Muon Spectrometer Detector Description

Outline:

- Present situation
 - Dead Matter
 - Validation
 - GeoModel..

Laurent Chevalier, Andrea Dell'Acqua, Jean Francois Laporte, Stefania Spagnolo, Dennis Wright

Detector description parameters chain: present situation

Volume description

- Active Part = GeoModel/G4 (<2microns)
- Dead matter = GeoModel/G4 (with the new XML converter)

Update primary numbers dead matter part

- amdb_simrec.r.03.03:
 - New feet
 - EEL update
 - Cabling maps name
- Missing
 - Services ...
- Validation:
 - on going in forward region
 - 10GeV,100GeV
 - mu+/mu-
 - Eta [1.0,2.7]
 - Phi [0,45]

MuonGeoModel specific issues

- separating readout geometry (Manager+XxxReadoutElement+MuonStations[with alignable transforms] used in reconstruction) from bulk of GeoModel infrastructure
 - no show-stoppers; 14.4.0 is a candidate for such migration
 - at the same time: cleanup and make as uniform as possible (among technologies) reconstruction interfaces
- integrating recent improvements (cutout implementation) in production releases
 - in production: cutouts in MDT of BOG (feet region)
 - in 14.4.0 nightly builds: cutouts in all MDT(a few to fix in EC chambers)/RPC/TGC
 - validation issues: need to understand clearly the differences in the geometry model implemented with respect to previous version of the software for the same layout (a very few not yet fully understood)
- memory: 50 MB or raw geometry (for simulation) [a fraction can be disabled in reco.]+ 80 MB for common-tracking interfaces [fully disabled in simulation]
 - too much, why not moving in the TrkGeometry to the use of "lighter" representations of HepTransform3D ?

MuonGeoModel (ReadoutGeometry) and EDM

- Offline Data collections vs XxxReadoutElement granularity:
 - MDT data coll. (= MDT station) contains data in typically 2 MdtReadoutElements (one per multilayer)
 - RPC data collections (= plane of RPC at ~same radius in a muon station) groups data located in typically 2 RpcReadoutElements
 - CSC data collections = CscReadoutElements (in the staged-for-ever scenario)
 - TGC data collections = TgcReadoutElements
 - problem: in a loop over the collection the detector element has to be retrieved for each datum
- Proposal, investigated and to be resumed
 - new extra layer of ReadoutGeometry: XxxDetectorElement (with granularity a la EDM)
 - XxxDetectorElement holding pointers to relevant XxxReadoutElements (they keep the entire functionality)
 - tried and tested for performance for Mdt (profiling with callgrind)
 - $-\,$ gain in the CPU timing for a loop over PRD in a MDT collection using the new schema: 50 %
 - how much this will impact on overall reco?
 - see http://indico.cern.ch/conferenceDisplay.py?confld=28777 for more details

MuonGeoModel and Alignment data

Alignment parameters:

- implementation of alignment parameters for a muon station (rotation angles + shift + order of transforms) coherent between optical alignment systems (barrel and end-cap) and MuonGeoModel.
- reconstruction in mis-aligned geometry layouts widely exercised since CSC
- little exercise of the use of alignment constants as condition data: i.e. changing constants during the run processing
 - FDR2b has been the best performance test of the system: MuonGeoModel reading from COOL alignment data for the barrel only, feeding to reconstruction algorithms (both Moore and Muonboy – via different mechanisms)
 - for the FDR2c multi-folder access in COOL ready: barrel optical constant + 2 sets of constants for EC but a lurking bug showed up (fixed).... need extensive exercise / stress tests!

MDT deformation parameters:

- implementation of main effects (leaving tube straight) in place
- starting checking implementation against ARAMYS (optical al. system in the EC)
- access to deformation parameters in COOL to be finalised (no show-stoppers foreseen)