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We study the effects of correlations beyond the independent particle model in the evaluation
of neutron skins of various neutron-rich doubly magic nuclei. We consider short- and long-range
correlations to take into account the presence of the strongly repulsive core of the bare nucleon-
nucleon interaction and collective nuclear phenomena, respectively. Despite the strong sensitivity
on the structure of the nucleus considered, our results indicate that, in general, correlations increase
the values of the neutron skins.
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I. INTRODUCTION

The amount of information about the neutron density distribution in atomic nuclei is very poor in comparison to
that of protons. Neutron densities have been investigated mainly with hadronic probes, protons [1–3], neutrons [4, 5],
α particles [6, 7], and pions [8, 9], and the interpretation of the observed data is often affected by strong dependencies
on the model considered. In contrast, the interaction between electromagnetic probes and the nucleus is much better
controlled. This fact triggered the idea of using polarized electron beams to study neutron skins, i. e. the difference
between the root mean square (rms) radii of the neutron and proton density distributions [10].

The first experiment of this kind was performed in the Hall A of the Thomas Jefferson National Accelerator Facility
(JLab) and investigated the 208Pb nucleus [11]. The first results of this experiment were published in 2012 [12] and
they are indicated as PREX-1. A second campaign of data taking, called PREX-2, was carried out in 2021 [13]. The
combined analysis of the two PREX experiments provides a value of the 208Pb neutron skin of

Rskin(208Pb) = Rν(208Pb) − Rπ(208Pb) = (0.283± 0.071) fm , (1)

where Rν and Rπ indicate the neutron and proton rms radii, respectively. This value is compatible with that of
Ref. [6], measured in α scattering. In contrast, it is remarkably larger than those obtained from the scattering with
other hadronic probes [3, 9, 14–16], the study of the electric dipole polarizability of neutron rich nuclei [17], the pigmy
dipole resonances [18, 19], the exotic atoms spectroscopy [15, 20–22], the astrophysical constraints [23], and those
found in the great majority of the mean-field calculations [24–26].

II. THE MEAN-FIELD MODEL

In this work, we analyze the reliability of the theoretical predictions. As it is clearly pointed out in Ref. [17], these
predictions have been done mainly in the framework of the mean-field, or independent particle, model (IPM). This is
relevant because, within this model, the neutron skin has been strongly correlated to an important quantity describing
the nuclear matter equation of state: the slope of the density dependence of the symmetry energy at the saturation
point, usually called L [17, 27–30]. The value of L has important consequences on our understanding of the structure
of neutron stars [31].

In our study, we calculated the proton and neutron density distributions, defined as

ρα(r) =
A

〈Ψ|Ψ〉
〈

Ψ
∣∣∣∑
j

′
δ(r− rj)

∣∣∣Ψ〉 , α ≡ π, ν , (2)
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by considering different ansätze for |Ψ〉, the wave function describing the nuclear ground state. In Eq. (2), the prime
indicates that the sum is restricted to protons or neutrons only, according to α. The rms radii Rν and Rπ and,
consequently, the neutron skins, were obtained by using ρν and ρπ as

Rα =


∫ ∞
0

dr r4 ρα(r)∫ ∞
0

dr r2 ρα(r)


1
2

, α ≡ π, ν . (3)

We found that effects beyond the IPM, the correlations, affect differently the neutron and proton density distributions
and, therefore, modify the IPM neutron skin values.

In the IPM, |Ψ〉 is a Slater determinant of single-particle (s.p.) wave functions. In this model, each nucleon
moves independently of the other ones, the only limitation being that imposed by the Pauli exclusion principle. We
constructed this IPM collective state by solving a set of Hartree-Fock (HF) equations with a density dependent effective
finite-range nucleon-nucleon interaction. Specifically, we considered two parametrizations of the Gogny interaction,
the so-called D1S [32] and D1M [33] forces. We also carried out calculations with an interaction containing tensor
terms, the D1ST2a [34], but, since the effects of these terms on the radii were within the numerical accuracy of our
calculations, we do not examine here the results obtained with this force.

III. RESULTS

In addition to the 208Pb nucleus, which is the main subject of our investigation, we considered other neutron-rich
doubly magic nuclei, 48Ca, 68Ni, 90Zr and 132Sn, to verify that our findings are not strictly related to some specific
feature of 208Pb. We investigated the importance of pairing effects in these nuclei by carrying out Bardeen-Cooper-
Schrieffer calculations with the same effective nucleon-nucleon interactions used in HF, and we found them irrelevant.

The quality of our IPM in describing the ground state of the nuclei considered is summarized in Table I, where the
values of binding energies and charge rms radii are compared to the experimental values taken from the compilations
of Refs. [35, 36]. The agreement with the experimental data is not a surprise since the values of the parameters of
the two forces used in the HF calculations were selected by doing a fit of about 2000 binding energies and 900 charge
rms radii [32, 33, 37], and the nuclei we considered are among those chosen for the fit.

B/A (MeV) Rch (fm)

D1S D1M exp. D1S D1M exp.
48Ca 8.691 8.590 8.666 3.539 3.514 3.477
68Ni 8.648 8.584 8.682 3.923 3.894 -
90Zr 8.739 8.635 8.709 4.292 4.264 4.269

132Sn 8.513 8.308 8.354 4.672 4.700 4.709
208Pb 7.895 7.829 7.867 5.489 5.501 5.501

Table I: Binding energies per nucleon, B/A, and rms charge radii, Rch, obtained in the IPM calculations with the D1S and
D1M interactions, compared to the experimental data taken from the compilations of Refs. [35, 36].

We show in Table II the neutron skins obtained in the calculations carried out within our IPM. The values found
with the D1M interaction are smaller than those calculated with the D1S force. The relative differences between these
two types of calculations are 24.4% for 208Pb, about 15%, for 68Ni, 90Zr and 132Sn, and 7% for 48Ca.

The almost free motion of the nucleons inside the nucleus is modified by the presence of effects that may be classified
as of short- and long-range. The short-range correlations (SRC) are due to the presence of the strongly repulsive
core of the bare nucleon-nucleon interaction and prohibit two nucleons from getting too close to each other. The
long-range correlations (LRC) take into account the part of the interaction neglected in the HF approach, which is
usually called residual interaction and couples collective vibrations to the s.p. wave functions [38–40].

A. Long-range correlations

We treated LRC within the theoretical framework of the random phase approximation (RPA) [38–40]. In this
theory, the nuclear ground state is no longer the IPM Slater determinant but a more complicated state containing
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D1S D1M

(N − Z)/A IPM LRC SRC total IPM LRC SRC total
48Ca 0.167 0.145 0.175 (20.2%) 0.157 (8.2%) 0.186 (28.3%) 0.134 0.162 (20.3%) 0.147 (9.2%) 0.174 (29.5%)
68Ni 0.176 0.157 0.224 (42.1%) 0.182 (16.0%) 0.248 (57.6%) 0.135 0.166 (23.0%) 0.145 (7.3%) 0.176 (30.2%)
90Zr 0.111 0.058 0.055 (−5.4%) 0.062 (7.8%) 0.059 (1.9%) 0.050 0.034 (−32.1%) 0.055 (9.8%) 0.039 (−23.1%)

132Sn 0.242 0.190 0.198 (4.3%) 0.202 (6.2%) 0.210 (10.5%) 0.163 0.166 (1.7%) 0.189 (15.9%) 0.192 (17.6%)
208Pb 0.212 0.122 0.142 (16.9%) 0.144 (18.4%) 0.165 (35.2%) 0.092 0.109 (18.8%) 0.115 (24.6%) 0.132 (43.2%)

Table II: Neutron skins, in fm, obtained in IPM and by including correlations. The calculations were done by using the D1S
and D1M forces. The relative differences with respect to the IPM values are shown between parentheses.

a set of particle-hole excitations that are weighted by the so-called backward amplitudes, Y , obtained by solving
the RPA equations. In Refs. [41–43] this idea has been exploited to evaluate nuclear ground state properties. The
correlated density distributions can be expressed as

ρLRC
α (r) = ρIPM

α (r) −
∑
JΠ

2J + 1

8π

∑
Ek

∑
p,h

′ ∣∣∣Y JΠ

ph (Ek)
∣∣∣2 {[Rp(r)]

2 − [Rh(r)]
2
}
, α ≡ π, ν , (4)

where ρIPM
α indicates the IPM density distribution, R the radial part of the particle, p, or hole, h, s.p. wave function

and J and Π the angular momentum and the parity of a specific nuclear excitation with energy Ek.
Our RPA calculations were carried out by consistently using the same interaction adopted in the HF calculations.

The numerical stability of the RPA results was ensured by following the prescriptions described in Ref. [44]. For each
nucleus considered we included all the multipolarities whose experimental excitation energy is smaller than 5 MeV.
We verified that the inclusion of other multipolarities did not modify significantly the final result.

For the nucleus 208Pb we also performed calculations with the phenomenological approach of Ref. [45], inspired to
the Landau-Migdal (LM) theory of the finite Fermi systems. In this case, the s.p. wave functions were generated
by two Woods-Saxon potentials, one for the protons and the other one for the neutrons, whose parameters, given in
Ref. [46], were selected to reproduce at best the empirical values of the s.p. energies. The phenomenological RPA
calculations were carried out by considering these experimental values, which are compared in Fig. 1 to the HF s.p.
energies. The figure clearly shows the well known fact that the empirical s.p. spectrum is more compressed than that
predicted by HF calculations [39]. In this phenomenological RPA calculation the residual interaction is a zero-range
density dependent LM force whose parameters values were selected to reproduce the excitation energy of the low-lying
3− excitation and the position of the centroid energy of the electric monopole excitation. In Fig. 2 we compare the
excitation spectrum of the 208Pb obtained for the three different approaches with the experimental one. As expected,
the results obtained with the phenomenological LM interaction reproduce better the experimental data than those
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Figure 1: Energies, in MeV, of the s.p. levels of 208Pb
close to the Fermi surface.
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Figure 2: Excitation spectrum of 208Pb obtained by self-
consistent RPA calculations carried out with D1S and
D1M interactions and by the phenomenological LM ap-
proach.
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found with the self-consistent HF plus RPA calculations.
The effects of the LRC on the proton and neutron rms radii are shown in Fig. 3, where we present the results

obtained with the D1S interaction. We found similar results by using the D1M force. In this figure, the red circles
show the differences RLRC

α −RIPM
α for both protons (Fig. 3a) and neutrons (Fig. 3b). In all the nuclei analyzed these

differences are positive, indicating that the global effect of the LRC is a broadening of the IPM density distributions
with the subsequent increase of the proton and neutron rms radii.

The size of this effect is not the same on proton and neutron densities. This difference is large enough to change
the value of the neutron skin. The IPM and LRC columns of Table II show that the LRC skin values are larger than
the IPM ones in all the cases, except for 90Zr nucleus. In this latter case, the LRC reduce the neutron skin of 5.4%, in
the calculation with the D1S force, and of 32.1%, in those with the D1M. In the other nuclei, the relative difference
ranges from 4.3% for 132Sn to about 20% for 48Ca and 208Pb.

In the phenomenological LM calculation for 208Pb the LRC produce an increase of proton and neutron rms radii
of about 0.02 fm, and a relative increase of the skin of about 3%.

The relevance of the various excitation multipoles included in the sum of Eq. (4) was also evaluated. As expected,
we found that the most important ones are those with the lowest excitation energy showing a rather collective behavior.
This is the case of the 3− excitation in 208Pb. The inclusion of this multipole in the sum of Eq. (4) modifies the
proton rms radii by 0.3% in the calculation with the D1S force, by 0.8% with the D1M, and by 1.2% with the LM
interaction. By looking at the excitation spectrum of Fig. 2, it becomes clear that the effect is larger the lower is the
excitation energy of the multipole.
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Figure 3: Differences between correlated and IPM rms
radii for (a) protons and (b) neutrons. All the calcula-
tions were done with the D1S interaction. The red circles
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the green squares those with the SRC only, and the black
triangles the total effect.
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Figure 4: Differences between the correlated rms radii and
those obtained in the IPM results. All the calculations
were done with the D1S interaction. The green squares
indicate the results obtained by considering all the six
operator dependent terms of the correlation function (6),
these are the same as in Fig. 3. The red triangles indicate
the values found by considering only the first four terms of
the correlation function, the so-called central terms. The
black circles correspond to the results obtained when only
the scalar term of the correlation function is included in
the calculation.

B. Short-range correlations

We conducted the study of the LRC in a consistent picture where the only physics input is the effective nucleon-
nucleon interaction. Our treatment of the SRC, based on the approach proposed in Ref. [47] and used in Refs.
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[42, 43, 48] to study charge density distributions, required a new physics input, the two-body correlation function.
We described the nuclear ground state as

|Ψ〉 ≡ ΨSRC(1, 2, . . . , A) = F (1, 2, . . . , A) Φ(1, 2, . . . , A) , (5)

where we indicate with Φ the HF Slater determinant, and with F a many-body correlation function defined as [49, 50]

F (1, 2, . . . , A) = S
∏
i<j

6∑
p=1

f (p)(rij)O
(p)
i,j . (6)

In the above expression S is a symmetrization operator, f (p)(rij) a scalar two-body correlation function acting on the

(i, j) nucleon pair, and {O(p), p = 1, . . . , 6} indicate two-body operators classified as in the usual Urbana-Argonne
sequence [49]:

O
(1)
ij = 1 , O

(2)
ij = τ (i) · τ (j) ,

O
(3)
ij = σ(i) · σ(j) , O

(4)
ij = σ(i) · σ(j) τ (i) · τ (j) ,

O
(5)
ij = S(i, j) , O

(6)
ij = S(i, j) τ (i) · τ (j) , (7)

where σ and τ are the spin and the isospin operators, respectively, and S(i, j) is the usual tensor operator.
The use of the expression (5) in the definition (2) of the density distribution allows an expansion in clusters, each

of them identified by the number of two-body correlation functions

h(p)(rij) = f (p)(rij) − δp,1 (8)

that it includes. In the previous equation δ indicates the Kronecker symbol. The key point of the model of Ref. [47]
consisted in retaining only those terms of the expansion that contain a single correlation function h(p). Explicit
expressions of the contribution of these diagrams in terms of the radial s.p. wave functions are given in Ref. [47].
While this truncation of the cluster expansion is a very poor approximation in the evaluation of the ground state
energy, it is rather good for the density distribution. Its validity was tested by comparing the results of this model
with the density distributions obtained in Fermi-Hypernetted-Chain (FHNC) calculations [50] in which almost all the
cluster terms of the expansion are considered.

Even though the D1S and D1M interactions do not contain tensor dependent terms, we used all the six operator
components of the correlation (6). In order to disentangle the effects of the various terms of the correlation function,
we carried out calculations by including only the scalar part, i.e. f (1), the first four terms, and the complete two-
body correlation function. We call SRC1, SRC4 and SRC, respectively, the results obtained in these three types of
calculations.

We used the two-body correlation functions f (p) obtained in Ref. [50] with a minimization procedure that generates
specific correlations for each nucleus investigated. In the present study, we considered the two-body correlation
functions obtained for the 48Ca and 208Pb nuclei by using the microscopic Argonne V8’ two-body force plus the
Urbana IX interaction (see Fig. 21 of Ref. [50]). These two correlation functions are very similar and produce results
which differ by few parts on a thousand, therefore we show here only those obtained with the 208Pb correlation.

The effects of the SRC on the proton and neutron rms radii calculated with the D1S interaction can be seen in
Fig. 4 where we show the differences between correlated and IPM proton and neutron rms radii. The SRC1 results
are shown by the black circles. We observe that the values of all the rms radii increase with respect to the IPM ones.
The inclusion of the other operator dependent central terms of the correlation (see SRC4 results), reduces the effect
of the scalar term as it is shown by the red triangles in the figure. Also the remaining two terms of the correlation,
the tensor ones, reduce the effect of the scalar correlation, producing the SRC shown by the green squares. These are
the same green squares of Fig. 3 where they are compared to the LRC results.

It is remarkable the difference between the behaviors of LRC and SRC. The effects of the former ones on the rms
radii strongly depend on the structure of the nucleus considered. For example, the size of these effects on 90Zr is much
larger than in 132Sn. On the contrary, the SRC effects are almost constant in all the nuclei considered, indicating
that the short-range features are really almost independent of the presence of the surface and shells effects.

As we have already pointed out for the LRC, also in the case of the SRC the effects are slightly different for protons
and neutrons rms radii and, consequently, the final result is an increase of the IPM neutron skin in the all five nuclei
analyzed, as indicated by the corresponding column of Table II. The size of the effect of the SRC is of the same order
of magnitude of that found for the LRC, even though it depends strongly on the specific features of nucleus considered.
We obtain a minimum increase of 6.2% for the 132Sn nucleus calculated with the D1S force and a maximum value of
24.6% in 208Pb with the D1M interaction.
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Since the treatments of SRC and LRC are based on different grounds, we defined the totally correlated density as

ρtotα (r) = ρLRC
α (r) + ρSRC

α (r)− ρIPM
α (r) , α ≡ π, ν . (9)

By considering these densities we calculated the totally correlated rms radii. The differences with the IPM radii are
indicated in Fig. 3 by the black squares which are roughly the sum of the LRC and SRC results. The total effects of
the correlations on the neutron skins are presented in Table II: it is evident that they produce an increase of the skin
values obtained in the IPM. The only exception is the case of the 90Zr when the D1M force is used.

The results of our study given in Table II show some regularity, but the specific structure of each isotope is more
important than any general trend. As example of this, we observe that size of the neutron skin increases when the
value of the (N − Z)/A ratio increases, i.e. when the neutrons become more important. The results of the 208Pb
nucleus are out of this trend.

IV. CONCLUSIONS

To summarize our results we can state that, in general, correlations increase the values of the neutron skins obtained
in the IPM. Our treatment of correlations distinguishes between long- and short-range correlations. While we treated
the former ones with an approach completely consistent with the IPM, the SRC were considered by inserting an
additional physics ingredient not constrained by the choice of the IPM. The presence of operator dependent terms in
the correlation function reduces the global effect of SRC with respect to results obtained with purely scalar functions.
It tuns out that the effects of the SRC in the rms radii are relatively small as compared to those of the LRC and they
are almost identical in each nucleus we studied. The dominant effects of the LRC are strongly related to the structure
of the nucleus considered.

The correlation effects are, on average, two times larger than those related to the use of different effective interaction.
In our calculations the values of the neutron skins obtained with the D1S force are always larger than those obtained
with the D1M interaction.

In case of 208Pb, the inclusion of correlations improves the agreement with the PREX results. The IPM skin
values are located at 2.3σ and 2.7σ from the mean value given by the experiment for the D1S and D1M interactions,
respectively. The corresponding correlated values are at 1.6σ and 2.1σ.

The proper manner of tackling the description of neutron skins is a fully consistent, and microscopic, calculation of
the density distributions such as those carried out with the coupled cluster model for the 48Ca in Ref. [51]. Up to now
this kind of calculations is not feasible for heavier nuclei, certainty not for 208Pb. To the best of our knowledge, the
only microscopic approach that has studied 208Pb is the FHNC calculation of Ref. [50]. Unfortunately, the numerical
precision of these calculations does not allow a sufficient accuracy to obtain reliable results for the neutron skin. It is
worth mentioning that some preliminary test calculations of this kind by using Argonne V8’ two-body potential plus
three-body Urbana IX force show a trend in agreement with our findings [52].
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