Kinetic approach to relativistic heavy ion collisions

Tan Zhiguang, S.Terranova, D.M.Zhou and A. Bonasera Laboratori Nazionali del Sud-INFN, Catania Italy.

Introduction

Relativistic Boltzmann equation (ReB).

Two and three body collisions.

EOS at zero baryon densities and finite T.

Entropy production and its experimental determination.

Conclusions and outlook

Kinetic approach

- > JPCIAE model (old code)
- ReB model (new code)
- > Preliminary results

both based on PYTHIA

ReB model (new code)

based on mean free path idea

- (1) Radial position of a nucleon in colliding nucleus A sampled in Woods-Saxon distribution.
- (2) Solid angle of the nucleon sampled uniformly in 4π
- (3) Beam momentum of each nucleon is given in z direction and zero initial momentum in x and y direction
- (4) The origin of the time is set at the moment when the projectile and target nuclei touch

Using time evolution method

At each time step a two(three)-body collision takes place in this way:

- 1) For each particle i, find the closest particle j in phase space
- 2) A mean free path is defined as:

$$\lambda = \frac{1}{\overline{\sigma}\rho(1 + \rho\sigma^{3/2} + ..)}\Pi_{\mathbf{i}}(1 \pm f_{\mathbf{i}})$$

O ===> Energy dependent cross section

$$\rho \longrightarrow density$$

f_i occupation function (+ bosons,-Fermions)

A. Bonasera, F. Gulminelli, J. Molitoris, Phys. Rep., 243(1&2), (1994) 1-124

3) A collision probability is:

$$\Pi_{i,j} = \frac{\Delta t}{\Delta t_{coll}} = \frac{\Delta t \upsilon_{ij}}{\lambda} = \Delta t \upsilon_{ij} \overline{\sigma} \rho (1 + ...)$$

$$\Delta t \implies \text{is the time step interval}$$

 v_{ii} the relative velocity of particle i and j

4) A random number χ , in the (0,1) interval, is compared with Π_{ij} , if $\chi < \Pi_{ij}$ the collision can occur.

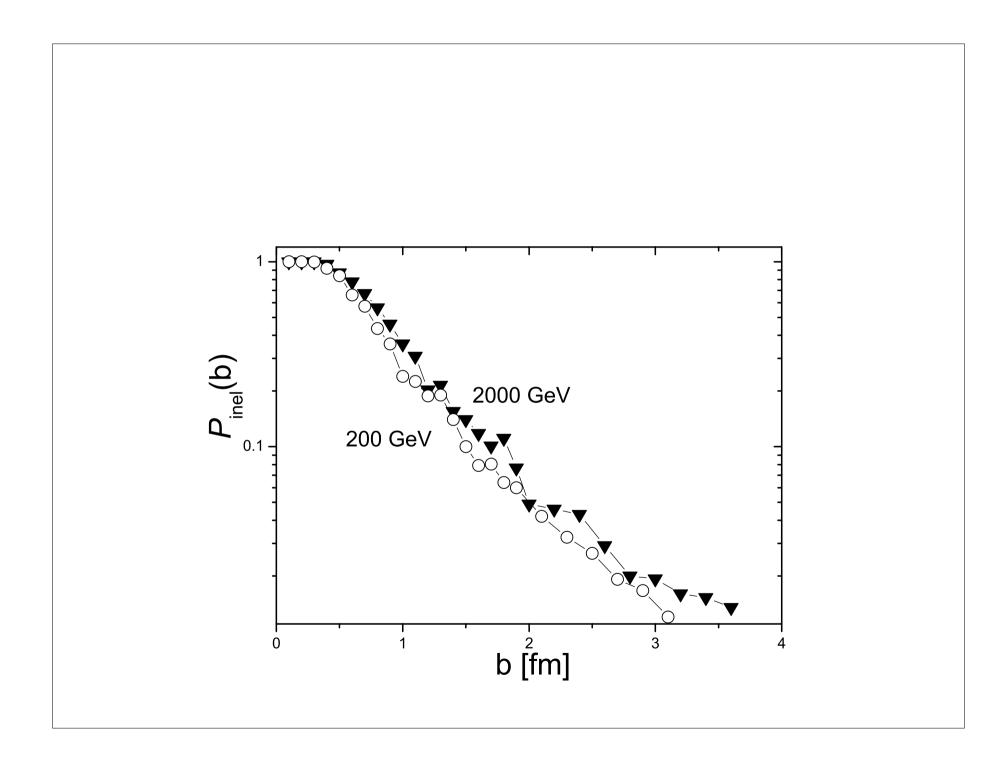
After each collision the particle list is updated

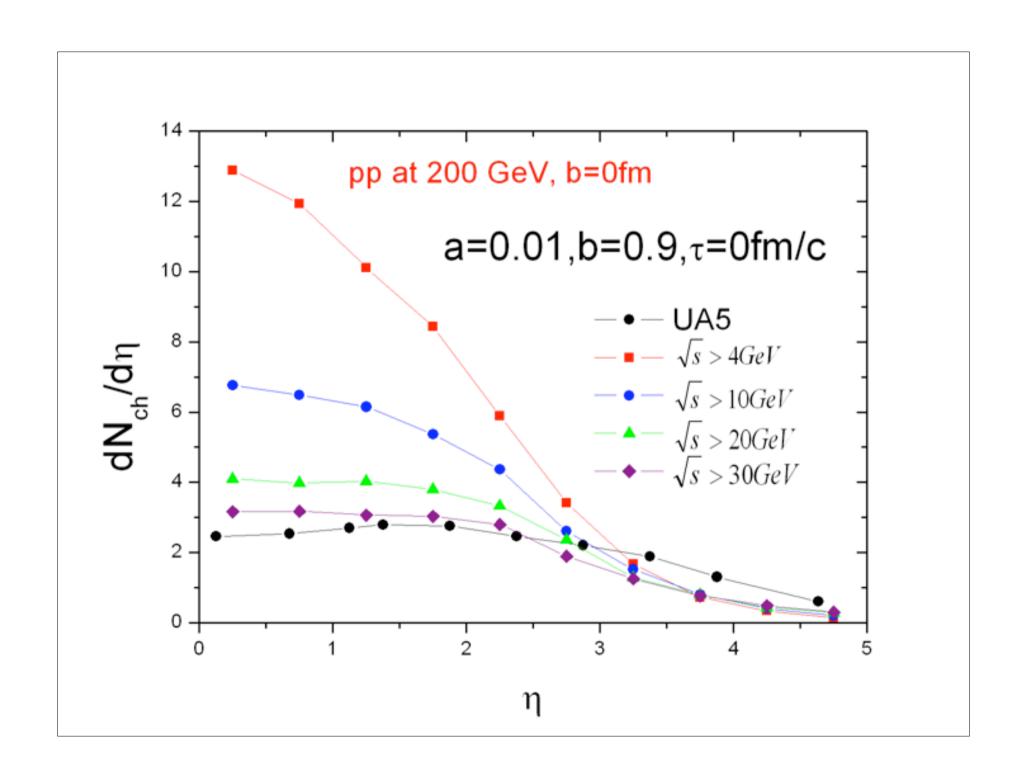
Both the old code and the new code:

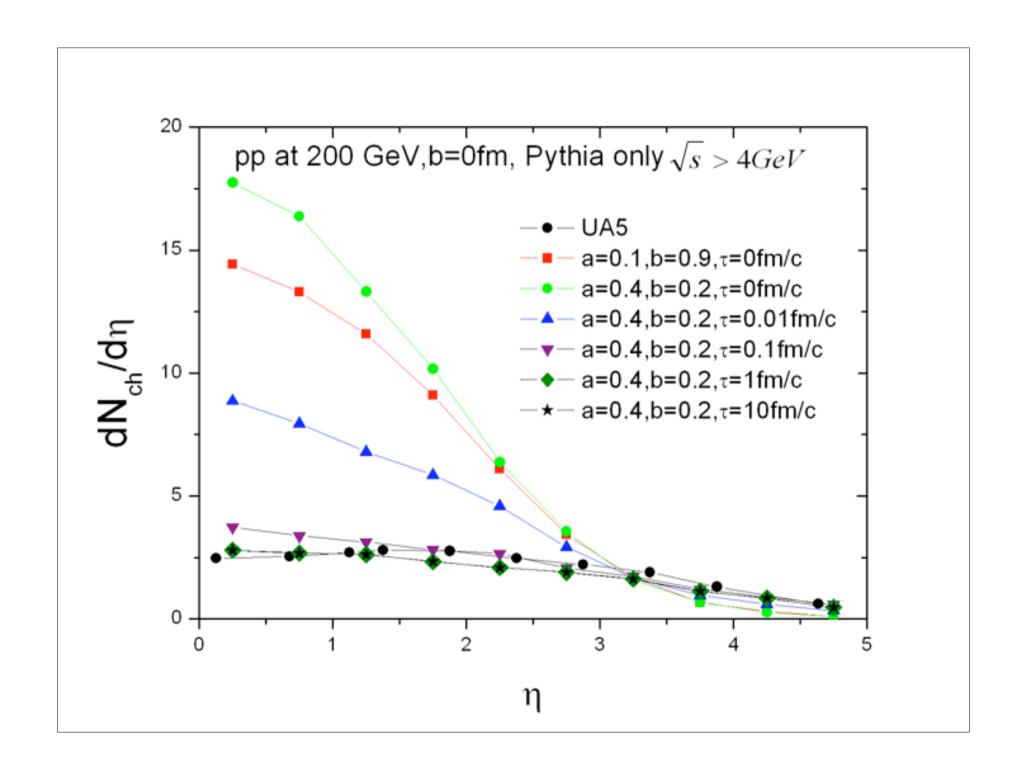
For each collision pair:

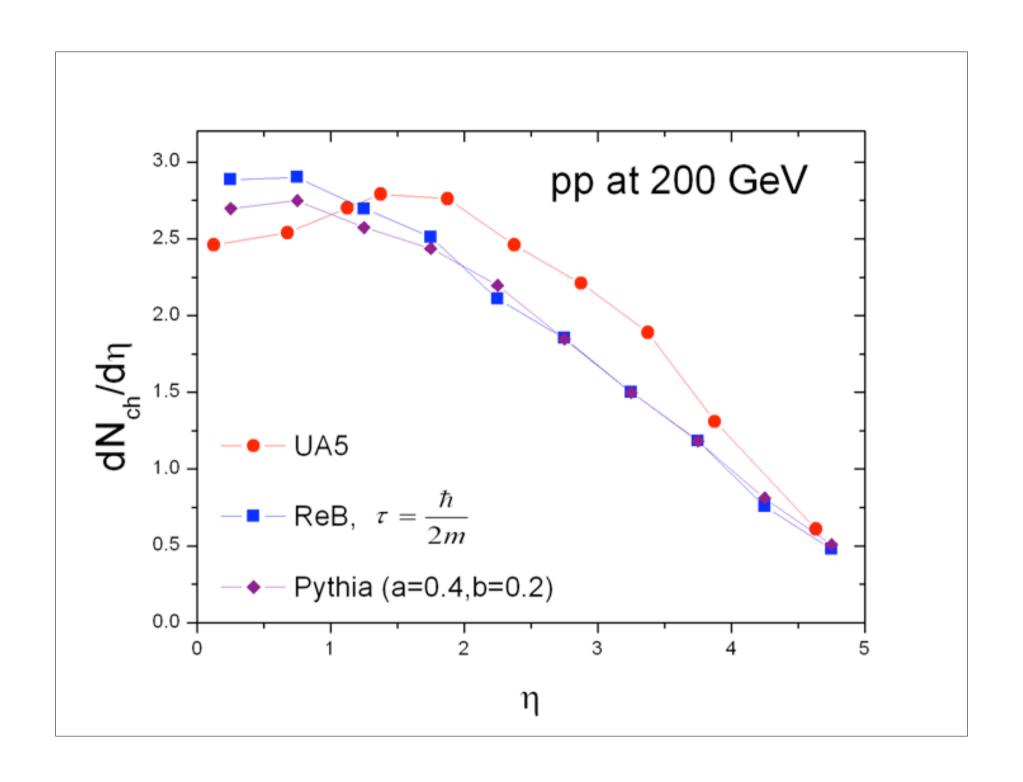
- (a) If CMS energy > 4 GeV _____ strings are formed _____ PYTHIA is used to deal with particle production.
- (b) Otherwise, the collision is treated as a two-body collision.

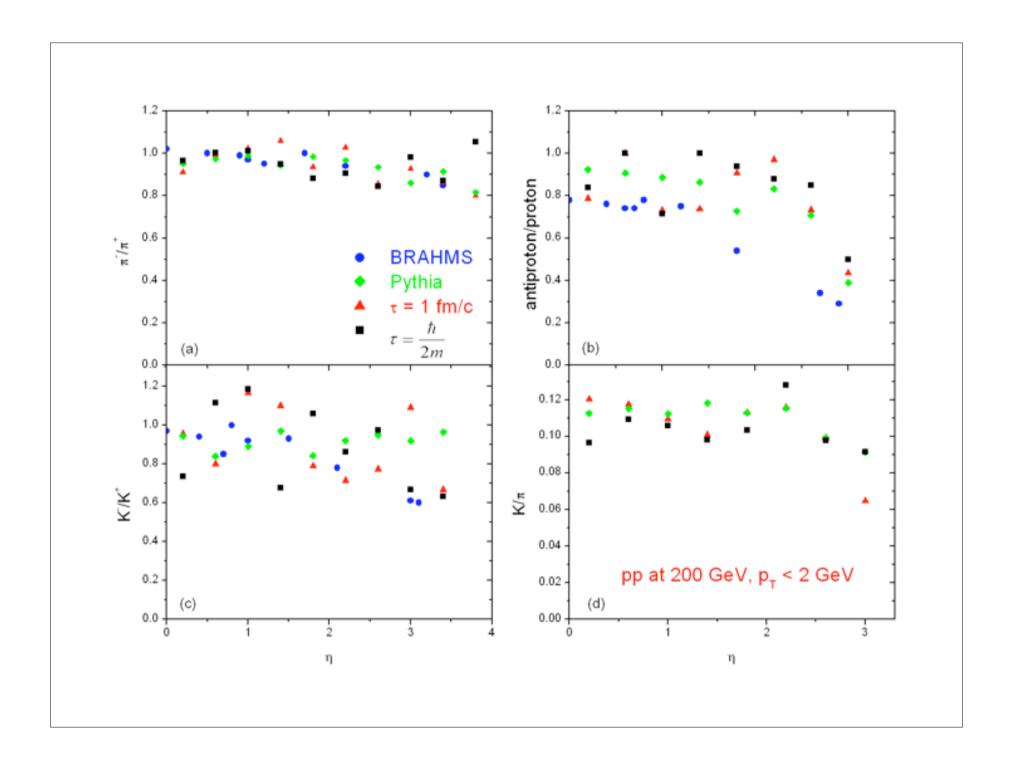
The threshold, 4 GeV, is the minimum energy for which Pythia works. Implement cross sections for lower energies: very important for secondary processes producing low energy particles.

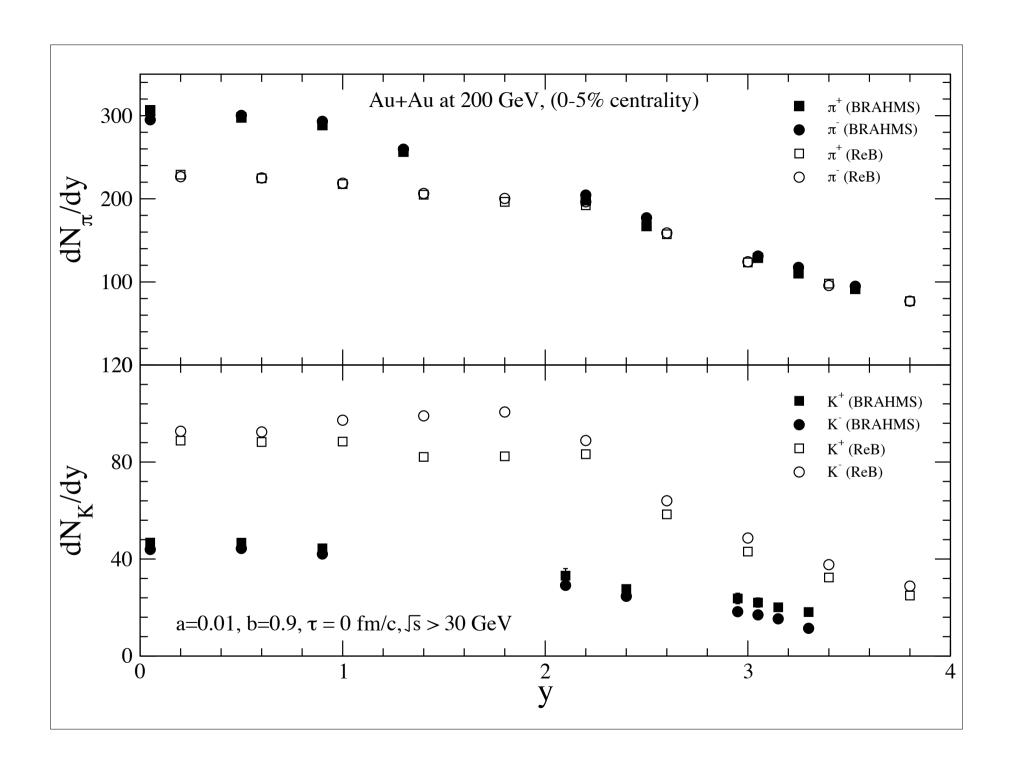


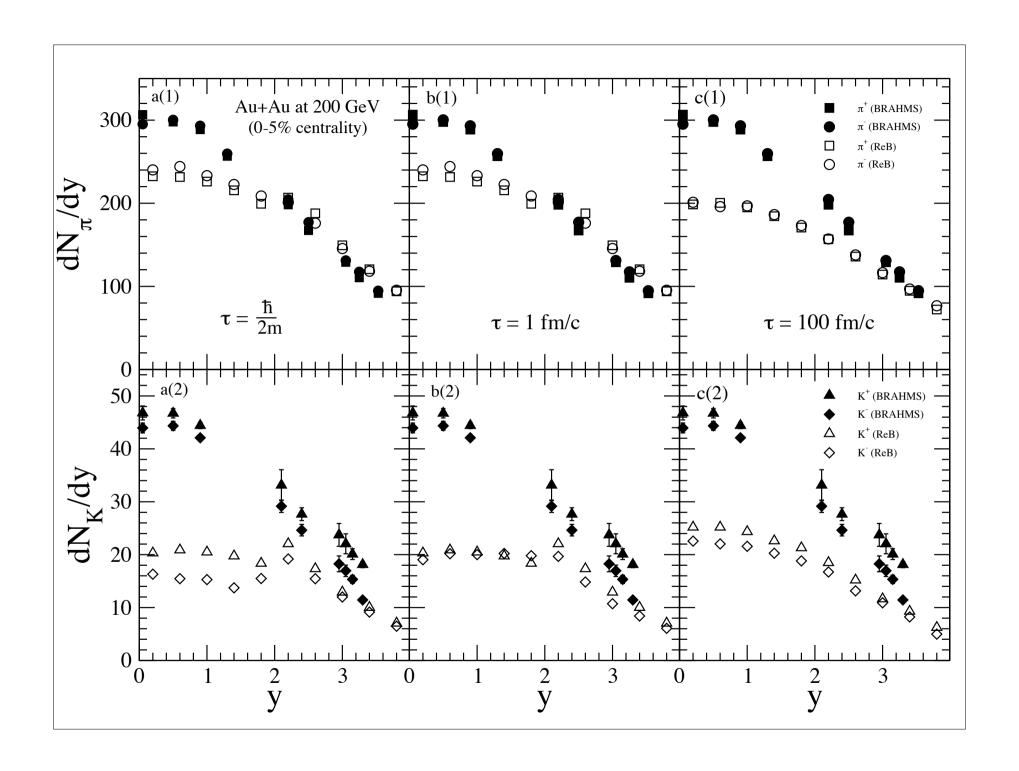


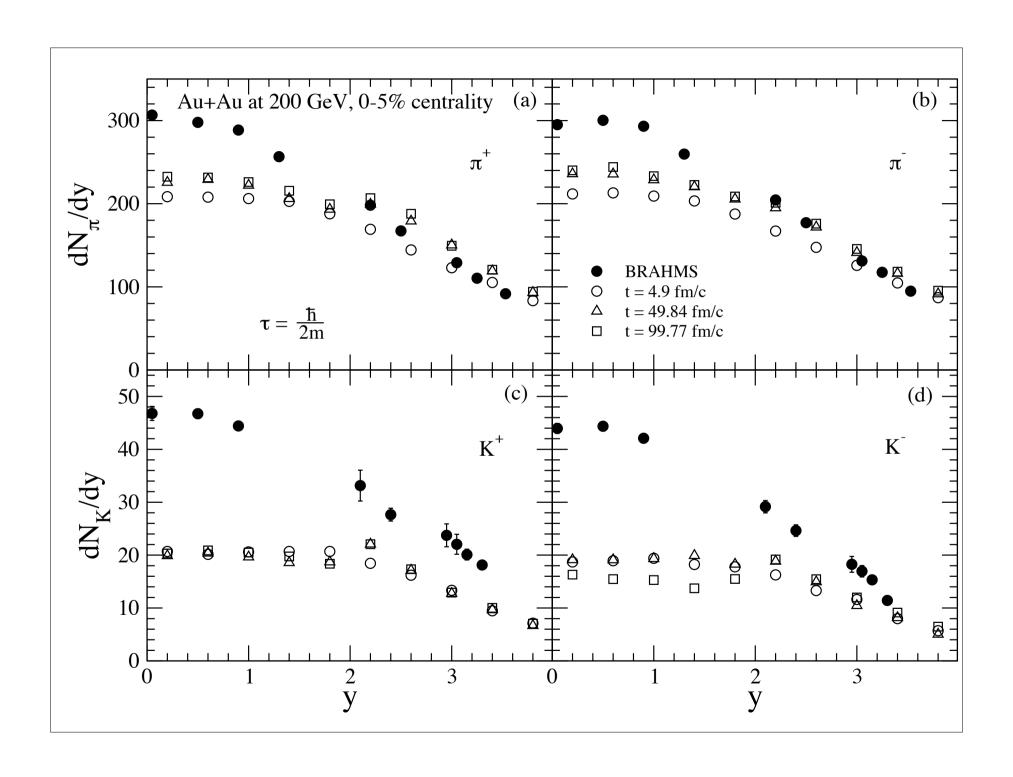


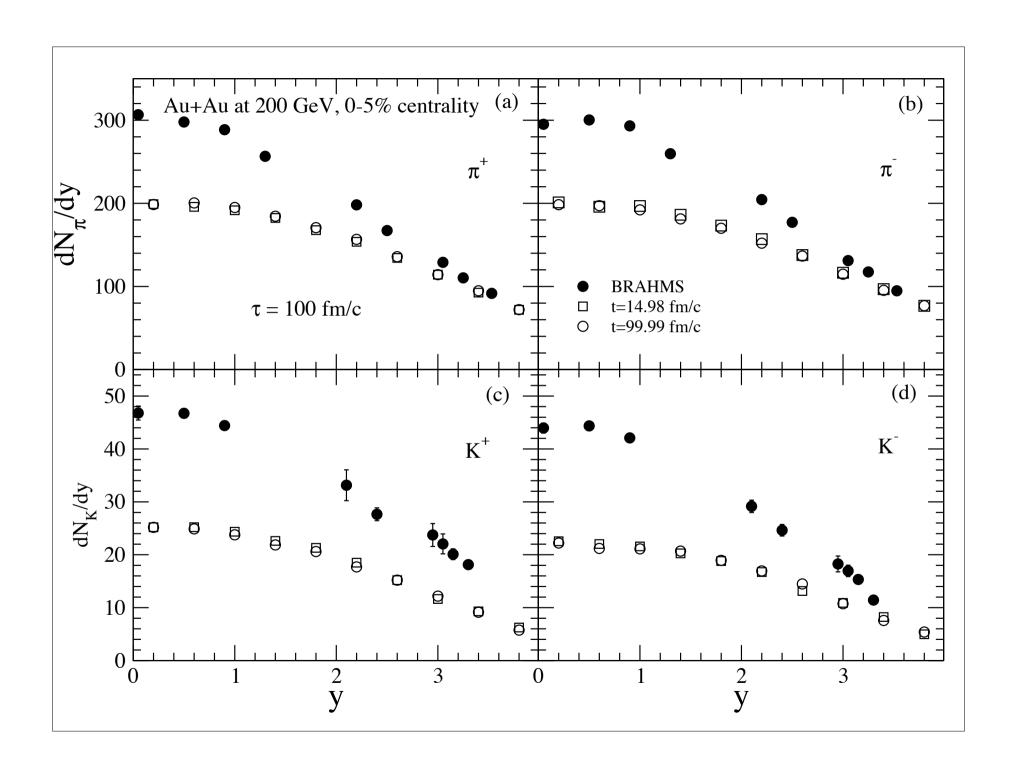


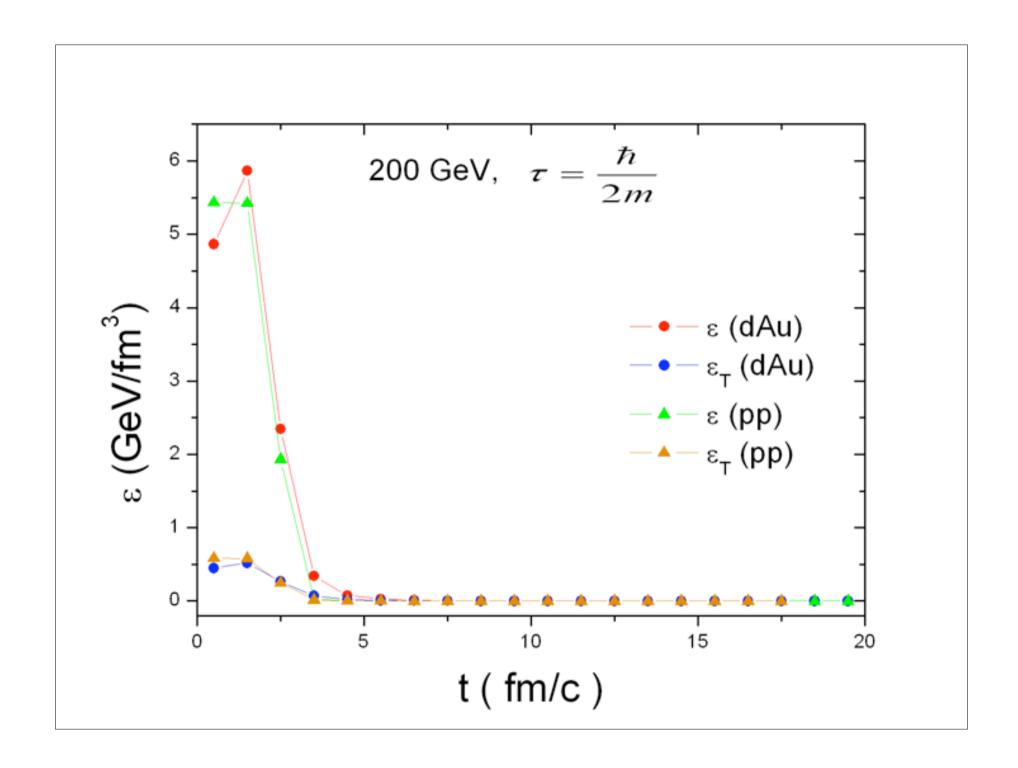


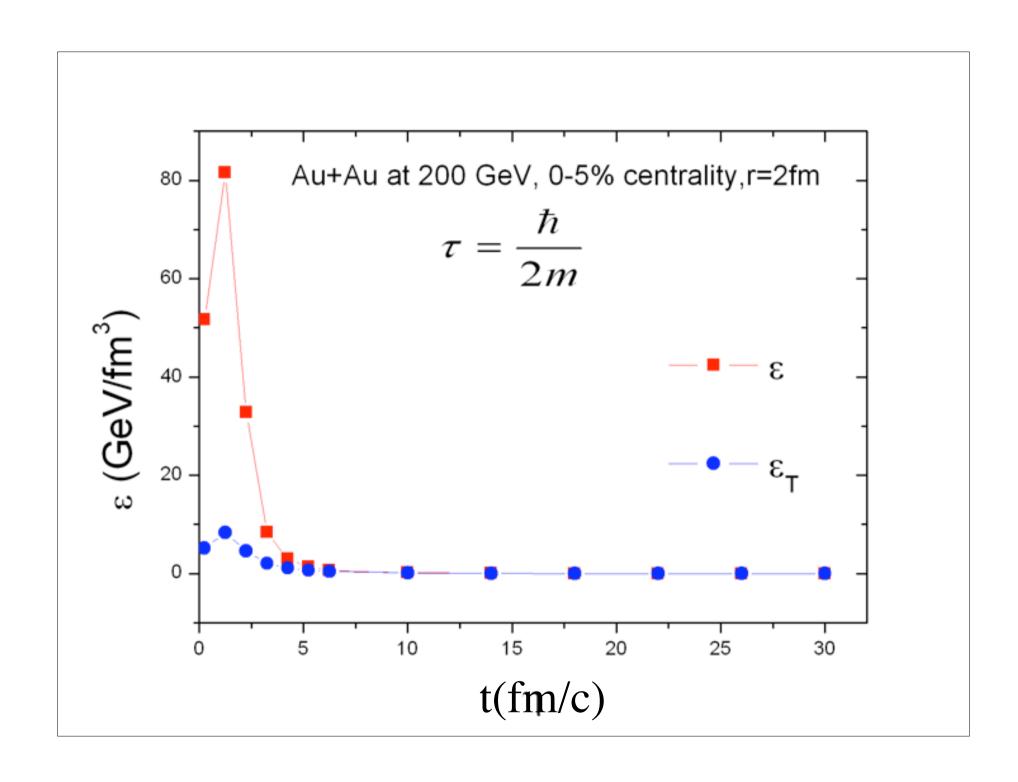


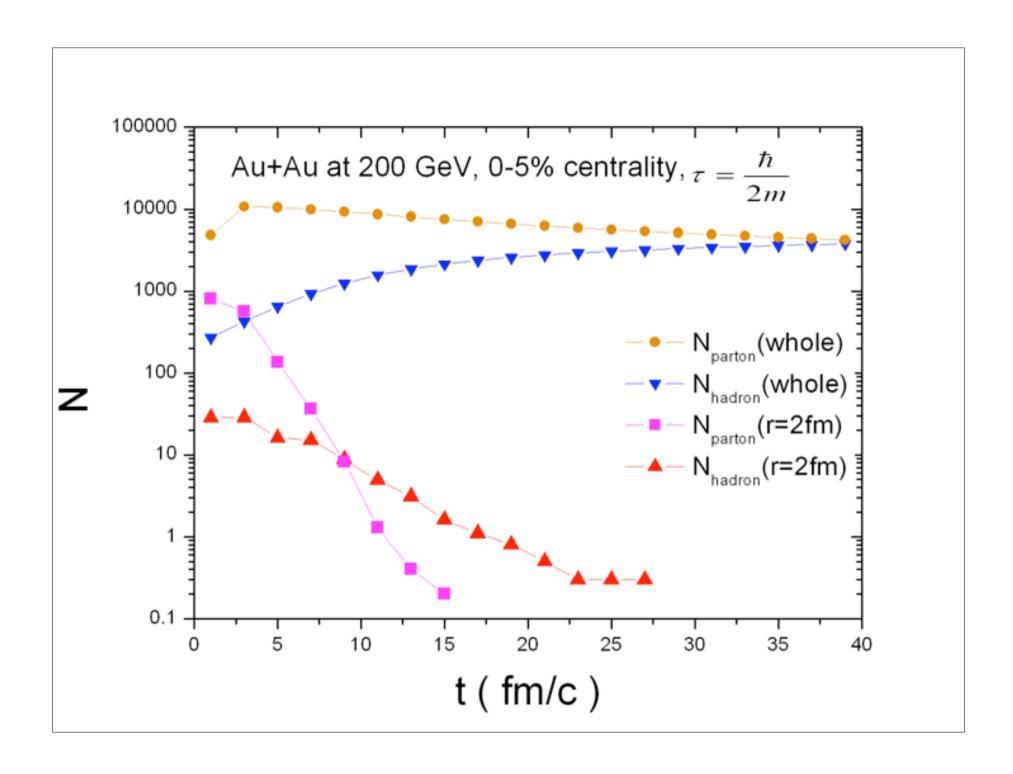




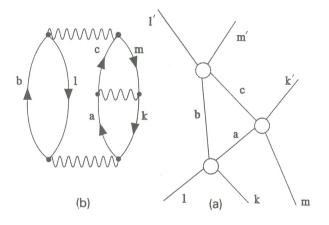




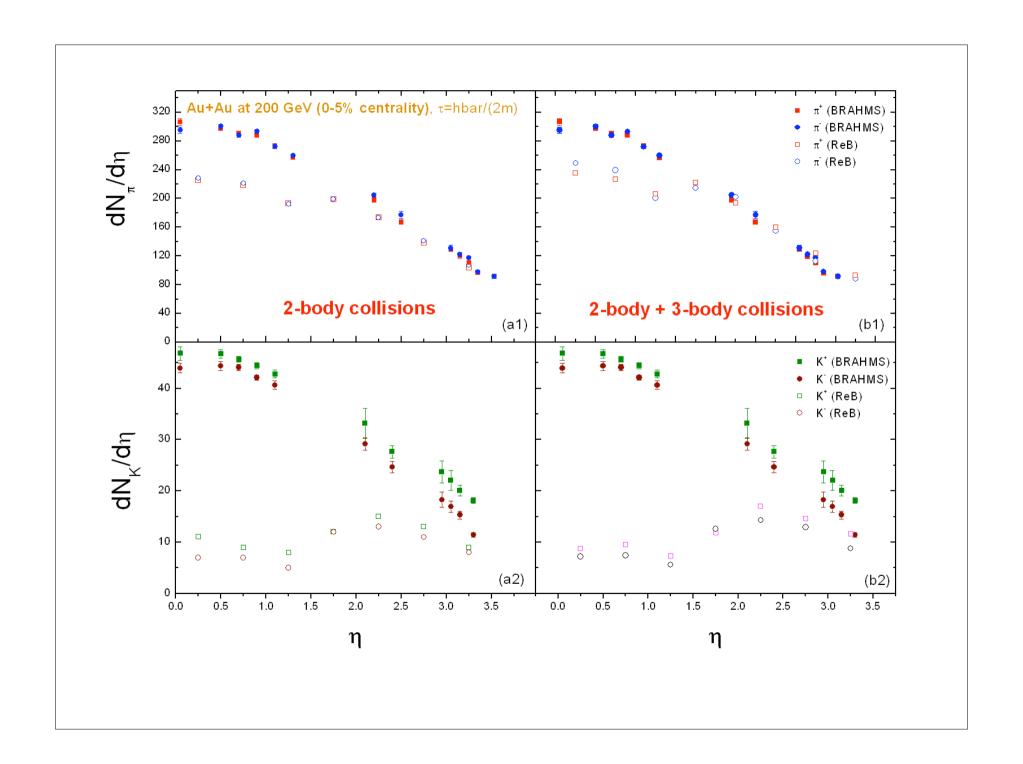




2+3 body collisions



In the last collision only particle production is possible



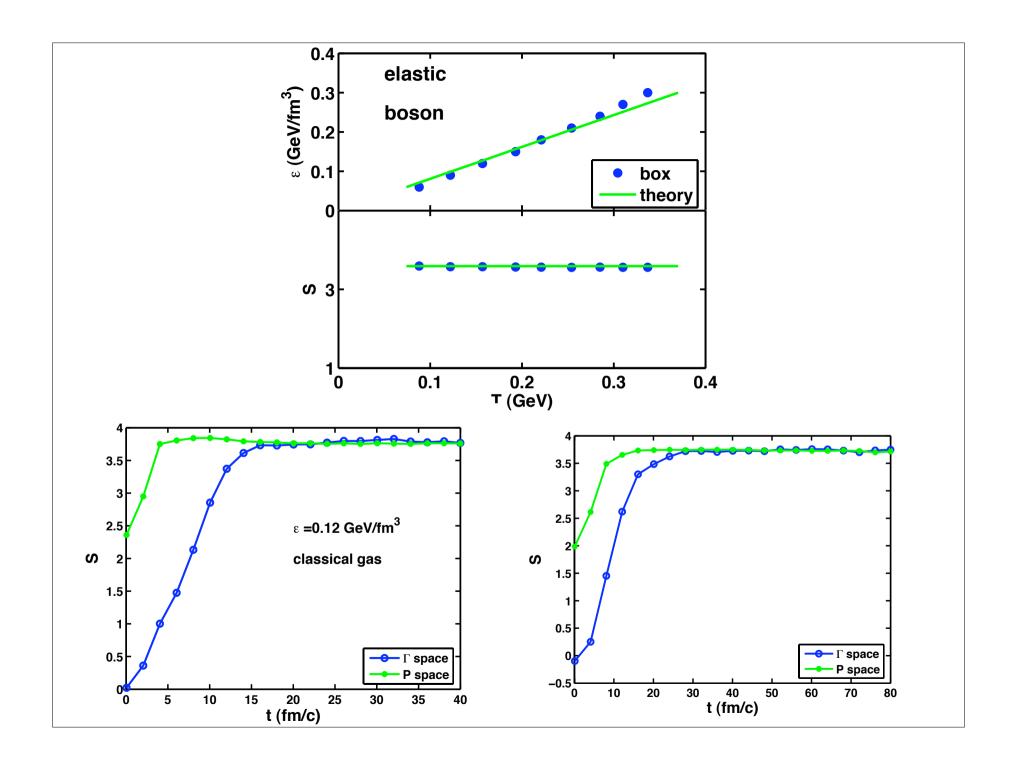
EOS at zero Baryon densities

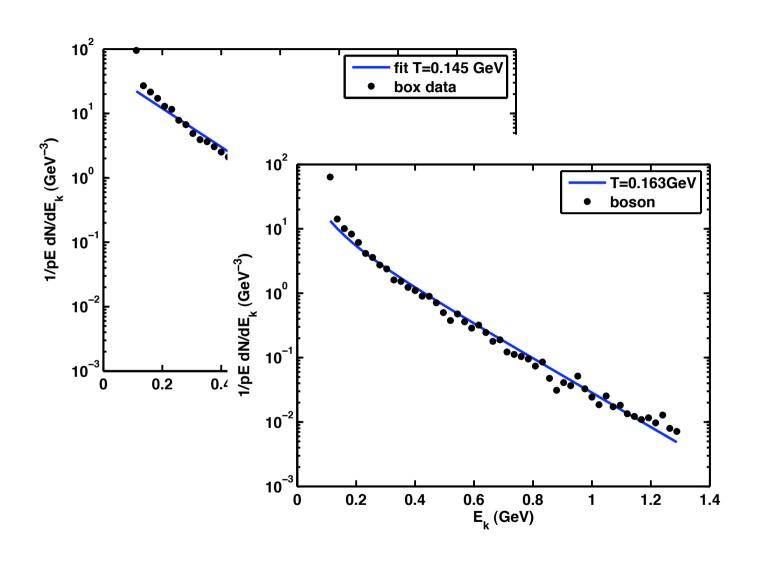
- Initially prepare two colliding pion systems in a box with periodic boundary conditions.
- Include all possible elastic and inelastic channels from data (if available) or theory.
- Calculate temperature and entropy after equilibrium has been reached.
- Define entropy in p-space only (which could be measured) and compare.
- Include possibility for a QGP based on the Bag model (SU2).
- Compare to LQCD results

quark anti-quark pion resonances

Entropy

- Define entropy: $S=-1/N\Sigma(f \ln f \pm (1 \pm f) \ln (1 \pm f));$ N=number of particles ×number of events (time). Normalize $\Sigma f(i)=1$
- $f(i)=cnst/d^3r_{ij}d^3p_{ij}$; where j is the closest particle in phase space to i
- Reduced entropy Sp=-1/N \sum (g lng±(1±g)ln(1±g)); Normalize \sum g(i)=1
- $g(i)=cnstQ/d^3p_{ij}$; where j is the closest particle to i
- S proportional to S_p if the system reaches equilibrium at a freeze-out density.





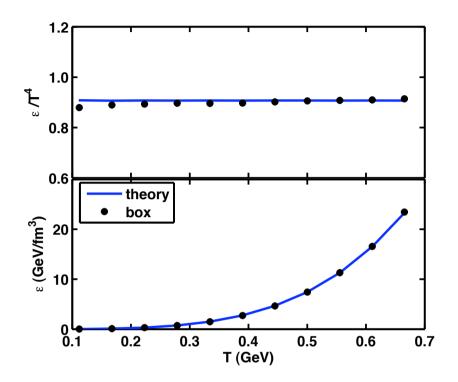


FIG. 2: Energy density divided by T^4 (top) and energy density (bottom) versus temperature for a classical ideal gas of finite mass. The full lines represents the analytical, while the dots are our numerical result.

QGP

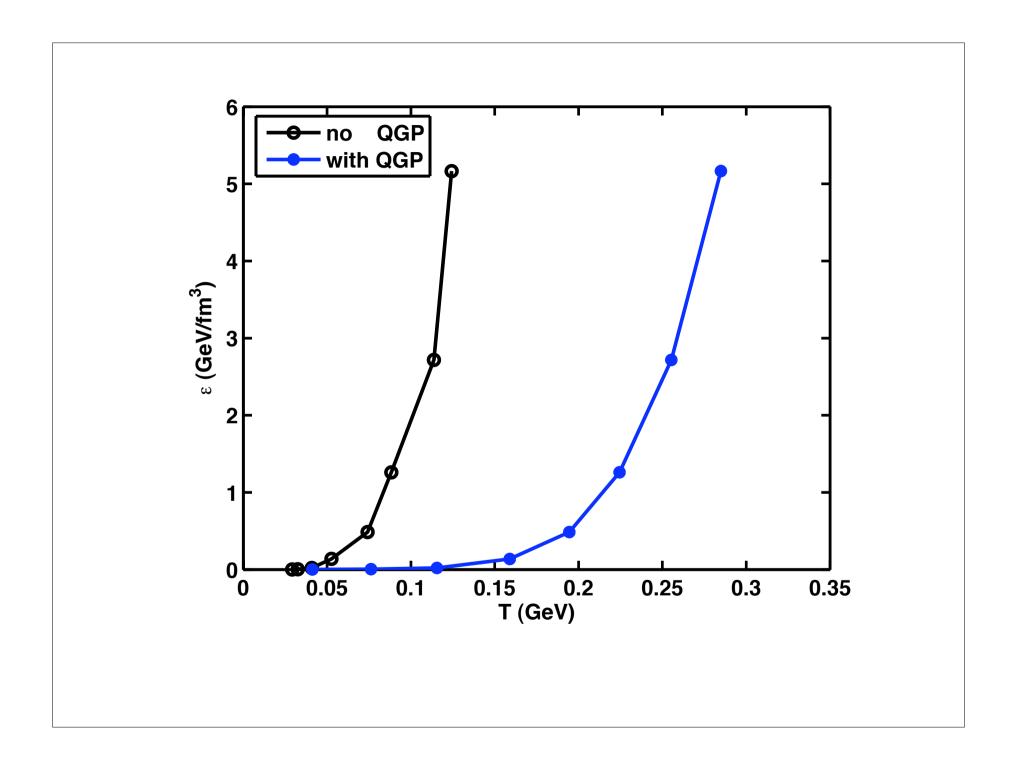
Massless quark and gluon gas:

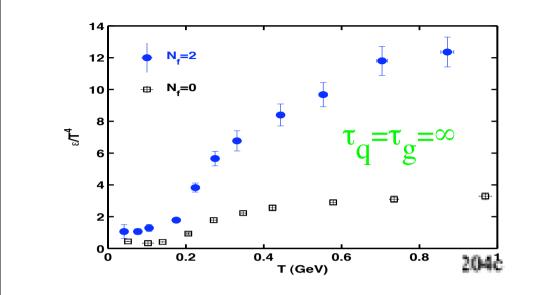
$$P = g_{tot}(\pi^2/90)T^4; \epsilon = 3P; g_{tot} = 37 (2 flavors)$$

• Define the critical pressure and energy density in the Bag model: ε_c =3B=0.71

$$GeV/fm^3$$
 (B^{1/4}=206 MeV)

- If in a h-h collision $\epsilon \ge \epsilon_c$, quarks and gluons are liberated: $n_q = n_{qbar} = f(\epsilon)$; $n_g = g(\epsilon)$
- quarks and gluons can collide elastically (to reach equilibrium), and also decay (g) or combine to form new hadrons (q-qbar).

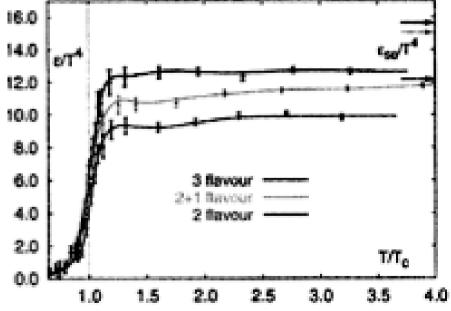




F. Karsch/Nuclear Physi-

FIG. 6: Energy density divided T^4 versus temperature for $N_f=2$ (full circles). The LQCD results

are given by the squares.



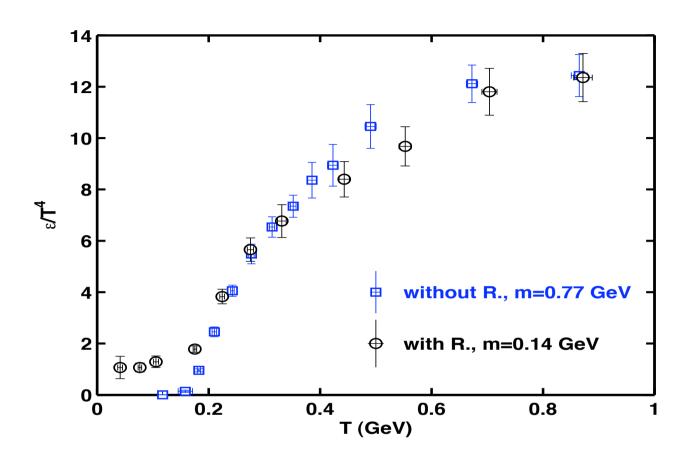
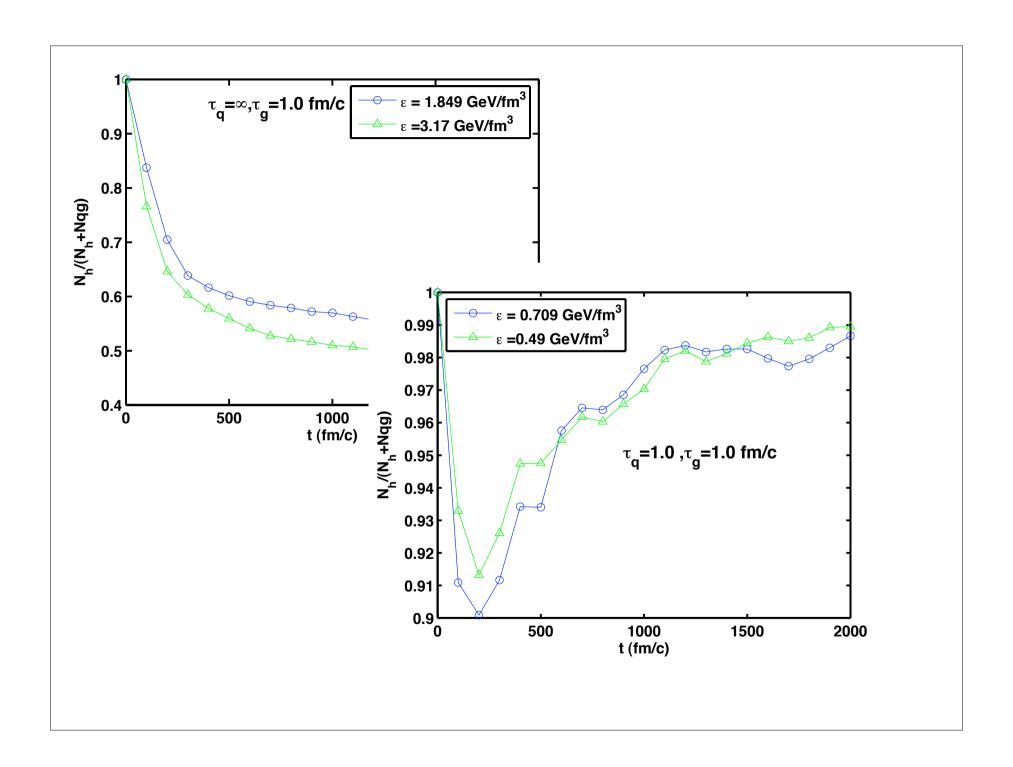
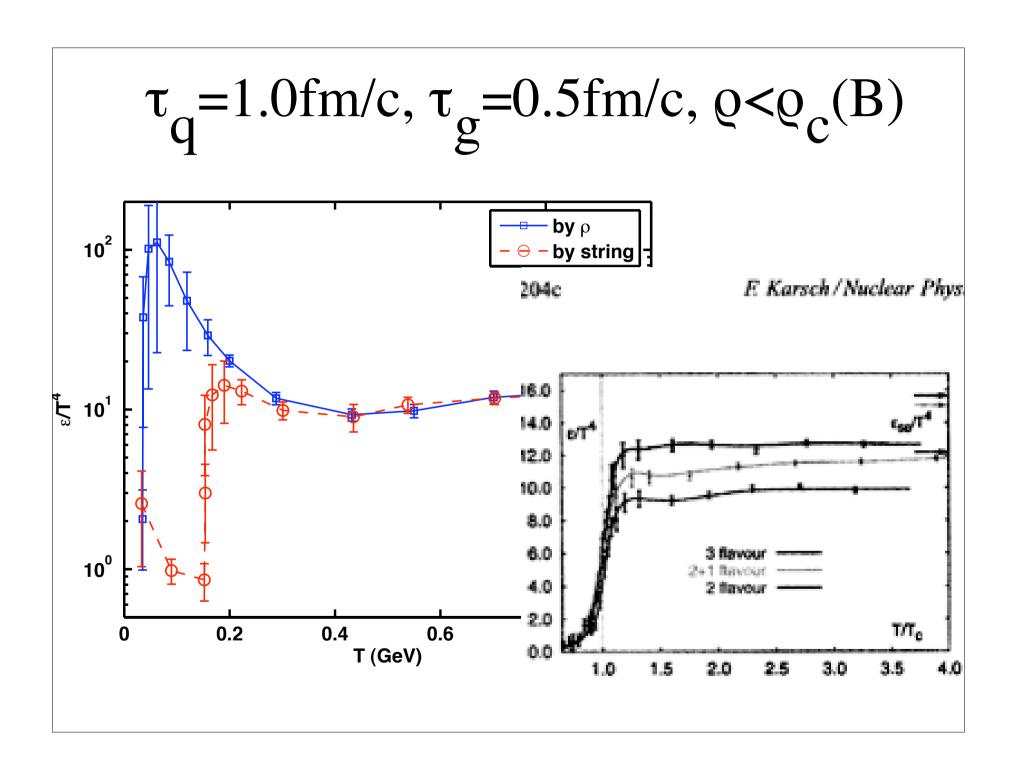


FIG. 7: Equation of state including QGP formation and for pion masses equal to 0.14 GeV (open circles) and 0.77GeV (open squares).





Summary and outlook

• Proposed a new method to solve the relativistic kinetic equation with 2 and 3 body collisions:

Results critically dependent on the hadrons formation time

Need to include collisions at the parton level

✓

Include a phase transition in the model in a (possibly) realistic way ✓