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The ATLAS muon spectrometer
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Magnetic field ~0.5 Tesla
Length ~ 45 meters 
Height ~ 20 meters



• On average three measurements 
along the trajectory

• Barrel: measurement of the 
deflection from a straight line

• Endcap: point - angle 
measurement

Reconstruction principle
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• Resolution

• dp/p ~ 10% at 1 TeV

• requires an overall resolution on the 
measured positions of 50 µm

• significant part from alignment 
precision
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Chamber alignment

• Chambers installed with about 5 mm 
accuracy with respect to nominal position 

• Actual position of the chambers measured 
with the optical alignment systems 

• in-plane system: chamber shape

• axial-praxial system: relative positions 
chambers in a row

• projective alignment system: connecting 
rows of chambers

• Achieved accuracy: about 30 µm on 
position in the bending plane

4



-10000

-7500

-5000

-2500

0

2500

5000

7500

10000

-10000 -7500 -5000 -2500 0 2500 5000 7500 10000
X

ATLAS
 (mm)

Y
A

T
L

A
S
 (

m
m

) 

large sectors ! X and Y 10 mm shift (scaled ! 100)

Big Wheel C view from IPsector 13

sector 5

se
ct

o
r 

1

se
ct

o
r 

9

First results from endcap alignment system
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Handling of the geometry in simulation         
and reconstruction

• Nominal geometry from survey

• position of the detector elements

• position of inert material

• Geometry with alignment corrections

• includes relative position of chambers

• used in the GEANT4 simulation

• Reconstruction geometry

• includes chamber deformations

• used during track reconstruction
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Nominal geometry
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Nominal geometry: active material
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MDT chambers

CSC chambers

TGC chambers



Nominal geometry: passive material
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Chamber displacements

• Chamber position split into two 
components

• Nominal position from survey 

• Offset from alignment system 

• Numbers taken from survey and alignment 
database

• allows update of just the alignment offsets

• interval of validity mechanism in place 
(allows update of positions during a run)

• Same infrastructure used for simulation and 
reconstruction

• will allows simulation with measured 
alignment constants
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Chamber deformations

• Caused by temperature gradients 
and mechanical stress

• Dominant deformations

• chamber expansion 

• twist

• chamber sagging

• Second order effect

• local movements of the wire 
positions small ~...µm

• Deformation parameters taken 
from alignment database 

• from in-plane alignment system
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Wire sagging

• Due to gravity the wire is not straight but slightly sagged

• Maximum sag ~ 450 µm for largest endcap chambers with a length of 6 m.

• large compared to resolution (~80 µm)

• has to be taken into account in simulation
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Handling of deformations and 
wire sagging in simulation

• Not simulated in GEANT4

• volume clashes too difficult to control

• deformed tubes not supported

• Add deformations + wire sag during 
‘digitization’ 

• new distance to wire by recalculation of 
point of closest approach 

• use new distance to calculate detector 
response (drift time)
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Handling of deformations and 
wire sagging in simulation

• Not simulated in GEANT4

• volume clashes too difficult to control

• deformed tubes not supported

• Add deformations + wire sag during 
‘digitization’ 

• new distance to wire by recalculation of 
point of closest approach 

• use new distance to calculate detector 
response (drift time)

• Pitfalls:

• drop of efficiency at tube edges

• only works for small deformations

Large shift:
particle passes different tubs



Reconstruction geometry

•   Hit positions expressed relative to 
measurement surface

•  Alignment constants included in 
surface position and orientation

• Same database used as in simulation

• allows testing of alignment 
infrastructure in simulation
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Reconstruction geometry
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Reconstruction geometry

•   Hit positions expressed relative to 
measurement surface

•  Alignment constants included in 
surface position and orientation

• Same database used as in simulation

• allows study of the impact of the 
alignment on the reconstruction

• Benefits

• allows development of detector 
technology independent tracking tools

• track fitters

• track propagation 
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Conclusions

• The geometry provides detailed description muon spectrometer. 

• active detector elements

• inherit material

• It is used for detector simulation and during reconstruction

• A mechanism is in place to read the constants from the alignment database

• chamber positions

• chamber deformations

• The mechanism automatically updates the geometry if new alignment constants 
are available
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