Radiotherapy

Marta Anguiano Millán

Departamento de Física Atómica, Molecular y Nuclear

Facultad de Ciencias. Universidad de Granada

Introduction

Introduction

Brachytherapy

Radioisotopes in contact with the tumor

Introduction

Brachytherapy

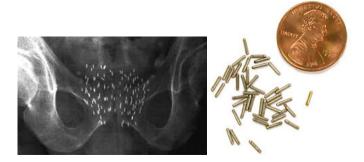
Radioisotopes in contact with the tumor

External Radiotherapy

- X-ray emitting equipment
- γ -ray equipment
- LINACS
- Applications

• **Goal of the radiotherapy**: to get a compromise between the administration of a high dose to the tumour and a very reduced dose to the surrounding healthy tissues.

- **Goal of the radiotherapy**: to get a compromise between the administration of a high dose to the tumour and a very reduced dose to the surrounding healthy tissues.
- Very high dose \rightarrow Rate of problems grows.


- **Goal of the radiotherapy**: to get a compromise between the administration of a high dose to the tumour and a very reduced dose to the surrounding healthy tissues.
- Very high dose \rightarrow Rate of problems grows.
- Very low dose \rightarrow The TCP is reduced.

- **Goal of the radiotherapy**: to get a compromise between the administration of a high dose to the tumour and a very reduced dose to the surrounding healthy tissues.
- Very high dose \rightarrow Rate of problems grows.
- Very low dose \rightarrow The TCP is reduced.
- High doses (40-70 Gy) in delimited areas, with curative purposes

- Goal of the radiotherapy: to get a compromise between the administration of a high dose to the tumour and a very reduced dose to the surrounding healthy tissues.
- Very high dose \rightarrow Rate of problems grows.
- Very low dose \rightarrow The TCP is reduced.
- High doses (40-70 Gy) in delimited areas, with curative purposes.
- Different sources and energies, depending on
 - Type of tumour.
 - 2 Location of tumour.
 - Opth of tumor.

Brachytheraphy

- Adjactive sources of differences forms and isotopes.
- Output State of the second second
 - Seeds, ribbons, wires, needles, capsules, balloons or tubes.
- Isotopes:
 - ¹³⁷Cs, ¹⁹²Ir, ¹³¹I, ¹²⁵I, ⁶⁰Co
- Remote applicators.

• Initially, ²²⁶Ra: radioprotection problems.

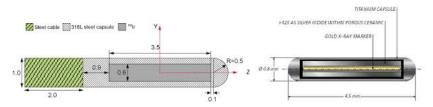
- Initially, ²²⁶Ra: radioprotection problems.
- Now, only artificial radionuclides

- Initially, ²²⁶Ra: radioprotection problems.
- Now, only artificial radionuclides
- Different possibilites
 - Low dose rate: 0.4-2.0 Gy/h.
 - Medium dose rate: 2.0-12.0 Gy/h.
 - **3** High dose rate: > 12.0 Gy/h.

- Initially, ²²⁶Ra: radioprotection problems.
- Now, only artificial radionuclides
- Different possibilites
 - Low dose rate: 0.4-2.0 Gy/h.
 - Medium dose rate: 2.0-12.0 Gy/h.
 - **③** High dose rate: > 12.0 Gy/h.
- Charge deferred tecniques. Goal:
 - It reduce the dose exposition to the hospital workers.
 - 2 To do a better distribution of the seeds.

- Initially, ²²⁶Ra: radioprotection problems.
- Now, only artificial radionuclides
- Different possibilites
 - Low dose rate: 0.4-2.0 Gy/h.
 - Medium dose rate: 2.0-12.0 Gy/h.
 - High dose rate: > 12.0 Gy/h.
- Charge deferred tecniques. Goal:
 - It is the the the top of top o
 - In do a better distribution of the seeds.
- Superficial or interstitial applications: seeds, wires of ¹⁹²Ir and seeds of ¹²⁵I or ¹⁰³Pd.

Brachytherapy


Radioisotopes in brachytherapy

- Initially, ²²⁶Ra: radioprotection problems.
- Now, only artificial radionuclides
- Different possibilites
 - Low dose rate: 0.4-2.0 Gy/h.
 - Medium dose rate: 2.0-12.0 Gy/h.
 - High dose rate: > 12.0 Gy/h.
- Charge deferred tecniques. Goal:
 - It reduce the dose exposition to the hospital workers.
 - In do a better distribution of the seeds.
- Superficial or interstitial applications: seeds, wires of ¹⁹²Ir and seeds of ¹²⁵I or ¹⁰³Pd.
- Intracavitary applications:
 - Using applicators, ¹³⁷Cs source in the cavity.
 - Q Gynecology, esophagus.

192 Ir wire(coil form)

Brachytherapy

HDR 192 Ir model MBDCA-WG source

- Specific applications:
 - Eyes tumours: plaques of ¹²⁵I, applied directly on the tumour. 100 Gy, between 5 and 12 days.
 - Intravascular brachytherapy: Coronary diseases. Lessions around mm. Radionuclide emitting low energy photons: ¹²⁵I and ¹⁰³Pd.

Brachytherapy

Radioisotopes in brachytherapy

- Specific applications:
 - Eyes tumours: plaques of ¹²⁵I, applied directly on the tumour. 100 Gy, between 5 and 12 days.
 - Intravascular brachytherapy: Coronary diseases. Lessions around mm. Radionuclide emitting low energy photons: ¹²⁵I and ¹⁰³Pd.

Figure: Applicators (left). Automatic equipment for brachytherapy (right).

• **Purpose of ER**: to administrate in a number of sesions (Treatment), a specific quantity of energy in the target volume, without affecting the healthy structures.

- **Purpose of ER**: to administrate in a number of sesions (Treatment), a specific quantity of energy in the target volume, without affecting the healthy structures.
- $\bullet\,$ Dose/tumour/session \approx 1.8-2.0 Gy, in very short times.

- **Purpose of ER**: to administrate in a number of sesions (Treatment), a specific quantity of energy in the target volume, without affecting the healthy structures.
- Dose/tumour/session \approx 1.8-2.0 Gy, in very short times.
- The ER process implies:
 - Location of the tumour.
 - ② Simulation of the treatment.
 - Anatomical data collection of the patient.
 - Ication Placement of the target volume to radiate and critical organs.
 - Salculation of the dose.
 - Isotation of individual protections.
 - Positioning of the beams.
 - Treatment.

- **Purpose of ER**: to administrate in a number of sesions (Treatment), a specific quantity of energy in the target volume, without affecting the healthy structures.
- $\bullet\,$ Dose/tumour/session \approx 1.8-2.0 Gy, in very short times.
- The ER process implies:
 - Location of the tumour.
 - Simulation of the treatment.
 - Anatomical data collection of the patient.
 - I Placement of the target volume to radiate and critical organs.
 - Salculation of the dose.
 - Selaboration of individual protections.
 - Positioning of the beams.
 - Treatment.

• **Types of equipment**: X-ray equipment, *γ*-ray equipment, LINACS,..

External Radiotherapy (ER)

Figure: X-ray equipment (left), Co-60 (right) and LINAC (down)

Marta Anguiano Millán

Radiotherapy

• The firt ones, from the historical point of view.

- The firt ones, from the historical point of view.
- The parts:
 - A X-ray generator.
 - A X-ray tube inside a protection of lead shielding with a window through which the beam emerges.
 - Oifferent filters.

- The firt ones, from the historical point of view.
- The parts:
 - A X-ray generator.
 - A X-ray tube inside a protection of lead shielding with a window through which the beam emerges.
 - Oifferent filters.
- **Tubes** operating between 2 and 20 mA. Exposure times about minutes. Voltage, intensity an time of exposure are selected depending of the treatment.

- The firt ones, from the historical point of view.
- The parts:
 - A X-ray generator.
 - A X-ray tube inside a protection of lead shielding with a window through which the beam emerges.
 - Oifferent filters.
- **Tubes** operating between 2 and 20 mA. Exposure times about minutes. Voltage, intensity and time of exposure are selected depending of the treatment.
- Filters (Al or Cu) are used to eliminate photons of lower energies, that are not useful for the treatment.

X-ray equipment

• Usually, for contact therapy (10-50 kV):

- Very short distance of treatment (1-4 cm).
- Beam sections very small (about cm²).
- Very high dose rates \approx 400-700 cGy/min).
- For superficial tumours \approx 3 mm depth.

X-ray equipment

- Usually, for contact therapy (10-50 kV):
 - Very short distance of treatment (1-4 cm).
 - Beam sections very small (about cm²).
 - Solution Very high dose rates \approx 400-700 cGy/min).
 - For superficial tumours \approx 3 mm depth.

• Problems:

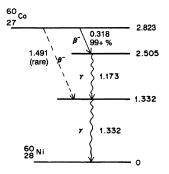
- Energy limitation of the beam.
- Important biological effects increasing the dose.
- Oifficulty to radiate tissues with different densities → problems to administrate a homogeneus dose.
- LINACS.

External Radiotherapy (RE)

X-ray equipment

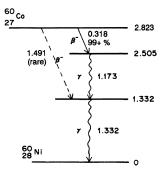
Figure: A specific X-ray treatment

Marta Anguiano Millán Radiotherapy


 γ ray equipment

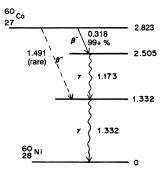
γ ray equipment

• Co-60 equipment (before, even of Cs-137).



• Co-60 equipment (before, even of Cs-137).

γ ray equipment


• Co-60 equipment (before, even of Cs-137).

• First design (1951). Security improvements (shielding).

γ ray equipment

• Co-60 equipment (before, even of Cs-137).

- First design (1951). Security improvements (shielding).
- Decommisioning in favour of LINACS in most of the Radiotherapic Centers.

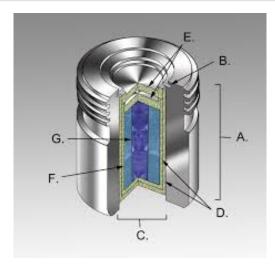
The different parts are:

- Arm, which rotates around a horizontal axis. It holds the head, containing the radioactive source, an obturation device and a beam collimator system.
- **②** Fix part of the equipment and the treatment table.
- Solution Console to manage the equipment, out of the room.

γ ray equipment

The different parts are:

- Arm, which rotates around a horizontal axis. It holds the head, containing the radioactive source, an obturation device and a beam collimator system.
- **②** Fix part of the equipment and the treatment table.
- Source to manage the equipment, out of the room.


Marta Anguiano Millán Radiotherapy

• Radioprotection, the more important is the head.

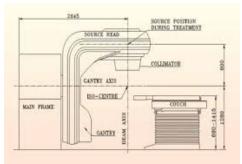
- Radioprotection, the more important is the head.
- The head is housing the radioactive source, allowing that it moves from the position of stopping or fully armored, to the position of running or exposition.

- Respect to Radioprotection, the more important is the head.
- The head is housing the radioactive source, allowing that it moves from the position of stopping or fully armored, to the position of running or exposition.
- The goal of the head is to put the source in a secure location to positioning the patient and to radiate with the source during the required time.

- Radioprotection, the more important component is the head.
- The head is housing the radioactive source, allowing that it moves from the position of stopping or fully armored, to the position of running or exposition.
- The goal of the head is to put the source in a secure location to positioning the patient and to radiate with the source during the required time.
- The source, in the form of solid cylinder, discs or pellets, is contained inside a stainless steel capsule and sealed by welding. The capsule is placed into another steel capsule, which is again sealed by welding.

⁶⁰Co decays β[−]. Electrons are slow down by the stainless steel capsule. 1.17 and 1.33 MeV photons are used for treatment. T = 5.27 y → Activity decreases 1% per month.

ray equipment


- ⁶⁰Co decays β^- . Electrons are slow down by the stainless steel capsule. 1.17 and 1.33 MeV photons are used for treatment. $T = 5.27 \text{ y} \rightarrow \text{Activity decreases } 1\%$ per month.
- Head design must ensure that the radiation leaks are according to Radioprotection limits:
 - Workers can go inside the before and after the radiation sessions.

 - 2 Ensure that the patient receives no radiation outside the area to be treated.

- ⁶⁰Co decays β[−]. Electrons are slow down by the stainless steel capsule. 1.17 and 1.33 MeV photons are used for treatment. T = 5.27 y → Activity decreases 1% per month.
- Head design must ensure that the radiation leaks are according to Radioprotection limits:
 - Workers can go inside the before and after the radiation sessions.
 - Ensure that the patient receives no radiation outside the area to be treated.
- Most of the heads are made of cast steel lead filled: primary shielding.

- ⁶⁰Co decays β[−]. Electrons are slow down by the stainless steel capsule. 1.17 and 1.33 MeV photons are used for treatment. T = 5.27 y → Activity decreases 1% per month.
- Head design must ensure that the radiation leaks are according to Radioprotection limits:
 - Workers can go inside the before and after the radiation sessions.
 - Ensure that the patient receives no radiation outside the area to be treated.
- Most of the heads are made of cast steel lead filled: primary shielding.
- Isocentric setup

γ ray equipment

Main radiological risks:

- Wrong management of the source and leak radiation (problems between source and head).
- Failure of the clock indicating the irradiation time (redundant system), locking of the room door during the treatment and blockage of the source.

Linear accelerators (LINACS)

Linear accelerators (LINACS)

• From 1960. Based on radar technology.

Linear accelerators (LINACS)

- From 1960. Based on radar technology.
- The setup is isocentric. The different parts are:
 - Drive stand: klystron or magnetron, RF waveguide, circulator and cooling water system.
 - Gantry: accelerator guide, electron gun, bending magnet, treatment head.
 - Treatment couch.

Linear accelerators (LINACS)

- From 1960. Based on radar technology.
- The setup is isocentric. The different parts are:
 - Drive stand: klystron or magnetron, RF waveguide, circulator and support systems and cooling water system.
 - **2** Gantry: accelerator guide, electron gun, treatment head.
 - Treatment couch.

(LINACS: The modulator cabinet)

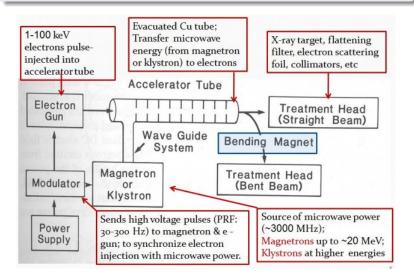
- It is the noisiest part of the Linac. Contains:
 - Fan Control, cooling the power distribution system.
 - Auxiliary power distribution system, containing the emergency off button.
 - Primary power distribution system.

Linear accelerators (LINACS: The klystron)

- Flow of electrons produced by a thermionic cathode.
- ② Bunching cavities regulate the speed of the electrons → they arrive in bunches at the output cavity.
- Bunches of electrons excite microwaves in the output cavity of the klystron. Kinetic energy of the electrons, converted to potential energy, amplifying the field.
- The microwaves flow into the waveguide, transporting them to the accelerator.

Spent electron beam is stopped.

Radiotherapy


Radioterapia externa (RE)

LINACS

• Working mode:

- Electrons gun (cathode) generates electrons that pass to the aceleration tube in *bunches* produced by pulses coming from the modulator.
- The modulator controls the microwaves emission by the klystron.
- The microwaves, that produces the acceleration of electrons, are guided by the waveguide to the acceleration tube. Even the electrons coming from the gun electrons, synchronized with them.
- 4 After the acceleration, electrons arrive to the Bending Magnet.
- The beam for treatment is ready. Two possibilities:
 - Electron mode: Using directly the electrons (after doing more extense and homogeneus the beam).
 - Photon mode: The beam strikes a wolframium target, obtaining X-rays of high energy.

_INACS

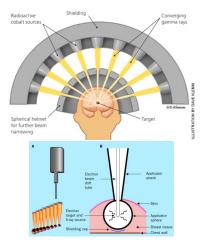
LINACS

• Radiological risks:

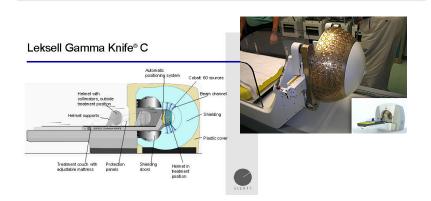
- Fail in the interceptation of the beam.
- Pail in the monitorization of the dose.
- 8 Beam not uniform.
- Fail in choosing the modality (electrons or photons).
- Fail in choosing the value of the energy.
- Sadiation leak from the head.
- Production of neutrons (LINACS 10 MeV).

LINACS

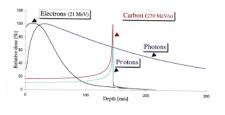
• Radiological risks:


- Fail in the interceptation of the beam
- Pail in the monitorization of the dose.
- Beam not uniform.
- Fail in choosing the modality (electrons or photons).
- Sail in choosing the value of the energy.
- I Radiation leak from the head.
- Production of neutrons (LINACS 10 MeV).

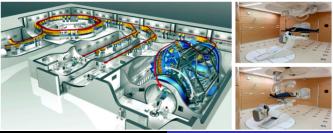
• Applications:


- IMRT: Photons beams with modulated intensity → Variable flow → protection of the healthy tissue.
- Stereotactic radiosurgery: very narrow beams to irradiate intracraneal structures. 20 Gy.
- Intraoperative radiotheraphy: Electrons applicators.

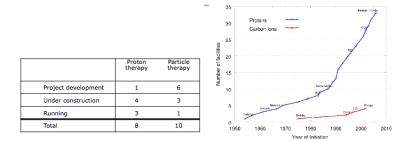
LINACS

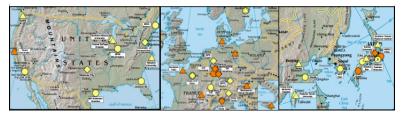

Gamma Knife

Hadrontherapy


Hadrontherapy

- The Bragg peak is an advantage, but it is a problem too.
- It is needed to modulate the ions velocity → positioning of the peak at a variable depth to irradiate the full volume.
- Very complex and a high cost installations, based on cyclotrons or synchrotrons.
- There is the possibility to produce neutron beams by p-Be reactions


Hadrontherapy


- Heidelberg Ion-beam Therapy center (HIT). From 2009.
- GSI synchrotron: Energy modulation, beam scanning and PET on-line.
- Light ions can activate the β⁺ decay in some elements → Dose estimation at real time.
- More than 600 patients. Very good results in some brain tumors.

Marta Anguiano Millán Radiotherapy

Hadrontherapy: Installations in the world

Marta Anguiano Millán Radiotherapy