PRODUZIONE ANOMALE DI VV E VH ANA-HDBS-2020-05

Lecce (unico gruppo INFN coinvolto)

M. Centonze,

G, Chiodini,

A. Palazzo,

E.J. Schioppa,

S. Spagnolo

PREMESSA

- La presentazione piu' recente che riassume lo stato generale dell'analisi e' qui
 - https://indico.cern.ch/event/1155003/contributions/4849582/attachments/2446423/4192328/
 VVVHSemilepStatusReport.pdf (Yassine El Ghazali) al meeting generale del w.g. DBL (DBL Subgroup Meeting) del 18 maggio
 - https://indico.cern.ch/event/1155003/
- Da Glance: ANA-HDBS-2020-05
 - Second iteration of the search for VV and VH resonances in semileptonic final states, exploiting the synergy between the two decay modes, using improved analysis techniques (qgtagging, boosted Z->ee tagging, more sophisticated MVAs), inclusion of VBF mode, and additional interpretations (ALP, non-resonant)
 - Pubblicazioni del 1st round:
 - HDBS-2018-10 DBL VV semileptonic pubblicato su <u>Eur. Phys. J. C 80 (2020) 1165</u>
 - Search for heavy diboson resonances (WW, ZZ, WZ) in semileptonic final states in \$pp\$ collisions at \$\sqrt{s}=13\$ TeV with the ATLAS detector [intera stat del run2]
 - Lecce + Napoli; tesi di PhD di A. Giannini e M. Lavrogna (NA)
 - HDBS-2020-19, DBL VH semileptonic [intera stat del run2] draft ATL-COM-PHYS-2021-362
 - 2nd circulation appena conclusa (7 Giugno) no gruppi INFN coinvolti

Lecce 2022-06-15

ANA-HDBS-2018-10

1st round resonant VV

 $L=e,\mu$

- Search for X -> VV-> 0L, 1L, 2L
 - + 1 large-R jet (*merged regime*, powerful at high X mass) OR
 - + 2 jets (*resolved regime*, except for the 0L channel)
- Two topologies for X production mechanisms investigated separately
 - quark-antiquark annihilation or gluon-gluon fusion and vector boson fusion
 - event classification with a RNN developed for this analysis
- Three model classes for interpretation:
 - spin 0 (RS Radion), spin 1 (W', Z' in HVT), spin 2 (RS graviton)
- Selection (in addition to leptonic V):
 - (p_T dependent) mass cuts on hadronic V [+ jet substructure in the merged regime] define low-purity and high purity SRs, in some cases separated further based on the hadronic V being reconstructed from btagged jets or not
- Z+jets, W+jets and top control regions to define the normalisation of the main backgrounds depending on the leptonic channel

ANA-HDBS-2018-10

- A complex flow: for example, 9 SR for ZZ interpretation on the 2L channel (!)
- m_{IIJ} or m_{IIjj} as signal / background discriminant
- Jets: TCC large-R jets, EMTopo, VR track-jets for b-tagging of large R jets; MVC2c10 b-tagging
 - Standard CP recommendations for
 1st round full stat Run2 analyses

Table 5: Observed (expected) 95% CL lower limits on the mass, in TeV, of different resonances in the benchmark models studied. The symbol "-" means no limit is set.

Production	RS radion	HVT			RS graviton
process			W'	Z'	KS graviton
ggF/DY	3.2 (2.9)	Model A	3.9 (3.8)	3.5 (3.4)	2.0 (2.2)
		Model B	4.3 (4.0)	3.9 (3.7)	
VBF	_	Model C	_	_	0.76 (0.77)

The power of the semileptonic channel

1st round resonant VH

 $L=e,\mu$

- Search for X -> VH-> 0L, 1L, 2L + bb
 - merged regime OR resolved regime
- Two classes of production modes
 - quark-antiquark annihilation or gluongluon fusion and b-associated production
- Two model classes for interpretation:
 - spin 1 (W', Z' in HVT)
 - CP-odd spin 0 A->Zh in 2HDM (type I-IV)
- Selection (in addition to leptonic V):
 - mass cuts on hadronic V + 1b, 2b, >=3b
- Control regions with mass sidebands (W/ Z+jets) or eµ leptonic selection (top-CR)
- Jets and b-tagging like ANA-HDBS-2018-10

Gain in 2nd round

Very similar structure of the VV and VH analyses

Common weakness points (for example low selection eff. of e-channel at high p_T)

Shared strategies, solutions, improvements, new jets (flow and UFO) and b-tagging (DL1R)

ML for large-R jet classification (h->bb, W/Z,, top, background), improved efficiency for Z->ee,

Parametric DNN for mass interpretation

5

2nd round resonant (and non resonant) VV and VH

L= e,µ

- Very similar structure of the VV and VH analyses
 - Common weakness points (for ex. low selection eff. of e-channel at high p_T)
 - Shared strategies, solutions, improvements, new jets (particle flow and UFO) and new btagging (DL1R)
 - Extended use of ML:
 - for large-R jet classification (h->bb, W, Z, top, QCD)
 - improved efficiency for Z->ee
 - Parametric networks with parameter = X mass
 - Use RNN in VH
 - EFT interpretation
 - Several operators affecting VV and V+jets
 - Strategy discussed with theoreticians and ATLAS wide EFT interpretation fora

■ Willing to cure the decrease in efficiency at large p_T in the 2L channel due to merging e.m. showers in the calorimeters

- Z -> ee tagger
 - Reconstruct overlapping electrons as small-R jets
 - NN trained on jet kinematics and other properties; the output probabilities of ee, e/γ, QCD, tau are combined in a discriminant

Very good separation

ANA-HDBS-2018-10 supporting note

- Improve signal / background separation going beyond m_{II+hadronic V}
- Parametric DNN (Lecce and Tong)
 - Explored already for ANA-HDBS-2018-10 (D. Backas [Lecce] & al)
 - Discriminant from NN replaces
 m_{III+hadronic V} in signal fit

Approach used in several analyses by now: For example HH->bbtt

Merged input variables

- ▶ Lepton: p_T , η , ϕ and E
- FatJet: p_T , η , ϕ and E
- ightharpoonup Z(ll): m, p_T , Njets

Resolved input variables

- Lepton: p_T , η , ϕ and E
- leading/subleading jet: p_T , η , ϕ and m, nTracks
- ightharpoonup Z(ll): m, p_T , Njets

Input

Parameter: mx

Gain: improved sensitivity, no need to train N networks for N mass points

ML cost: background shape depends on m_X hypothesis under test

- Improve signal / background separation going beyond m_{II+hadronic} v
- Parametric DNN (Lecce and Tong)
 - Explored already for ANA-HDBS-2018-10 (D. Backas [Lecce] & al)
 - Discriminant from NN replaces
 m_{II+hadronic V} in signal fit

General timeline

New production of CxAOD just ready with new variables, allowing for combined VV+ HV studies, harmonization, optimization

6,8 months to EB request foreseen

Ongoing studies:

- Optimize selection of training set vs statistics;
- Optimize set of input variables (low level, mix of low level + high level)
- Extend set of input variables
 - using extended tagger output/input variables
 - extra event objects
- Optimize DNN architecture (how deep ?)
- Establish gain in expected limits

9