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The ATLAS muon spectrometer
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Reconstruction principle

¢ On average three measurements
along the trajectory

e Barrel: measurement of the
deflection from a straight line

¢ Endcap: point - angle
measurement
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¥ Tube resolution and autocalibration
® Chamber alignment

[0 Multiple scattering

O Energy loss fluctuations

A Total

— —
o =

nl<1.5

Contribution to resolution (%)

O = N W » 00 O N 00 ©

-
e
.-

/

Three point “Two point-angle
measurement measurement
¢ Resolution
e dp/p ~10% at 1 TeV

¢ requires an overall resolution on the
measured positions of 50 pm

¢ significant part from alignment
precision




1amber align
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e Chambers installed with about 5 mm
accuracy with respect to nominal position

e Actual position of the chambers measured
with the optical alignment systems

¢ in-plane system: chamber shape

¢ axial-praxial system: relative positions
chambers in a row

e projective alignment system: connecting
rows of chambers

L * Achieved accuracy: about 30 pm on
. position in the bending plane
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First results from endcap alignment syste

large sectors — X and Y 10 mm shift (scaled x 100) ...
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Handling of the geometry in simulation
and reconstruction

¢ Nominal geometry from survey

e position of the detector elements .
nominal geometry

e position of inert material

e Geometry with alignment corrections

isplacement

: . 4. chamber
¢ includes relative position of chambers v d Sj

e used in the GEANT4 simulation . ,
aligned’ geometry

e Reconstruction geometry

¢ includes chamber deformations

_ _ chamber
e used during track reconstruction 4 deformations

reconstruction
geometry




Nominal geometry




Nominal geometry: active material

\ / CSC chambers

MDT chambers TGC chambers




Nominal geometry: passive material

Barrel toroid

Shielding
Support structure
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e Chamber position split into two d:fanéiée

components il |
e Nominal position from survey \1 geometry

 Offset from alignment system manager

e Numbers taken from survey and alignment ’ ““nominal
database position

alignment _
¢ allows update of just the alignment offsets database
geometry

e interval of validity mechanism in place manager

I te of iti '
(allows update of positions during a run) [ oV Semce) .

e Same infrastructure used for simulation and aC’anI
reconstruction o | pOosItion

e will allows simulation with measured
alignment constants




. * Caused by temperature gradients
© and mechanical stress

| ' 'e Dominant deformations

e chamber expansion
o twist
e chamber sagging

e Second order effect

¢ |ocal movements of the wire
positions small ~...um

~ o Deformation parameters taken
from alignment database

¢ from in-plane alignment system
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Wire sagg
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¢ Due to gravity the wire is not straight but slightly sagged

y(x)=10*
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X = position along wire
L = wire length

T = wire tension

A = wire linear density

® = angle with gravity vector

e Maximum sag ~ 450 pym for largest endcap chambers with a length of 6 m.

¢ |arge compared to resolution (~80 pm)

¢ has to be taken into account in simulation




Handling of deformations and
wire sagging in simulation

e Not simulated in GEANT4
¢ volume clashes too difficult to control

e deformed tubes not supported

e Add deformations + wire sag during
‘digitization’

e new distance to wire by recalculation of
point of closest approach

e use new distance to calculate detector
response (drift time)
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Handling of deformations and
wire sagging in simulation

e Not simulated in GEANT4
¢ volume clashes too difficult to control

e deformed tubes not supported

e Add deformations + wire sag during
‘digitization’

e new distance to wire by recalculation of
point of closest approach

e use new distance to calculate detector
response (drift time)

e Pitfalls: .
Large shift:

e drop of efficiency at tube edges particle passes different tubs

e only works for small deformations




Reconstruction geometry

e Hit positions expressed relative to
measurement surface /

1

e Alignment constants included in 4+ Drift radius

surface position and orientation 2N

e Same database used as in simulation

e allows testing of alignment u
infrastructure in simulation
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Reconstruction geometry

e Hit positions expressed relative to
measurement surface

¢ Alignment constants included in
surface position and orientation

e Same database used as in simulation

e allows study of the impact of the
alignment on the reconstruction

e Benefits

e allows development of detector
technology independent tracking tools

e track fitters

¢ track propagation




Conclusions

e The geometry provides detailed description muon spectrometer.
e active detector elements
® inherit material
e |t is used for detector simulation and during reconstruction
e A mechanism is in place to read the constants from the alignment database
e chamber positions
e chamber deformations

e The mechanism automatically updates the geometry if new alignment constants
are available




