

Introduction: B-physics at 10³¹

- Beauty and Onia events to serve in detector and trigger calibrations.
 - J/ ψ L1 muon efficiency calibrations
 - J/ ψ , Υ ($\mu\mu$) masses for offline (later HLT) ID and muon-combined reconstruction (material, field).
 - B life times since 10 pb-1 ID alignment sensitive tests
- Early measurements of (semi) inclusive muon, di-muon cross sections needed for HLT strategies
- Control signal channels for beauty measurements: $B^+ \to J/\psi \ K^+, \ B^0 \to J/\psi \ K^*$
- Strategies for future rare decays with di-muons, BSM discovery physics
- HLT algorithm tests for non di-muon B-channels.

Express stream

- We suggest $J/\psi(\mu\mu)$ and $\Upsilon(\mu\mu)$ to express stream.
 - Motivation: mass position, width serve for ID calibrations (energy) loss in material, magnetic field, alignment).
- How much statistics is needed and how much time will be needed to get it? Can we get it in one express stream???

ATLAS CSC example: 50k events used to spot a wrong material description in muon reconstruction in release 12.0.6

CDF example: mass position pT dependence used to calculate corrections due to energy loss and mg field in ID. These corrections 3 were then used for other particles.

- - this is after including a data taking efficiency (30%) and 10% for express stream, so we take all 36000 s in calculations

μ4 μ4 10 hours @ 10 ³¹				
$pp \rightarrow J/\psi \ (\mu 4 \mu 4)$	27 nb		14400	
bb \rightarrow J/ ψ (μ 4 μ 4)	13 nb		J/ψ	
bb + DY background	4 nb			
All		0.44 Hz	15800	

- This amount is suitable for monitoring of efficiency and **J/**Ψ mass peak but not differential distributions.
 - ■Since it is only 0.44 Hz, maybe can run even as online monitoring(??)

- Good to have another point higher in mass scale.
- mass resolution at Upsilon region
 σ =150 MeV simultaneous mass fit to Υ, Υ', Υ"

Sources of low invariant mass di-muons

μ4μ4				In express Stream 10 hours
Υ (μ4μ4)	42	nb	0.42 Hz	15 120
Υ', Υ" (μ4μ4)	20	nb	0.20 Hz	
bb + DY background	30	nb	0.30 Hz	
all	100	nb	1 Hz	36 000

- 1. Statistics of $J/\psi(\mu\mu)$ and $\Upsilon(\mu\mu)$ in express stream useful for global tests:
 - monitoring of efficiency, mass position and width.
- 2. But not sufficient for ID calibration studies
 - energy loss in material, magnetic field, alignment require higher statistics, differential distributions
- 3. This can only be taken in physics streams
 - that will allow to accumulate statistics.
 - allow enough time for analyzers express stream data will be deleted – are only for fast tests not for calibrations

Early selections for B-physics: dimuon events

With early data: we should get an unbiased di-muon spectrum

- Di-muon events is a rich ground for many calibrations and physics studies
- \triangleright no HLT mass cuts to select J/ψ(μμ),Υ (μμ) all spectrum needed
- > no vertex cuts at HLT! Until calibrated, validated (see further)
- Di-muon rates are moderate μ4μ4 6.7 Hz , μ6μ4 3.9 Hz –physics
- Instrumental backgrounds may give additional rates of this order, but can be resolved

Sources of low invariant mass di-muons

- B-Lifetimes to test ID alignment, vertexing
- Direct-indirect J/ψ(μμ) to measure b-cross sections
- ▶ b-b NLO QCD
- First checks of backgrounds for rare B-decays – below 3GeV and around 5 GeV

B-Lifetimes with early J/ψ data, test of ID alignment

- **≻With 10 pb-1 we start to be useful for alignment tests**
- **≻With 200 pb-1 we improve words precisions**

		Statistics with 10 pb-1	Life time Statistical error	World today (stat + syst)
B ⁺	Β ⁺→ J /ψ K ⁺	1600	2.2 %	0.67 %
B ⁰	$B^0 \rightarrow J/\psi K^{0*}$	900	3.1 %	0.9 %
		Statistics with 200 pb-1		
B ⁺	B⁺→ J /ψ K⁺	32000	0.49 %	0.67 %
B ⁰	$B^0 \rightarrow J/\psi K^{0*}$	18000	0.69 %	0.9 %
B_s (single τ fit)	$B_s \rightarrow J/\psi \phi$	1800	4.2 %	2.7 %
Λ_{b}	$\Lambda_{b} \!$	520	5.8 %	5%

Performance control and reference channel B+->J/ψK+

	$10pb^{-1}$	$100pb^{-1}$	$1fb^{-1}$
$B_{-}^{+} \rightarrow J/\psi K^{+}$	1598.5	15985	159850

B+ proper lifetime fit red B+ signal, black background, blue all

- B mass lifetime fits sensitive tests of detector alignments
- No vertex displacement cuts (especially online) until alignments perfectly understood and validated.

Lifetime Fit 1		
Signal lifetime $ au$ ps	1.637±0.036	(2.2%)
Bkg1 lifetime τ_1 ps	1.320±0.24	
Bkg2 lifetime τ_2 ps	0.370±0.067	

Table 11: Lifetime fit results based on a luminosity of $13.2pb^{-}$

World precision today (0.67%)

Early selections for B-physics: single muon events

- Low pT muon cross sections predictions uncertain, calculations in progress, however theory stress: uncertainty ~2 possible, even if Tevatron cross sections now understood.
- 2. Main physics sources: pp $\rightarrow \mu$, bb $\rightarrow \mu$ X, cc $\rightarrow \mu$ X Expected rates at 10³¹
 - mu4 order of <1kHz
 - mu6 order of few 100 Hz.
- 3. Call for early cross section measurements to resolve HF contributions, from detector influenced sources, methods:
 - Muon pT relative to nearest jet
 - Inclusive Jpsi method vertexing need to be in good shape. see comments at di-muon physics
 - With 10-30 pb-1 start with exclusive B-decay channels.
- 4. Early single muon events important to test methods for non di-muon B-physics studies:
 - 1. BsDs π xs oscillations can measure x_s already with 10 fb-1 if with mu6
 - 2. Rare radiative decays Bs- γ K0*
 - 3. B-Jpsi(ee)X not dominant but complementary method to B-Jpsi($\mu\mu$)X

Conclusions B-physics at 10³¹

- J/ ψ , Υ ($\mu\mu$) should be in express stream however can serve only for monitoring purposes, quick mass checks.
- For ID calibrations J/ψ , Υ ($\mu\mu$) in physics stream is needed: higher statistics, not deleted, long enough time for analyzers teams, can re-calibrate later.
- At 10³¹ single muon events (maybe prescaled) and dimuon events will be important ground for control and preparatory measurements, for cross section measurements.
- No HLT selections with early data, offline will be used to validate HLT algorithms.
- First new physics measurements possible: HF cross sections, Onia - since 10 pb-1, B-Lifetimes at world best since - 200 pb-1