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- probability per unit distance travelled that a photon 

interacts by any physical process

dN(x) = �µN(x) dx

+
N(x) = N0 exp(�µx)

probability that a normally 
incident photon will traverse a 
slab of thickness x without 
interacting

exp(�µx) = N(x)/N0
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spontaneous fission
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reaction Q (MeV)
3H(d,n)4He 17.6
2H(d,n)3He 3.3
12C(d,n)13N -0.3
3H(p,n)3He -0.8
7¡Li(p,n)7Be -1.7
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•radiation transport in materials:  

topic of interest in numerous fields
•high energy particles in materials:  

suffer many interactions, transfer energy and produce 
secondary particles 

•radiation transport in materials:  
solve the Boltzmann equation of transport

•transport proccesses:  
intrinsically random

•Monte Carlo simulation:  
powerful alternative to solve transport problems

•increasing use:  
parallel to computer development

•first MC simulation of photon transport:  
Hayward and Hubbell (1954): 67 histories
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6. Simulating particle transport in matter
•detailed simulation: is exact!

simulation of all the 
i n t e r a c t i o n e v e n t s 
experienced by a particle 
in cronological sequence

•detailed simulation of charged particles: 
‣complicated due to the continuous interaction 

- small energy losses in each interaction 
- many interactions before being absorbed  
- only possible for low energy particles  
  or thin geometries

•solving the problem: 
‣multiple scattering theories 

- the effect of a large number of interaction events is 
simulated globally 

- approximate theories: possible problems  
- details depend on the particular code
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Scattering model and probability distributions
•simulate the particle transport in material media
•homogeneous media with uniform density 

- gases, liquids or amorphous solids  
- random scattering of particles

molecular weight 
AM =

X

i

ni Ai

number of molecules per volume unit in the material 
N = NA

⇢

AM
•let us assume a particle moving in a material and interacting 
through two mechanisms labelled  A  and  B  and without 
production of secondary particles
scattering model 

           energy lost after an interaction 
           solid angle in the new direction
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dW d⌦
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-scattering model:
d2⇥�

dWd�
(E;W, �) � = A,B

-partial cross sections:

⇤�(E) = 2⇥

� E

0
dW

� ⇥

0
d� sin �

d2⇤�

dWd�
(E;W, �)

independent of �

-total scattering cross section:
�T(E) =

�

��
��(E)

A,B
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r̂n

r̂n+1 φ
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-solución:                                 f(s) =
1

�T
exp

�
� s

�T

⇥

f(�) = 0f(s) = N⇤TF(s) =
1

�T

� �

s
d⇥ f(⇥)

⇥s⇤ =
� ⇥

0
ds s f(s) = �T = (N⇥T)�1

s = ��T ln ⇥ , ⇥ ⇥ U(0, 1)

rn+1 = rn + s �dn
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6. Simulating particle transport in matter

•the algorithm is iteratively repeated until 
-the particle energy is below the absorption energy  

(fixed by the user) 
-the particle moves out of the material medium

•problems to be solved:

-variance reduction techniques

-interface crossing

-evaluation of statistical estimators


