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We present the first applications of the second random-phase-approximation model with the finite-
range Gogny interaction. We discuss the advantages of using such an interaction in this type of
calculations where 2 particle-2 hole configurations are included. The results found in the present
work confirm the well known general features of the second random-phase approximation spectra:
we find a large shift, several MeV, of the response centroids to lower energies with respect to
the corresponding random-phase-approximation values. As known, these results indicate that the
effects of the 1 particle-1 hole/2 particle-2 hole and 2 particle-2 hole/2 particle-2 hole couplings
are important. It has been found that the changes of the strength distributions with respect to
the standard random-phase-approximation results are particularly large in the present case. This
important effect is due to some large neutron-proton matrix elements of the interaction and indicates
that these matrix elements (which do not contribute in the mean-field calculations employed in the
conventional fit procedures of the force parameters) should be carefully constrained to perform
calculations beyond mean-field approach.
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The new and complex phenomenology associated to
exotic neutron-rich and neutron-deficient isotopes is en-
riching the experimental landscape in nuclear physics. In
the perspective of improving the theoretical description
of exotic nuclei, efforts are concentrated on the refine-
ment of the existing many-body theories, as well as on the
microscopic derivation of the nuclear interaction. Both
aspects are fundamental and complementary to improve
our description of the nucleus as a many-body interact-
ing system. In the context of the Energy Density Func-
tional theories, complex configurations and correlations
are included nowadays within several theoretical frame-
works beyond the conventional mean-field models based
on both the Skyrme and the Gogny effective interactions
as well as on relativistic formulations (e.g. in Refs. [1–
6]).
Within the scheme of the standard random-phase ap-

proximation (RPA) the excited states are described as
superpositions of 1 particle-1 hole (1ph ) and 1 hole-1
particle (1hp) configurations. Evidently, those excited
states containing non negligible multiparticle-multihole
components are not well described by this theory. Fur-
thermore, the width of the excited states cannot be re-
produced except for the single-particle Landau damping.
A well known extension of the RPA scheme is the second
RPA (SRPA) model which is obtained with the inclusion
of the 2 particle-2 hole (2ph) configurations. This leads to
a richer treatment of the excitation modes. The spread-
ing width can also be described owing to the coupling
with the 2ph configurations.
After having presented in previous works some appli-

cations of the SRPA theory with the Skyrme zero-range
interaction [7–9] we present here the first applications of

the SRPA theory with the Gogny force. Although the use
of a finite-range interaction turns out to be numerically
more demanding with respect to the zero-range case, it
presents some advantages. The first one is related to
the fact that the Gogny force has been introduced and
adjusted to be used in both the Hartree-Fock and the
pairing channels. Since in the SRPA theory not only the
standard RPA-type particle-hole (ph) matrix elements of
the interaction are present, it seems to us that the use of
a force tailored to handle also other kinds of terms, such
as the particle-particle matrix elements, is more appro-
priate. A second, non negligible, advantage is the finite
range of the four central terms of the Gogny force. We
expect that this feature provides, in a natural way, con-
vergent results with respect to the increase of the energy
cutoff in the 2ph space of the SRPA calculations. We
do not expect a full convergence because the Gogny in-
teraction contains also density-dependent and spin-orbit
terms which are of zero-range type. We remark that our
SRPA calculations are not fully self-consistent because
we neglect the Coulomb and the spin-orbit terms in the
residual interaction. This means that the dependence of
the results on the numerical cutoff is related in this work
only to the zero-range density-dependent part of the in-
teraction. The cutoff-dependence of the Skyrme-SRPA
results has been addressed and discussed in Ref. [7].
The details of the SRPA formalism may be found in

the literature. The derivations of the SRPA secular equa-
tions carried out by using the method of the equations of
motion [10] or by considering the small-amplitude limit
of the time-dependent density-matrix theory [11, 12] pro-
vide expressions of the matrices A and B which are valid
in cases where the interaction does not depend on the
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density. The case of a density-dependent force in ex-
tended RPA theories has been discussed in some early
works [13, 14]. The specific case of the SRPA model
has been considered in Ref. [8], where a prescription to
treat the rearrangement terms of the residual interaction
in matrix elements beyond RPA has been derived. This
prescription has been applied also in the present work.
In Ref. [10] it is demonstrated that the energy-weighted
sum rules (EWSR’s) are satisfied in the SRPA model.
To present the first applications where the Gogny in-

teraction is employed in SRPA calculations we have cho-
sen the nucleus 16O. This allows us to better control the
heavy numerical problem associated with the diagonal-
ization of the SRPA matrix. Furthermore, the study of
this nucleus allows us a direct comparison of our SRPA
results with previous Skyrme-SRPA results [7]. In our
calculations we used the D1S parametrization of the
Gogny interaction [15, 16].
As an illustration, in the present article we show only

results regarding the monopole isoscalar response. The
calculations are performed in spherical symmetry in the
harmonic oscillator basis. As anticipated, the Coulomb
and the spin-orbit contributions are not taken into ac-
count in the residual interaction. The single-particle and
the 1ph spaces have been chosen large enough to ensure
that the values of the EWSR’s are stable. All the single-
particle states with an unperturbed energy lower than 60
MeV (that is, all the 1ph configurations with an unper-
turbed excitation energy up to 100 MeV) are included in
the calculations. In the 2ph space, we have considered
all the configurations with an unperturbed energy lower
than an energy cutoff Ecut and we have studied the nu-
merical stability of the results with respect to the choice
of the cutoff.
In these first applications of the Gogny-SRPA model

we have found that some neutron-proton (νπ) matrix el-
ements of the interaction, appearing in the beyond-RPA
block matrices, are very large, some of them being from
5 to 10 times larger than all the other matrix elements.
These matrix elements, that are absent in the standard
RPA calculations, have a strong impact on the stability
of the results, in particular on the peak structure of the
response. As we shall show below, their effects are es-
pecially strong in the matrix elements coupling 1ph and
2ph configurations (that is, 3 particle-1 hole or 3 hole-
1 particle matrix elements). To analyze and single out
these effects we have performed two different kinds of
calculations: (a) a full SRPA calculation where all the
2ph configurations are included; (b) a calculation per-
formed by considering only the 2ph configurations that
are composed by pure neutron and proton excitations.
This means that in the case (b) we do not include the
2ph configurations where the two particles and the cor-
responding two holes have a different isospin nature, that
is νπ or πν configurations. As a consequence, no νπ ma-
trix elements of the interaction are present in the SRPA
matrices in the case (b). In the following we will indicate
the two calculations (a) and (b) as SRPA and SRPA∗,

respectively. The strong impact of the νπ matrix ele-
ments of the interaction can be seen in Fig. 1 where the
isoscalar monopole response for the operator

F IS =
∑

r2i Y00(r̂i), (1)

calculated in the SRPA (a) and in the SRPA* (b) scheme
is displayed for two values of the cutoff energy, Ecut =
60 and 80 MeV. The corresponding Gogny-RPA results
are also plotted in the two panels of the figure. folded
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FIG. 1. (Color online) (a) Isoscalar monopole response for
the nucleus 16O calculated with the Gogny-RPA model (full
line) and with the SRPA approach with an energy cutoff on
the 2ph configurations of 60 (dotted line) and 80 (dashed line)
MeV. (b) Same as in (a) but in the SRPA* scheme. See the
text for more details.

the discrete spectra with a Lorentzian function with a
width of 1 MeV. We see that in the SRPA scheme the
responses associated with the different cutoff values are
appreciably different and, for Ecut = 80 MeV, the main
peak of the response is pushed at energies more than 10
MeV lower than in the RPA case (a). The SRPA* re-
sults of panel (b) are much more stable with respect to
the change of the cutoff energy. This can also be seen
by considering the centroid energies of the strength dis-
tributions. When the energy cutoff is increased from 60
to 80 MeV the centroid goes from 20.37 to 15.30 MeV
(deviation of 25%) in the full SRPA calculations whereas
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it is much less shifted, from 23.97 to 22.37 MeV (7%),
in the SRPA* case. It is also worth noticing that in
the latter case the difference between the spectra corre-
sponding to the two Ecut is essentially just a shift, while
when the (nu pi) matrix elements are not neglected, the
SRPA strength distribution is very much different from
the RPA one. To check more in detail the stability of the
results in the SRPA* case, we have performed also calcu-
lations with cutoff values of 100 and 120 MeV (Fig. 2).
When the cutoff is changed from 80 to 100 MeV the cen-
troid is shifted from 22.37 to 21.32 MeV (5%) and when
the cutoff is changed from 100 to 120 MeV the centroid
moves from 21.32 to 20.49 MeV (4%). We conclude that
the stability that is expected when the Gogny interac-
tion is employed seems to be achieved in the SRPA* case
where, by construction, all the large νπ matrix elements
of the residual interaction in the beyond RPA blocks of
the matrices are neglected. The strong impact of these
matrix elements can also be seen in Fig. 3 where we
plot the discrete spectra in a logarithmic scale to empha-
size the fragmentation of the response. The SRPA and
SRPA* spectra (full lines) correspond to a cutoff of 80
MeV. In the two panels of this figure, as a comparison,
also the corresponding RPA results are plotted (dashed
lines). We observe that not only the energies but also
the fragmentation of the peaks is strongly affected in the
SRPA response that is shown in (a). The monopole case
is presented here as an illustration, however, we have
verified that also in the dipole and quadrupole cases the
spectra (energies and fragmentation) are strongly mod-
ified in the full SRPA scheme where all the νπ matrix
elements of the residual interaction are included.
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FIG. 2. (Color online) Isoscalar monopole response for the
nucleus 16O calculated in the SRPA* case with cutoff energies
of 80 (dotted line), 100 (dot-dashed line) and 120 (dashed line)
MeV. The Gogny-RPA results are also plotted (full line).

The effect we have just pointed out, related to the pres-
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FIG. 3. (Color online) Isoscalar monopole discrete strength
distributions for the nucleus 16O calculated within the SRPA
model (full line) with a cutoff energy of 80 MeV (a). (b)
Same as in (a) but in the SRPA* scheme. In both panels ,
the Gogny-RPA results are also plotted (dashed lines) as a
reference.

ence of some very large νπ matrix elements, is not so sur-
prising. These matrix elements do not contribute at the
mean-field level where the fit procedures are commonly
performed to select the values of the parameters of the ef-
fective interactions such as the Skyrme and Gogny forces.
For this reason, we cannot exclude that their inclusion in
actual calculations may have an unexpected and strong
impact. It is also interesting to remark that analogous
important effects related to large νπ matrix elements
have been found in the Gogny case also in recent appli-
cations of the variational multiparticle-multihole config-
uration interaction theory to the low-lying spectroscopy
of the nucleus 30Si [17]. These findings are coherent with
our results and suggest that these matrix elements of the
interaction should be carefully tuned in the fit proce-
dures.
By comparing the present results with the correspond-

ing Skyrme results of Ref. [7] we observe that also in
that case a similar behaviour is found, although less pro-
nounced. This effect of the SRPA theory is found not
only in nuclear physics when phenomenological interac-
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tions like the Skyrme and Gogny forces are used. This
effect is present also in nuclear calculations which em-
ploy forces derived from realistic interactions [18, 19],
as well as in a completely different domain, that is, in
calculations carried out for metallic clusters (where the
interparticle interaction is the Coulomb force) [20]. It is
important to underline that the shift found in the Gogny
case is comparable to the corresponding Skyrme result
only when all the large νπ matrix elements are omitted
in the Gogny case (SRPA* scheme). Otherwise, their
effect is too strong in pushing the centroid energies to
lower values.
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FIG. 4. (Color online) Neutron (dashed lines) and proton
(full lines) transition densities for the main peaks of the RPA
(a), SRPA (b) and SRPA* (c) strength distributions.

We have studied the effects of these matrix elements on
the transition densities which are shown in Fig. 4 for the
energies of the main peaks of RPA, SRPA and SRPA∗

strength distributions. In this figure, the neutron and
proton transition densities are indicated by the dashed
and full lines, respectively. In the upper panel (a) the
neutron and proton RPA transition densities are plotted
for the state located at ∼ 22.34 MeV. In the middle (b)
and lower (c) panels we show the transition densities for
the states located at 9.71 and 18.36 MeV, correspond-
ing to the states obtained in the SRPA (b) and SRPA*
(c) cases. We observe that the shapes of the profiles are
rather similar. This indicates that the nature of these
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FIG. 5. (Color online) Isoscalar monopole distributions for
the nucleus 16O calculated within the SRPA (a) and SRPA*
(b) model (dashed lines) with a cutoff of 80 MeV. The compar-
ison with the corresponding spectra obtained in the diagonal
approximation (dot-dashed lines) is shown. The Gogny-RPA
results are also plotted (full lines).

RPA and SRPA excited states does not change very much
in terms of the spatial distributions of the contributing
wave functions. We conclude that, at least in this case,
the νπ matrix elements affect the energy and the strength
distributions while the shapes of the radial distributions
of the contributing nucleons are not appreciably modi-
fied.
Finally, in the framework of the Gogny-SRPA model

we have checked the validity of the so-called diagonal ap-
proximation, which amounts to neglect the coupling of
the 2ph configurations among themselves. The results
obtained by adopting this approximation will be identi-
fied as SRPA-D. The validity of this approximation has
been tested in Ref. [7] by using the Skyrme interaction.
In this case, large differences with respect to the complete
calculations have been found. In Fig. 5 we compare the
results obtained in the full SRPA (a) and SRPA* (b)
models with the corresponding results obtained in the
diagonal approximation. All the calculations have been
carried out by using an energy cutoff of 80 MeV. We
observe that in both cases the shifts and the shapes of



5

the strength distributions do not strongly change when
the residual interaction in the 2ph space is neglected,
the differences being larger in the SRPA case than in
the SRPA* one. The relatively small differences that
have been found between the SRPA* and the SRPA*-D
cases indicate that the effect of the νπ matrix elements
is mainly related to the coupling of the 1ph configura-
tions with the 2ph ones. In the SRPA* case, panel (b),
we see that the results obtained within the diagonal ap-
proximation are extremely close to the full ones and the
same behavior is found also for larger energy cutoff. By
comparing these results with those obtained by using the
Skyrme interaction [panel (a) of Fig. 8 of Ref. [7]] we de-
duce that in the Gogny case the diagonal approximation
provides results which are much closer to the full results,
at least in the monopole case.
In summary, we have found that in the Gogny-SRPA

calculations the responses are very strongly affected by
some νπ matrix elements of the residual interaction, par-
ticularly in the channels which couple the 1ph with the
2ph configurations. These matrix elements do not con-

tribute in Hartree-Fock and standard RPA calculations.
Therefore, they do not contribute in the calculations
where the parameters of the effective forces are fixed
by the usual fitting procedures. To check and constrain
their effects, it is thus necessary to go beyond the con-
ventional procedures. We suggest some different possible
directions that may be followed to constrain these ma-
trix elements. First, it is evident that the νπ matrix ele-
ments of the residual interaction play an important role
in charge-exchange RPA calculations. This means that
charge-exchange Gogny-RPA calculations could in prin-
ciple provide important indications to better constrain in
general this type of matrix elements. It is also interesting
to notice that the same νπ matrix elements of the resid-
ual interaction entering in the SRPA formalism are also
present in the variational multiparticle-multihole model
of Ref. [3]. The two models could thus be used in a com-
plementary way to analyze the impact of these terms and
to guide toward a better control of their contributions in
beyond mean-field theories.
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