Nuclear medicine

Introduction
 General details
 Instrumentation
 SPECT
 PET
 Dosimetry

Nuclear medicine

Nuclear medicine

medical speciality in which radioactive substances are used

Nuclear medicine

medical speciality in which radioactive substances are used

diagnosis intimately linked to medical image

Nuclear medicine

medical speciality in which radioactive substances are used

Nuclear medicine

medical speciality in which radioactive substances are used

 radiology "inside — outside" or "endoradiology" radiation emitted from within the body is recorded
 scans emphasize on functions rather than anatomy

1935: G. de Hevesy used radioactive phosphor for metabolic studies in rats for the first time
Nobel prize in chemistry in 1943
radioactive tracers are used since them to study physiological functions

1935: G. de Hevesy used radioactive phosphor for metabolic studies in rats for the first time
Nobel prize in chemistry in 1943
radioactive tracers are used since them to study physiological functions

1950: H.O. Anger developed the "scintillation camera", also called "Anger camera" or "gammacamera"

1935: G. de Hevesy used radioactive phosphor for metabolic studies in rats for the first time
Nobel prize in chemistry in 1943
radioactive tracers are used since them to study physiological functions

1950: H.O. Anger developed the "scintillation camera", also called "Anger camera" or "gammacamera"

1960: P. Richards proposed the use of 99^mTc as a medical tracer

•W. Tucker and M. Greene had developed the first generator of ^{99m}Tc in 1958

• P.V. Harper, G. Andros and K. Lathrop reported the first application to humans in 1962

Nuclear medicine

radiopharmaceuticals

- -pharmaceuticals are marked with radioisotopes
- -they are administered to patients (e.g., intravenously, orally)
- -radiopharmaceuticals distribute through body according their biokinetical properties
- -they deposit in different organs/tissues depending on the physiological functions and their status (e.g., healthy or not)

Nuclear medicine -----

-> medical image

• radiopharmaceuticals

- -pharmaceuticals are marked with radioisotopes
- -they are administered to patients (e.g., intravenously, orally)
- -radiopharmaceuticals distribute through body according their biokinetical properties
- -they deposit in different organs/tissues depending on the physiological functions and their status (e.g., healthy or not)

• detectors

- -emitted radiation is detected
- -radioactivity distribution is determined
- *-in-vivo* study of the degree of assimilation of the radiopharmaceuticals in organs/tissues
- -information about the way how they are operating

medical images

2. General details

medical images

conventional

-2D images of the radioactivity distribution -projection onto the detection plane

2. General details

medical images

• <u>conventional</u>

-2D images of the radioactivity distribution -projection onto the detection plane

<u>computed tomography</u>
 -3D radioactivity distribution
 -SPECT and *PET*

2. General details

medical images

• conventional

-2D images of the radioactivity distribution -projection onto the detection plane

<u>computed tomography</u>
 -3D radioactivity distribution
 -SPECT and *PET*

•<u>images</u>

-determination of the status of the organs or tissues in order to differentiate between normal and ill behaviors -diagnosis of the illness causes -both functional and physiological information

2. General details

• pharmaceuticals are marked with radioisotopes

-sulfur coloids marked with 99m Tc ($t_{1/2}$ ~6 h; E_{photon} =140 keV) fix in healthy (and not in cancerous) liver

2. General details

• pharmaceuticals are marked with radioisotopes

-sulfur coloids marked with 99m Tc ($t_{1/2}$ ~6 h; E_{photon} =140 keV) fix in healthy (and not in cancerous) liver

-²⁰¹Tl: analogous to potassium used to study heart behaviors

2. General details

-sulfur coloids marked with 99m Tc ($t_{1/2}$ ~6 h; E_{photon} =140 keV) fix in healthy (and not in cancerous) liver

-²⁰¹Tl: analogous to potassium used to study heart behaviors

-other isotopes: ⁶⁷Ga, ^{81m}Kr, ¹¹¹In, ¹²³I; ¹¹C, ¹³N, ¹⁸F, ⁸²Rb, ... photon or positron emitters for imaging

2. General details

-sulfur coloids marked with 99m Tc ($t_{1/2}$ ~6 h; E_{photon} =140 keV) fix in healthy (and not in cancerous) liver

-²⁰¹Tl: analogous to potassium used to study heart behaviors

-other isotopes:

⁶⁷Ga, ^{81m}Kr, ¹¹¹In, ¹²³I; ¹¹C, ¹³N, ¹⁸F, ⁸²Rb, ... photon or positron emitters for imaging

-beta emitters for therapy: 9°Y, ¹³¹I ...

2. General details

-sulfur coloids marked with 99m Tc ($t_{1/2}$ ~6 h; E_{photon} =140 keV) fix in healthy (and not in cancerous) liver

-²⁰¹Tl: analogous to potassium used to study heart behaviors

-other isotopes:

⁶⁷Ga, ^{81m}Kr, ¹¹¹In, ¹²³I; ¹¹C, ¹³N, ¹⁸F, ⁸²Rb, ... photon or positron emitters for imaging

-beta emitters for therapy: 9°Y, ¹³¹I ...

• emitted photons are detected with "position sensitive detectors"

Nuclear medicine

• main purpose:

to produce images representing the radioactivity distribution *in-vivo* with the largest possible accuracy

Nuclear medicine

• main purpose:

to produce images representing the radioactivity distribution *in-vivo* with the largest possible accuracy

• but, images are degraded because of:

- -instrumentation used
- -attenuation and dispersion of the radiation in the body of the patient and in the air in its way out towards the detection system

-biokinetics of the radiopharmaceuticals

Nuclear medicine

• main purpose:

to produce images representing the radioactivity distribution *in-vivo* with the largest possible accuracy

• but, images are degraded because of:

- -instrumentation used
- -attenuation and dispersion of the radiation in the body of the patient and in the air in its way out towards the detection system

-biokinetics of the radiopharmaceuticals

•research:

-improvement in the instrumentation

-developement of better methodologies for processing and reconstructing the images

-investigation in biokinetics of radiopharmaceuticals

-position sensitive detectors

-position sensitive detectors

-collimators

-position sensitive detectors

-collimators

-computer (for image reconstruction)

-position sensitive detectors: inorganic scintillators

3. Instrumentation

- -position sensitive detectors: inorganic scintillators
- INa(Tl): it is the most used due to its
 excellent detection properties and low cost

3. Instrumentation

- -position sensitive detectors: inorganic scintillators
- INa(Tl): it is the most used due to its
 excellent detection properties and low cost
- Bi₃Ge₄O₁₂ (BGO); CsF / BaF: applications in PET
-position sensitive detectors: inorganic scintillators

- INa(Tl): it is the most used due to its
 excellent detection properties and low cost
- Bi₃Ge₄O₁₂ (BGO); CsF / BaF: applications in PET

-position sensitive detectors: inorganic scintillators

- INa(Tl): it is the most used due to its
 excellent detection properties and low cost
- Bi₃Ge₄O₁₂ (BGO); CsF / BaF: applications in PET

how to obtain the information about the position?
 moving the detector at various points in the area under study, collecting a certain number of photons or measuring a given time in each one
 too long procedures

-position sensitive detectors: <u>gammacamera</u>

-position sensitive detectors: <u>gammacamera</u>

<u>patient</u>

-position sensitive detectors: <u>gammacamera</u>

photomultiplier tubes -permit the localization of the detection point from the signal produced in each tube -usually work with an energy window and have ~10% energy resolution

scintillator cristal

-circular (~40 cm O) or -rectangular (~40 cm x 50 cm) -thickness: <1 cm (low energy photons)

-position sensitive detectors: <u>gammacamera</u>

photomultiplier tubes -permit the localization of the detection point from the signal produced in each tube -usually work with an energy window and have ~10% energy resolution

scintillator cristal

-circular (~40 cm O) or -rectangular (~40 cm x 50 cm) -thickness: <1 cm (low energy photons)

why the collimator is fundamental?

why the collimator is fundamental?

rig. 1.4 (a) In the absence of collimation there is no relationship between the position at which a gamma-ray hits the detector and that from which it left the patient. (b) The parallel-hole collimator forms an image by excluding all gamma-rays except those traveling parallel to the holes axis

Fig. 1.4 (a) In the absence of collimation there is no relationship between the position at which a gamma-ray hits the detector and that from which it left the patient. (b) The parallel-hole collimator forms an image by excluding all gamma-rays except those traveling parallel to the holes axis

(b) The parallel-hole collimator forms an image by excluding all gamma-rays except those traveling parallel to the holes axis

<u>collimators</u>

<u>collimators</u>

energy window !!

<u>collimators</u>

collimator resolution, R_c, and efficiency, g

Single-Photon Emission Computed Tomography

Single-Photon Emission Computed Tomography

•detection of a unique photon characteristic of a given disintegration

Single-Photon Emission Computed Tomography

•detection of a unique photon characteristic of a given disintegration

Radiation		Mean Number per Disintegration	Mean Energy per Particle (MeV)	Radiation		Mean Number per Disintegration	Mean Energy per Particle (MeV)
Beta Minus	1	0.0012	0.0658	Gamma	4	0.0143	0.3664
Beta Minus	3	0.0014	0.1112	Gamma	5	0.0001	0.3807
Beta Minus	4	0.1850	0.1401	Gamma	6	0.0002	0.4115
Beta Minus	6	0.0004	0.2541	Gamma	7	0.0005	0.5289
Beta Minus	7	0.0143	0.2981	Gamma	8	0.0002	0.6207
Beta Minus	8	0.7970	0.4519	Gamma	9	0.1367	0.7397
Gamma	1	0.0130	0.0405	K Int Con Elect		0.0002	0.7186
K Int Con Elect		0.0428	0.0195	Gamma	10	0.0479	0.7782
L Int Con Elect		0.0053	0.0377	K Int Con Elect		0.0000	0.7571
M Int Con Elect		0.0017	0.0401	Gamma	11	0.0014	0.8231
Gamma	2	0.0564	0.1405	Gamma	12	0.0011	0.9610
K Int Con Elect		0.0058	0.1194	K Alpha-1 X-Ray		0.0253	0.0183
L Int Con Elect		0.0007	0.1377	K Alpha-2 X-Ray		0.0127	0.0182
Gamma	3	0.0657	0.1810	K Beta-1 X-Ray		0.0060	0.0206
K Int Con Elect		0.0085	0.1600	KLL Auger Elect		0.0087	0.0154
L Int Con Elect		0.0012	0.1782	KLX Auger Elect		0.0032	0.0178
M Int Con Elect		0.0004	0.1806	LMM Auger Elect		0.0615	0.0019
				MXY Auger Elect		0.1403	0.0004

Single-Photon Emission Computed Tomography

Radiation		Mean Number per Disintegration	Mean Energy per Particle (MeV)	Radiation		Mean Number per Disintegration	Mean Energy per Particle (MeV)
Beta Minus	1	0.0012	0.0658	Gamma	4	0.0143	0.3664
Beta Minus	3	0.0014	0.1112	Gamma	5	0.0001	0.3807
Beta Minus	4	0.1850	0.1401	Gamma	6	0.0002	0.4115
Beta Minus	6	0.0004	0.2541	Gamma	7	0.0005	0.5289
Beta Minus	7	0.0143	0.2981	Gamma	8	0.0002	0.6207
Beta Minus	8	0.7970	0.4519	Gamma	9	0.1367	0.7397
Gamma	1	0.0130	0.0405	K Int Con Elect		0.0002	0.7186
K Int Con Elect		0.0428	0.0195	Gamma	10	0.0479	0.7782
L Int Con Elect		0.0053	0.0377	K Int Con Elect		0.0000	0.7571
M Int Con Elect		0.0017	0.0401	Gamma	11	0.0014	0.8231
Gamma	2	0.0564	0.1405	Gamma	12	0.0011	0.9610
K Int Con Elect		0.0058	0.1194	K Alpha-1 X-Ray		0.0253	0.0183
L Int Con Elect		0.0007	0.1377	K Alpha-2 X-Ray		0.0127	0.0182
Gamma	3	0.0657	0.1810	K Beta-1 X-Ray		0.0060	0.0206
K Int Con Elect		0.0085	0.1600	KLL Auger Elect		0.0087	0.0154
L Int Con Elect		0.0012	0.1782	KLX Auger Elect		0.0032	0.0178
M Int Con Elect		0.0004	0.1806	LMM Auger Elect		0.0615	0.0019
				MXY Auger Elect		0.1403	0.0004

•detection of a unique photon characteristic of a given disintegration

• 3D images are obtained by situating a gammacamera around the patient

- improvements:
 - -multicamera systems -combined SPECT/CT

Ģ	9	Q.	9		-	A	SPECT OSEO	grama Oseo
T.		(L)		D	X-Z	87	* * * * * *	310
	**	11		12	10	10 12		10/10/11
14	27	1	-	A		1.1	بارباريارياريار	li li i

Positron Emission Tomography

•INa(T1):

-requires thick crystals to stop 511 keV photons
•BGO:

-high stopping power for 511 keV photons

-high light recollection time

•new options:

-Lu / Gd orthosilicates (LSO, GSO)

most significant parameters of the usual scintillator crystals

	INa(Tl)	BGO	LSO	GSO
density (g cm ⁻³)	3,67	7,13	7,40	6,71
effective atomic number	50	74	66	59
light decay time (ns)	230	300	40	60
light production (%INa)	100	15	75	16

<u>radioisotopes</u>

• to mark pharmaceuticals physiologically actives involved in biomechanical or metabolic procedures

• most used: ¹⁸F

- -largest half-life
- smaller average energy
- smaller range

emitter	T _{1/2} (min)	E _{max} (MeV)	range (mm)	production reaction	production device
^{11}C	20.3	0.97	2.06	¹⁴ N(p, α) ¹¹ C	ciclotrón
¹³ N	9.96	1.19	3.0	¹⁶ Ο(p, α) ¹³ Ν ¹³ C(p, n) ¹³ Ν	ciclotrón
¹⁵ O	2.07	1.7	4.5	¹⁴ N(d, n) ¹⁵ O ¹⁵ N(p, n) ¹⁵ O ¹⁶ O(p, pn) ¹⁵ O	ciclotrón
¹⁸ F	109.8	0.635	1.4	¹⁸ O(p, n) ¹⁸ F ²⁰ Ne(d, α) ¹⁸ F	ciclotrón
⁸² Rb	1.27	3.15	13.8	$^{82}{ m Sr} ightarrow {}^{82}{ m Rb}$	generador
⁶⁸ Ga	68.3	1.88	5.4	$^{68}\text{Ge} ightarrow ^{68}\text{Ga}$	generador

• no physical collimators are needed: better efficiency!

- no physical collimators are needed: better efficiency!
- actual collimation through the "line of response" (LOR)

no physical collimators are needed: better efficiency!

actual collimation through the "line of response" (LOR)

accidental coincidence

true coincidence

- no physical collimators are needed: better efficiency!
- actual collimation through the "line of response" (LOR)

 deconvolution of the distribution of annihilation points true coincidence

multiple coincidence scatter

accidental coincidence
5. PET

no physical collimators are needed: better efficiency!

scatter

actual collimation through the "line of response" (LOR)

 deconvolution of the distribution of annihilation points

•evaluated (via, e.g. Monte Carlo) and included in the image reconstruction algorithms

true coincidence

accidental coincidence

5. PET

necrosis of myocardium

severe asymmetrical right hemisphere hypometabolism

Kinetic compartmental models

$$\frac{dC_1(t)}{dt} = K_1 C_0(t) - (k_2 + k_3 + k_5)C_1(t) + k_4 C_2(t) + k_6 C_3(t)$$

$$\frac{dC_2(t)}{dt} = k_3 C_1(t) - k_4 C_2(t)$$

Kinetic compartmental models

$$\frac{dC_1(t)}{dt} = K_1C_0(t) - (k_2 + k_3 + k_5)C_1(t) + k_4C_2(t) + k_6C_3(t)$$

$$\frac{dC_2(t)}{dt} = k_3C_1(t) - k_4C_2(t)$$

$$\frac{dC_3(t)}{dt} = k_5C_1(t) - k_6C_3(t)$$

$$C_0 + K_1 + C_1 + K_3 + C_2$$

$$C_1 + K_4 + C_2$$

$$K_3 + K_6 + C_2$$

$$K_3 + K_6 + C_3$$

$$K_4 + C_2$$

$$K_5 + K_6 + C_3$$

$$K_6 +$$

• specific absorbed fraction $\Phi(T \leftarrow S) =$

 $\frac{\phi(\mathrm{T}\leftarrow\mathrm{S})}{m_{\mathrm{T}}} =$

 m_{T}

 $E_{\rm T}/E_{\rm S}$

TABLE 24-8. Tc-99m S FACTORS FOR SOME SOURCE/TARGET ORGAN COMBINATIONS

	Source organs (r _b)									
	Adrenals	Bladder	Intestinal Tract							
Target organs (r _k)			Stomach contents	SI contents	ULI contents	LLI contents	Kidneys	Liver	Lungs	Other tissue (muscle)
Adrenals	3.1E-03	1.5E-07	2.7E-06	1.0E-06	9.1E-07	3.6E-07	1.1E-05	4.5E-06	2.7E-06	1.4E-06
Bladder wall	1.3E-07	1.6E-04	2.7E-07	2.6E-06	2.2E-06	6.9E-06	2.8E-07	1.6E-07	3.6E-08	1.8E-06
Bone (total)	2.0E-06	9.2E-07	9.0E-07	1.3E-06	1.1E-06	1.6E-06	1.4E-06	1.1E-06	1.5E-06	9.8E-07
GI (stomach wall)	2.9E-06	2.7E-07	1.3E-04	3.7E-06	3.8E-06	1.8E-06	3.6E-06	1.9E-06	1.8E-06	1.3E-06
GI (SI)	8.3E-07	3.0E-06	2.7E-06	7.8E-05	1.7E-05	9.4E-06	2.9E-06	1.6E-06	1.9E-07	1.5E-06
GI (ULI Wall)	9.3E-07	2.2E-06	3.5E-06	2.4E-05	1.3E-04	4.2E-06	2.9E-06	2.5E-06	2.2E-07	1.6E-06
GI (LLI Wall)	2.2E-07	7.4E-06	1.2E-06	7.3E-06	3.2E-06	1.9E-04	7.2E-07	2.3E-07	7.1E-08	1.7E-06
Kidneys	1.1E-05	2.6E-07	3.5E-06	3.2E-06	2.8E-06	8.6E-07	1.9E-04	3.9E-05	8.4E-07	1.3E-06
Liver	4.9E-06	1.7E-07	2.0E-06	1.8E-06	2.6E-06	2.5E-07	3.9E-06	4.6E-05	2.5E-06	1.1E-06
Lungs	2.4E-06	2.8E-08	1.7E-06	2.2E-07	2.6E-07	7.9E-08	8.5E-07	2.5E-06	5.2E-05	1.3E-06
Marrow (red)	3.6E-06	2.2E-06	1.6E-06	4.3E-06	3.7E-06	5.1E-06	3.8E-06	1.6E-06	1.9E-06	2.0E-06
OTH TISS (muscle)	1.4E-06	1.8E-06	1.4E-06	1.5E-06	1.5E-06	1.7E-06	1.3E-06	1.1E-06	1.3E-06	2.7E-06
Ovaries	6.1E-07	7.3E-06	5.0E-07	1.1E-05	1.2E-05	1.8E-05	1.1E-06	4.5E-07	9.4E-08	2.0E-06
Pancreas	9.0E-06	2.3E-07	1.8E-05	2.1E-06	2.3E-06	7.4E-07	6.6E-06	4.2E-06	2.6E-06	1.8E-06
Skin	5.1E-07	5.5E-07	4.4E-07	4.1E-07	4.1E-07	4.8E-07	5.3E-07	4.9E-07	5.3E-07	7.2E-07
Spleen	6.3E-06	6.6E-07	1.0E-05	1.5E-06	1.4E-06	8.0E-07	8.6E-07	9.2E-07	2.3E-06	1.4E-06
Testes	3.2E-08	4.7E-06	5.1E-08	3.1E-07	2.7E-07	1.8E-06	8.8E-08	6.2E-08	7.9E-09	1.1E-06
Thyroid	1.3E-07	2.1E-09	8.7E-08	1.5E-08	1.6E-08	5.4E-09	4.8E-08	1.5E-07	9.2E-07	1.3E-06
Uterus (nongravid)	1.1E-06	1.6E-05	7.7E-07	4.6E-06	5.4E-06	7.1E-06	9.4E-07	3.9E-07	8.2E-08	2.3E-06
Total body	2.2E-06	1.9E-06	1.9E-06	2.4E-06	2.2E-06	2.3E-06	2.2E-06	2.2E-06	2.0E-06	1.9E-06

Note: GI, gastrointestinal; SI, small intestine; ULI, upper large intestine; LLI, lower large intestine; OTH

TISS, other tissue. Bold italized correspond to values in MIRD example problem.

Source: Medical Internal Radiation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine.

- calculated with Monte Carlo using human phantoms

phantoms

Otoko and Onago (Kimiaki Saito, JAEA, Japan) FAX06 and MAX06 (Kramer *et al.* 2006 Phys. Med. Biol. **51**, 3331-3346) KTMAN-2

(Jaiki Lee, Hanyang, Korea Choonsik Lee, UFL, USA)