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Abstract

We present a study of the effects of the tensor-isospin term of the effective interaction in Hartree-

Fock and Random Phase Approximation calculations. We used finite-range forces of Gogny type,

and we added to them a tensor-isospin term which behaves, at large internucleonic distances, as the

analogous term of the microscopic interactions. The strength of this tensor force has been chosen

to reproduce the experimental energy of the lowest 0− excited state in 16O, which shows large

sensitivity to this term of the interaction. With these finite-range interactions, we have studied

the effects of the tensor-isospin force in ground and excited states of carbon, oxygen, calcium,

nickel, zirconium, tin and lead isotopes. Our results show that the tensor force affects mainly the

nucleon single particle energies. However, we found some interesting cases where also bulk nuclear

properties are sensitive to the tensor interaction.

PACS numbers:
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I. INTRODUCTION

At the beginning of the 40’s of the past century, the existence of the electric quadrupole

moment of the deuteron [1, 2] was explained by Rarita and Schwinger by introducing a

static tensor term in the nucleon-nucleon (N-N) interaction [3, 4]. Since then, tensor terms

are unavoidable ingredients of the microscopic N-N interactions, i.e. those interactions

constructed to reproduce the properties of two-nucleon systems.

Despite their relevance in microscopic interactions, the tensor terms are usually neglected

when effective interactions and theories are used. In the effective theories some complicated

many-body effects are treated, obviously in effective and average manner, by changing the

values of the parameters of the interaction. Some specific observables of the nucleus are

chosen to select these values. For example, in Hartree-Fock calculations these observables

are usually the nuclear binding energies. The effective theory is expected to be able to

describe other observables. If this fails, one searches for many-body effects which should be

explicitly treated to improve the description of the data. In this manner, we link many-body

effects to specific observables. In the case of our interest here, the tensor force, the point

is the identification of observables clearly depending on the presence of this term in the

effective N-N interaction.

In these last years, the interest on the tensor terms of the effective N-N interaction has

increased because the inclusion of these terms improves the description of the single particle

(s.p.) energies of some isotope or isotone chains [5–8] when the Hartree-Fock theory is used

[9–15].

We see some weak points in using the s.p. energies to define the strength of the tensor

terms of the effective interactions. First, s.p. energies are extremely sensitive to the spin-

orbit terms of the N-N interaction, and this obscures the possibility of a clear identification

of the tensor effects (see for example the discussion in Ref. [16]). Furthermore, observations

are always done on global nuclear properties, therefore the identification of the measured

quantities with s.p. properties of the nucleus is done by imposing to the observed quantity

the physical interpretation given within a mean field description of the many-body system.

The fact that experimental values of spectroscopic factors are usually rather different from

the mean field expectations is a clear indication of the limits of this procedure.

In this article we propose an alternative approach to select the strength of the effective
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tensor forces. We have looked at the excitation spectrum to find observables particularly

sensitive to the tensor force. We have identified these observables with the energies of the

0− charge conserving excitations. By using a recursive self-consistent Hartree-Fock (HF)

plus Random Phase Approximation (RPA) procedure, we have chosen the strength of the

tensor term of the effective interaction to reproduce the experimental value of the 0− in 16O.

With these new interactions we have investigated the ground and excited state properties

of various nuclei by doing HF plus RPA calculations.

The structure of the tensor terms we have considered and the methodology used to select

their strengths are presented in Sec. II. We discuss the results obtained in the description

of the ground states of various nuclei in Sec. III, and in Sec. IV the results obtained for the

excited states. We summarize the main points of our work and draw our conclusions in Sec.

V.

II. THE INTERACTION

The most important tensor component of the microscopic N-N interaction is that related

to the tensor-isospin channel [17, 18] whose long range behaviour is dominated by the ex-

change of a single pion. Since the pion is the lightest meson, the range of the tensor-isospin

term is longer than the ranges of the other terms of the N-N interaction. For this reason

we have chosen to consider, in our effective interactions, only tensor-isospin terms with fi-

nite range. The use of finite range forces requires, in both HF and RPA calculations, the

evaluation of direct and exchange interaction matrix elements.

The tensor-isospin term of our effective interaction is based on the analogous term of the

microscopic Argonne V18 interaction [18]. We have multiplied the radial part of this term

by a function which simulates the effect of the short-range correlations [19]. In our work,

the radial part of the tensor-isospin term has the form

v6(r) = v6,AV18(r)
[

1 − exp
(

− b r2
)]

, (1)

where we have indicated with r the distance between the two interacting nucleons, with

v6,AV18 the radial function of the Argonne V18 tensor-isospin potential [18], and with b a

free parameter. The changes in the tensor-isospin term produced by choosing different values

of b are shown in panel (a) of Fig. 1, where we present the Fourier transformed function
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V6(q), defined by the equation

V6(q) S12(q) =

∫

d3r exp (iq · r) v6(r) S12(r)

= − 4π

∫

dr r2 j2(qr) v6(r) S12(r) . (2)

In the above equation r and q indicate the moduli of r and q, and we used the definition of

the tensor operator

S12(r) = 3
[σ(1) · r] [σ(2) · r]

r2
− σ(1) · σ(2) , (3)

where σ are the usual Pauli spin matrices.

The results presented in the panel (a) of Fig. 1 show that the correlation effects reduce

the strength of the bare tensor force. The smaller is the value of b, the more extended in r

space is this effect, therefore the function to be integrated in Eq. (2) becomes smaller.

The first step of our study consisted in identifying an observable very sensitive to the

tensor force with the aim of using it to determine the strength of this part of the effective

interaction. We have conducted this study by investigating the excitation spectra of the

12C, 16O, 40Ca, 48Ca, 90Zr and 208Pb nuclei within the phenomenological RPA approach

developed by the Jülich group [20, 21]. In this approach, based on the Landau-Migdal

theory of finite Fermi systems [22], the set of s.p. energies and states is obtained by using

phenomenological mean field potentials that, in our case, have the shape of Woods-Saxon

wells. The values of the parameters of the potential are chosen for each nucleus in order to

reproduce at best the empirical values of the s.p. energies around the Fermi surface and the

values of the charge root mean square radii. The explicit expression of the potential, and

the values of the parameters, can be found in Refs. [19, 23]. Following the philosophy of

the Landau-Migdal approach, in the RPA calculations we substituted the Woods-Saxon s.p.

energies with their experimental values, when they are available.

All the RPA results presented in this article have been obtained by using a discrete s.p.

basis. In the phenomenological calculations discussed in this section we have used a discrete

s.p. basis obtained by diagonalizing the Woods-Saxon well in a harmonic oscillator basis. In

analogy with the work of Ref. [23], we have used configuration spaces large enough that the

inclusion of additional s.p. states does not modify the energies of the first excited states,

below 20 MeV in the lighter nuclei and 15 MeV in the heavier ones, within 0.1 MeV.
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In these phenomenological calculations we used as basic N-N effective interaction a density

dependent Landau-Migdal force. The values of the force parameters, given in Refs. [23, 24],

change for each nucleus, and are chosen to reproduce at best the energies of the collective

low-lying 3− states of each nuclei, and also the energies of the 12− excited states in 208Pb.

We added to this basic interaction a tensor term of the form given by Eq. (1), and we

studied the excitation spectra of the nuclei mentioned above.

In agreement with previous calculations [21, 25] we observed that the influence of the

tensor term on the natural parity states is negligible. We found few cases of interest in the

spectrum of the unnatural parity excitations. The most interesting one was the excitation

of the 0− states, which show common characteristics in all the nuclei we considered.

In Fig. 2 we have summarized the results obtained for the energies of the lowest 0−

excitations in the nuclei investigated. In this figure, the squares indicate the values of the

0− excitation energies, obtained by adding the tensor term of Eq. (1) to the Landau-Migdal

force, as a function of the parameter b. The horizontal dashed lines indicate the values

obtained without tensor term, while the dotted lines show the values obtained by using the

full tensor term of the Argonne V18 interaction. The full lines show the experimental values

[26, 27].

We observe that the effect of the tensor term is always attractive, i.e. all the energies

obtained with the tensor terms are smaller than those obtained without it. The values of

these energies decrease, monotonically and smoothly, from the dashed to the dotted lines

when the value of b increases, as we have naively expected. Discussing the results in more

detail, we have obtained variations of the energies from 4 up to 8 MeV, and, in relative

variations, between 30% and 100%. These are the largest effects of the tensor force on the

excitation energies we have found in our investigation. In the 48Ca case, the effect of the

full tensor term is so strong that we obtained an imaginary solution for the RPA equations.

The remarkable sensitivity of the 0− excitation energies to the presence of the tensor

force, and their smooth behaviour with respect to the changes of its strength, make these

energy values particularly suitable to be chosen as experimental benchmarks to select the

strength of the tensor terms in effective interactions.

In this work we have performed HF plus RPA calculations. The HF equations were

solved with the method used in Refs. [28, 29]. This method is based on the plane wave

expansion technique developed by Guardiola and Ross [30, 31]. After the iterative process
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has reached the convergence, we solved the HF differential equations not only for the s.p.

states below the Fermi level, the hole states, but also for those states above the Fermi level,

the particle states. The numerical method automatically produces a set of discrete levels

even when the s.p. energies are larger than zero, i.e. in the continuum region. We did

not find general criteria for the stability of our results. This problem is not very important

in the phenomenological RPA approach, since the effects related to the truncation of the

s.p. configuration space are taken into account by changing the parameters of the force.

However, in self-consistent calculations this is a more serious problem, since the interaction

parameters are chosen to reproduce, in HF calculations, the ground state properties of the

various nuclei, and the force remains unchanged in RPA calculations.

To keep under control these problems, we restricted our study to the low-lying excited

states. For each excitation studied we used the same criterion considered in the phenomeno-

logical approach, i.e. we controlled that the energy eigenvalues of the first low-lying states

did not vary by more than 0.1 MeV against the enlargement of the configuration space. In

order to obtain this numerical accuracy, we had to use configuration spaces composed by a

few thousands s.p. states, more than 2000 in 208Pb. The numerical stability of higher energy

excitations, such as giant resonances, requires even larger configuration spaces. In this case

we believe it is necessary to abandon the discrete RPA calculations and treat correctly the

continuum, as it is done, for example, in Refs. [32, 33].

We have built two new forces by adding to the D1S [34] and D1M [35] parameterizations

of the Gogny interaction [36] a tensor-isospin term similar to that given by Eq. (1). We

label D1ST and D1MT these new interactions. Since in Gogny-like forces the spin-orbit

term is fixed to reproduce the experimental splitting of the s.p. energies of the 1p1/2 and

1p3/2 neutron states in 16O, we used this nucleus as reference. The new interactions have

been fixed by using an iterative procedure. We started with a HF calculation without tensor

force to produce a set of s.p. energies and wavefunctions to be used in the RPA calculations.

Then, we made a RPA calculation with the tensor force and we fixed the value of the

parameter b of Eq. (1) in order to reproduce the energy of the first 0− excitation of 16O at

10.6 MeV. With this new interaction we recalculated the HF s.p. energies by changing the

spin-orbit interaction to reproduce the splitting of the two p states quoted above. These HF

and RPA calculations have been repeated until the convergence of the result was obtained.

By using this procedure we have found for the parameter b the value 0.6 fm−2, for the D1ST
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force, and of 0.25 fm−2, for the D1MT one. Summarizing, we added a tensor term to the

D1S and D1M Gogny-like interactions and we modified only the spin-orbit terms from 130

MeV, in the original D1S force, to 134 MeV, in the D1ST interaction, and from 115 MeV,

in the D1M force, to 122.5 MeV, in the D1MT interaction. No other values of the force

parameters have been changed.

The tensor terms of the D1ST and D1MT interactions are indicated in panel (b) of Fig.

1 by the dashed-dotted and dashed-doubly-dotted lines respectively. In this figure they are

compared with the tensor-isospin term of the microscopic Argonne V18 interaction (solid

curve). By construction, the effective tensor terms are smaller than that of the bare N-N

interaction. More interesting is the comparison with the long dashed line which has been

produced by multiplying the bare interaction with the scalar part of the short-range cor-

relation function obtained in Correlated Basis Function calculations [19]. The remarkable

difference between this line and those of the D1ST and D1MT forces indicates that our

procedure includes in the effective tensor term not only the effects of the short-range cor-

relations, but also some other many-body effects that the microscopic calculations consider

explicitly. In the same panel we make a comparison with other two tensor terms of finite-

range interactions used in the literature, the GT2 [10] and the M3YP2 [37] forces. The

tensor term of the GT2 is constructed to have the same volume integral of the Argonne V18

tensor force. The strength of this tensor force is much larger than those of the tensor forces

we have built. On the opposite, we observe that the tensor term of the M3YP2 force is much

smaller.

Even though the D1ST and D1MT forces reproduce the experimental value of the exci-

tation energy of the 0− state at 10.6 MeV in 16O, they produce rather different RPA wave

functions, as we have verified by calculating transition densities and inclusive neutrinos cross

sections for this excited state.

III. HARTREE-FOCK RESULTS

We used the D1ST and D1MT interactions, whose construction has been described in the

previous section, to make spherical HF calculations for a set of nuclei in different regions of

the isotope chart. We have chosen nuclei where the s.p. states below the Fermi level are fully

occupied to avoid deformation problems and to minimize pairing effects. We have verified
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these features by controlling the results given by the deformed Hartree-Fock-Bogolioubov

calculations of Ref. [38].

In Fig. 3 we compare the binding energies obtained for various nuclei we have considered,

with the experimental values taken from Refs. [39, 40]. The experimental energies of the

28O, 48Ni, 60Ca, 78Ni and 100Sn nuclei have not been measured but estimated [40].

The methodology used in our study is already evident. We have investigated the effects of

the tensor force by comparing the results obtained by using forces with and without tensor

term. To emphasize the effects of the tensor force, we show in the panel (a) of Fig. 3 the

quantity

∆E = 100
ED1αT − ED1α

ED1α
, (4)

which is the relative percentage differences between the binding energies calculated by using

interactions with and without tensor term, ED1αT and ED1α respectively (α ≡ S, M). In this

panel the open squares indicate the results obtained with the D1ST and D1S interactions

and the solid circles those obtained with the D1MT and D1M ones. The lines have been

drawn to guide the eyes.

If we exclude the anomalous values obtained for the 14O nucleus, we observe that all the

other results lie in the range ∆E ≈ ±2. In general, the inclusion of the tensor term in the

D1M force produces more binding, while it has opposite effect in the D1S case. These results

show that effect of the tensor on the binding energy of the nuclei we have investigated is

rather small, confirming the results of Ref. [29]. As a consequence, and as we can see in

panels (b) and (c), the inclusion of the tensor term does not modify the agreement with

experimental data in a significant manner.

We have investigated the effect of the tensor force on the proton and neutron density

distributions obtained from our HF calculations, and, also in this case, we found small

effects. We summarize the results of this study in Fig. 4 where we have shown the relative

percentage difference between root mean square (rms) radii obtained by using interactions

with and without tensor force,

∆r = 100

√

〈r2〉D1αT −
√

〈r2〉D1α
√

〈r2〉D1α

. (5)

We show the results for the neutron radii in the upper panel of the figure, and those for

the proton radii in the lower panel. We have indicated with the open squares the results

obtained with the D1S forces and with the solid circles those obtained with the D1M ones.
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The effects of the tensor force are rather small, of the order of few parts on a thousand.

We observe again the different sign between D1S and D1M results. The larger binding

produced by the tensor in the D1M case generates more compact nuclei, i.e. with smaller

rms radii. In the case of the D1S forces the effect is just the opposite. This trend is present

in both neutron and proton cases.

The results we have presented so far indicate that the bulk properties of the nuclear

ground states are not greatly affected by the presence of the tensor force. The situation

changes when the s.p. energies are considered. In the remaining part of this section we shall

discuss results concerning s.p. properties. Henceforth we shall distinguish the proton and

neutron s.p. levels by using the π and ν labels, respectively.

A first quantity we have studied is the difference between the s.p. energies of spin-orbit

partner levels

s = ǫl−1/2 − ǫl+1/2 . (6)

In particular, we have studied the difference between the values of s obtained by using forces

with and without tensor terms

∆s = sD1αT − sD1α . (7)

In Figs. 5 and 6 we show the values of ∆s calculated for the 1p, 1d and 1f proton and

neutron levels, respectively, for all the nuclei considered. In these figures the open squares

indicate the results obtained with the D1S interactions, and the solid circles those obtained

with the D1M ones. The arrows indicate those nuclei where all the spin-orbit partner levels,

for both protons and neutrons, are fully occupied.

Let us consider first Fig. 5, where, for each isotope chain we show the evolution of ∆s

values with the increasing number of neutrons. We first observe that, for each s.p. level

investigated, the D1S and D1M results have identical behaviour. Minima and maxima are

in the same position for both type of calculations. A second observation is that, in general,

∆s is negative. This means that the tensor force reduces the energy difference between spin-

orbit partner levels. A third observation is that the effects of the tensor force are minimal,

almost zero, for those nuclei indicated with the arrows.

The first observation indicates that the effects we have pointed out are strictly related

to peculiarities of the tensor force and of the nucleus investigated. The small difference
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between the D1S and D1M results reflects the difference between the tensor forces in D1ST

and D1MT, as we have shown in Fig. 1.

The second and third observations are well understood within the scheme proposed by

Otsuka et al. [9, 10, 41]. The effect of the tensor interaction between a proton and a neutron

occupied s.p. levels is attractive if one of the levels has an angular momentum j> ≡ l + 1/2

and the other one j< ≡ l − 1/2. If the angular momenta of the two s.p. levels are of the

same type, i.e. both j> or both j<, the effect of the tensor force has opposite sign. The

effect of an occupied neutron level with angular momentum j> is to increase the energies of

the s.p. proton levels with j>, and to lower those of the levels with j<. As a consequence,

the splitting between the energies of the proton spin-orbit partner levels is reduced. This

effect is reversed when the occupied neutron level has j<. If both j> and j< neutron levels

are occupied, the two effects cancel with each other.

The results presented in Fig. 5 are well explained within this picture. In the nuclei

marked with the arrows, all the j> and j< neutron levels are occupied. In these nuclei we do

not expect any tensor effect. In reality the values of ∆s are not exactly zero even in these

cases because we have changed the strengths of the spin-orbit interactions in the forces with

tensor terms (see Sec. II). In all the other nuclei there is, at least, one occupied neutron

level with j>, whose spin-orbit partner level is empty. The effect we have discussed above

predicts negative values of ∆s, as those shown in the figure.

In Fig. 6 we have shown the values of ∆s for the neutron 1p, 1d and 1f levels. Since in the

oxygen and calcium isotopes all the proton s.p. partner levels below the Fermi surface are

completely occupied, the effects we observe in these isotopes are due to the tensor interaction

acting within neutron s.p. levels only. This is exactly the effect we have discussed above, but

acting between s.p. states with the same isospin. This effect is weaker than that between

states with opposite isospin, as the results for the 22O, 24O, 48Ca and 52Ca nuclei indicate.

In these nuclei one of the neutron spin-orbit partner levels is unoccupied and the tensor

effect is expected to be present. Actually, there is also an effect produced by the different

values of the spin-orbit forces, but we have verified that, for the cases under consideration,

this effect is negligible.

The analysis of the ∆s results for the Ni, Zr, Sn and Pb isotopes is more complicated,

since, in these cases, in both the proton and neutron sectors, there are spin-orbit partner s.p.

levels not fully occupied. For this reason, we must consider the interaction with both proton
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and neutron levels. The similarity between the behaviour of the results obtained with the

different interactions indicate that we are observing an effect due to the peculiarities of the

tensor force.

Another quantity of interest related to the s.p. energies is the gap, g, between the

energies of the levels just above and just below the Fermi surface. In Fig. 7 we have shown

the proton (lower panels) and neutron (upper panels) energy gaps calculated for the nuclei

we have investigated with the four forces we are using. Our results are compared with

the experimental values (solid triangles) extracted from the binding energies of nuclei with

atomic numbers differing by one unit.

The first remark related to the results shown in Fig. 7 is that, in general, the effects of

the tensor force are relatively small and they are similar for both type of interactions. They

are negligible for neutrons, while some noticeable effects are present in the case of protons.

The neutron results, obtained with and without tensor, follow reasonably well the behaviour

of the experimental energy gaps.

The effects of the tensor force are better emphasized in Fig. 8 where we show the difference

∆g = gD1αT − gD1α , (8)

between the gap values obtained by using interactions with and without the tensor force.

Also in this case we have indicated with the arrows the nuclei where all the spin-orbit partner

levels are fully occupied, for both protons and neutrons. The results obtained with the D1S

interactions are shown by the open squares and those obtained with the D1M interactions

by the solid circles. It is interesting to observe that also in this case the behaviour of the

D1S and D1M results is similar, though the effects produced by the D1ST force are slightly

larger than those obtained for D1MT.

Also the results in Fig. 8 can be well explained within the scheme proposed by Otsuka. In

the spin unsaturated oxygen isotopes, the unpaired neutron levels are always of j> type. The

tensor force lowers the energy of the (1p1/2)π occupied proton level (j< type) and increases

that of the (1d5/2)π empty level (j> type). For this reason, the results for the oxygen isotopes,

in the proton case, have positive values. An analogous effect is present also for the 48Ca and

52Ca isotopes. In this case, the states to be considered are the holes (1d3/2)π or (2s1/2)π and

the particle (1f7/2)π.

For the heavier isotopes, the situation is more complicated because the unpaired levels
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can be more than one, and because the levels involved in the gap calculation could be both

of the same type (j> or j<). This is the case for Z or N=28 or 50, but not for Z = 40. For

this reason, in the case of protons, the values of ∆g are negative for Ni, Sn and Pb isotopes

and positive for 90Zr.

For the neutrons, panel (a), the situation is more difficult to discuss since the nuclei we

have investigated are not isotones. For each set of isotopes there are different s.p. levels

related to the neutron gap, therefore the effect of the tensor term can be different for each

nucleus considered. This is the reason of the oscillating behaviour we observe in the Ni

isotopes.

Since oxygen and calcium isotopes are spin saturated in protons, the results presented

in the panel (a) of Fig. 8 for these nuclei, are produced by the interaction of an unpaired

neutron s.p. level of j> type with the neutron s.p. levels just below and above the Fermi

surface. The comparison of the results of these nuclei shown in the two panels indicates

that the effect of the tensor interaction between like nucleons is smaller than that between

neutrons and protons, reflecting the fact that we have used a tensor-isospin term in the

interaction.

We have seen that the tensor term affects more the s.p. than the bulk properties of the

nucleus. The effects of the tensor force on the s.p. levels can modify their relative order. If

this occurs for the levels near the Fermi surface, the spin of even-odd nuclei neighboring the

nuclei investigated, which is determined by the last unpaired nucleon, should be modified.

We found some cases where this happens and few of them are presented in Fig. 9, where

we show the evolution of the states near the Fermi surface for the different interactions we

have used.

In the 48Ca case we consider the two proton states below the Fermi surface. The (1d3/2)π

is a j< state, therefore its energy is lowered by the tensor, while that of the (2s1/2)π state

remains essentially unchanged. This effect inverts the order of the two states, as we observe

in the results of the D1ST column. The calculations done with the D1M interaction give

the two proton states in an inverted order with respect to that of the D1S one. In this case

the tensor effect enlarges the energy difference between the two states. Since 48Ca and 48Ni

are mirror nuclei, we expected an analogous effect for the two neutron hole states in 48Ni.

This effect is present in our calculations as it is shown in the figure.

Since all the spin-orbit partner levels are occupied for both protons and neutrons, we do
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not expect tensor effects in 60Ca. This is what we observe in Fig. 9. We show the results

for this nucleus since the order of the proton hole states obtained with the D1S and D1ST

interactions is inverted with respect to that obtained with the D1M and D1MT forces.

In the 78Ni case, the tensor force produces a large lowering of the (1f5/2)π level, and this,

for the D1M interaction, generates an inversion with the (2p3/2)π level. The figure shows

that the tensor force reduces the energy gap between (1f5/2)π and (1f7/2)π levels.

For the 100Sn nucleus we show both proton and neutron cases, since in both situations we

obtain the inversion of the 1g7/2 and 2d5/2 levels, when the D1ST interaction is used. The

tensor force lowers the energies of the 1g7/2 levels, which are j< states, and enhances those

of the 2d5/2 levels, which are j> states. We obtain a large effect on the energies of the 1g7/2

levels while the modification of the 2d5/2 energy is minimal.

We observe an inversion of the order of the (2d3/2)ν and (3s1/2)ν levels in 114Sn, when the

D1ST interaction is used. The tensor lowers the energy of the (2d3/2)ν state, of j< type, and

has no effect on the (3s1/2)ν state. The effect is present also when the D1MT interaction is

used, but it is not large enough to invert the order of the states.

In 116Sn we obtain an inversion of the order of the (1g7/2)π and (2d3/2)π levels when

both D1ST and D1MT interactions are used. Also in this case we observe the tensor effect

predicted by the Otsuka’s scheme. The energy of the (1g7/2)π state, of j< type, is lowered,

while that of the (2d3/2)π state, of j> type, is enhanced.

To summarize the results presented in this section, we may say that the tensor effects

have remarkable consequences on those observables which we relate to s.p. properties of the

nuclear system, such as s.p. energies, gaps and spin of the system.

IV. RPA CALCULATIONS

In the previous section we have presented the results regarding the ground state properties

of some spherical nuclei. In this section we show the results we have obtained for the excited

states of these nuclei by doing RPA calculations. In this study, we have also considered 12C,

a well studied nucleus from both experimental and theoretical points of view, despite the

fact that its ground state contains deformations [38]. This feature is less important in the

description of the excitation spectrum than for the ground state observables.

The input required by any RPA calculations is composed by the s.p. basis and the
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effective interaction. The results shown in this section have been obtained by using the s.p.

basis and the effective interaction provided by HF calculations. In the RPA jargon this

procedure is called self-consistent to distinguish it from the phenomenological one described

in Sec. I. To be precise, we do not strictly use the same interaction in HF and RPA, since in

the latter case we neglect the Coulomb and spin-orbit terms of the interaction. We should

keep in mind this fact, even though there are indications that, in RPA calculations, these

two terms of the interaction produce very small effects that, in addition, have the tendency

of canceling with each other [42].

The strategy of our investigation is analogous to that used in the previous section, i.e.

we compare results obtained by using interactions with and without tensor terms. While for

the HF calculations this comparison provides a clear indication of the effects of the tensor

force, in the RPA case the situation is more complicated. In effect, the differences in the

RPA results can be due to genuine effects of the tensor interaction in the RPA calculations,

and also to the different values of the s.p. energies and wave functions provided by the HF

results.

We have disentangled the effects produced by these two different sources by presenting

results where the tensor force is switched on and off in both HF and RPA calculations. To

distinguish the results of the different type of calculations we have indicated with ωRPA
ab the

RPA excitation energies, where the first subindex, a, refers to the interaction used in the

HF calculation, and the second subindex, b, to that used in the RPA one. The a and b

labels can be t if the interaction includes the tensor term, i.e. if the D1ST or the D1MT

interaction has been used, and n otherwise. For example, ωRPA
nt indicates the excitation

energy obtained with a HF calculation without tensor and a RPA calculation with the

tensor force. We present also results obtained by switching off the residual interaction. We

label these results as ωIPM
a , where the superscript IPM means Independent Particle Model.

The energies produced in this type of calculations need only one subindex which indicates

the presence, t, or the absence, n, of the tensor force in the HF calculation.

In our study we have investigated various types of multipole excitations, and, in agreement

with the results of Refs. [15, 21, 25], we found that the natural parity excitations are

practically insensitive to the effects of the tensor force. For this reason, we present here only

results obtained for the unnatural parity excitations.

We start or discussion by presenting the results related to the excitation of the first 0−
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state in the various isotopes we are studying. In the phenomenological calculations of Sec.

II we have pointed out the large sensitivity of the excitation energy of these states to the

tensor force. For this reason we have chosen the energy of this excitation in 16O to select

the strengths of our tensor forces.

For the nuclei where the 0− excitation energies have been experimentally clearly identified

[26, 27], we show in Table I the excitation energies obtained in our RPA calculations. The

tensor interaction lowers the excitation energies in all the cases. The perfect agreement of

the 16O case is obtained by construction, but we have improvements also in the 40Ca, 48Ca

and 208Pb cases. The only worsening produced by the inclusion of the tensor term is that of

the 12C nucleus, which we know to be a difficult nucleus to describe within our theoretical

framework tailored to spherical systems.

A general view of the tensor effects in all the nuclei we have considered is given in Fig. 10.

In panel (a) we show the differences ωRPA
tt −ωRPA

nn for the first 0− states in all the nuclei under

investigation. The open squares show the results for the interactions of D1S type, while the

solid circles those of the D1M one. To separate the tensor effects in RPA calculations from

those produced by the change in the s.p. configuration space, we show in panel (b) the

energy differences ωIPM
t − ωIPM

n .

In the RPA calculations, the results obtained with the tensor force are always lower than

those obtained without it, and this produces negative values of the differences ωRPA
tt −ωRPA

nn .

The only exception to this general trend is that of the 14O nucleus in the case of the D1M

interaction. In reality we observe in panel (b) that the differences ωIPM
t − ωIPM

n for this

nucleus are positive and larger than those found in the RPA calculation, indicating that also

in this case the tensor force in the RPA calculation lowers the energy value of the first 0−

state.

The results presented in the two panels do not show any correlation. This indicates that

the effect shown in the panel (a) of the figure is a genuine effect of the tensor force on the

RPA calculations, which, in the case of the 0− excitation, is always attractive, even in the

14O case, confirming the results we have obtained with the phenomenological calculations

and shown in Fig. 2.

We have investigated the effects of the tensor force on multipole excitations with strong

isoscalar (IS) or isovector (IV) character. To identify well these states we have considered

only isotopes with N = Z. In these nuclei, we have selected those multipole excitations com-
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posed mainly by two identical particle-hole pairs in terms of angular momentum coupling,

but one for protons and the other one for neutrons. This is the ideal situation to produce IS

and IV partners levels. In the first case proton and neutron excitations are in phase, while

in the second one are off phase. In our RPA results the IS and IV partner states are easily

identifiable by observing the relative phases of the RPA amplitudes of the main particle-hole

pairs.

We have presented in Table II the energies of the excited states we have investigated, and

we compare them with the available experimental values [43]. All the results indicate that

the energies of the IV excitations are larger than those of the IS ones, as it is experimentally

well established. In Ref. [24] we obtained for the calculations done with the D1S interaction

an opposite behaviour. These results were wrong, since we found an error in the treatment

of the exchange part of the density dependent terms of the D1S force.

The effects of the tensor terms are better presented in Fig. 11. In the panels (a) and

(b) we show the energy differences ωRPA
tt − ωRPA

nn for IS (open squares) and IV (solid circles)

states. The results found for the various calculations have rather similar behaviours. The

tensor effects are smaller on the IV states. In the panels (c) and (d) we show the differences

between the energies of the IV and IS states for each multipole we have considered. In these

panels the open squares show the results obtained without tensor interaction, while the

solid circles include the tensor in both HF and RPA calculations. The tensor force always

increases these differences. In general, this enhancement is larger for D1S than for D1M and

it is worth pointing out that the effect is relatively large for the three 1+ states studied (in

12C and 56Ni and 100Sn) in case of the D1S interaction.

We have studied the effects of the tensor force on the electron scattering responses. A

detailed presentation of these results would require a discussion for each specific excited

state. We plan to make this discussion in the future. At the moment we can summarize

the main and general feature we have observed by saying that the effects of the tensor force

are larger on the IS excitations than on the IV ones. As example, we show in Fig. 12 the

inclusive inelastic electron scattering transverse responses [44] as a function of the effective

momentum transfer, for the 1+ isospin excitation doublet in 12C, and the 2− doublet in 40Ca,

and we compare them with the available experimental data [45, 46]. It is evident that the

effects of the tensor are greater on the IS than on the IV excited states.

The explanation of these facts is related to the structure of the electromagnetic excitation
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of the unnatural parity states, which is dominated by the magnetization current [44]. The

magnetization current depends on the anomalous magnetic moment of the nucleon, which

has different sign for protons and neutrons. Since in the IS excitations the main proton and

neutron RPA amplitudes have the same sign, the proton and neutron magnetization currents

subtract with each other. In the IV excitations the effect is reversed. Small differences in the

proton and neutron structure of the RPA wavefunctions are emphasized by the difference

and hidden in the sum of the proton and neutron contributions.

A remarkable sensitivity to the tensor force of the 1+ excitation of 48Ca has been pointed

out in Ref. [15]. The two tensor forces used together with the Skyrme interactions in that

article produce opposite results. We have investigated how our tensor forces affects the

energy of the first 1+ excitation in the nuclei with different number of protons and neutrons

we have considered. We have summarized in Fig. 13 our results. In this figure we show

the differences between the 1+ excitation energies obtained in different type of calculations.

The states selected are those with the largest B-value and all of them are dominated by a

neutron p-h configuration. Solid circles indicate the energy differences ωIPM
t − ωIPM

n . With

the black squares we have shown the energy differences ωRPA
tt − ωRPA

tn indicating the effect

of the tensor forces in the RPA calculation. Finally, the open squares show the energy

differences ωRPA
tt − ωRPA

nn , which are linked to the global effect of the tensor in our self-

consistent calculations.

The results shown in the figure indicate that the presence of the tensor force changes the

s.p. energies in a way that the energy of the excitation is reduced. This is shown by the fact

that all the energy differences have negative sign. These results are in agreement with the

findings of Cao et al. [15] for the T44 interaction [16] and they have opposite behaviour of

those found by the same authors for the modified SLy5 interaction [14]. In their calculations

this is due to the change of the overall sign of the tensor term for the N-N pairs with the

same isospin (ππ or νν pairs).

As we have observed in all the results presented so far, the tensor effects are smaller for

the D1M interaction. The effect of the tensor force is almost zero for the two nuclei where

all the s.p. spin-orbit partner levels are occupied, i.e. 28O and 60Ca. With the exception of

these two cases, the differences ωRPA
tt − ωRPA

nn are noticeably larger than ωIPM
t − ωIPM

n .

To investigate the effect of the tensor force in RPA, we have calculated the energy differ-

ences ωRPA
tt − ωRPA

tn where the same s.p. basis is used for the two RPA calculations. These
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results are presented in Fig. 13 by solid squares. We added incoherently the ωIPM
t −ωIPM

n and

the ωRPA
tt − ωRPA

tn results and we obtained the results plotted with crosses which reproduce

very well the results of the complete calculation ωRPA
tt − ωRPA

nn . These results validate the

assumption used by Cao et al. in Ref. [15].

We conclude this section by presenting the results obtained for the 1+ excitation of

208Pb which has attracted great attention in the past [47–50], and whose interest has been

renewed by recent measurements [51]. Energies and B-values for the first two 1+ excited

states obtained with the four interactions are shown in Table III. We observe that the tensor

lowers the values of the energies of both states. The B(M1) value of the first state is lowered

by the tensor force, while that of the second excited state, which is the state included in

Fig. 13, is increased.

The detailed analysis of the results shows that the effects of the tensor force on the

energy values improve the agreement with the experimental values. The situation regarding

the B(M1) values is more complex. The tensor force lowers the B(M1) values of the first

state, and this improves the agreement with the experiment. The situation is reversed

for the second excited state. Our results are compatible with those found in literature

[21, 25, 47, 51]. The large difference between the theoretical and experimental B(M1)

values of the second state can be attributed to the limitations of the RPA which is unable

to describe the large fragmentation of the second 1+ state.

We show in Fig. 14 the inelastic electron scattering responses [44], calculated for these

two states and we compare them with the data of Ref. [48]. We observe that there is a

larger sensitivity to the tensor force in the case of the first excited state.

V. SUMMARY AND CONCLUSIONS

We have studied the effects of the tensor terms of interactions used in HF and RPA

theories. We considered only finite-range terms in the tensor-isospin channel, because they

are the most important terms in microscopic interactions. We constructed these tensor

terms by multiplying the analogous term of the microscopic Argonne V18 interaction by

a function which modifies its behaviour at short internucleonic distances. This function

contains a single parameter whose value determines the strength of the tensor force.

To determine this strength, we searched for a global observable particularly sensitive
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to the tensor force, and, by using phenomenological RPA calculations, we found it in the

excitation of the 0− states. We have also observed that the tensor force strongly influences

the values of the s.p. energies. We constructed new effective interactions by adding a

tensor-isospin term to finite range interactions, and we selected the strength of the tensor

and spin-orbit forces to reproduce, in the 16O nucleus, the experimental energy of the first 0−

excited state, and the splitting between the s.p. energies of the neutron 1p3/2 and 1p3/2 levels.

We based our work on the D1S and D1M parameterizations of the Gogny interaction, and

we called D1ST and D1MT the two new effective interactions constructed with a recursive

procedure where HF and RPA calculations have been repeated until both experimental

quantities have been reproduced.

The study of the effects of these tensor forces has been done by comparing the results

obtained in HF and RPA calculations, using interactions with and without tensor terms.

We have repeated each calculation with both D1S and D1M type of effective interactions to

extract genuine tensor effects from those related to the peculiarities of a specific choice of

the force parameters. We always found great similarities between the results obtained with

the two different type of parameterizations. Since the strength of the tensor force in D1MT

is weaker than that of D1ST, we found smaller tensor effects in the results obtained with

D1MT than in those for D1ST. We have done calculations for a set of spherical nuclei chosen

such as all the s.p. levels below the Fermi surface are fully occupied. With this choice we

avoided the effects of the deformation and we minimized those of the pairing.

Our HF calculations indicate that tensor forces do not produce sensitive effects on bulk

observables such as binding energies, radii and density distributions. The effects of the tensor

force on quantities related to the s.p. properties of our theoretical approach are certainly

more remarkable. We have calculated energy splitting between spin-orbit partner levels,

energy gaps between the s.p. states just above and below the Fermi surface, and we found

noticeable effects produced by the tensor force. Also the ordering of the s.p. levels around

the Fermi surface, which determines the spin of the even odd nuclei neighboring those we

have studied, is strongly influenced by the presence of the tensor force in some cases. We

could explain all our results within the picture proposed by Otsuka and collaborators [9, 10],

eventually by extending it to consider the interaction between nucleons of the same type.

The study of tensor effects in the excitation spectra is more complex, since the effects of

the tensor force in the RPA calculations add to those already present in the HF calculation
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that produces the s.p. bases. In our investigation we have disentangled the effects coming

from these two different sources.

We have verified the well know fact [21, 25] that natural parity excitations are essentially

unaffected by the tensor force. For this reason we have presented results regarding unnatural

parity excitations only. We started our investigation by studying the 0− excitations in various

nuclei, and we found that the excitation energies obtained with the tensor forces are always

smaller than those obtained without it.

We studied the different role played by the tensor force in IS and IV type of excitations.

To identify clearly these different type of excitation modes, we have considered nuclei with

equal number of protons and neutrons, and states dominated by particle-hole transitions

with the same angular momentum coupling for both protons and neutrons. The energies

of the IV modes are always greater than those of the IS modes with or without tensor.

These results agree with the experimental observations. We found that the IS excitations

are more sensitive to the tensor force than the IV ones. The tensor force increases the energy

difference between IS and IV excitations.

We made a systematic study of the effects of the tensor force on the excitation of the

1+ states in nuclei with different number of protons and neutrons. We have considered the

states showing the largest B(M1)-values, and we found that the tensor force consistently

lowers the values of their excitation energies. This is essentially obtained as the incoherent

sum of the effect generated by the HF calculation and that obtained by the RPA.

The study of the excitation of the first two 1+ excited states in 208Pb indicates that the

lower energy state is more sensitive to the tensor force than the other one. The presence of

the tensor force modifies energies and B(M1)-values, and slightly improves the agreement

with the experimental data [51], even though the limitations of the RPA theory do not allow

a description of the fragmentation of the strength of the higher energy state.

We have restricted our study to charge conserving nuclear excitations. There are indica-

tions that the effects of the tensor-isospin force are more relevant on the charge-exchange

excitations [52–54]. The presence of the tensor forces seems to be relevant also in the de-

scription of the reactions between heavy nuclei [55].

We think that the accuracy required today by self-consistent effective theories requires

the use of interactions containing tensor terms.
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(FQM0220).

21



[1] J. Kellog, I. Rabi, N. Ramnsey, J. Zacharias, Phys. Rev. 57 (1939) 677.

[2] A. Nordsieck, Phys. Rev. 58 (1940) 310.

[3] W. Rarita, J. Schwinger, Phys. Rev. 59 (1941) 436.

[4] W. Rarita, J. Schwinger, Phys. Rev. 59 (1941) 556.

[5] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, T. Tanihata, Phys. Rev. Lett. 84 (2000)

5493.

[6] R. Kanungo, I. Tanihata, A. Ozawa, Phys. Lett. B 528 (2002) 58.

[7] J. P. Schiffer, et. al., Phys. Rev. Lett. 92 (2004) 162501.

[8] O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61 (2008) 602.

[9] T. Otsuka, T. Suzuki, R. Fujimoro, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95 (2005) 232502.

[10] T. Otsuka, T. Matsuo, D. Abe, Phys. Rev. Lett. 97 (2006) 162501.

[11] D. M. Brink, F. Stancu, Phys. Rev. C 75 (2007) 064311.

[12] S. Sugimoto, H. Toki, K. Ikeda, Phys. Rev. C 76 (2007) 054310.

[13] D. Tarpanov, H. Liang, N. Van Giai, C. Stoyanov, Phys. Rev. C 77 (2008) 054316.
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Phys. Rev. C 81 (2010) 014303.

[39] G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A 729 (2003) 337.

[40] http://ie.lbl.gov/toi2003/masssearch.asp.

[41] T. Otsuka, T. Suzuki, Y. Utsuno, Nucl. Phys. A 805 (2008) 127c.

[42] T. Sil, S. Shlomo, B. K. Agrawal, P. G. Reinhard, Phys. Rev. C 73 (2006) 034316.

[43] C. M. Lederer, V. S. Shirley, Table of isotopes, 7th ed., John Wiley and sons, New York, 1978.

[44] J. Heisenberg, H. Blok, Ann. Rev. Nucl. Par. Sci. 33 (1983) 569.

[45] Hyde-Wright, Particle-hole structure in 16O, Ph.D. thesis, Massachusetts Institute of Tech-

nology, unpublished (1984).

[46] C. F. Williamson, et al., unpublished (1987).

[47] R. M. Laszewski, J. Wambach, Comments Nucl. Part. Phys. 14 (1985) 321.
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exp D1S D1ST D1M D1MT

12C 18.40 19.63 14.42 18.83 15.27

16O 10.96 13.95 10.94 13.08 10.96

40Ca 10.78 12.22 9.57 11.56 9.60

48Ca 8.05 14.10 11.63 12.85 11.26

208Pb 5.28 8.27 7.93 8.24 7.92

Table I: Energies, in MeV, of the first 0− excited state for those isotopes we have studied in this

work where the energy values have been measured [26, 27]. The theoretical energies are obtained

by doing RPA calculations with different interactions.
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D1S D1ST D1M D1MT exp

Jπ IS IV IS IV IS IV IS IV IS IV

12C 1+ 4.78 7.71 1.94 8.17 3.44 7.21 2.43 7.68 12.71 15.11

12C 2− 15.75 18.62 14.27 17.30 14.59 18.06 13.50 17.15 11.83 13.35

12C 4− 17.11 18.35 15.61 17.08 16.22 17.40 15.18 16.61 18.27 19.50

16O 2− 10.36 12.10 9.64 12.08 9.47 11.26 8.74 11.08 8.87 12.53

16O 4− 17.08 18.20 16.52 17.96 16.02 16.97 15.63 16.86 17.79 18.98

40Ca 2− 7.61 8.98 6.62 8.83 6.63 8.31 5.82 8.01 7.53 8.42

40Ca 4− 6.93 7.51 6.37 7.41 6.68 7.04 6.02 6.70 5.61 7.66

40Ca 6− 14.48 15.15 14.15 14.95 13.66 14.17 13.44 14.07

56Ni 2− 11.64 14.32 11.06 13.91 11.10 13.50 10.62 13.35

56Ni 4− 12.57 13.60 11.98 13.08 12.01 12.93 11.58 12.56

56Ni 5+ 6.73 7.13 4.86 5.37 6.00 6.29 5.00 5.52

100Sn 3+ 8.70 8.97 5.56 6.38 8.09 8.21 6.37 6.68

100Sn 5+ 7.10 7.39 5.53 6.29 6.66 6.88 5.97 6.22

100Sn 7+ 7.30 7.56 5.44 6.18 7.91 8.05 6.03 6.38

Table II: Excitation energies, in MeV, in nuclei with Z = N , for different multipoles, where we

have identified isoscalar (IS) and isovector (IV) character. The experimental values are taken from

Ref.[43].
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exp D1S D1ST D1M D1MT

E(1+
1 ) [MeV] 5.85 7.80 4.76 6.50 4.82

B(M1)1 [µ2
n] 2.0 5.08 2.41 2.33 1.80

E(1+
2 ) [MeV] 7.1-8.7 10.15 8.06 9.42 8.38

B(M1)2 [µ2
n] 16.0 (17.9) 29.63 32.84 31.46 32.26

Table III: Energies and B(M1) values, expressed in terms of nuclear magnetons, of the first two 1+

excitations in 208Pb obtained by using different interactions. The experimental values are taken

from Ref. [51].
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Figure 1: Momentum dependent term of the tensor force, see Eq. (2), for various parameterizations.

In the panel (a) we compare the tensor-isospin term of the bare Argonne V18 interaction (full line)

with the interactions obtained from Eq. (1) by using different values of the parameter b. In panel

(b) we compare the bare Argonne V18 term with the tensor term of the GT2 force of Ref. [10]

(dotted line) and with that of the M3YP2 force of Ref. [37] (short-dashed line). The tensor forces

we have constructed, named D1ST and D1MT, are indicated by the dashed-dotted and dashed-

doubly-dotted lines. The long-dashed line (CBF) shows the tensor term obtained by multiplying

the bare Argonne V18 interaction with the scalar part of the correlation function obtained in

microscopic Correlated Basis Function calculations [19].
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Figure 2: The squares show the values of the excitation energies of the lowest 0− states for various

nuclei as a function of the value of the parameter b of Eq. (1) ruling the strength of the tensor force.

The full lines show the experimental values, the dashed lines the values obtained without tensor,

and the dotted lines the values obtained with the full tensor term of the Argonne V18 interaction.
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Figure 3: Panel(a): relative percentage differences, Eq. (4), between binding energies calculated

with the D1ST and D1S forces (open squares) and with the D1MT and D1M (solid circles) inter-

actions. Panels (b) and (c): binding energies per nucleon calculated with the various interactions

compared with the experimental values (solid triangles) taken from Ref. [39, 40]. The experimental

values for the 28O, 60Ca, 48Ni, 78Ni and 100Sn nuclei are estimated [40]. The lines have been drawn

to guide the eyes.
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Figure 4: Relative percentage difference, Eq. (5), between root mean square radii of neutrons

(upper panel) and protons (lower panel) distributions calculated with and without tensor for D1ST
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Figure 5: Differences between the s.p. energy differences of spin-orbit partners levels, Eq. (7),

calculated with and without tensor forces, for the 1p, panel (a), 1d, panel (b), and 1f , panel (c),

proton states. The results for D1S and D1ST interactions are shown by open squares and solid

circles, respectively. The arrows indicate those isotopes where the effect of the tensor is expected

to be zero.
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Figure 6: The same as Fig. 5 for neutron states.
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forces. The experimental values, solid triangles, have been extracted from the binding energies of
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Figure 9: Single particle levels around the Fermi surface which change their order when the tensor

force is used.

36



-6.0
 

-4.0

 

-2.0

 

0.0

 

2.0

 12
 

14

16

22

24

28  40

48

52

60

 48

56

68

78

 90  100

114

116

132

 208  
-2.0

 

-1.0

 

0.0

 

1.0

 
2.0

0−

A

ω
R

P
A

tt
−

ω
R

P
A

n
n

[M
eV

]
ω

IP
M

t
−

ω
IP

M
n

[M
eV

]

D1S
D1M

C O Ca Ni Zr Sn Pb

RPA

IPM

(a)

(b)

Figure 10: Differences between the energies of the first 0− excited state obtained with and with-

out tensor forces, for the nuclei under investigation. D1S (D1M) results are plotted with open

squares (solid circles). In the panels (a) and (b) we show the results obtained with RPA and IPM

calculations, respectively.

37



-8.0
 

-6.0
 

-4.0
 

-2.0
 

0.0
 

2.0

0.0

 

2.0

 

4.0

 

6.0

 

Jπ Jπ

ω
R

P
A

tt
−

ω
R

P
A

n
n

[M
eV

]
ω

IV aa
−

ω
IS aa

[M
eV

]

D1S D1M

12C 16O 40Ca 56Ni 100Sn 12C 16O 40Ca 56Ni 100Sn

1+ 2− 4− 2− 4− 2− 4− 6− 1+ 4− 1+ 1+ 2− 4− 2− 4− 2− 4− 6− 1+4− 1+

IS

IV

IS

IV

nn

tt

nn

tt

(a)

(c)

(b)

(d)
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Figure 12: Inelastic electron scattering transverse response as a function of the effective momentum

transfer [44], calculated by using RPA wavefunctions obtained in fully self-consistent calculations

done with different interactions. The data are from Refs. [45, 46].
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Figure 14: Inelastic electron scattering transverse responses as a function of the effective momentum

transfer [44], calculated by using RPA wavefunctions obtained in fully self-consistent calculations

done with different interactions. In panel (a) we show the results obtained with the RPA wave-

functions of the lowest excited states. The RPA wave functions used to obtain the results shown

in panel (b) are those of the second excited state. The experimental data are from Ref. [48].
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