the panel (a) the double differential cross sections calculated for the scattering

angle of 30o as a function of the nuclear excitation energy is shown. In panel (b) we show the cross

sections integrated on the scattering angle, always as a function of the nuclear excitation energy.

In panel (c) we show the cross sections integrated on the nuclear excitation energy, as a function

of the scattering angle.

FIG. 12: Total neutrino cross sections. Both panels show the same results in linear (a) and

logarithmic (b) scales. The full lines show the result of the complete calculations. The dashed lines

have been obtained by using f th
U , and the dotted lines by using f ex

U .

29 (November 28, 2006)



0.0

0.2

0.4

0.6

0.8

1.0


300


0.0

0.2

0.4

0.6

0.8

1.0


 



380


-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0


570



300



380


-2 -1 0 1 2


570


fL fT

Ψ Ψ

Figure 1         CY10064    28Nov2006



0.0

0.2

0.4

0.6

0.8

1.0


300


-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0


700


0.00
0.01

0.02

0.03

0.00
0.06

0.12

 

0.00
0.05

0.10
0.15

800 600 400 200
0.00

0.20

0.40

 

f L

(b)

(a)

f L

Ψ

q [MeV/c]

R
D

(c)

(d)

R
D

Figure 2         CY10064    28Nov2006



0.0

0.2

0.4

0.6

0.8

1.0


300


-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0


700



300


-2 -1 0 1 2


700


fL fT

Ψ Ψ

Figure 3         CY10064    28Nov2006



0.0

0.1

0.2

0.0

0.4

 

0.0

0.1

0.2

0.0

0.4

 

0.0

0.1

0.2

800 600 400 200
0.0

0.4

 

fL

fT

(a)

(b)

(c)

q [MeV/c]

R
D

R
D

R
D

Figure 4         CY10064    28Nov2006



γ

γ

γ

γ∆ ∆

π
π

π

π

(a) (b)

(c) (d)

Figure 5         CY10064    28Nov2006



0.0

0.2

0.4

0.6

0.8

1.0


300


-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0


700


0.00
0.05

0.10

0.15

0.00
0.20

0.40

 

0.00
0.05

0.10
0.15

800 600 400 200
0.00

0.20

0.40

 

f
T

(b)

(a)

f
T

12C

Ψ

q [MeV/c]

R
D (c)

(d)

R
D

Figure 6         CY10064    28Nov2006



-2 -1 0 1 2
10-4

10-3

10-2

10-1

100

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
10-4

10-3

10-2

10-1

100

101

102

103

12C

f
L

(a)

Ψ

k [fm−1]

(b)

n
(k

)

Figure 7         CY10064    28Nov2006



0.0

0.2

0.4

0.6

0.8

1.0


300


-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0


700


0.00

0.05

0.10

0.00

0.10

 

0.00
0.10

0.20
0.30

800 600 400 200
0.00

0.20

 

f
L

(b)

(a)

f
L

Ψ

q [MeV/c]

R
D (c)

(d)

R
D

Figure 8         CY10064    28Nov2006



0.0

0.2

0.4

0.6

0.8

1.0


300


-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0


700


0.00
0.01

0.02

0.03

0.00
0.06

0.12

 

0.00

0.10

0.20

800 600 400 200
0.00

0.20

0.40

 

f
L

(b)

(a)

f
L

Ψ

q [MeV/c]

R
D

(c)

(d)

R
D

Figure 9         CY10064    28Nov2006



0 100 200 300 400
0

2

4

6

8

10


961


0 100 200 300 400
0

5

10

15


1080


0 100 200 300 400
0

5

10

15

20

25


738


0 100 200 300 400 500
0

1

2

3

4

5


1108


0 100 200 300 400 500
0

2

4

6

8

10


1200


0 100 200 300 400
0

5

10

15


841


(e, e′)

[n
b

M
eV

−
1

sr
−

1
]

ω [MeV] ω [MeV]

12C 12C

16O 16O

40Ca 40Ca

Figure 10         CY10064    28Nov2006



0 50 100 150
0.0

0.2

0.4

0.6

0 100 200 300
0.0

0.1

0.2

0.3

0.4

0 60 120 180
0

5

10

15

20

d
2
σ

d
ω

d
θ

[f
b

M
eV

−
1

sr
−

1
]

d
σ

d
ω

[f
b

M
eV

−
1
]

d
σ d
θ

[f
b

sr
−

1
]

θ = 30 deg

16O(νe, e
−)16F

ω [MeV]

ω [MeV]

θ [deg]

(a)

(b)

(c)

Figure 11         CY10064    28Nov2006



0

10

20

30

40

0 50 100 150 200 250 300
10-6

 
10-4

 
10-2

 
100

 
102

16O(νe, e
−)16F

(a)

(b)

ǫi [MeV]

σ
[f

b
]

σ
[f

b
]

Figure 12         CY10064    28Nov2006


