The ratio of proton to neutron yield

In the NC ν -N cross section the dominant contribution, especially at low energies, the dominant contribution come from the squre of the NC axial formfactor:

$$\sigma_{\nu}^{p,n} \propto \left| G_A^{NC} \right|^2 \simeq \simeq \frac{1}{4} G_A^2 \left(1 \mp 2 \frac{G_A^s}{G_A} \right)$$

The ratio $R_{p/n}$

$$R_{p/n} = \frac{\sigma_{\nu}^p}{\sigma_{\nu}^n} \simeq 1 - 4 \frac{G_A^s}{G_A} \simeq 1 - \frac{16}{5} G_A^s$$
.

is very sensitive to G_A^s

There was a proposal to measure $R_{p/n}$ by using $\nu, \nu' N$ reactions on ^{12}C using the LAMPF beam at Los Alamos ($\langle E_{\nu} \rangle \simeq 200$ MeV).

At such low energies nuclear structure effects are relevant, however sstimates of nuclear-model uncertainties were calculated by several groups and shown to be smaller than strangeness effects