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Abstract. In the evaluation of weak interacting massive particles (WIMPs) detection rates,
the WIMP-nucleus cross section is commonly described by using form factors extracted from
charge distributions. In this work, we use different proton and neutron distributions taken
from Hartree-Fock calculations. We study the effects of this choice on the total detection
rates for six nuclei having different neutron excess, and taken from different regions of the
nuclear chart. The use of different distributions for protons and neutrons becomes more
important if isospin-dependent WIMP-nucleon interactions are considered. The need of dis-
tinct descriptions of proton and neutron densities reduces with the lowering of the detection
energy thresholds.
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1 Introduction

The elastic collision with a nucleus is the main mechanism used by modern detectors to
identify neutralinos, or more in general weakly interacting massive particles (WIMPs) [1–5].
The cross section describing this collision can be separated in a part related to the interaction
between the WIMP and the single nucleon, and another one describing how the struck nucleon
is inserted inside the nucleus [6]. While the former term is one of the unknown which we
aim to study in this type of investigations, the knowledge of the latter term is solid, and well
grounded on many years of nuclear structure investigation.

The procedures commonly adopted substitute the nucleon distribution inside the nucleus
with the charge distribution which is experimentally known with high spatial resolution
because it is extracted from the large body of accurate elastic electron scattering data. In
specific applications the Helm form factor [7] is usually adopted because of its simple analytic
expression whose parameters have been chosen to provide a good description of the empirical
charge distributions overall the nuclear chart, with the exclusion of very light nuclei. An
improvement with respect to this approach has been proposed in Ref. [8] where it was
suggested to consider directly the measured charge distributions from the compilation of
Ref. [9].

The use of the experimental charge distributions in the calculations of the WIMP-
nucleus cross sections implies some simplifications of the problem. In the description of the
cross section we consider the WIMP interacting with the point-like nucleon, either proton
or neutron. On the other hand, the nuclear charge density is mainly sensitive to the proton
distributions folded with the electromagnetic proton form factor.

In this article we propose a methodology to get over these simplifications. Our idea is
to consider proton and neutron distributions generated by Hartree-Fock (HF) calculations.
A work based on these ideas, and carried out within a relativistic-Hartree framework, has
been proposed in Ref. [10].

The effective nucleon-nucleon interactions used in HF calculations have been tuned to
reproduce various ground state observables, among them also the charge root mean square
(rms) radii of many isotopes. The remarkable success in describing elastic electron scattering
data, and consequently charge distributions, indicates the reliability of these calculations in
the description of the nuclear ground states.

In the present work we use a specific implementation of the non-relativistic HF theory,
based on a density-dependent and finite-range nucleon-nucleon effective interaction [11]. The
performances of our approach have been tested against those of HF model which uses a
zero-range interaction and those of a relativistic Hartree approach [12]. We found that the
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three types of calculations provide very similar descriptions of the ground state properties
of spherical and closed shell nuclei. For this reason we are confident that our results are not
simply related to a specific implementation of a particular nuclear structure model, but they
represent the general predictions of any microscopic mean-field theory.

The basic ingredients of our model are presented in Sect. 2 and we show and discuss
our results in Sect. 3, and in Sect. 4 we draw our conclusions. We give in the Appendix the
Fourier-Bessel expansion coefficients of the proton and neutron distributions obtained in our
calculations, for all the nuclei we have considered here.

2 The model

We write the probability that, in a detector with NT target nuclei, a nucleus, with A nucleons,
recoils with an energy ER after an elastic collision with a WIMP as

dR(ER)

dER
= NT

∫ ∞

vmin

σχA(vχ)P (ER, vχ) Φ(vχ) f(vχ) dvχ , (2.1)

where vχ is the velocity of the WIMP with respect to the detector, and vmin is the minimum
velocity that produces a detectable recoil in the apparatus. In the above equation, we have
indicated with σχA the WIMP-nucleus elastic cross section, with P the probability that the
nucleus after been struck by the WIMP with velocity vχ recoils with energy ER, with Φ the
flux of WIMPs with velocity vχ, and with f the probability that the WIMP has velocity vχ.

We express the number of target nuclei as the product of the detector mass times the
Avogadro’s number divided by the target molecular weight, MdNA/AT . The WIMPs flux is
given by the WIMPs density times the velocity. We express the WIMPs density as δχ/Mχc

2,
where δχ is the energy density of the WIMPs, Mχ is the WIMP mass and c indicates, as
usual, the speed of the light.

After the collision with a WIMP of velocity vχ, the value of the nuclear recoil energy
depends on the scattering angle. The nucleus may recoil with energy values between zero
and

ER,max =
2µ2

χA

MA
v2χ , (2.2)

where MA is the mass of the target nucleus and µχA = MχMA/(Mχ + MA) is the WIMP-
target nucleus reduced mass. The energetics of the collision is such that the scattering is
dominated by the s wave, therefore, because of the spherical symmetry of the scattered wave
function, the probability P is independent on the scattering angle, and can be expressed as

P (ER, vχ) =
MA

2µ2
χA

1

v2χ
, (2.3)

with 0 ≤ ER ≤ ER,max.
For the evaluation of f we consider a Maxwell’s distribution of the velocities centered at

an average velocity v0. In this way, we obtain for the differential rate of recoil the expression

dR(ER)

dER
=

δχ
Mχc2

MdNA

AT
σχA

MA c2

2µ2
χA c4

2 c2 exp[−(vmin/v0)
2]

v0
√
π

. (2.4)

The total event rate, per unit of time, in a detector with energy detection threshold Eth is

R(Eth) =

∫ ∞

Eth

dR(ER)

dER
dER . (2.5)

– 2 –
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The characteristics of the detector define Md and the mass of the recoiling nucleus.
The unknown inputs of the calculations are the WIMP mass Mχ, the energy density δχ, the
average velocity v0, and the WIMP-nucleus cross section σχA.

The WIMP-nucleus cross section can be separated in spin-independent (SI) and spin-
dependent (SD) terms [6], the latter one active only in odd-even nuclei. In this work we are
only interested in the SI term which we write as

σSI
χA = σχp |Z Fp(q) + gnpN Fn(q)|2 , (2.6)

where Z and N = AT − Z are, respectively, the number of protons and neutrons inside the
target nucleus. In the above expression we have factorized the elastic WIMP-proton cross
section σχp, and we have indicated with gnp = σχn/σχp the ratio between the WIMP-neutron
and proton cross sections. All the nuclear structure information is contained in the proton
and neutron form factors Fp(q) and Fn(q) which depend on the modulus q = |q| =

√

2MχER

of the momentum transferred by the WIMP to the nucleus. The form factors are defined as
the Fourier transforms of the proton and neutron density distributions

Fα(q) =

∫

exp(iq · r) ρα(r) d3r = 4π

∫ ∞

0
j0(qr) ρα(r) r

2 dr , (2.7)

where α = p for protons and n for neutrons and j0 indicates the zeroth-order spherical Bessel
function.

In the above equation we have already considered that in our calculations the densities
distributions have spherical symmetry. The expression (2.6) of the cross section, where the
proton and neutron numbers are explicitly written, implies that the densities should be
normalized as

∫

ρp,n(r) d
3r = 4π

∫ ∞

0
ρp,n(r) r

2 dr = 1 . (2.8)

In addition to these distributions we have considered the matter distribution

ρm =
1

2
(ρp + ρn) , (2.9)

and the charge distribution, ρch. The latter one is obtained by folding the proton distribution
with the electromagnetic nucleon form factor. The densities ρm and ρch have been used to
calculate the form factors Fm(q) and Fch(q) with expressions analogous to the (2.7).

As we have already pointed out in the introduction, the procedure commonly adopted in
the literature considers the form factors obtained by using the experimental charge density
distributions. This implies the assumption that proton and neutron density distributions
coincide with the charge distributions, therefore, in this case, instead of Eq. (2.6) the ex-
pression

σSI
χA = σχp F

2
ch(q) |Z + gnpN |2 , (2.10)

is used.
In the present work, the proton and neutron distributions have been calculated by using

a mean-field approach where the densities are given by the expression

ρ(r) =
∑

k≤kF

|φk(r)|2 . (2.11)

In the above expression φk indicates the single particle (s.p.) wave function characterized
by the quantum numbers identified by k and the sum is limited to all the states below the
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Fermi surface. Clearly, proton and neutron densities are obtained by selecting in the sum
only those s.p. states related to protons or neutrons respectively.

In our calculations the s.p. wave functions are obtained by solving the HF equations
[13]

− ~
2

2m
∇2φk(r) + U(r)φk(r) −

∫

d3r′W (r, r′)φk(r
′) = ǫk φk(r) , (2.12)

where m is the nucleon mass, ǫk the s.p. energy and we have indicated the Hartree term as

U(r) =

∫

d3r′ V (r, r′) ρ(r′) , (2.13)

and the Fock - Dirac term as

W (r, r′) =
∑

k′≤kF

V (r, r′)φ∗
k′(r

′)φk′(r) . (2.14)

In the above equations, V (r, r′) represents the effective nucleon-nucleon interaction. In our
calculations we use an interaction which has finite-range character in the scalar, isospin,
spin and spin-isospin terms and zero-range character in the spin-orbit and density-dependent
terms. This interaction, known in the literature as Gogny interaction [11], contains 13 pa-
rameters whose values have been chosen to reproduce experimental masses and charge radii
of a large number of nuclei. We have done our calculations with two different choices of
the parameter values, the more traditional D1S force [14], and the more modern D1M force
[15]. Since we did not find relevant differences in the results obtained with the two effective
interactions, we show here only the results obtained with the D1M force.

In our calculations we treat spherical nuclei, therefore we found convenient to write
the s.p. wave functions by factorizing a term Rnlj(r) depending on the distance r from the
nuclear center and another part related to the spherical harmonics. In this case, the density
(2.11) assumes the expression

ρ(r) =
1

4π

∑

nlj

v2nlj (2j + 1) |Rnlj(r)|2 . (2.15)

where n, l and j indicate, respectively, the principal quantum number, the orbital and total
angular momentum characterizing the s.p. state whose degeneracy is 2j + 1. In Eq. (2.15)
we have indicated with v2nlj the occupation probability of the s.p. state. In closed shell nuclei

we have v2nlj = 1 for the states below the Fermi surface, and v2nlj = 0 for those above it. In

our calculations we have studied three nuclei of this type, 16O, 40Ca and 208Pb which are
representative of various regions of the nuclear chart.

The performances of our calculations in reproducing ground state observables are rather
good as it is shown in Table 1 where we compare binding energies and charge rms radii with
their experimental values. The good description of the ground state properties within the
HF theory is not related to the present implementation of the mean-field approach, but it is a
feature of this type of calculations, as it is shown in Ref. [12], where our results are compared
with those obtained by using a zero-range interaction and also with those produced within a
relativistic framework.

Because of their use in WIMPS detectors [2, 3, 16], we have also considered three open
shell spherical nuclei, 40Ar, 72Ge and 136Xe. In the HF picture, in these nuclei the s.p. levels
are not fully occupied. In this case, the pairing phenomena, irrelevant in closed-shell nuclei,
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cannot be neglected. We have considered pairing effects by solving the equations of the
Bardeen, Cooper and Schriefer (BCS) theory applied to finite nuclear systems [13]. We start
from the s.p. wave functions and energies generated by our HF calculations, and then we
solve the set of equations:

∆a = − 1

2
√
2ja + 1

∑

b

√

2jb + 1ub vb 〈bb0|V |aa0〉 , (2.16)

N =
∑

a

(2ja + 1) v2a =
∑

a

(

ja +
1

2

)

{

1− ǫa − λ
√

(ǫa − λ)2 +∆2
a

}

. (2.17)

In the above equations we have used u2 = 1− v2, a and b indicate different sets of the n, l, j
quantum numbers, and N is the total number of nucleons subject to the action of the pairing.
The matrix element of the interaction is calculated by coupling to zero the angular momenta
of the a and b s.p. states. The solution of these equations provides the values of λ which
is the gap energy, i. e. the energy difference between the last occupied level and the first
empty level in the HF picture. The other output of the calculation, i. e. the values of the
va, is more relevant for our purpose since, as expressed by Eq. (2.15), it modifies the density
distributions.

We carried out the BCS calculations by using the same nucleon-nucleon interaction used
in the HF calculations, but without Coulomb and spin-orbit terms, as it is commonly done
in the literature for this type of calculations. The relevance of the pairing can be deduced
by observing how much the values of v2 differ from those of the HF picture. We show in
Table 2 the values of v2 related to the partially occupied s.p. states nearby the Fermi level,
for the three open shell nuclei we have considered. The values of v2 for the neutrons in the
136Xe nucleus clearly indicate the shell closure for N=82.

3 Results

We have calculated proton, neutron and charge density distributions within the theoretical
framework outlined in the previous section. The charge distributions have been obtained
from the proton distributions by folding them with the proton electric form factor extracted
from elastic electron-proton data. The results we show here have been obtained by using a
dipole parametrization of the proton form factor [17]. We have verified that more accurate
parametrizations [18] modify our charge distributions on few parts on a thousand.

In Fig. 1 we compare the charge distributions obtained in our HF and HF+BCS calcu-
lations with the empirical ones [9], extracted from elastic electron scattering experiments. In
this figure we present the distributions multiplied by r2 to directly show the functions which
are integrated in Eq. (2.7). We observe a very good agreement of our results with the exper-
imental distributions. This is a consequence of the fact that the charge rms radii are some of
the experimental data included in the fit procedure used to define the parameters of the D1M
force. As it is well known, the main differences between experimental and theoretical charge
distributions arise in the nuclear interior. In general, the experimental charge distributions
are smoother than the theoretical ones. A well known example of these phenomena is the
case of 208Pb which has been widely investigated from both experimental [19] and theoretical
[20, 21] points of view.

For the open shell nuclei, we compare the results obtained in both HF and HF+BCS
frameworks, dashed and dotted lines, respectively. For the two nuclei where the empirical
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charge distributions are available the HF+BCS distributions provide a better description of
the experimental ones than those obtained in the HF calculation. This is more evident in
the case of the 72Ge nucleus.

The results of Fig. 1 provide an indication of the capacity of our model to describe the
charge distributions. The WIMP-nucleus interaction is active on the full matter distribution
which we claim to describe with the same accuracy than the charge distribution. Since no
accurate data on matter distributions are available we cannot test this assumption, which,
on the other hand, we believe it is well grounded.

In the literature, properly normalized charge distributions are used to estimate WIMP-
nucleus cross sections instead than matter distribution. In order to estimate the error done
in this approximation we have calculated the difference between proton (α = p) and matter
(α = m) distributions with respect to the charge distributions

∆ρα(r) = ρα(r) − ρch(r) . (3.1)

We show in Fig. 2 these differences, multiplied by r2, obtained in the HF framework for the
16O, 40Ca and 208Pb nuclei, and in the HF+BCS framework for the 40Ar, 72Ge and 136Xe
nuclei. Unless stated otherwise, the results presented henceforth have been obtained in this
manner.

The first remark about the results of Fig. 2 is that ∆ρp(r) and ∆ρm(r) have the same
order of magnitude in all the nuclei considered. This indicates that the contribution of the
electromagnetic proton form factor is not negligible. In the opposite case, we would have
found smaller differences with the proton distributions than with the matter distributions. A
detailed discussion on the WIMP-nucleon interaction is not in the scope of the present article.
We point out, however, that in the expression (2.6) of the cross section, the WIMP-proton
cross section is factorized. From the theoretical point of view, this implies the requirement
of using point-like densities to calculate the form factors Fp(q) and Fn(q) in order to avoid a
kind of double counting between electromagnetic and weak nucleon form factors.

A second remark concerning the results shown in Fig. 2 indicates that in nuclei with
equal number of protons and neutrons, 16O and 40Ca, the proton and matter distributions,
when normalized as indicated in Eq. (2.8), are very similar. The differences start to appear
in the 40Ar nucleus where Z = 18 and N = 22. The larger is the difference between Z and
N , the larger is the difference between proton and matter distributions. In 72Ge, 136Xe and
208Pb nuclei ∆ρp and ∆ρm differ mainly in the nuclear interior. In this region, the differences
with the charge distributions, here considered as reference result, are even out of phase. The
situation becomes more stable in the surface region where the curves show similar behaviors.
The negative values of all the curves in the surface region is due to the fact that the charge
distributions are always wider in space than the point-like distributions. This is the effect
of the folding with the proton electromagnetic form factor. Interesting to notice that in all
the cases, with the exceptions of 16O and 40Ca, the ∆ρp is always larger than ∆ρm. Our
calculations indicates that the identification of the charge distributions with the full matter
distributions is a better approximation than that obtained by identifying charge with proton
distributions.

The form factors to be used in Eq. (2.6) to calculate the WIMP-nucleus cross section
are shown in Fig. 3 where we have indicated, respectively, with full, dotted and dashed lines
the results obtained by using the charge, proton and matter distributions obtained in our
calculations. In the figure we also show with the red dashed- doubly-dotted lines the form
factors obtained by using the empirical charge distributions. The dashed-dotted lines show
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the Helm form factors [7] which are commonly used in the literature to calculate the WIMP-
nucleus cross section. The Helm form factor is obtained by considering a charge density with
a Gaussian surface distribution, and has a simple analytic expression

|FHelm(q)|2 =

[

3 j1(qR)

qR

]2

exp(−q2s2) , (3.2)

where j1 is the first-order spherical Bessel function, and R and s are two parameters which are
chosen to reproduce at best the experimental charge density distributions on all the nuclear
chart. We used the parametrization suggested in Refs. [10, 22]

R2 = c2 − 5s2 + 18.65 fm2 , (3.3)

c =
(

1.23A1/3 − 0.6
)

fm , (3.4)

s = 0.9 fm . (3.5)

The differences between the various form factors increase with the value of q. This
reflects the fact that, by increasing the resolution power, the probe is able to perceive the
differences between the various densities. The form factors drop rather quickly with increasing
value of q. The relevance of these differences in the calculation of the total event rate can be
estimated by considering that, in the expression (2.5), the integration starts from the value of
the threshold detection energy Eth. As a reference example, in Fig. 3 we have indicated with
vertical blue lines the values of the momentum transfer corresponding to a recoil energy, ER,
of 100 keV. This is a large value with respect to the performances of modern detectors. In
this example, the form factors to the left hand side of the vertical lines would not contribute
to the total rate. This indicates that the largest values of the form factors are excluded,
confirming an obvious consideration, the lower is the detection energy threshold, the higher
is the rate of the detected events. More interesting is the comparison between the various
nuclei. The heavier is the nucleus, the higher is the value of q required to obtain a 100 keV
recoil energy. For the two heavier nuclei 136Xe and 208Pb, the lines appear after the first
diffraction minimum, therefore, for these nuclei, the differences between the various densities
can be more relevant.

We used our density distributions to calculate the differential, and total event rates, Eqs.
(2.1) and (2.2). The values of the input parameters have been chosen coherently with what
is used in the literature. If not stated otherwise, the results of the calculations we present in
this paper have been obtained by assuming σχp = 10−42 cm2 = 10−16 fm2, δχ = 0.3 GeV/fm3,
v0 = 0.001 c, gnp = 1, Mχ = 100 GeV.

The first results we want to discuss are related to the differential rates of eq. (2.1). We
show in Fig. 4 the differences

δα(ER) =

[

dR(ER)

dER

]

α

−
[

dR(ER)

dER

]

Helm

, (3.6)

between the differential rates obtained with the distributions found in our calculations and
those obtained by using the Helm form factors as a function of the recoil energy ER. In these
calculations we used a threshold detection energy of 10 eV only. Full, dotted and dashed
lines show the differences obtained by using the charge (α = ch), proton (α = p) and matter
(α = m) densities, respectively.

A first observation is that these differences are rather small. The relative differences in
the peaks of the figure are 5% at most. A second observation is that these differences increase
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with increasing mass number. The order of magnitude of these differences in 208Pb is 1000
times larger than that of 16O, 100 times larger than those of 40Ca, 40Ar and 72Ge and, only,
10 times larger than that of 136Xe. In all the nuclei we have considered, with the exception of
40Ca, the smallest differences we found are those with the charge distributions. This could be
expected since the parameters of the Helm form factors have been chosen to describe charge
distributions. For the nuclei with Z 6= N the results obtained with the proton distributions
differ more than those obtained with the matter distributions. This is a direct consequence
of what we have observed in Fig. 2.

We show in Fig. 5 the total rates Rα(Eth) given by Eq. (2.5) as a function of the
threshold energy. The different lines indicate the results obtained with the various densities.
The behavior of the various lines is well understood. By increasing the value of the threshold
energy, which means a lowering of the sensitivity of the detector, the number of the events
becomes smaller. The comparison of the results obtained for the various nuclei indicates that
at low values of Eth the heavier nuclei are more efficients in detecting events, because of the
larger number of target nucleons inside the nucleus. We point out that, in the figure, the 16O
results have been multiplied by a factor 10. On the other hand, the total rates drop more
quickly in heavier nuclei than in lighter ones. At 40 keV the total rates expected in 208Pb
are much smaller than those expected in the medium-heavy nuclei we have considered, 40Ca,
40Ar and 72Ge.

The scale of Fig. 5 does not allow to appreciate the differences between the various
results. For this reason, we have calculated the relative differences between the total rates
obtained by using the matter distributions with respect to the results obtained with the Helm
form factors

∆Rm(Eth) =
Rm(Eth) − RHelm(Eth)

RHelm(Eth)
. (3.7)

These relative differences are shown in Fig. 6 as a function of Eth. In this figure, in addition
to the results related to total rates presented in Fig. 5, we show also results obtained by
changing the WIMP mass Mχ.

The value of the relative differences increases the heavier is the nucleus. We obtain a
maximum value of 3% in 16O and 10-20% in 208Pb. The general enhancement with increasing
Eth is more related to the lowering of the value in the denominator of Eq. (3.7) than to a real
increase of the difference between the results obtained with matter and Helm distributions.

By comparing the results obtained with different values of Mχ, we observe that ∆R
increases with increasing mass. Since the minimum value of the momentum transfer for the
detection is qmin =

√

2EthMχ, if Mχ increases, also qmin increases. Therefore, a larger part
of the form factors at low q, shown in Fig. 3, is excluded from the integral of Eq. (2.2), and
the final result is more sensitive to the differences between various calculations, differences
which appear at high q values. In heavier nuclei, the increase of Eth moves the limit of this
integration nearby the first minimum of the form factor, which is slightly displaced in the
Helm model with respect to that obtained with the matter distribution.

To estimate the relevance of the differences in the use of the various form factors, we
have calculated hypothetical values of the WIMP-proton cross section for which a rate of a
single detected event per day is obtained in a 100 tons detector. For all the nuclei we have
investigated, we show in Fig. 7 these limits, obtained for Eth = 1, 10 and 100 keV, as a
function of the WIMP mass. The dashed-dotted curves correspond to the values found with
the Helm form factors, while the full lines indicate, respectively, those obtained by using our
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HF (for 16O, 40Ca and 208Pb) and HF+BCS (for 40Ar, 72Ge and 136Xe) matter distributions.
The Eth = 100 keV results have been multiplied by the factors indicated.

Obviously, the lower is Eth, the lower is the line of the exclusion plot. The differences
between our results and those obtained with the Helm form factors become larger with
increasing target mass, with increasing Mχ values, and with increasing Eth. These results
show a minimum difference of 1.4% in the case of 16O for Eth = 1 keV, and a maximum one
of 15% for 208Pb with Eth = 100 keV.

The results we have so far presented have been obtained by assuming the same coupling
strength of the WIMP with protons and neutrons, i. e. gnp = 1 in Eq. (2.6). We expect
that, by releasing this assumption, as suggested, for example, in Ref. [23], the requirement
of a correct description of proton and neutron distributions becomes more important. For
this reason, we have carried on calculations for different values of gnp. We have chosen values
of gnp producing extreme situations. The largest and smallest values we have considered,
±2, slightly exceed those indicated in [23], values based on a compatibility analysis of the
DAMA [1, 24], CoGeNT [2] and XENON100 [4] data. The other values of gnp have been
chosen because of their physical meaning. The isospin conserving coupling, which has been
our reference up to now, is obtained with gnp = 1. The value gnp = 0 selects only the WIMP-
protons interaction. Finally, by using gnp = −1 we generate a cross section sensitive only to
the differences between proton and neutron distributions.

The total rates calculated with these values of gnp, by using Mχ = 100 GeV, are shown
in Fig. 8. In all the calculations the sequence of the various responses is similar. The lower
lines are obtained with gnp = −1 the situation where the proton and neutron contribution
cancel with each other. In the calculations where Fp = Fn, for example those which use
the Helm form factors, the total rates for 16O and 40Ca are exactly zero. Next, we have
the results with gnp = 0 where the WIMP interacts only with the proton. We have then
the results with gnp = −2 where the WIMP-neutron interaction dominates. In nuclei with
N = Z the total rates almost overlap with that obtained with gnp = 0. For positive values of
gnp the total rates increase with increasing gnp. In Ref. [23] a value of about -1.5 has been
suggested.

The aim of our work is to study the need of using accurate proton and neutron distri-
butions to describe the WIMP-nucleus cross section. For this reason, we show in Fig. 9 the
relative differences ∆R, Eq. (3.7), obtained with the various values of gnp. In the two N = Z
nuclei, 16O and 40Ca, the results with gnp = −1 are not indicated since in this case RHelm is
zero with the obvious consequences in the calculation of ∆R.

The behavior of the various lines has different characteristics for the N = Z nuclei and
for the other ones. In the former cases the smaller differences appear for gnp = 0 and the
largest ones for gnp = −2. The relative differences can reach values around the 20% in heavy
nuclei.

We have evaluated the consequences of these differences by calculating limits as those
shown in Fig. 7 with different values of gnp. We show in Fig. 10 the relative differences ∆σχp
between the limits of the WIMP-proton cross section calculated with our matter distributions
and those obtained with the Helm form factors. The results for Eth = 1, 10, 100 keV are
shown. The black (full, dashed-dotted and short-dashed) lines show the relative differences
of our reference calculations done with gnp = 1, i.e. those obtained from the results of
Fig. 7. The red (dotted, dashed-doubly-dotted and log-dashed) lines indicate the differences
obtained with gnp = −2, a value comparable with that suggested in Ref. [23]. In all the cases
the largest differences have been obtained for a threshold energy of 100 keV. As it has been
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previously discussed, the differences are enhanced with increasing Eth. We do not identify
common trends in this figure. Sometime the gnp = −2 results show the largest differences, in
other cases the largest differences are produced by gnp = 1. We observe that in 40Ar, 72Ge
and 136Xe these values can reach the 20%.

4 Conclusions

In this work, we have studied the validity of the approximation commonly done in the lit-
erature consisting in considering the nuclear charge density instead than the matter density
in the calculation of the WIMP-nucleus cross sections. While charge distributions are ex-
perimentally known for various nuclei with high accuracy [9], the matter distributions are
essentially unknown. For this reason, we propose to use the point-like matter distributions
obtained in mean-field calculations of HF type. We present here the results obtained with a
specific implementation of the HF calculations, involving an effective finite range interaction
of Gogny type [11]. Our experience [12] indicates that these results are general and more
related to the mean-field description of the nucleus rather than to its specific implementation.

We have shown that our model describes well the experimental charge distributions,
and we have assumed that it is also able to properly describe the matter distributions. We
have compared the form factors calculated with our matter distributions with the Helm form
factors commonly adopted in the literature. The differences between the factors calculated
by using different distributions show up at high values of the momentum transfer, usually
after the first diffraction minimum. The relevance of these differences is strictly related to
the value of the detection threshold energy Eth, and decreases with it.

We have calculated differential, total rates and upper detections limits. In this last
case, we found that the differences between our results and those obtained with the Helm
form factor become larger with increasing target mass, with increasing Mχ values, and with
increasing Eth. We found a maximum relative difference of about 15% for 208Pb with Eth =
100 keV.

The requirement of using matter instead than charge distributions in the calculation of
the WIMP-nucleus cross section becomes more important when the assumption of isospin
conserving WIMP-nucleon interaction is released. In this case, the proton and neutron dis-
tributions are mixed with different weights, therefore an accurate description of the two
distributions is mandatory. Also in this case, the value of Eth is the parameter which domi-
nates the value of the uncertainty, however, the use of mixing values close to those suggested
in the literature increases the difference with respect the results obtained with the Helm
model. In specific situations the relative differences can reach the value of 20%.

In the estimation of the total event rate related to the WIMPs detection, the values
of many input quantities are unknown, and strong assumptions are done on them. On the
other hand, the nuclear physics part of the process is well understood, and we propose to use
the modern nuclear structure results to improve its description.

Appendix: Fourier-Bessel coefficients of density distributions

In this appendix we show the values of the Fourier-Bessel coefficients which allow the recon-
struction of our proton and neutron density distributions for the nuclei we have considered.
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These distributions can be obtained by the expression

ρ(r) =
M
∑

µ=1

Aµ
sin(qµr)

qµr
, (4.1)

where the qµ are defined as

qµ = µ
π

R
,

with R the maximum value of the radius where the density is supposed to be different from
zero. The density distributions obtained with the coefficients given in Tables 3 and 4, have
the usual nuclear physics normalizations, i. e. the integrals of Eq. (2.8) are normalized to
the number of protons or neutrons.
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BE/nucleon [MeV] rms [fm]
Nucleus HF Exp. HF BCS Exp.

16O 7.98 7.98 2.76 - 2.74
40Ar 9.32 8.60 3.40 3.40 3.42
40Ca 8.51 8.55 3.47 - 3.48
72Ge 8.57 8.73 4.02 4.02 4.05
136Xe 8.44 8.40 4.80 4.81 -
208Pb 7.83 7.87 5.48 - 5.50

Table 1. Binding energies (BE) per nucleon and charge rms radii calculated with the D1M interaction
by using the HF and BCS models and compared with their experimental values.

v2

Nucleus protons neutrons
40Ar 1d3/2 1f7/2 2p3/2 1f7/2

0.655 0.008 0.003 0.257
72Ge 2p3/2 1f5/2 2p1/2 1g9/2

0.541 0.286 0.984 0.013
136Xe 1g7/2 2d5/2 1h11/2 1h9/2

0.388 0.115 1.000 0.000

Table 2. Values of v2 for the partially occupied s.p. levels near the Fermi level.

16O 40Ca 208Pb
µ proton neutron proton neutron proton neutron
1 2.89514E-02 2.90605E-02 6.17474E-02 6.23662E-02 7.69622E-02 1.16349E-01
2 5.44734E-02 5.53342E-02 5.75764E-02 6.08146E-02 1.87236E-02 2.73910E-02
3 2.37463E-02 2.50485E-02 -2.94985E-02 -2.82238E-02 -6.54988E-02 -8.28045E-02
4 -1.51728E-02 -1.46814E-02 -1.93097E-02 -2.10479E-02 3.20906E-02 4.81394E-02
5 -1.94164E-02 -1.99175E-02 1.87819E-02 1.85152E-02 1.42479E-02 1.17763E-02
6 -5.40039E-03 -6.14889E-03 9.02298E-03 9.93418E-03 -2.81145E-02 -2.99372E-02
7 1.85720E-03 1.34614E-03 -1.89926E-03 -2.77723E-03 1.43845E-02 1.88786E-02
8 6.24424E-04 3.75985E-04 1.40503E-03 -1.48915E-03 1.53527E-02 -6.90422E-03
9 -1.18242E-03 -1.29026E-03 2.91761E-03 -1.02014E-03 3.00274E-03 -2.34458E-02

10 -9.50609E-04 -9.80391E-04 1.34965E-03 -2.77186E-03 3.76239E-03 -1.08603E-03
11 -1.71403E-04 -1.66395E-04 1.77650E-03 -2.38989E-03 -4.27147E-03 5.77452E-03
12 4.61957E-05 6.54090E-05 1.68542E-03 -1.69061E-03 -3.33174E-03 2.14901E-03
13 -1.93572E-05 -9.66199E-06 1.13150E-03 -8.69682E-04 3.06557E-03 -8.57191E-04
14 -7.29176E-05 -6.72835E-05 2.12233E-04 -4.41138E-04 1.80972E-03 -3.12159E-03
15 - - 2.61156E-04 4.04638E-05 -3.10532E-04 4.46753E-04

R [fm] 7.0 7.0 7.0 7.0 10.0 10.0

Table 3. Fourier-Bessel coefficients Aµ and radii R, see Eq. (4.1), for the proton and neutron densities
obtained in the HF calculations.
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40Ar 72Ge 136Xe
µ proton neutron proton neutron proton neutron
1 3.09708E-02 3.76246E-02 4.98732E-02 6.18996E-02 4.64213E-02 6.96034E-02
2 5.88325E-02 7.02530E-02 6.19545E-02 7.60695E-02 5.66577E-02 8.15343E-02
3 2.10665E-02 2.43967E-02 -1.96985E-02 -1.88170E-02 -2.89511E-02 -3.93097E-02
4 -2.71647E-02 -3.07229E-02 -3.69138E-02 -3.41701E-02 -4.44567E-02 -5.02359E-02
5 -2.58345E-02 -2.67849E-02 1.29234E-02 1.68135E-02 2.16418E-02 3.33255E-02
6 1.35027E-03 5.39599E-03 2.33454E-02 1.51003E-02 2.99702E-02 2.78136E-02
7 1.14853E-02 1.73114E-02 3.16112E-03 -1.37351E-02 -1.22571E-02 -2.05113E-02
8 3.83701E-03 9.32738E-03 -8.94086E-04 -1.58768E-02 -2.07746E-02 -7.97235E-03
9 -2.49991E-03 2.11831E-03 3.68467E-03 -5.21935E-03 -4.58139E-03 2.24455E-02

10 -2.09091E-03 1.01436E-03 2.56986E-03 -1.03807E-03 -8.95531E-04 1.91808E-02
11 -1.66806E-04 1.16466E-03 1.12422E-04 -7.28180E-04 -3.60592E-03 5.18993E-03
12 3.19675E-04 4.98071E-04 -2.13356E-04 -3.48872E-04 -1.72562E-03 1.49995E-03
13 8.86515E-05 -8.27115E-05 7.99035E-05 4.73510E-06 4.85598E-04 1.63508E-03
14 - - 7.52024E-05 1.45816E-05 4.04238E-04 6.51292E-04
15 - - 4.16595E-05 1.51430E-05 - -

R [fm] 9.0 9.0 9.0 9.0 11.0 11.0

Table 4. Fourier-Bessel coefficients Aµ and radii R, see Eq. (4.1), for the proton and neutron densities
obtained in the HF + BCS calculations.
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Figure 1. Charge distributions obtained with our HF (dashed lines) and HF+BCS (dotted lines)
calculations compared with the empirical distributions (full lines) [9], extracted from elastic electron
scattering data. The distributions, normalized as indicated by Eq. (2.8), have been multiplied by r2.
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– 17 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
C
A
P
_
0
3
1
P
_
0
8
1
2
 
v
1

10-8
 

10-6
 

10-4
 

10-2
 

100

10-8
 

10-6
 

10-4
 

10-2
 

100

0 1 2 3
10-8

 
10-6

 
10-4

 
10-2

 
100

0 1 2 3

|F
α
(q
)|2

q [fm−1] q [fm−1]

16O

40Ca

208Pb

40Ar

72Ge

136Xe

ch
p
m
Helm

exp

Figure 3. (Color on line) Nuclear form factors calculated with various density distributions. Full,
dotted and dashed lines show the results obtained by using, respectively, the charge, proton and
matter distributions obtained in our calculations. The red dashed-doubly-dotted lines are the form
factors obtained by using the empirical charge distributions. The dashed-dotted lines indicate the form
factors obtained within the Helm model. The vertical blue lines indicate the value of the momentum
transfer corresponding to a nucleus kinetic energy of 100 keV.
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as well as those obtained with the Helm form factors (dashed-dotted lines) are shown. The values of
the 16O nucleus have been multiplied by 10.
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Figure 8. Total rates, Eq. (2.5), calculated for different values of gnp, which are indicated in the
insert of the 16O panel.
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Figure 9. Relative differences between total rates calculated with our matter distributions and those
obtained with the Helm form factor for Mχ = 100 GeV and for different values of gnp, indicated in
the insert of the upper left panel.
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Figure 10. (Color on line) Relative differences between the limit values of σχp calculated by using our
matter distributions and those obtained with the Helm form factors. The results for Eth = 1 (full and
red dotted lines), 10 (dashed-dotted and red dashed-double-dotted lines) and 100 keV (short-dashed
and red long-dashed lines) are shown. Black full, dashed-dotted and short-dashed lines correspond
to gnp = 1.0, while red dotted, dashed-double-dotted and long-dashed lines correspond to the isotope
violating hypothesis with gnp = −2.0.

– 25 –


	Introduction
	The model
	Results
	Conclusions

