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The classifying space of the gauge group of
an SO(3)-bundle over S2

S. Bauer, M. C. Crabb and M. Sprea¯co
Department of Mathematical Sciences, University of Aberdeen,
Aberdeen AB24 3UE, UK

(MS received 30 August 1999; accepted 14 September 2000)

Stable homotopy decompositions of the classifying spaces of the gauge groups of
principal SO(3) and U(2)-bundles over the sphere S2 are obtained using a ¯brewise
stable splitting theorem for the loop space of an unreduced suspension. The stable
decomposition is related to a description of the integral cohomology ring.

1. Introduction

Principal SO(3)-bundles P over the sphere S2 are classi­ ed, up to isomor-
phism, by º 1(SO(3)) = Z=2. The group SO(3) acts on itself by conjugation
Ad : SO(3) ! Aut SO(3). We shall call the space of sections of the associated bundle
of groups Ad P = P £ S O (3) SO(3) the gauge group G P .

Our main result gives the following description of the stable homotopy type of the
classifying space B G P as a wedge of Thom spaces over the in­ nite-dimensional com-
plex projective space. (In the statement we use a subscript `+’ to denote adjunction
of a disjoint basepoint.)

Proposition 1.1. Let P be a principal SO(3)-bundle over S2. Then the classifying
space of the gauge group G P admits a stable decomposition,

(B G P ) + ’

8
>>><

>>>:

BSO(3)+ _
_

k> 1 od d

BU(1)kH if P is trivial;

_

k> 0 even

BU(1)kH if P is non-trivial;

where H is the complex Hopf line bundle over in¯nite-dimensional complex projec-
tive space P (C 1 ) = BU(1).

We were led to this result by reading the paper [6] of Tsukuda, who showed
there that the integral homology of B G P is torsion-free when P is non-trivial, but
left open the question of determining the precise ring structure. Restriction to a
basepoint in S2 gives a map B G P ! BSO(3) and so provides H ¤ (B G P ; Z) with the
structure of an algebra over H ¤ (BSO(3); Z). A precise description of this algebra,
in terms of generators that are speci­ ed in x 3, can be read o¬ as follows from
proposition 3.6, which computes the Z[1

2 ]-cohomology.
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Proposition 1.2. Let P be a principal SO(3)-bundle over S2. If P is non-trivial,
the integral cohomology ring H ¤ (B G P ; Z) is a free module over the polynomial ring
Z[p] = H ¤ (BSO(3); Z)=torsion generated by the ¯rst Pontrjagin class p 2 H4, on
generators bi 2 H2i, i > 0, described in terms of a generator b of H2(B G P ; Z) by
the identities: b0 = 1, b1 = b and, for j > 1,

b2j =
(b2 ¡ 12p)(b2 ¡ 32p)(b2 ¡ 52p) ¢ ¢ ¢ (b2 ¡ (2j ¡ 1)2p)

(2j)!
; b2j + 1 =

b ¢ b2j

2j + 1
;

in the rational cohomology ring H ¤ (B G P ; Q) = Q[p; b].

In terms of the stable decomposition that we construct, the cohomology of the
wedge summand BU(1)2jH is the algebraic direct summand Z[p]b2j © Z[p]b2j + 1.
There is a similar calculation when P is trivial.

Remark 1.3. We regard the stable splitting in proposition 1.1 primarily as a split-
ting of spectra. In fact, the proof shows that the stable splitting can be realized
after a single suspension.

Remark 1.4. The individual summands appearing in the decomposition are stably
indecomposable at the prime 2, with the exception of the k = 0 summand BU(1)+ ,
which splits as S0 _ BU(1), and BSO(3)+ , which splits as S0 _ BSO(3). A proof of
indecomposability is outlined in x 6.

The classical stable splitting theorem of James and Milnor expresses the space
« § F of loops on the (reduced) suspension of a connected pointed space F stably
as a wedge of smash products

Vk
F , k > 1. In x 2 we prove a version of the splitting

theorem for the unreduced suspension S0 ¤ F , instead of § F , without reference to
a basepoint in F . In this form the result is easily extended to a ­ brewise splitting
theorem, in which F is replaced by a ­ bre bundle, which will not, in general, have a
section. This theorem is specialized to the case of sphere-bundles in x 3, which also
contains calculations of the cohomology ring. The connection with the classifying
space of the gauge group G P is made in x 4. Standard results, for one of which we
present a new proof in x 5, express the space B G P as a ­ brewise loop space with ­ bre
« SO(3). By regarding SO(3) as 3-dimensional real projective space and identifying
the two components of « SO(3) with the space of loops « S3 and the space of paths
from the North to the South Pole in S3, respectively, we reduce propositions 1.1
and 1.2 to special cases of the results on sphere-bundles in x 3. The main result
has other applications, such as to spaces of free loops and to equivariant splitting
theorems, which will be treated elsewhere.

2. A stable splitting of the space of loops on an unreduced suspension

As explained in x 1, our ­ rst goal is to establish a stable James{Milnor splitting
theorem for the space of loops on the join S0 ¤ F (or unreduced suspension) of a
connected space F . Our proofs require that a certain ­ brewise pointed space con-
structed from F is locally trivial in the pointed sense. This is most easily guaranteed
by requiring that F be a closed manifold. We assume, therefore, throughout this
section that F is a connected closed (smooth) manifold.
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The sphere S0 = f§1g is contained as a subspace of S0 ¤ F , and we take +1 as
the basepoint of S0 ¤ F . We write ¡ 0F for the loop space « (S0 ¤ F ) of continuous
paths [0; 1] ! S0 ¤ F from +1 to +1 and ¡ 1F for the space of paths from +1 to
¡ 1, with the indices 0; 1 read as integers (mod 2). Thus, if F is the circle S1, S0 ¤F
is the sphere S2, ¡ 0F consists of the loops at the North Pole +1 and ¡ 1F consists
of the paths from the North to the South Pole.

Let ½ : S0 ¤ F ! S0 ¤ F denote the involution induced by the antipodal map ¡ 1
on S0. Then concatenation of paths de­ nes multiplication maps

¡ iF £ ¡ jF ! ¡ i + jF; ( ¬ ; ­ ) 7! ¬ ¢ ½ i(­ );

which give the disjoint union ¡ 0F t ¡ 1F the structure of a homotopy-associative
Hopf space.

If we choose a basepoint ¤ 2 F , we can form the (reduced) suspension § F , and
the projection map S0 ¤ F ! § F = (S0 ¤ F )=(S0 ¤ f¤g) is a pointed homotopy
equivalence. The projection also induces homotopy equivalences ¡ iF ! « § F ,
which together give an H-equivalence

¡ 0F t ¡ 1F ! « § F n Z=2 (2.1)

to the semidirect product de­ ned by the antipodal involution on the § component
of « § F .

We shall e¬ectively consider all possible basepoints of F by means of the following
device. The trivial bundle F £ F ! F , projecting onto the ­ rst factor (x; y) 7!
x, has a cross-section given by the diagonal map x 7! (x; x), and this structure
de­ nes a pointed ­ bre bundle, or (locally trivial) bundle of pointed spaces, which
we denote by X = F £ F ! F . The ­ bre over x 2 F is the pointed space fxg £ F
with basepoint (x; x). As one can see by considering the example F = [0; 1], local
triviality in the pointed sense does require proof, and it is here that we use the fact
that F is a manifold without boundary. Local triviality is established in [4, (II.1.20)
and (II.11.20)] by re­ ning the classical proof that the di¬eomorphism group of a
connected manifold acts transitively on the manifold.

From F we can also form the trivial pointed ­ bre bundle F £ F + , with ­ bre
the pointed space F + obtained by adjoining a disjoint basepoint to F . There is
a ­ brewise pointed map º : F £ F+ ! X, which restricts to the identity on the
subspace F £ F ³ F £ F+ and maps the basepoint (x; +) in the ­ bre over x 2 F
to (x; x). We also have a ­ brewise pointed map ³ : F £ F + ! F £ S0 given by
³ (x; y) = (x; ¡ 1) for x; y 2 F .

Lemma 2.1. The stable sum

º _ ³ : F £ F + ! X _F (F £ S0)

over F is a ¯brewise stable equivalence.

Proof. On a ­ bre the map º _ ³ restricts to the standard stable equivalence
F + ! F _ S0 for a pointed space F . The result follows from a theorem of Dold
which states that a ­ brewise stable map which is an equivalence on each ­ bre is a
­ brewise stable equivalence. Alternatively, one may reproduce the standard proof
of the splitting, which splits the co­ bre sequence S0 ! F + ! F , over F and thus
realize the stable equivalence after a single ­ brewise suspension.



770 S. Bauer, M. C. Crabb and M. Sprea¯co

Let » : X ! F £ F+ denote the natural stable right inverse for º provided by the
stable decomposition in lemma 2.1. We use this stable splitting ­ rst to show that
the pointed ­ bre bundle X is stably trivial.

Lemma 2.2. Choose a basepoint ¤ 2 F and let q : F + ! F be the pointed map that
restricts to the identity on F . Then the composition

X
»¡! F £ F +

1£q¡ ¡ ! F £ F

is a ¯brewise stable equivalence over F .

Proof. The restriction to ­ bres over the basepoint ¤ 2 F is the identity map (of
pointed spaces) F ! F . Since the base F is connected and X ! F is locally trivial,
the result follows from Dold’s theorem.

Definition 2.3. For k > 0, we can form the ­ brewise smash product
Vk

F X over
F . We de­ ne

Gk(F ) = (
Vk

F X)=F

to be the pointed space obtained by collapsing the basepoint section F to a point.
Thus Gk(F ) is the topological quotient of F £ F k by the subspace consisting of the
points (x; (y1; : : : ; yk)) with some yi equal to x.

In particular, G0(F ) = F + and G1(F ) = (F £ F )=¢(F ) is the topological co­ bre
of the diagonal ¢ : F ! F £ F .

Remark 2.4. A choice of basepoint in F allows us to use lemma 2.2 to obtain a
stable equivalence

Gk(F ) ’ (F £
Vk

F )=F ’ F + ^ (
Vk

F ) ’ (F _ S0) ^ (
Vk

F ) =
Vk

F _
Vk + 1

F:

We shall next construct stable maps

® k : Gk(F ) !

(
( ¡ 0F ) + for k > 1 odd;

( ¡ 1F ) + for k > 0 even:

First, we have a map ¬ : F ! ¡ 1F sending a point x 2 F to the path
¬ x : [0; 1] ! S0 ¤ F from +1 to ¡ 1 through x,

¬ x(t) = [1 ¡ 2t; x] (0 6 t 6 1):

Geometrically, when F = S1, ¬ x is a great circle from the North to the South
Pole through the point x on the equator. Using the multiplication in ¡ 0F t ¡ 1F
introduced above, we de­ ne maps

~® k : F £ F k !

(
¡ 0F for k odd;

¡ 1F for k even

by

~® k(x; (y1; : : : ; yk)) = ¬ x( ¬ y1 ( ¬ y2 (¢ ¢ ¢ ( ¬ yk ¡ 1 ¬ yk )) ¢ ¢ ¢ )):
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If k is odd, we get a closed path, and if k is even, a path from +1 to ¡ 1. Again in
the geometric picture when F = S1, ~® k assigns to (x; (y1; : : : ; yk)) a path passing
up and down between the North and South Pole through the equatorial points x,
y1; : : : ; yk in order.

The standard proof of the James{Milnor splitting, or the more general Snaith
splitting (based on the stable splitting, for a pointed space F , of F + as S0 _ F ), is
due to Cohen [2]. There is a textbook account in [4, (II.14.27)]. We follow the same
method to construct the stable map ® k. The ­ brewise k-fold smash product of the
stable splitting » : X ! F £ F + of the projection º : F £ F+ ! X gives a ­ brewise
stable splitting over F ,

Vk
» :

Vk
F X !

Vk
F (F £ F+ ) = F £

Vk
F + ;

of the projection
Vk

º . By collapsing the basepoint section F to a point we obtain
a stable splitting

Gk(F ) = (
Vk

F X)=F ! (F £ (
Vk

F+ ))=F = (F £ F k) + (2.2)

of the projection map F £F k ! Gk(F ). The stable map ® k is de­ ned by composing
this stable splitting with (~® k) + .

To state the basic stable decomposition result we let ´ : S0 ! ( ¡ 0F ) + denote the
map given by the inclusion of the basepoint (that is, the constant loop) in ¡ 0F .

Lemma 2.5. The maps

´ _
W

® k : S0 _
_

k> 1 od d

Gk(F ) ! ( ¡ 0F ) + ;

W
® k :

_

k> 0 even

Gk(F ) ! ( ¡ 1F ) +

are stable equivalences.

Proof. Since the spaces considered are of ­ nite type, it su¯ ces to check that the
maps induce isomorphisms on homology H ¤ with Fp-coe¯ cients for each prime
p > 1. To carry out the computation we again choose a basepoint ¤ 2 F and let V
denote the graded Fp-vector space ~H¤ (F ).

Now ~H ¤ (F + ) = Fp © V and ~H ¤ ((F £ F k) + ) = (Fp © V ) «
Nk

(Fp © V ). The di-
rect summand ~H ¤ (Gk(F )) is included by the splitting map (2.2) as the alge-
braic summand (Fp © V ) «

Nk V . This follows from two observations: (i) that
~H ¤ (Gk(F )) projects isomorphically onto ~H ¤ ((F £

Vk
F )=F ), by lemma 2.2, and

(ii) that the summand is, by its construction, annihilated by any k-fold ­ brewise
smash product of factors 1 (the identity map) and ³ ,

1 ^ ¢ ¢ ¢ ^ ³ ^ ¢ ¢ ¢ ^ 1 : F £ (F + ^ ¢ ¢ ¢ ^ F + ¢ ¢ ¢ ^ F + ) ! F £ (F + ^ ¢ ¢ ¢ ^ S0 ¢ ¢ ¢ ^ F + );

in which at least one factor is ³ .
We next recall the classical description of the Fp-homology of « § F . The James

map F ! « § F , for the pointed space F , induces an inclusion V = ~H ¤ (F ) !
~H ¤ ( « § F ). The Pontrjagin ring H¤ ( « § F ) is the tensor algebra T (V ) on V and
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has the structure of a Hopf algebra (with antipode), in which the co-multiplication
is determined by the map ¢ : V ! V « V induced by the diagonal inclusion
F ! F ^ F . We ­ lter H¤ ( « § F ) = T (V ) by the ideals Ik =

L
l> k

Nl
V . The

antipode preserves the ­ ltration and acts as ( ¡ 1)k on Ik=Ik + 1.
The homology of ¡ iF is determined by the equivalence (2.1), ¡ 0F t ¡ 1F !

« § F n Z=2, which we use to identify H ¤ ( ¡ iF ) with T (V ). By comparing ¬ = ~® 0

with the James map, we see that (~® 0) ¤ : H ¤ (F ) ! H¤ ( ¡ 1F ) is just the inclusion
Fp © V ! T (V ), and its composition with the antipode T (V ) ! T (V ) is given by
1 © ( ¡ 1) : Fp © V ! Fp © V modulo I2. The e¬ect of the maps ~® k, for k > 1, in
homology is then prescribed by the Pontrjagin multiplication.

We conclude that ® k maps ~H ¤ (Gk(F )) into Ik and induces an isomorphism

~H¤ (Gk(F ))
¹=¡ ! Ik=Ik + 2:

Thus, if we ­ lter the homology of
W

k even Gk(F ) by the subspaces
L

k> 2l
~H¤ (Gk(F ))

and H¤ ( ¡ 1F ) by the subspaces I2l,
W

® k preserves the ­ ltration and induces an
isomorphism on the associated graded modules. Hence

W
® k is a homology isomor-

phism. In the same way, we see that ´ _
W

® k is a homology isomorphism, and this
completes the proof of the lemma.

As it stands, lemma 2.5 is weaker than the James{Milnor theorem, which by a
choice of basepoint in F gives a ­ ner decomposition. But it extends, with little more
than notational changes, to the ­ brewise theory. Consider a ­ bre bundle M ! B
over a ­ nite complex B with ­ bre a connected closed (smooth) manifold. The
constructions above may be carried through in the ­ bres to de­ ne a pointed ­ bre
bundle Gk

B(M ) over B, with ­ bre at b 2 B the space Gk(Mb) (where Mb is the ­ bre
of M at b), for k > 0. Thus G0

B(M ) is the bundle M + B obtained by adjoining a
disjoint basepoint to each ­ bre of M . Fibrewise mapping spaces ¡ i

BM are produced
by applying the ¡ i constructions to ­ bres; the topology is prescribed by requiring
that the ­ brewise spaces be locally trivial over B. Then we have ­ brewise stable
maps

® k : Gk
B(M ) !

(
( ¡ 0

BM ) + B for k > 1 odd;

( ¡ 1
BM ) + B for k > 0 even:

Proposition 2.6. There are ¯brewise stable equivalences

´ _
W

® k : (B £ S0) _
_

k> 1 od d

B Gk
B(M ) ! ( ¡ 0

BM) + B ;

W
® k :

_

k> 0 even

B Gk
B(M ) ! ( ¡ 1

BM ) + B

over B.

Proof. This is immediate from lemma 2.5 and Dold’s theorem.

By taking quotients by the subspace B of basepoints in the ­ bres we pass from
­ brewise pointed spaces to pointed spaces and obtain the following immediate corol-
lary.
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Corollary 2.7. There are stable equivalences

B + _
_

k> 1 od d

Gk
B(M )=B ! ( ¡ 0

BM) + ;

_

k> 0 even

Gk
B(M )=B ! ( ¡ 1

BM) + :

3. Real projective bundles

We suppose, to begin with, that W is a ­ nite-dimensional real vector space
(with Euclidean inner product) of dimension n > 1. Consider the double cover
S(R © W ) ! P (R © W ) from the unit sphere with basepoint (1; 0) to the n-
dimensional real projective space with basepoint [1; 0]. The loop space « P (R © W )
has two components, which we label by subscripts in the fundamental group Z=2.
Loops in the 0-component lift to loops in the sphere, and loops in the 1-component
lift to paths from the North Pole (1; 0) to the South Pole ( ¡ 1; 0). Writing the sphere
as the join S0 ¤ S(W ) we can thus make the identi­ cations

« iP (R © W ) = ¡ iS(W ) (i 2 Z=2): (3.1)

Under this correspondence, the basic map ¬ : F ! ¡ 1F appears geometrically
as

¬ : S(W ) ! « 1P (R © W ); x 7! ¬ x;

where

¬ x(t) = [cos(º t); sin(º t)x]; 0 6 t 6 1:

The involution ½ on S0 ¤ S(W ), given by ( ¡ 1; 1) : S(R © W ) ! S(R © W ), lifts the
map (1; ¡ 1) : P (R © W ) ! P (R © W ) induced by the antipodal involution ¡ 1 on
W . The map ~® k thus transforms into the map

~® k : S(W ) £ S(W )k ! « P (R © W )

given by loop multiplication with alternating signs,

~® k(x; (y1; : : : ; yk)) = ¬ x ¢ ( ¬ ¡y1 ¢ ( ¬ y2 (¢ ¢ ¢ ¢ ( ¬ (¡1)k ¡ 1yk ¡ 1
¢ ¬ (¡1)kyk

)) ¢ ¢ ¢ )): (3.2)

We shall need the following elementary observation.

Lemma 3.1. The map S(W ) ! « P (R©W ) taking x 2 S(W ) to the product ¬ x¢ ¬ ¡x

is homotopic to the constant map to the basepoint [1; 0].

The spaces Gk(S(W )) admit the following interpretation. The tangent space ² x

at a point x 2 S(W ) consists of the vectors in W orthogonal to the unit vector x,
and W can be written as the orthogonal direct sum Rx© ² x = W . By stereographic
projection the sphere S(W ) with basepoint x can be identi­ ed with the one-point
compacti­ cation ² +

x of ² x with basepoint 1. In this way we can regard the ­ brewise
pointed space X = F £ F ! F of x 2, when F = S(W ), as the ­ brewise one-point
compacti­ cation ² +

S(W ) of the tangent bundle ² to the sphere. Then
Vk

F X is the
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­ brewise one-point compacti­ cation ( ² © ¢ ¢ ¢ © ² ) +
S(W)

of the k-fold direct sum, and
hence

Gk(S(W )) = (
Vk

F X)=F

is the Thom space S(W )k² .
Now let ¹ be a real vector bundle of dimension n > 1 over a ­ nite complex

B, with sphere-bundle S( ¹ ). We write P (R © ¹ ) for the projective bundle of the
direct sum of a trivial line bundle B £ R and ¹ ; it is a pointed ­ bre bundle with
basepoint [1; 0] in each ­ bre. The sphere-bundle S(R © ¹ ) is homeomorphic to the
­ brewise join (B £ S0) ¤B S( ¹ ). The ­ brewise loop space « BP (R © ¹ ), having the
­ bre « P (R © ¹ b) at b 2 B and topologized so as to be locally trivial, is the disjoint
union

« BP (R © ¹ ) = « 0BP (R © ¹ ) t « 1BP (R © ¹ )

= ¡ 0
BS( ¹ ) t ¡ 1

BS( ¹ ) (3.3)

of two bundles with connected ­ bres « iP (R © ¹ b). The pullback of ¹ to its sphere-
bundle S( ¹ ) splits as the direct sum of the trivial bundle R and the bundle ² of
tangents along the ­ bres. The pointed ­ bre bundle Gk

B(S( ¹ )) can then be described
as the ­ brewise Thom space S( ¹ )k²

B , which is a bundle over B with ­ bre at b the
Thom space of k² b over the sphere S( ¹ b). Proposition 2.6 and corollary 2.7 specialize
as follows.

Proposition 3.2. There are ¯brewise stable decompositions,

( « 0BP (R © ¹ )) + B ’ (B £ S0) _B

_

k od d

B S( ¹ )k²
B ;

( « 1BP (R © ¹ )) + B ’
_

k even

B S( ¹ )k²
B ;

over B.

Corollary 3.3. There are stable decompositions

( « 0BP (R © ¹ )) + ’ B+ _
_

k> 1 od d

S( ¹ )k² ;

( « 1BP (R © ¹ )) + ’
_

k> 0 even

S( ¹ )k² :

Remark 3.4. The components in the ­ brewise decomposition are stably indecom-
posable if (and only if) the stable cohomotopy Euler class of ¹ is non-zero. For the
component S( ¹ )k²

B is a ­ brewise suspension of S( ¹ ) + B , since R © ² = ¹ , and we
have a ­ brewise co­ bre sequence

S( ¹ ) + B ! B £ S0 ! ¹ +
B ;

in which the second map is the Euler class (see, for example, [4, (II.4)]). Suppose
that we have a stable splitting S( ¹ ) + B ! Y _B Z, where Y and Z are locally
homotopy trivial ­ brewise pointed spaces over B (`pointed homotopy ­ bre bundles’
in the terminology of [4]). We may assume that ~H ¤ (Yb; Z) = ~H ¤ (S0; Z), for each b 2
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B. Then the inclusion of Y followed by the map to B £ S0 must be an equivalence.
This splits the sequence, and shows that the stable cohomotopy Euler class is zero.

We now turn to the computation of the cohomology of « BP (R © ¹ ), with Z[ 1
2
]-

coe¯ cients, when ¹ is of odd dimension n = 2m + 1 (m > 1) and oriented, in
terms of the splitting given in corollary 3.3. For the remainder of this section an
unembellished `H ’ denotes Z[1

2 ]-cohomology.

Lemma 3.5. Under the hypotheses described above, the cohomology ring H ¤ (S( ¹ ))
is a free H ¤ (B)-module on the basis 1; e( ² ). The Euler class e( ² ) of the ¯brewise
tangent bundle has square e( ² )2 = pm( ¹ ).

Proof. By the Leray{Hirsch lemma, to prove that 1; e( ² ) is a basis, we can reduce
to the elementary case that B is a point. For the 2m-dimensional oriented bundle
² , we have e( ² )2 = pm( ² ) = pm( ¹ ) ¢ 1, since R © ² is the pullback of ¹ .

We shall abbreviate the mth Pontrjagin class pm( ¹ ) to simply `p’.
The stable splitting in corollary 3.3 gives the algebraic direct sum decomposition

H ¤ ( « 0BP (R © ¹ )) = H ¤ (B) ©
M

k> 1 od d

~H ¤ (S( ¹ )k² );

H ¤ ( « 1BP (R © ¹ )) =
M

k> 0 even

~H ¤ (S( ¹ )k² ):

This allows us to specify bases, as free H ¤ (B)-modules, ai, i > 0, for the coho-
mology of « 0BP (R © ¹ ), and bi, i > 0, for the cohomology of « 1BP (R © ¹ ) as
follows. The class a0 is the generator 1 of the ­ rst summand H ¤ (B). For k > 0,
( ¡ 1)lak; ( ¡ 1)lak + 1 if k = 2l ¡ 1 is odd, and ( ¡ 1)lbk; ( ¡ 1)lbk + 1 if k = 2l is even,
are the generators of ~H ¤ (S( ¹ )k² ) corresponding to 1; e( ² ) 2 H ¤ (S( ¹ )) under the
Thom isomorphism for the oriented bundle k² . (The reason for the choice of signs
will emerge in the proof of proposition 3.8.) The indexing is chosen so that ai, bi,
for i > 0, are generators in dimension 2mi.

Proposition 3.6. Let ¹ be an oriented real vector bundle of odd dimension
2m + 1, where m > 1, over a ¯nite complex B. Then the H ¤ (B; Z[ 1

2 ])-algebras
H ¤ ( « 0BP (R© ¹ ); Z[ 1

2
]) and H ¤ ( « 1BP (R© ¹ ); Z[1

2
]) are freely generated as modules

over H ¤ (B; Z[ 1
2
]) by the classes ai and bi, respectively, described above. The ring

structure is determined in terms of a = a1 and b = b1 by the formulae

(2j)!a2j = (a2 ¡ 02p)(a2 ¡ 22p)(a2 ¡ 42p) ¢ ¢ ¢ (a2 ¡ (2(j ¡ 1))2p);

(2j + 1)!a2j + 1 = a(a2 ¡ 22p)(a2 ¡ 42p)(a2 ¡ 62p) ¢ ¢ ¢ (a2 ¡ (2j)2p);

(2j)!b2j = (b2 ¡ 12p)(b2 ¡ 32p)(b2 ¡ 52p) ¢ ¢ ¢ (b2 ¡ (2j ¡ 1)2p);

(2j + 1)!b2j + 1 = b(b2 ¡ 12p)(b2 ¡ 32p)(b2 ¡ 52p) ¢ ¢ ¢ (b2 ¡ (2j ¡ 1)2p);

modulo torsion (and a0 = 1, b0 = 1), where p = pm( ¹ ).

Since H ¤ (BSO(2m); Z[1
2
]) is torsion-free, the given relations completely deter-

mine the ring structure. The proof of proposition 3.6 will occupy the rest of the
section.
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We shall perform the calculation using ­ brewise homology theory as described
in [4, (II.15)] or [3]. To ­ x notation, suppose that X and Y are pointed ­ bre bundles
over B with ­ bres of the homotopy type of CW-complexes, ­ nite in the case of X ,
arbitrary in the case of Y . The ¯brewise cohomology groups H i

BfX; Y g, for i 2 Z,
are de­ ned as direct limits of sets of ­ brewise pointed homotopy classes over B,

Hi
BfX ; Y g = lim

¡!
j

[§ j
BX ; (B £ Kj + i) ^B Y ]B ;

where § B denotes the ­ brewise suspension and Kj is the Eilenberg{MacLane space
K(Z[ 1

2 ]; j). The graded group H ¤
BfX ; Y g is a module over the cohomology ring

H ¤ (B) of the base. It is easy to identify H i
BfX ; B£S0g with the ordinary (reduced)

cohomology group ~H i(X=B). We refer to the less familiar group H i
BfB £ S0; Y g as

the ¯brewise homology of Y ; when B is a point, it is the usual homology ~H¡i(Y )
of the pointed space Y , but with a negative index. In favourable special cases a
Leray{Hirsch argument can be used to identify the cohomology group ~H ¤ (Y=B)
with the H ¤ (B)-dual

HomH¤(B)(H
¤
BfB £ S0; Y g; H ¤ (B))

of the ­ brewise homology of Y over B.
This is the case in the present situation. The ­ brewise homology group of

( « BP (R © ¹ )) + B over B is a free graded H ¤ (B)-module, and the cohomol-
ogy group H ¤ ( « BP (R © ¹ )) can be computed as its dual over H ¤ (B). For the
details of similar calculations the reader is referred to [4, (II.15.28)] and [3].
Let t; u 2 H ¤

BfB £ S0; S( ¹ ) + Bg be the H ¤ (B)-basis dual to the basis 1; e( ² ) of
H ¤ (S( ¹ )). Thus t has dimension 0 and u has negative dimension ¡ 2m. We use
the same symbols t and u for the images of those classes under ¬ = ~® 0 in the
­ brewise homology of « BP (R © ¹ ). The Pontrjagin multiplication given by loop
multiplication · and the co-multiplication given by the diagonal ¢

« BP (R © ¹ )
¢¡ ! « BP (R © ¹ ) £B « BP (R © ¹ )

·¡! « BP (R © ¹ )

make H ¤
BfB £ S0; ( « BP (R © ¹ )) + Bg a Hopf algebra over H ¤ (B).

Proposition 3.7. The ¯brewise homology group H ¤
BfB £ S0; ( « BP (R © ¹ )) + Bg is

free over H ¤ (B) on the basis ui; tui (i > 0). It has the structure of a Hopf algebra
over H ¤ (B) with co-multiplication and multiplication given by

¢(t) = t « t + pu « u; ¢(u) = u « t + t « u

and
t2 = 1 + pu2; tu = ut:

Proof. The veri­ cation that the H ¤ (B)-module is free on the given basis is reduced
by the Leray{Hirsch lemma to a calculation on ­ bres which is just the classical
description of the Pontrjagin ring of « § S2m.

We note that the generators t and u lie in the homology of the 1-component
« 1BP (R © ¹ ). Thus 1; tu; u2; tu3; : : : and t; u; tu2; u3; : : : are bases of the ­ brewise
homology of the 0-component and 1-component, respectively.
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Since ¬ = ~® 0 : S( ¹ ) ! « BP (R © ¹ ) commutes with the diagonal maps, the co-
multiplication ¢ is computed by the diagonal on S( ¹ ) as the dual of the ring
multiplication given by lemma 3.5.

To determine the multiplication we use the obvious ­ brewise generalization of
lemma 3.1. Let ¼ denote the antipodal involution ¡ 1 on ¹ and also the maps that
it induces on S( ¹ ) and P (R © ¹ ). Since the involution reverses the orientation of ¹ ,
¼ (e( ² )) = ¡ e( ² ), and hence ¼ (t) = t and ¼ (u) = ¡ u. According to lemma 3.1, the
composition · ¯ (1 £ ¼ ) ¯¢ ¯ ¬ : S( ¹ ) ! « BP (R © ¹ ) is (homotopic to) the constant
map to the basepoint in each ­ bre. Hence · (1 « ¼ )¢(t) = 1, so that t2 ¡ pu2 = 1,
and · (1 « ¼ )¢(u) = 0, so that ¡ tu + ut = 0.

Next we relate the homology bases just de­ ned to the cohomology bases ai and
bi appearing in proposition 3.6.

Proposition 3.8. The cohomology ring H ¤ ( « BP (R© ¹ )) admits the structure of a
Hopf algebra over H ¤ (B) dual to the Hopf algebra H ¤

BfB £ S0; ( « BP (R © ¹ )) + Bg
described in proposition 3.7. The bases a0; a1; a2; : : : and b0; b1; b2; : : : of the 0 and
1-components are dual to the homology bases 1; tu; u2; : : : and t; u; tu2; : : : .

Proof. For ­ xed k > 0, let us introduce the temporary abbreviations

Lk = H ¤
BfB £ S0; S( ¹ )k²

B g;

Mk = H ¤
BfB £ S0; (S( ¹ ) £B (S( ¹ ) £B ¢ ¢ ¢ £B S( ¹ ))) + Bg (1 + k factors S( ¹ )):

The H ¤ (B)-module Lk is free on classes x, y corresponding under the Thom iso-
morphism for k² to t, u, while Mk, by the K�unneth theorem, is the (1 + k)-fold
tensor product (H ¤ (B)t © H ¤ (B)u) «

Nk
(H ¤ (B)t © H ¤ (B)u) (over H ¤ (B)).

From the description (3.2) of ~® k, we see that the induced map

(~® k) ¤ : Mk ! H ¤
BfB £ S0; ( « BP (R © ¹ )) + Bg

is given by 1 « ( ¼ « 1 « ¼ : : : ) followed by Pontrjagin multiplication.
We claim that the inclusion i : Lk ! Mk given by the stable splitting (2.2) maps

x to t « (u « ¢ ¢ ¢ « u) and y to u « (u « ¢ ¢ ¢ « u). Indeed, consideration of products
involving the map ³ , as in the proof of lemma 2.5, shows that i(Lk) is contained
in (H ¤ (B)t © H ¤ (B)u) « (u « ¢ ¢ ¢ « u). Since ¼ (x) = ( ¡ 1)kx and ¼ (y) = ( ¡ 1)k + 1y,
i(x) and i(y) must be as claimed, up to multiplication by elements of H0(B). It
therefore su¯ ces to check the assertion in the easy case that B is a point.

Finally, we see that the composition

Lk ! Mk ! H ¤
BfB £ S0; ( « BP (R © ¹ )) + Bg

maps x to ( ¡ 1)ltuk and y to ( ¡ 1)luk + 1 if k = 2l ¡ 1 or 2l, so that tuk; uk + 1 are
dual to ak, ak + 1 if k is odd, and to bk, bk + 1 if k is even.

It is now a purely algebraic exercise to complete the proof of proposition 3.6.
We pass to rational homology and make the change of variable from (t; u) to (s; v)
where

t = s cosh(
p

pv);
p

pu = sinh(
p

pv);
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so that cosh(
p

pv) = (1 + pu2)1=2. An elementary calculation (using the addition
formulae for sinh and cosh) shows that

s2 = 1; ¢s = s « s; ¢v = s « v + v « s:

The dual Hopf algebra, for each component, is just the familiar divided poly-
nomial algebra. Writing a = a1, b = b1, we have dual bases 1; sv; v2; sv3; : : :
and 1; a; a2=2!; : : : for the homology and cohomology of the 0-component, and
s; v; sv2; v3; : : : and 1; b; b2=2!; : : : for the 1-component.

To relate these bases to those appearing in proposition 3.8, let us introduce two
power series

f (X) =
X

fn( ¶ )Xn = cosh(¶ sinh¡1(X))

and

g(X) =
X

gn( ¶ )Xn = sinh(¶ sinh¡1(X))

with coe¯ cients in the polynomial ring Q[¶ ]. Their derivatives are

f 0(X) = ¶ (1 + X2)¡1=2g(X); g0(X) = ¶ (1 + X2)¡1=2f (X);

and f (X) and g(X) satisfy the di¬erential equations

(1 + X2)f 00(X) + Xf 0(X) ¡ ¶ 2f (X) = 0; f (0) = 1; f 0(0) = 0;

(1 + X2)g00(X) + Xg0(X) ¡ ¶ 2g(X) = 0; g(0) = 0; g0(0) = ¶ ;

from which follow the recurrence relations

(n + 2)(n + 1)fn+ 2( ¶ ) = ( ¶ 2 ¡ n2)fn( ¶ ); f0( ¶ ) = 1; f1( ¶ ) = 0;

(n + 2)(n + 1)gn+ 2( ¶ ) = ( ¶ 2 ¡ n2)gn( ¶ ); g0( ¶ ) = 0; g1( ¶ ) = ¶ :

We obtain the explicit expansions

f (X) = 1 +
¶ 2

2!
X2 +

¶ 2( ¶ 2 ¡ 22)

4!
X4 + ¢ ¢ ¢ ;

g(X) = ¶ X +
¶ ( ¶ 2 ¡ 12)

3!
X3 +

¶ ( ¶ 2 ¡ 12)( ¶ 2 ¡ 32)

5!
X5 + ¢ ¢ ¢ ;

(1 + X2)¡1=2g(X) = ¶ X +
¶ ( ¶ 2 ¡ 22)

3!
X3 +

¶ ( ¶ 2 ¡ 22)( ¶ 2 ¡ 42)

5!
X5 + ¢ ¢ ¢ ;

(1 + X2)¡1=2f (X) = 1 +
( ¶ 2 ¡ 12)

2!
X2 +

( ¶ 2 ¡ 12)( ¶ 2 ¡ 32)

4!
X4 + ¢ ¢ ¢ :

Remark 3.9. The series for sinh( ¶ sinh¡1(X)) is well known. Indeed, substituting
an odd integer 2r+1 for ¶ we recover the formula, familiar from school mathematics,
expressing sin((2r + 1)³ ) as a polynomial in sin(³ ).

We shall calculate in the formal power series ring H ¤ ( « BP (R© ¹ ); Q)[[X ]]. Using
ha; xi 2 H ¤ (B) for the evaluation of a ­ brewise cohomology class a on a ­ brewise



The gauge group of an SO(3)-bundle over S2 779

homology class x, we have

X

i even

aiX
i =

X

i;j even

hai; vjiaj

j!
Xi

=
X

j even

1

j!
(ap¡1=2 sinh¡1(

p
pX))j

= cosh(ap¡1=2 sinh¡1(
p

pX))

= f(
p

pX);

where ¶ = ap¡1=2. The second equality follows from the fact that hai; vji is the
coe¯ cient of ui in (p¡1=2 sinh¡1(

p
pu))j . Similarly,

X

i od d

aiX
i =

X

i;j od d

hai; svjiaj

j!
X i

=
X

j od d

aj

j!
(1 + pX2)¡1=2

³
sinh¡1(

p
pX)

p
p

j́

= (1 + pX2)¡1=2 sinh(ap¡1=2 sinh¡1(
p

pX))

= ¶ ¡1f 0(
p

pX);

because hai; svji is the coe¯ cient of tui in (1 + pu2)¡1=2t(sinh¡1(
p

pu)=
p

p)j.
In the same way, with ¶ = bp¡1=2, we have

X

i even

biX
i = ¶ ¡1g0(

p
pX);

X

i od d

biX
i = g(

p
pX):

This completes the proof of proposition 3.6.

4. The application to gauge groups

Recall that SO(3) is topologically a 3-dimensional real projective space. More pre-
cisely, if W is an oriented 3-dimensional Euclidean vector space, there is a natural
identi­ cation

P (R © W ) ! SO(W )

from the real projective space to the special orthogonal group of W in which [1; 0]
maps to the identity 1 2 SO(W ). Our results about stable homotopy type of the
classifying spaces of gauge groups will be obtained by specializing the theory of x 3
to the case n = 3 of a 3-dimensional bundle ¹ .

Let G be a compact connected Lie group. The components of the loop space « G
and of the mapping space map(S2; BG) are indexed by the fundamental group of
G and labelled by a subscript ¬ 2 º 1(G).

Lemma 4.1. Let P ! S2 be a principal G-bundle, and let G P be the group of
sections of the bundle of groups P £G G ! S2 associated to the adjoint action of
G on itself. Then the classifying space B G P can be realized as

B G P ’ map¬ (S2; BG) ’ EG £G « ¬ G;
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where ¬ 2 º 1(G) classi¯es the bundle P and the action of G on « G is by conjuga-
tion.

This description of the classifying space of the gauge group G P is well known
(see [1] for the ­ rst homotopy equivalence and, for example, [5] for the second). We
present a new proof of the second equivalence in x 5.

The following cases can be handled by our methods.

(i) G = SO(3), ¬ 2 Z=2.

(ii) G = SU(2) = Spin(3).

(iii) G = U(2), ¬ 2 Z.

(iv) G = SO(3) £ SO(3), ¬ 2 Z=2 £ Z=2.

(v) G = SO(4), ¬ 2 Z=2.

(vi) G = Spin(4).

We shall concentrate on the cases (i), (iii) and (v).

Proof of proposition 1.1. Consider an oriented 3-dimensional real vector bundle ¹ ,
with Euclidean inner product, over a ­ nite complex B. The bundle of groups SO( ¹ ),
with ­ bre at b 2 B the special orthogonal group SO( ¹ b) of the ­ bre ¹ b, is naturally
identi­ ed with the projective bundle P (R© ¹ ). Thus proposition 3.2 gives a ­ brewise
stable decomposition of the ­ brewise loop space « BSO( ¹ ) over B, and corollary 3.3
gives a stable decomposition of the space « BSO( ¹ ).

Applying this result to the universal vector bundle ¹ of dimension 3 over BSO(3)
(or, more precisely, to its restriction to ­ nite skeleta) and noting that the sphere-
bundle S( ¹ ) is BSO(2) = BU(1), we obtain the splitting in proposition 1.1.

Proposition 4.2. For G = U(2), ¬ 2 Z, there are stable splittings

(EG £G « ¬ G) + ’

8
>>><

>>>:

BU(2)+ _
_

k> 1 od d

(BU(1)kH ^ BU(1) + ) for ¬ even;

_

k> 0 even

(BU(1)kH ^ BU(1)+ ) for ¬ odd:

Outline proof. The quotient map U(2) ! SO(3) that factors out the centre of
U(2) gives homotopy equivalences « ¬ U(2) ’ « ¬ (m od 2)SO(3). Associated to a com-
plex vector bundle ± of dimension 2, with Hermitian inner product, there is the
3-dimensional real vector bundle ¹ , which is the space of skew-Hermitian endomor-
phisms of ± . Taking ± to be the universal bundle over BU(2), we can identify S( ¹ )
with B(U(1) £ U(1)) and ² with the Hopf bundle over the ­ rst factor.

In order to state the next result, it is convenient to introduce some abbreviations.
For k > 0 and k1; k2 > 0, we write

X(k) = BU(2)kL; Y (k1; k2) = (BU(1) £ BU(1))k1(H1«H2)©k2(H1«H¤
2 );

where L is the determinant bundle of the canonical two-dimensional complex vector
bundle over BU(2) and H1 and H2 are the Hopf line bundles over the ­ rst and
second factors of BU(1) £ BU(1).
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Proposition 4.3. For G = SO(4), ¬ 2 Z=2, the space (EG£G « ¬ G) + splits stably
as

BSO(4) + _
_

k od d

(X(k) _ X(k)) _
_

k1;k2 od d

Y (k1; k2) for ¬ = 0;

_

k1;k2 even

Y (k1; k2) for ¬ = 1;

where the summands X(k) for k > 0 and Y (k1; k2) for k1; k2 > 0 are as de¯ned in
the text above.

Outline proof. This time we have an isomorphism SO(4)=f§1g ! SO(3) £ SO(3)
giving homotopy equivalences « ¬ SO(4) ! « ¬ SO(3) £ « ¬ SO(3). The homogeneous
spaces SO(4)=(SO(2)£SO(2)) and SO(4)=U(2) are S2£S2 and S2, respectively.

Of course, the space of pointed maps map¤ (S2; BG) = « G admits a ­ ner stable
splitting in each case, provided by the stable splitting of « S3 as a wedge of even-
dimensional spheres.

5. The ¯brewise classifying space

Let G be a compact Lie group. Then G may be embedded as a closed subgroup of a
contractible topological group E. For example, one may take G ! E to be a faithful
unitary representation G ! U (H) of G on an in­ nite-dimensional separable Hilbert
space H . Alternatively, one may use the general construction, due to Milgram and
Steenrod and valid for any topological group G, which is described in [7]. The group
G acts freely on the contractible space E, by right multiplication. We assume, as
is the case for the two constructions mentioned, that the projection E ! E=G is
a principal G-bundle with base an ANR. Then the homogeneous space E=G, with
basepoint the coset G=G of the identity, is a convenient model for the classifying
space BG of G. The group G acts on itself and on E by conjugation and on E=G
by left multiplication, preserving the basepoint.

The next proposition makes precise the informal statement that inner automor-
phisms of the group G act homotopically trivially on the (pointed) classifying space
BG. For background and further details, see [5, x 3].

Proposition 5.1. There is a natural pointed ¯bre homotopy equivalence

EG £G BG ! BG £ BG

from the ¯brewise classifying space of the bundle of groups EG £G G ! BG to the
trivial bundle BG £ BG ! BG pointed by the diagonal map.

Proof. Using the model E=G of the classifying space, we can write down an explicit
trivialization. The space E £G E=G is a quotient of E £ E. We map the class [x; y],
where x; y 2 E, to ([x]; [xy]) 2 E=G £ E=G.

The following corollary, in which map¤ denotes the space of based maps, is
obtained in [5, corollary 3.4] by applying the ­ brewise pointed mapping space func-
tor map¤

BG(BG £ F; ¡ ) to the equivalence in proposition 5.1.
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Corollary 5.2. Let Z be a ¯nite pointed complex. Then there is a natural pointed
¯bre homotopy equivalence

EG £G map¤ (Z; BG) ’ map(Z; BG)

over BG.

The second equivalence in lemma 4.1 follows from corollary 5.2 by taking Z = S2

and identifying map¤ (S2; BG) = « 2BG with « G in the usual way. If we work with
the model E=G for BG, a little care is necessary. Let © be the homotopy-­ bre of the
projection E ! E=G. Then we have G-equivariant maps G ! © and « (E=G) ! ©
which are (non-equivariant) homotopy equivalences. These induce ­ bre homotopy
equivalences

EG £G « G ! EG £G « © Á EG £G « 2(E=G):

6. Indecomposability

We shall show that the pointed spaces BSO(3) and BU(1)kH , for k > 1, are stably
indecomposable at the prime 2. In this section `H ¤ ’ will denote F2-cohomology and
`A’ will be the mod 2 Steenrod algebra.

Let V be the subgroup of SO(3) consisting of the diagonal matrices; it is an
elementary abelian 2-group, which we regard as an F2-vector space. Restriction
gives an isomorphism from H ¤ (BSO(3)) to the Dickson algebra of invariants in
H ¤ (BV ) under the group GL(V ) of automorphisms of V . If we write ¶ , · , ¸ for
the non-zero elements of the dual vector space V ¤ , then we have

H ¤ (BV )GL (V ) = F2[ ¬ ; ­ ]; where ¬ = ¶ · + · ¸ + ¸ ¶ ; ­ = ¶ · ¸ :

Since H ¤ (BV ) is injective in the category of unstable A-modules, every A-module
endomorphism of H ¤ (BSO(3)) = H ¤ (BV )GL (V ) extends to an A-module endomor-
phism of H ¤ (BV ). Given the well-known description of the ring of A-module endo-
morphisms of H ¤ (BV ) as F2[End(V ¤ )], it is an elementary exercise to deduce the
structure of the endomorphism ring for BSO(3).

Lemma 6.1. The ring of A-module endomorphisms of H ¤ (BV )GL (V ) = F2[¬ ; ­ ] is
of dimension 3 over F2, generated by 1, e, n, with e2 = e, n2 = 0, en = e = en,
where e(1) = 1, e( ¬ i­ j) = 0 if 2i + 3j > 0, n( ¬ i­ j) = 0 if j > 0, n( ¬ i) =
( ¶ i + · i + ¸ i)2.

It follows that there are no idempotents in the ring of A-module endomorphisms
of ~H ¤ (BSO(3)) other than 0 and 1. Hence BSO(3) is stably indecomposable at 2.

A similar argument can be used to show that the only A-module endomorphisms
of ~H ¤ (BU(1)kH ), for k > 1, are 0 and 1. But this is easily seen directly, by com-
puting the Steenrod squares in terms of binomial coe¯ cients.

Acknowledgments

We are grateful to John Hubbuck and Lionel Schwartz for conversations on stable
indecomposability. S.B. and M.S. were supported, respectively, by the EPSRC and
an EC Marie Curie fellowship.



The gauge group of an SO(3)-bundle over S2 783

References

1 M. F. Atiyah and R. Bott. The Yang{Mills equations over Riemann surfaces. Proc. R. Soc.
Lond. A 308 (1982), 523{615.

2 R. L. Cohen. Stable proofs of stable splittings. Math. Proc. Camb. Phil. Soc. 88 (1980),
149{151.

3 M. C. Crabb. Fibrewise homology. Glasgow Math. J. 43 (2001), 199{208.

4 M. C. Crabb and I. M. James. Fibrewise homotopy theory (Springer, 1998).

5 M. C. Crabb and W. A. Sutherland. Counting homotopy types of gauge groups. Proc. Lond.
Math. Soc. 81 (2000), 747{768.

6 S. Tsukuda. On the cohomology of the classifying space of a certain gauge group. Proc. R.
Soc. Edinb. A 127 (1997), 407{409.

7 R. A. Piccinini and M. Sprea¯co. The Milgram{Steenrod construction of classifying spaces
for topological groups. Expo. Math. 16 (1998), 97{130.

(Issued 17 August 2001)


