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1. General details for charged particles  relativistic expression
eproblem: B 2v2mV;2
-assume a particle that collides v (max = 1+ 2ym/M + m?2 /M2
-the particle moves rap1dl}/ with v=(1—2)12. B=Vi/c
-the energy transferred is large
energy
+the electron is free and at rest
-to calculate the maximum energy transfer
-head-on collision
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1. General details for charged particles
-electrons may loss a large fraction of energy in a collision:
tortuous paths in matter
-heavy charged particles loss small fractions of energy:
straight paths in matter
energy
+the electron is free and at rest
-to calculate the maximum energy transfer
-head-on collision
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-electrons:

tortuous paths in matter
-heavy charged particles:
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FIGURE 5.1. (Top) Alpha-particle autoradiograph of rat bone after inhalation of ?*'Am.
Biological preparation by R. Masse and N. Parmentier. (Bottom) Beta-particle autora-
diograph of isolated rat-brain nucleus. The "*C-thymidine incorporated in the nucleolus
is located at the track origin of the electron emitted by the tracer element. Biological
preparation by M. Wintzerith and P. Mandel. (Courtesy R. Rechenmann and E. Witten-
dorp-Rechenmann, Laboratoire de Biophysique des Rayonnements et de Methodologie
INSERM U.220, Strasbourg, France.)
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0.1 0.00022 0.22
1 0.0022 0.22

10 0.0219 0.22

100 0.229 0.23
10° 3.33 0.33
10* 136 1.4
10° 1.06 x 10* 10.6

10° 538x10° 53.8
10’ 9.21x 10° 92.1

FIGURE 5.1. (Top) Alpha-particle autoradiograph of rat bone after inhalation of ?*'Am.
Biological preparation by R. Masse and N. Parmentier. (Bottom) Beta-particle autora-
diograph of isolated rat-brain nucleus. The "*C-thymidine incorporated in the nucleolus
is located at the track origin of the electron emitted by the tracer element. Biological
preparation by M. Wintzerith and P. Mandel. (Courtesy R. Rechenmann and E. Witten-
dorp-Rechenmann, Laboratoire de Biophysique des Rayonnements et de Methodologie
INSERM U.220, Strasbourg, France.)
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FIGURE 5.3. Single-collision energy-loss spectra for 50-eV and 150-eV electrons and
1-MeV protons in liquid water. (Courtesy Oak Ridge National Laboratory, operated by
Martin Marietta Energy Systems, Inc., for the Department of Energy.)
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- heavy charged particles ionize and excite material atoms

estopping power
- average energy loss of a charged particle per unit path length

eBeth e’S fOTm ula: k,-8.99x 10°Nm* C?, (the Boltzman constant)

z = atomic number of the heavy particle,
e = magnitude of the electron charge,
dFE 4 k% A 2 e4n 1 2m62 6 2 52 n = number of electrons per unit volume in the medium,
—— = n — —
2 292 22 m = electron rest mass,
do mc 6 I ( 1 6 ) ¢ = speed of light in vacuum,

B = V/c = speed of the particle relative to c,
I = mean excitation energy of the medium.
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- average energy loss of a charged particle per unit path length
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FIGURE 5.6. Stopping power of water in MeV cm™" for various heavy charged particles and
beta particles. The muon, pion, and kaon are elementary particles with rest masses equal, .
respectively, to about 207, 270, and 967 electron rest masses. (Courtesy Oak Ridge National
Laboratory, operated by Martin Marietta Energy Systems, Inc., for the Department of Energy.)
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°TYange

-distance traveled by the
particle before coming to

rest

R(K)

0

K

dE

dE

dz
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TABLE 5.3. Mass Stopping Power - dE/pdx and Range R, for Protons in Water

Kinetic Energy —dE/pdx R,
(MeV) B? (MeV cm? g=)) (g cm™?)
0.01 .000021 500. o 3x10°°
0.04 .000085 860. 6 x 1073
0.05 .000107 910. 7 x 1073
0.08 000171 920. 9 x 1073
0.10 .000213 910. I x 10™*
0.50 .001065 428. g x 107*
. 1.00 .002129 270. 0.002
2.00 004252 162. 0.007
4.00 .008476 95.4 0.023
6.00 .01267 69.3 0.047
8.00 .01685 55.0 0.079
10.0 .02099 45.9 0.118
12.0 .02511 39.5 0.168
14.0 .02920 34.9 0.217
16.0 .03327 31.3 0.280
18.0 .03731 28.5 0.342
20.0 04133 26.1 0.418
25.0 05126 21.8 0.623
30.0 06104 18.7 0.864
35.0 .07066 16.5 1.14
40.0 .08014 14.9 1.46
45.0 .08948 13.5 1.80
50.0 .09867 12.4 2.18
60.0 .1166 10.8 3.03
70.0 1341 9.55 4.00
80.0 1510 8.62 5.08
90.0 .1675 7.88 6.27
100. .1834 7.28 7.57
150. .2568 5.44 15.5
200. .3207 4.49 25.5
300. 4260 3.52 50.6
400. .5086 3.02 80.9
500. .5746 2.74 115.
600. .6281 2.55 152.
700. 6721 2.42 192.
800. .7088 2.33 234,
900. 7396 2.26 2717.
1000. 7658 2.21 321.
2000. .8981 2.05 795.
4000. .9639 2.09 1780.
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Kinetic Energy —dE/pdx R
erange (MeV) g? (MeV cm? g=)) ® cn:'")
_g_. 0.01 000021 500. 3% 107
-distance traveled by the 00 D008S ta0 6 x 107
: g.gg gm 910. 7 X 10*:
- : . 920. >
particle before coming to o o002 n %10
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. a ; S 162, 0.007
R(K ) = dE — 4.00 008476 95.4 0.023
0 dz 6.00 01267 69.3 0.047
8.00 01685 55.0 0.079
10.0 02099 45.9 0.118
12.0 02511 39.5 0.168
14.0 02920 34.9 0.217
16.0 03327 31.3 0.280
18.0 03731 28.5 0.342
20.0 04133 26.1 0.418
25.0 05126 21.8 0.623
-ranges for two heavy Cotos 187 0864
. . 40.0 08014 14.9 1.46
particles with the same o 08948 135 180
. locs 300 09867 12.4 2.18
. 10.8 3.03
mitial ve OC]ty ;gg :g‘:(l) 9.55 4.00
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R o Z9 M 1 221 90.0 1675 7.88 6.27
1 5 — 5 (ﬁ) 100. 1834 7.28 7.57
M 150, 2568 5.44 15.5
200 3207 4.49 25.5
300. 4260 3.52 50.6
400, 5086 3.02 80.9
500. 5746 2.74 115,
600. 6281 2.55 152.
700. 6721 2.42 192.
800. 7088 2.33 234.
900. 7396 2.26 277.
1000. 7658 2.21 1.
2000. 8981 2.05 795.

4000. 9639 2.09 1780.
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FIGURE 5.7. Ranges of protons, alpha particles, and electrons in water, muscle, bone,
and lead, expressed in g cm 2. (Courtesy Oak Ridge National Laboratory, operated by

Martin Marietta Energy Systems, Inc., for the Department of Energy.)
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FIGURE 5.6. Stopping power of water in MeV ¢cm™" for various heavy Eharged particles and
beta particles. The muon, pion, and kaon are elementary particles with rest masses equal, .
respectively, to about 207, 270, and 967 electron rest masses. (Courtesy Oak Ridge National
Laboratory, operated by Martin Marietta Energy Systems, Inc., for the Department of Energy.)
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FIGURE 6.4. Beta-particle range-energy curve for materials of low atomic number. [From
U.S. Public Health Service, Radiological Health Handbook, Publ. No 2016, Bureau of

Radiclogical Health, Rockviile, MD (1970).]
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FIGURE 6.7. Calculated tracks (projected into the plane of the figure) of 800-keV elec-
trons in water. Each electron starts moving horizontally toward the right from the point
0 on the vertical axis.
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FIGURE 8.6. Pencil beam of N, monoenergetic photons incident on slab. The number

of photons that reach a depth x without having an interaction is given by N(x) = Nye™*,
where p is the linear attenuation coefficient.
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of photons that reach a depth x without

having an interaction is given by N(x) = Nge™,

where p is the linear attenuation coefficient.
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of photons that reach a depth x without having an interaction is given by N(x) = Nye™*,
where p is the linear attenuation coefficient.
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FIGURE 8.8. Mass attenuation coefficients for various elements. [Reprinted with per-
mission from K. Z. Morgan and ). E. Turner, eds., Principles of Radiation Protection,
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TABLE 8.3. Mass Attenuation, Mass Energy-Transfer, and Mass Energy-Absorption
Coefficients (cm? g~ ") for Photons in Water and Lead

’0 Photon Water Lead
Energy
(MeV) wlp ulp Hen/P wlo P HedP
0.01 5.33 4.95 4.95 131. 126. 126.
0.10 0.171 0.0255 0.0255 5.55 2.16 2.16
1.0 0.0708 0.0311 0.0310 0.0710 - 0.0389 0.0379
10 I T 100 0.0222  0.0163  0.0157 0.0497 0.0418 0.0325
100.0 0.0173 0.0167  0.0122 0.0931 0.0918 0.0323
Source: Based on P. D. Higgins, F. H. Attix, ). H. Hubbell, S. M. Seltzer, M. ). Berger, and C. H.
Sibata, Mass Energy-Transfer and Mass Energy-Absorption Coefficients, Including In-Flight Positron
. 1+ Annihilation for Photon Energies 1 keV to 100 MeV, NISTIR 4680, National Institute of,Standards
,':~ and Technology, Gaithersburg, MD (1991).
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Figure 12.1 Neutron energy spectrum from a Ra-Be source. measured with a
proton recoil counter. Several neutron groups are present; they result from reac-
tions induced by a's with differing energies and in which the 2C is left either in the
ground state or the 4.43- or 7.6-MeV excited states.
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nuclear reactions: Thermal ~0.025 eV
production and interaction Epithermal ~1eV
Slow ~1 keV
- cannot be accelerated ! Fast 5100 keV
»produced at a high energy and then moderated
4He + 9Be ——12C +n photon + 9Be —— 8Be + n
LI R I B B A P 24Na: 2 x10°n s1Ci
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i {210pg 116|-n; 124Sb; 140| 3
239Pu E <1 MeV
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6. Simulating particle transport in matter
eradiation transport in materials:

topic of interest in numerous fields
ehigh energy particles in materials:

suffer many interactions, transfer energy and produce
secondary particles

eradiation transport in materials:
solve the Boltzmann equation of transport

*transport proccesses:
intrinsically random

e Monte Carlo simulation:
powerful alternative to solve transport problems

eincreasing use:
parallel to computer development

first MC simulation of photon transport:
Hayward and Hubbell (1954): 67 histories
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6. Simulating particle transport in matter simulation of all the

«detailed simulation: is exact! interaction events

detailed simulation of photons: experienced by a particle
rrelatively simple in cronological sequence
-photons interact just a few times before being absorbed

edetail

ed simulation of charged particles:

rcomplicated due to the continuous interaction
- small energy losses in each interaction
- many interactions before being absorbed
- only possible for low energy particles
or thin geometries

«solving the problem:
rmultiple scattering theories
-the effect of a large number of interaction events is
simulated globally
- approximate theories: possible problems
- details depend on the particular code
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6. Simulating particle transport in matter
Scattering model and probability distributions
«simulate the particle transport in material media

homogeneous media with uniform density .
. . molecular weight
- gases, liquids or amorphous solids e —
- random scattering of particles M = Z i

number of molecules per volume unit in the material *

p
N
N = A

elet us assume a particle moving in a material and interacting
through two mechanisms labelled A and B and without

production of secondary particles
scattering model 42, d20n

deQ(

E; W, 0)

W =energy lost after an interaction
() = solid angle in the new direction
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: — A,B
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-scattering model:

d?o,,

: — A,B
deQ(E,W,H) Qo

-partial cross sections: independent of ¢

d?o,,

E ™
= ' E;W. 0
oo (F) 27‘(’/0 dW/() df sin 0 deQ( , W, 6)




6. Simulating particle transport in matter

-scattering model:

d?o,,

dW dS2

-partial cross sections: independent of ¢

d?o,,

E s
() = 2 d df sin 6 E: W,
o (F) 7'('/0 W/() sin deQ( W, 0)

-total scattering cross section:

or(E) = Y  oa(E)
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-probability density function of the track length followed
by the particle between its actual position and that of the
next interaction: f (S)

-probability that the particle follows a track of length s

without interacting o
Flo) = [ dcs©

-probability that the particle interacts after going through
a distance in the range (s, s + ds)

F(s)Nords = f(s)ds

F(s) = NovF(s) = — [ def(e)  floo) =0

)
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fls) = NowFls) = 5 [ def(©)  f(o) =0
-solucion: f(s) = % exp (_%>

(8) = /OOO dss f(s) = Ar = Worp)™*

s = —Ar In &, fEU(O,l) j—

I'ntl = T'n + sd,
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rnt1 = I'n + sdy

-whi ' ion? ? |9a =
which type of interaction? A o B: « or(E)

-determine W, 6 and ¢

1 d?o
) E; ’(9 _ 9 .y & E; W,H
Pa(E;W,0) = 27 sin oo (E) avan' )
6 € U0, 27] oot) = 2r [ aw [ a0sno 2%

(E; W, 0)
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rnt1 = Ip T Sdn

~ Oq (E)
-which type of interaction? Ao B? |9a = - (E)
-determine W, 6 and ¢
1 d?c
B W, 0) = 21 sinf ~_(E;W,0
Pa ) = 2msinb T avan )
¢ < U[O7 27T] OQ(E) — 2% [E A1A /7T A0 cin 0 d200‘ (L. TA7 O
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6. Simulating particle transport in matter

othe algorithm is iteratively repeated until
-the particle energy is below the absorption energy
(fixed by the user)

-the particle moves out of the material medium

eproblems to be solved:

-interface crossing

-evaluation of statistical estimators

-variance reduction techniques



