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a b s t r a c t

We study the analytic torsion of a cone over an orientable odd dimensional compact
connected Riemannian manifold W . We prove that the logarithm of the analytic torsion
of the cone decomposes as the sum of the logarithm of the root of the analytic torsion of
the boundary of the cone, plus a topological term, plus a further term that is a rational linear
combination of local Riemannian invariants of the boundary. We show that this last term
coincides with the anomaly boundary term appearing in the Cheeger Müller theorem [3,
2] for a manifold with boundary, according to Brüning and Ma (2006) [5]. We also prove
Poincaré duality for the analytic torsion of a cone.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and statement of the results

Analytic torsionwas originally introduced by Ray and Singer in [1], as an analytic counterpart of the Reidemeister torsion
of Reidemeister, Franz and de Rham. The first important result in this context, nowadays known as the Cheeger–Müller
Theorem, was achieved by Müller [2] and Cheeger [3], who proved that for a compact connected Riemannian manifold
without boundary, the analytic torsion and the Reidemeister torsion coincide, as conjectured by Ray and Singer in [1]. The
next natural question along this line of investigation was to answer the same problem for manifolds with boundary. It was
soon realized that the answer to such a question was a highly non trivial one. Lück proved in [4] that in the case of a product
metric near the boundary the term is topological, and depends only upon the Euler characteristic of the boundary. The
answer to the general case required 20 more years of work, and is contained in a recent paper of Brüning and Ma [5] (see
also [6]). The new contribution of the boundary, beside the topological one given by Lück, called an anomaly boundary term,
has a quite complicated expression, but only depends on some local quantities constructed from the metric tensor near the
boundary (see Section 2.3 for details). The next natural step is to study the analytic torsion for spaces with singularities,
and the simplest singular space is a cone over a manifold, CW . Cones and spaces with conical singularities have been deeply
investigated by Cheeger in a series of works [3,7] (see also [8]). Due to this investigation, all information on L2-forms, the
Hodge theory, and the Laplace operator on forms on CW are available. Further information on the class of regular singular
operators, that contain the Laplace operator on CW , are given in the works of Brüning and Seely (see in particular [9]). As
a result it is not difficult to obtain a complete description of the eigenvalues of the Laplace operator on CW in terms of the
eigenvalues of the Laplace operator on W . With all these tools available, namely on one side the formula for the boundary
term, and on the other some representation of the eigenvalues of the Laplace operator on the cone, it is natural to tackle the
problem of investigating the analytic torsion of CW . A possible extension of the Cheeger Müller theorem could follow, or
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not. Indeed, in case of conical singularity such an extension would require the intersection R torsion more than the classical
R torsion (see [10]). However, if the cone is a rational homology manifold, then the two torsions coincide (see [3], end of
Section 2), and the classical Cheeger Müller theorem is expected to extend. If C(W ) is the chain complex associated to some
cell decomposition ofW , then the algebraic mapping cone Cone(C(W )) gives the chain complex for a cell decomposition of
CW . It is then easy to see that the R torsion of CW only depends on the choice of a base for the zero dimensional homology.
Even if Poincaré duality does not hold, it does hold between the top and bottom dimension, and thereforewe can fix the base
for the zero homology using the Riemannian structure and harmonic forms (see [1] Section 3, see also [11]). The result for
the R torsion is τ(CW ) =

√
Vol(CW ). On the other side, one wants the analytic torsion. The analytic tools necessary to deal

with the zeta functions appearing in the definition of the analytic torsion, constructed with the eigenvalues of the Laplace
operator on CW , are available by works of Spreafico [12–14]. In these works, the zeta function associated to a general class
of double sequences is investigated. In particular, a decomposition result is presented and formulas for the zeta invariants
of a decomposable sequence are given (see Section 2.4). This technique applies to the case of the zeta functions appearing in
the definition of the analytic torsion on CW . This approach was used in [15] to study the cone over an odd low dimensional
sphere, and is applied here to the general case, proving a conjecture stated in [15] (see Corollary 1.1). This method was
originally used to deal with the zeta determinant of the Laplace operator on a cone in [16] (see also [17]), and consequently
in [18,19,11,15] to study the zeta determinants of the Laplacian on forms and analytic torsion type invariants. In particular,
in [19] a general formula for the analytic torsion of a cone is given. The formula is obtained using a method introduced by
one of the authors of this paper in some older works [16,13] and some results of Lesch [20,21], and it is not particularly
illuminating as it is stated, since essentially it is just an application of the formulas given in those works. In the abstract
of [19], it is stated that the result is obtained ‘by generalizing some computational methods of M. Spreafico’, however such
generalization is already contained in [13,18], and an even further generalization is contained in the preprint [17], of which
the author of [19] seems to be unaware.

We are now ready to state the main results of this paper (we refer to the on line version of this work [22] for further
developments and results), for we fix some notation. Let (W , g) be an orientable compact connected Riemannian manifold
of finite dimension m without boundary and with Riemannian structure g . We denote by ClW the cone over W with the
Riemannian structure

dx ⊗ dx + x2g,

on CW − {pt}, where pt denotes the tip of the cone and 0 < x ≤ l (see Section 3.1 for details). The formal Laplace operator
on forms on CW −{pt} has a suitable L2-self adjoint extension∆abs/rel on ClW with absolute or relative boundary conditions
on the boundary ∂ClW (see Section 3.3 for details), with pure discrete spectrum Sp∆abs/rel. This permits us to define the
associated zeta function

ζ (s,∆abs/rel) =

−
λ∈Sp+∆abs/rel

λ−s,

for Re(s) > m+1
2 . This zeta function has a meromorphic analytic continuation to the whole complex s-plane with at most

isolated poles (see Section 4 for details). It is then possible to define the analytic torsion of the cone (the trivial representation
of the fundamental group is assumed)

log Tabs/rel(ClW ) =
1
2

m+1−
q=0

(−1)qqζ ′(0,∆(q)abs/rel).

In this setting, we have the following results (analogous results with relative boundary conditions also follow by Poincaré
duality on the cone, proved in Theorem 4.1).

Theorem 1.1. The analytic torsion on the cone ClW on an orientable compact connected Riemannian manifold (W , g) of odd
dimension 2p − 1 is

log Tabs(ClW ) =
1
2

p−1−
q=0

(−1)q+1rkHq(W ; Q) log
2(p − q)

l
+

1
2
log T (W , l2g)+ S(∂ClW ),

where the singular term S(∂ClW ) only depends on the boundary of the cone:

S(∂ClW ) =
1
2

p−1−
q=0

p−1−
j=0

j−
k=0

Res0
s=0

Φ2k+1,q(s)


−
1
2 − k
j − k

 q−
h=0

(−1)h Res1
s=j+ 1

2

ζ

s, ∆̃(h)


(q − p + 1)2(j−k),

where the functions Φ2k+1,q(s) are some universal functions, explicitly known by some recursive relations, and ∆̃ is the Laplace
operator on forms on the section of the cone.

It is important to observe that the singular term S(∂ClW ) is a universal linear combination of local Riemannian invariants
of the boundary, for the residues of the zeta function of the section are such a linear combination (see Section 7 for details).
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Theorem 1.2. With the notation of Theorem 1.1, the singular term of the analytic torsion of the cone ClW coincides with the
anomaly boundary term of Brüning and Ma, namely S(∂ClW ) = ABM,abs(∂ClW ).

See Section 2.3 for the definition of ABM,abs(∂ClW ). IfW is an odd sphere, we have:

Corollary 1.1. The natural extension of the Cheeger Müller theorem for a manifold with boundary is valid for the cone over an
odd dimensional sphere, namely

log Tabs(ClS2p−1) = log τ(ClS2p−1)+ ABM,abs(∂ClS2p−1).

In particular, if a denotes the radius of the sphere, then

ABM,abs(∂ClS2p−1
a ) =

(2p − 1)!
4p(p − 1)!

p−1−
k=0

1
(p − 1 − k)!(2k + 1)

k−
j=0

(−1)k−j2j+1

(k − j)!(2j + 1)!!
a2k+1.

The result in the corollary should be understood as a particular case of the still unproved general result that the analytic
torsion and the intersection R-torsion of a cone coincides up to the boundary term, for the intersection R-torsion is the
classical R-torsion for the cone over a sphere. We point out that we also have a purely combinatoric proof of the result
stated in Corollary 1.1, independent from Theorem 1.2. To contain space, we omit the proof here; it will appear somewhere
else (see also [22]).

We conclude with a remark on the even dimensional case, namely when the dimension of the section W is even. It is
clear enough that all the arguments used in the odd dimensional case go through also in the even dimensional case, and that
the anomaly boundary term is the one of Brüning and Ma. So we obtain formulas for the analytic torsion as in the theorems
above. However, in the even dimensional case some further term appears: this was described in some detail for W = S2
in [11]. Since we do not have a clear understanding of this new term yet, we prefer to omit the not particularly illuminating
formulas for the even dimensional case here.

2. Preliminaries and notation

In this section we introduce some notation necessary in the following. As usual (W , g) is a compact connected oriented
Riemannian manifold.

2.1. Manifolds with boundary

If W has a boundary ∂W , then there is a natural splitting near the boundary of ΛW as a direct sum of vector bundles
ΛT ∗∂W ⊕ N∗W , where N∗W is the dual to the normal bundle to the boundary. Locally, let ∂x denote the outward
pointing unit normal vector to the boundary, and dx the corresponding one form, then near the boundary we have the
collar decomposition Coll(∂W ) = (−ϵ, 0] × ∂W , and if y is a system of local coordinates on the boundary, then (x, y)
is a local system of coordinates in Coll(∂W ). The metric tensor decomposes near the boundary in this local system as
g = dx ⊗ dx + g∂(x), where g∂(x) is a family of metric structures on ∂W such that g∂(0) = i∗g , where i : ∂W → W
denotes the inclusion. The smooth forms on W near the boundary decompose as ω = ωtan + ωnorm, where ωnorm is the
orthogonal projection on the subspace generated by dx, andωtan is in C∞(W )⊗Λ(∂W ). Wewriteω = ω1 +dx∧ω2, where
ωj ∈ C∞(W )⊗Λ(∂W ), and

⋆ ω2 = −dx ∧ ⋆ω. (2.1)
Define absolute and relative boundary conditions by

Babs(ω) = ωnorm|∂W = ω2|∂W = 0, Brel(ω) = ωtan|∂W = ω1|∂W = 0.
Note that, ifω ∈ Ωq(W ), then Babs(ω) = 0 if and only if Brel(⋆ω) = 0, Brel(ω) = 0 implies Brel(dω) = 0, and Babs(ω) = 0

implies Babs(dĎω) = 0. Let B(ω) = B(ω) ⊕ B((d + dĎ)(ω)). Then the operator ∆ = (d + dĎ)2 with boundary conditions
B(ω) = 0 is self adjoint, and if B(ω) = 0, then1ω = 0 if and only if (d + dĎ)ω = 0. Note that B correspond to

Babs(ω) = 0 if and only if

ωnorm|∂W = 0,
(dω)norm|∂W = 0, (2.2)

Brel(ω) = 0 if and only if

ωtan|∂W = 0,
(dĎω)tan|∂W = 0. (2.3)

2.2. The form valued zeta functions and the analytic torsion

The Laplace operator ∆(q) with boundary conditions Babs/rel has a pure point spectrum Sp∆(q)abs/rel consisting of real non

negative eigenvalues. The sequence Sp+∆
(q)
abs/rel is a totally regular sequence of spectral type accordingly to Section 2.4, and

the forms valued zeta function is the associated zeta function, defined by
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ζ (s,∆(q)abs/rel) = ζ (s, Sp+∆
(q)
abs/rel) =

−
λ∈Sp+∆

(q)
abs/rel

λ−s,

when Re(s) > m
2 . The analytic torsion Tabs/rel((W , g); ρ) of (W , g)with respect to the representation ρ : π1(W ) → O(k,R)

is defined by

log Tabs/rel((W , g); ρ) =
1
2

m−
q=1

(−1)qqζ ′(0,∆(q)abs/rel).

The following duality holds for the analytic torsion [4]

log Tabs((W , g); ρ) = (−1)m+1 log Trel((W , g); ρ). (2.4)

Wewill omit the representation in the notation whenever wemean the trivial representation. Next, recall some classical
results of the Hodge theory in order to define closed, coclosed, exact and coexact zeta functions. We restrict ourselves to
the case of a manifold without boundary (see [1] for the case of a manifold with boundary). Setting Hq(W , Eρ) = {ω ∈

Ω(q)(W , Eρ) | 1ω = 0}, the space of the q-harmonic forms, we have the Hodge decomposition

Ωq(W , Eρ) = Hq(W , Eρ)⊕ dΩq−1(W , Eρ)⊕ dĎΩq+1(W , Eρ). (2.5)

This induces a decomposition of the eigenspace of a given eigenvalue λ ≠ 0 of ∆(q) into the spaces of closed forms and
coclosed forms: E

(q)
λ = E

(q)
λ,cl ⊕ E

(q)
λ,ccl, where

E
(q)
λ,cl = {ω ∈ Ωq(W , Eρ) | 1ω = λω, dω = 0}, E

(q)
λ,ccl = {ω ∈ Ωq(W , Eρ) | 1ω = λω, dĎω = 0}.

Define exact forms and coexact forms by

E
(q)
λ,ex = {ω ∈ Ωq(W , Eρ) | 1ω = λω, ω = dα}, E

(q)
λ,cex = {ω ∈ Ωq(W , Eρ) | 1ω = λω, ω = dĎα}.

Note that, if λ ≠ 0, then E
(q)
λ,cl = E

(q)
λ,ex, and E

(q)
λ,ccl = E

(q)
λ,cex, and we have an isometry

φ : E
(q)
λ,cl → E

(q−1)
λ,cex , φ : ω →

1
√
λ
dĎω, (2.6)

whose inverse is 1
√
λ
d. Also, the restriction of the Hodge star defines an isometry ⋆ : dĎΩ(q+1)(W ) → dΩ(m−q−1)(W ), and

that composed with the previous one gives the isometries:

1
√
λ
d⋆ : E

(q)
λ,cl → E

(m−q+1)
λ,cex ,

1
√
λ
dĎ⋆ : E

(q)
λ,ccl → E

(m−q−1)
λ,ex . (2.7)

By the very definition, we have

ζ (s,∆(q)) =

−
λ∈Sp+∆

(q)

dim E
(q)
λ λ

−s
= ζcl(s,∆(q))+ ζccl(s,∆(q)),

where

ζcl(s,∆(q)) =

−
λ∈Sp+∆

(q)

dim E
(q)
λ,clλ

−s, ζccl(s,∆(q)) =

−
λ∈Sp+∆

(q)

dim E
(q)
λ,cclλ

−s.

Since, by (2.6), ζcl(s,∆(q)) = ζccl(s,∆(q−1)), we obtain from the above relations the following formulas for the torsion of
a closedm dimensional manifoldW :

log T ((W , g); ρ) =
1
2

m−
q=1

(−1)qqζ ′(0,∆(q)) =
1
2

m−
q=1

(−1)qζ ′

cl(0,∆
(q)) = −

1
2

m−1−
q=0

(−1)qζ ′

ccl(0,∆
(q)).

In particular, again using duality, for an odd dimensional manifoldW of dimensionm = 2p − 1,

log T ((W , g); ρ) =

p−1−
q=1

(−1)qζ ′

cl(0,∆
(q))+

(−1)p

2
ζ ′

cl(0,∆
(p))

= −

p−2−
q=0

(−1)qζ ′

ccl(0,∆
(q))+

(−1)p

2
ζ ′

ccl(0,∆
(p−1)). (2.8)
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2.3. The Cheeger Müller theorem for manifolds with boundary, and the anomaly boundary term of Brüning and Ma

In case of a smooth orientable compact connect Riemannian manifold (W , g)with boundary ∂W , for any representation
ρ of the fundamental group (for simplicity assume rk(ρ) = 1), the analytic torsion is given by the Reidemeister torsion plus
some further contributions. It was shown by Cheeger in [3] that this further contribution only depends on the boundary,
and Lück proved the following formula in the case of a product metric near the boundary, where χ(X) denotes the Euler
characteristic of X [4]

log Tabs((W , g); ρ) = log τ((W , g); ρ)+
1
4
χ(∂W ) log 2.

In the general case a further contribution appears, that measures how the metric is far from a product metric. A formula
for this new anomaly boundary contribution is contained in a recent result of Brüning and Ma [5]. More precisely, in [5]
(Equation (0.6)) is given a formula for the ratio of the analytic torsion of two metrics, g1 and g0. Using their notation for
Z/2 graded algebras, we identify an antisymmetric endomorphism φ of finite dimensional vector space V (over a field of
characteristic zero) with the element φ̂ =

1
2

∑m
j,k=1⟨φ(vj), vk⟩v̂j ∧ v̂k, of

Λ2V . For the elements ⟨φ(vj), vk⟩ are the entries of
the tensor representing φ in the base {vk}, and this is an antisymmetric matrix. Now assume that r is an antisymmetric
endomorphism of Λ2V . Then, (Rjk = ⟨r(vj), vk⟩) is a tensor of two forms in Λ2V . We extend the above construction
identifying R with the element

R̂ =
1
2

m−
j,k=1

⟨r(vj), vk⟩ ∧ v̂j ∧ v̂k, (2.9)

ofΛ2V ∧ Λ2V . This can be generalized to higher dimensions. In particular, all the construction can be done taking the dual
V ∗ instead of V . Accordingly to [5], we define the following forms

Sj =
1
2

m−1−
k=1

(i∗ωj − i∗ω0)0k ∧ ê∗

k

i∗Ωj =
1
2

m−1−
k,l=1

i∗Ωj,kl ∧ ê∗

k ∧ ê∗

l , Θ̂ =
1
2

m−1−
k,l=1

Θkl ∧ ê∗

k ∧ ê∗

l .

(2.10)

Here, ωj are the connection one forms, and Ωj, j = 0, 1, the curvature two forms associated to the metrics g0 and g1,
respectively, whileΘ is the curvature two form of the boundary (with the metric induced by the inclusion), and {ek}m−1

k=0 is
an orthonormal base of TW (with respect to the metric g). Then, set

B(∇j) =
1
2

∫ 1

0

∫ B

e−
1
2 Θ̂−u2S2

j

∞−
k=1

1
0
 k
2 + 1

uk−1Sk
j du. (2.11)

Taking g1 = g , and g0 an opportune deformation of g , that is a product metric near the boundary, and a flat vector bundle
F , the formula of [5] reads

log
Tabs((W , g1); ρ)
Tabs((W , g0); ρ)

=
1
2

∫
∂W

B(∇1).

Note that the right side of this equation is (as expected) a local quantity, and is well defined if there exists a regular collar
neighborhood of the boundary. If this is the case, we define the Brüning and Ma anomaly boundary term (with absolute BC)
by

ABM,abs(∂W ) =
1
2

∫
∂W

B(∇1), (2.12)

and we have

log Tabs((W , g); ρ) = log τ((W , g); ρ)+
1
4
χ(∂W ) log 2 + ABM,abs(∂W ). (2.13)

2.4. Zeta determinants

This section is essentially contained in Section 4 of [15], to which we refer for details. Given a sequence S = {an}∞n=1 of
spectral type, we define the zeta function by

ζ (s, S) =

∞−
n=1

a−s
n ,
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when Re(s) > e(S), and by analytic continuation otherwise, and for all λ ∈ ρ(S) = C − S, we define the Gamma function
by the canonical product,

1
0(−λ, S)

=

∞∏
n=1


1 +

−λ

an


e

g(S)∑
j=1

(−1)j
j

(−λ)j

ajn . (2.14)

Given a double sequence S = {λn,k}
∞

n,k=1 of non vanishing complex numbers with a unique accumulation point at the
infinity, finite exponent s0 = e(S) and genus p = g(S), we use the notation Sn (Sk) to denote the simple sequence with fixed
n (k), we call the exponents of Sn and Sk the relative exponents of S, and we use the notation (s0 = e(S), s1 = e(Sk), s2 =

e(Sn)); we define relative genus accordingly.

Definition 2.1. Let S = {λn,k}
∞

n,k=1 be a double sequence with finite exponents (s0, s1, s2), genus (p0, p1, p2), and positive
spectral sectorΣθ0,c0 . LetU = {un}

∞

n=1 be a totally regular sequence of spectral type of infinite order with exponent r0, genus
q, and domain Dφ,d. We say that S is spectrally decomposable over U with power κ , length ℓ and asymptotic domain Dθ,c ,
with c = min(c0, d, c ′), θ = max(θ0, φ, θ ′), if there exist positive real numbers κ, ℓ (integer), c ′, and θ ′, with 0 < θ ′ < π ,
such that:

(1) the sequence u−κ
n Sn =


λn,k
uκn

∞

k=1
has spectral sector Σθ ′,c′ , and is a totally regular sequence of spectral type of infinite

order for each n;
(2) the logarithmic 0-function associated to Sn/uκn has an asymptotic expansion for large n uniformly in λ for λ in Dθ,c , of

the following form

log0(−λ, u−κ
n Sn) =

ℓ−
h=0

φσh(λ)u
−σh
n +

L−
l=0

Pρl(λ)u
−ρl
n log un + o(u−r0

n ), (2.15)

where σh and ρl are real numbers with σ0 < · · · < σℓ, ρ0 < · · · < ρL, the Pρl(λ) are polynomials in λ satisfying the
condition Pρl(0) = 0, ℓ and L are the larger integers such that σℓ ≤ r0 and ρL ≤ r0.

Define the following functions, (Λθ,c =

z ∈ C | | arg(z − c)| =

θ
2


, oriented counter clockwise):

Φσh(s) =

∫
∞

0
ts−1 1

2π i

∫
Λθ,c

e−λt

−λ
φσh(λ)dλdt. (2.16)

By Lemma 3.3 of [14], for all n, we have the expansions:

log0(−λ, Sn/uκn) ∼

∞−
j=0

aαj,0,n(−λ)
αj +

p2−
k=0

ak,1,n(−λ)k log(−λ),

φσh(λ) ∼

∞−
j=0

bσh,αj,0(−λ)
αj +

p2−
k=0

bσh,k,1(−λ)
k log(−λ),

(2.17)

for large λ in Dθ,c . We set (see Lemma 3.5 of [14])

A0,0(s) =

∞−
n=1


a0,0,n −

ℓ−
h=0

bσh,0,0u
−σh
n


u−κs
n ,

Aj,1(s) =

∞−
n=1


aj,1,n −

ℓ−
h=0

bσh,j,1u
−σh
n


u−κs
n , 0 ≤ j ≤ p2.

(2.18)

Theorem 2.1. Let S be spectrally decomposable over U as in Definition 2.1. Assume that the functionsΦσh(s) have at most simple
poles for s = 0. Then, ζ (s, S) is regular at s = 0, and

ζ (0, S) = −A0,1(0)+
1
κ

ℓ−
h=0

Res1
s=0

Φσh(s) Res1
s=σh

ζ (s,U),

ζ ′(0, S) = −A0,0(0)− A′

0,1(0)+
γ

κ

ℓ−
h=0

Res1
s=0

Φσh(s) Res1
s=σh

ζ (s,U)

+
1
κ

ℓ−
h=0

Res0
s=0

Φσh(s) Res1
s=σh

ζ (s,U)+

ℓ−
′

h=0

Res1
s=0

Φσh(s) Res0
s=σh

ζ (s,U),

where the notation
∑

′ means that only the terms such that ζ (s,U) has a pole at s = σh appear in the sum.
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Remark 2.1. We split the formula in Theorem 2.1 in a regular part and a singular part as follows. We call ζreg(0, S) =

−A0,1(0) and ζ ′
reg(0, S) = −A0,0(0) − A′

0,1(0) the regular parts of ζ (0, S) and of ζ ′(0, S), respectively. We call ζsing =

ζ (0, S)− ζreg(0, S), and ζ ′

sing = ζ ′(0, S)− ζ ′
reg(0, S) the singular parts.

Corollary 2.1. Let S(j) = {λ(j),n,k}
∞

n,k=1, j = 1, . . . , J , be a finite set of double sequences that satisfy all the requirements
of Definition 2.1 of spectral decomposability over a common sequence U, with the same parameters κ, ℓ, etc., except that the
polynomials P(j),ρ(λ) appearing in condition (2) do not vanish for λ = 0. Assume that some linear combination

∑J
j=1 cjP(j),ρ(λ),

with complex coefficients, of such polynomials does satisfy this condition, namely that
∑J

j=1 cjP(j),ρ(λ) = 0. Then, the linear
combination of the zeta function

∑J
j=1 cjζ (s, S(j)) is regular at s = 0 and satisfies the linear combination of the formulas given

in Theorem 2.1.

We conclude recalling some formulas for the zeta determinants of some simple sequences. The results are known to
specialists, and can be found in different places. We will use the formulation of [23]. For positive real l and q, define the non
homogeneous quadratic Bessel zeta function by

z(s, ν, q, l) =

∞−
k=1


j2ν,k
l2

+ q2
−s

,

for Re(s) > 1
2 . Then, z(s, ν, q, l) extends analytically to a meromorphic function in the complex plane with simple poles at

s =
1
2 ,−

1
2 ,−

3
2 , . . . . The point s = 0 is a regular point and

z(0, ν, q, l) = −
1
2


ν +

1
2


, z ′(0, ν, q, l) = − log

√
2π l

Iν(lq)
qν

. (2.19)

In particular, taking the limit for q → 0,

z ′(0, ν, 0, l) = − log
√
π lν+

1
2

2ν−
1
20(ν + 1)

.

3. Geometric setting and Laplace operator

3.1. The finite metric cone

Let (W , g) be an orientable compact connected Riemannian manifold of finite dimensionmwithout boundary and with
Riemannian structure g . Embedding W in the opportune Euclidean space Rk, and Rk in some hyperplane of Rk+h, with
opportune h, disconnected from the origin, a geometric realization of the cone CW is the given by the set of the finite length
l line segments joining the origin to the embedded copy of W . Let x be the euclidean geodesic distance from the origin. We
equip CW −{p}with the Riemannian structure dx⊗dx+x2g , andwe denote by C(0,l]W the space (0, l]×W with this metric.
We denote by ClW the compact space C(0,l]W = C(0,l]W ∪{p}, andwe call it the (completed finite metric) cone overW . We call
the subspace {l} × W of ClW , the boundary of the cone, and we denote it by ∂ClW . This is of course diffeomorphic toW , and
isometric to (W , l2g). Following common notation, wewill call (W , g) the section of the cone. Also following usual notation,
a tilde will denote operations on the section (of course g̃ = g), and not on the boundary. All the results of Section 2.1 are
valid. In particular, given a local coordinate system y onW , then (x, y) is a local coordinate system on the cone.

We now give the explicit form of ⋆, dĎ and∆. See [7,8] Section 5 for details. If ω ∈ Ωq(C(0,l]W ), set
ω(x, y) = f1(x)ω1(y)+ f2(x)dx ∧ ω2(y),

with smooth functions f1 and f2, and ωj ∈ Ω(W ). Then a straightforward calculation gives

⋆ ω(x, y) = xm−2q+2f2(x)⋆̃ω2(y)+ (−1)qxm−2qf1(x)dx ∧ ⋆̃ω1(y), (3.1)

dω(x, y) = f1(x)d̃ω1(y)+ ∂xf1(x)dx ∧ ω1(y)− f2(x)dx ∧ d̃ω2(y),
dĎω(x, y) = x−2f1(x)d̃Ďω1(y)−


(m − 2q + 2)x−1f2(x)+ ∂xf2(x)


ω2(y)− x−2f2(x)dx ∧ d̃Ďω2(y),

(3.2)

1ω(x, y) =

−∂2x f1(x)− (m − 2q)x−1∂xf1(x)


ω1(y)+ x−2f1(x)1̃ω1(y)− 2x−1f2(x)d̃ω2(y)

+ dx ∧

x−2f2(x)1̃ω2(y)+ ω2(y)


−∂2x f2(x)− (m − 2q + 2)x−1∂xf2(x)

+ (m − 2q + 2)x−2f2(x)

− 2x−3f1(x)d̃Ďω1(y)


. (3.3)

3.2. Riemannian tensors on the cone

We give here the explicit form of the main Riemannian quantities on the cone. Recall that a tilde denotes quantities
relative to the section, that we have local coordinate (x, y1, . . . , ym) on ClW , and that the metric is g1 = dx ⊗ dx + x2g . Let
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{bk}mk=1 be a local orthonormal base of TW , and {b∗

k}
m
k=1 the associated dual base. Then, e0 = ∂x, e∗

0 = dx, ek =
1
x bk, e

∗

k =

xb∗

k , 1 ≤ k ≤ m. Direct calculations give Cartan structure constants cjk0 = 0, 1 ≤ j, k ≤ m, c0kl = −ck0l = −
δkl
x , 1 ≤ k, l ≤

m, cjkl =
1
x c̃jkl, 1 ≤ j, k, l ≤ m, and the Christoffel symbols are 00kl = 0, 1 ≤ k, l ≤ m,0j0k = −0jk0 =

δjk
x , 1 ≤ j, k ≤

m,0jkl =
1
x 0̃jkl, 1 ≤ j, k, l ≤ m. The connection one form matrix relative to the metric g1 has components

ω1,00 = 0,

ω1,0j = −ω1,j0 = −
1
x
e∗

j = −b∗

j , 1 ≤ j ≤ m,

ω1,jk =

m−
h=1

0hkje∗

h =
1
x

m−
h=1

0̃hkje∗

h =

m−
h=1

0̃hkjb∗

h = ω̃jk, 1 ≤ j, k ≤ m.

(3.4)

To compute the curvature we calculate

dω1,0j = −

m−
l=1

(∂lb∗

j ) ∧ dyl = −

m−
l,k=1

(∂lbkj)dyk ∧ dyl,

where b∗

j =
∑m

k=1 bkjdyk, and, for 1 ≤ j, k ≤ m, dω1,jk = d̃ω̃jk; while

−(ω1 ∧ ω1)k0 = (ω1 ∧ ω1)0k =

m−
l=0

ω1,0l ∧ ω1,lk =

m−
l=1

ω1,0l ∧ ω1,lk = −

m−
l=1

b∗

l ∧ ω̃lk,

(ω1 ∧ ω1)jk =

m−
l=0

ω1,jl ∧ ω1,lk = ω1,j0 ∧ ω1,0k +

m−
l=1

ω1,jl ∧ ω1,lk = −b∗

j ∧ b∗

k + (ω̃ ∧ ω̃)jk,

for 1 ≤ j, k ≤ m. The curvature two form has components

Ω1,00 = 0,

Ω1,0j = −

m−
l,k=1

(∂lbkj)dyk ∧ dyl −
m−
l=1

b∗

l ∧ ω̃lk, 1 ≤ j ≤ m,

Ω1,jk = d̃ω̃jk − b∗

j ∧ b∗

k + (ω̃ ∧ ω̃)jk = Ω̃jk − b∗

j ∧ b∗

k , 1 ≤ j, k ≤ m.

Next, considering the metric g0 = dx ⊗ dx + g , similar calculations give:

ω0,0j = 0, 0 ≤ j ≤ m, ω0,jk = ω̃jk, 1 ≤ j, k ≤ m. (3.5)

By Eqs. (3.4) and (3.5),

S1 = −
1
2l

m−
k=1

e∗

k ∧ e∗

k = −
l
2

m−
k=1

b∗

k ∧ b∗

k = −
1
2

m−
k=1

b∗

k ∧ e∗

k , (3.6)

S0 = 0. (3.7)

We also need the curvature two formΘ on the boundary ∂ClW . A similar calculation givesΘjk = Ω̃jk. Note in particular
that it is easy to verify Equation 1.16 of [5]: Θ̂ = i∗Ω1 − 2S2

1 . For

2S2
1 = −

l2

2

m−
j,k=1

b∗

j ∧ b∗

k ∧ b̂∗

j ∧ b̂∗

k , Θ̂ =
l2

2

m−
j,k=1

Ω̃jk ∧ b̂∗

j ∧ b̂∗

k ,

while (i∗Ω)jk = Ω̃jk − b∗

j ∧ b∗

k , gives

i∗Ω1,jk =
l2

2

m−
j,k=1


Ω̃jk − b∗

j ∧ b∗

k


∧ b̂∗

j ∧ b̂∗

k .

3.3. The Laplace operator on the cone and its spectrum

We study the Laplace operator on forms on the space ClW . This is essentially based on [7,9]. Let us denote byL the formal
differential operator defined by Eq. (3.3) acting on smooth forms on C(0,l]W ,0(C(0,l]W ,ΛT ∗C(0,l]W ).We define in Lemma3.1
a self adjoint operator ∆ acting on L2(ClW ,Λ(q)ClW ), and such that 1ω = Lω, if ω ∈ dom∆. Then, in Lemma 3.2, we list
all the solutions of the eigenvalue equations for L. Eventually, in Lemma 3.3, we give the spectrum of∆.
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Lemma 3.1. The formal operator L in Eq. (3.3) with the absolute/relative boundary conditions given in Eqs. (2.2) / (2.3) on
the boundary ∂ClW defines a unique self adjoint semi bounded operator on L2(ClW ,Λ(q)T ∗ClW ), that we denote by the symbol
∆abs/∆rel, respectively, with pure point spectrum.

Proof. Let L(q) denote the minimal operator defined by the formal operator L(q), with domain the q-forms with compact
support in C(0,l]W , namely domL(q) = 00(C(0,l]W ,ΛT ∗C(0,l]W ). The boundary values problem at the boundary x = l,
i.e. ∂ClW , is trivial, and gives the self adjoint extensions stated. The point x = 0 requires more work. First, note that L(q)
reduces by unitary transformation to an operator of the type

D2
+

A(x)
x2
, D = −i

d
dx
, (3.8)

where A(x) is a smooth family of symmetric second order elliptic operators [9] pg. 370. More precisely, there exists a unitary
transformationψq between the relevant spaces with the suitable L2 structures, see [9] for details. Under the transformation
ψq, L(q) has the form in Eq. (3.8), with A(x) the constant smooth family of symmetric second order elliptic operators in
0(W ,Λ(q)T ∗W ×Λ(q−1)T ∗W ):

A(x) = A(0) =

∆̃(q) +
m
2

− q
 m

2
− q − 1


2(−1)qd̃

2(−1)qd̃Ď ∆̃(q−1)
+

m
2

+ 2 − q
 m

2
+ 1 − q


 .

Next, by its definition, A(x) satisfies all the requirements at pg. 373 of [9], with p = 1 (in particular this follows from the
fact that A(x) is defined by the Laplacian on forms on a compact space). We can apply the results of Brüning and Seeley [9],
observing that in the present case we are in what they call the ‘‘constant coefficient case’’ (Section 3 of [9]). By Theorem
5.1 of [9], the operator L extends to a unique self adjoint bounded operator ∆(q). Note that this extension is the Friedrich
extension by Theorem 6.1 of [9]. Note also that boundary condition at x = 0 is necessary in general in the definition of the
domain of∆(q), see (L2) (c), pg. 410 of [9] for these conditions.

Eventually, by Theorem 5.2 of [9], the square (here p = 1, so m = 2) of the resolvent of ∆(q) is of the trace class. This
means that the resolvent is Hilbert Schmidt, and consequently the spectrum of∆(q) is pure point, by the spectral theorem for
compact operators. Note thatwe do not need the cut off function γ appearing in Theorem5.2 of [9], since here 0 < x ≤ l. �

Lemma 3.2 ([7]). Let {ϕ
(q)
har, ϕ

(q)
cex,n, ϕ

(q)
ex,n} be an orthonormal base of 0(W ,Λ(q)T ∗W ) consisting of harmonic, coexact and exact

eigenforms of ∆̃(q) on W. Let λq,n denote the eigenvalue of ϕ(q)cex,n and mcex,q,n its multiplicity (so that mcex,q,n = dim E
(q)
cex,n =

dim E
(q)
ccl,n). Let Jν be the Bessel function of index ν . Define αq =

1
2 (1 + 2q − m) and µq,n =


λq,n + α2

q . Then, assuming that

µq,n is not an integer, all the solutions of the equation∆u = λ2u, with λ ≠ 0, are convergent sums of forms of the following six
types:

ψ
(q)
±,1,n,λ = xαq J±µq,n(λx)ϕ

(q)
cex,n,

ψ
(q)
±,2,n,λ = xαq−1 J±µq−1,n(λx)d̃ϕ

(q−1)
cex,n + ∂x(xαq−1 J±µq−1,n(λx))dx ∧ ϕ(q−1)

cex,n

ψ
(q)
±,3,n,λ = x2αq−1+1∂x(x−αq−1 J±µq−1,n(λx))d̃ϕ

(q−1)
cex,n + xαq−1−1J±µq−1,n(λx)dx ∧ d̃Ďd̃ϕ(q−1)

cex,n

ψ
(q)
±,4,n,λ = xαq−2+1J±µq−2,n(λx)dx ∧ d̃ϕ(q−2)

cex,n

ψ
(q)
±,E,λ = xαq J±|αq|(λx)ϕ

(q)
har

ψ
(q)
±,O,λ = ∂x(xαq−1 J±|αq−1|(λx))dx ∧ ϕ

(q−1)
har .

Whenµq,n is an integer the− solutions must be modified including some logarithmic term (see for example [24] for a set of linear
independent solutions of the Bessel equation).

Proof. The proof is a direct verification of the assertion, using the definitions in Eqs. (3.1)–(3.3). First, by the Hodge theorem,
there exists an orthonormal base of Λ(q)T ∗W as stated. Thus, we decompose any form ω in this base. Second, we compute
1ω, using this decomposition and the formula in Eq. (3.3). This gives some differential equations in the functions appearing
as coefficients of the forms. All these differential equations reduce to equations of the Bessel type. Third, we write all the
solutions using Bessel functions. A complete proof for the case of the harmonic forms can be found in [8] Section 5. �

Note that the forms of types 1 and 3 are coexact, those of types 2 and 4 exacts. The operator d sends forms of types 1 and
3 in forms of types 2 and 4, while dĎ sends forms of types 2 and 4 in forms of types 1 and 3, respectively. The Hodge operator
sends forms of type 1 in forms of type 4, 2 in 3, and E in 0.

Corollary 3.1. The functions + in Lemma 3.1 are square integrable and satisfy the boundary conditions at x = 0 defining the
domain of ∆rel/abs. The functions − either are not square integrable or do not satisfy these conditions.
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Remark 3.1. All the − solutions are either not square or their exterior derivatives are not square integrable. Requiring the
last condition in the definition of the domain of ∆rel/abs, it follows that there are no boundary conditions at zero. This was
observed by Cheeger for harmonic forms when the dimension is odd in [7] Section 3.

Lemma 3.3. The positive part of the spectrum of the Laplace operator on forms on ClW, with absolute boundary conditions on
∂ClW is:

Sp+∆
(q)
abs =


mcex,q,n : ĵ2µq,n,αq,k/l

2
∞

n,k=1
∪


mcex,q−1,n : ĵ2µq−1,n,αq−1,k/l

2
∞

n,k=1
∪


mcex,q−1,n : j2µq−1,n,k/l

2
∞

n,k=1

∪


mcex,q−2,n : j2µq−2,n,k/l

2
∞

n,k=1
∪


mhar,q : ĵ2

|αq|,αq,k/l
2
∞

k=1
∪


mhar,q−1 : ĵ2

|αq−1|,αq,k/l
2
∞

k=1
.

With relative boundary conditions:

Sp+∆
(q)
rel =


mcex,q,n : j2µq,n,k/l

2
∞

n,k=1
∪


mcex,q−1,n : j2µq−1,n,k/l

2
∞

n,k=1
∪


mcex,q−1,n : ĵ2µq−1,n,−αq−1,k/l

2
∞

n,k=1

∪


mcex,q−2,n : ĵ2µq−1,n,−αq−2,k/l

2
∞

n,k=1
∪

mhar,q : j|αq|,k/l

2∞

k=1 ∪


mhar,q−1 : j2

|αq−1|,k/l
2
∞

k=1
,

where the jµ,k are the zeros of the Bessel function Jµ(x), the ĵµ,c,k are the zeros of the function Ĵµ,c(x) = cJµ(x) + xJ ′µ(x), c ∈ R,
αq and µq,n are defined in Lemma 3.2.

Proof. By Lemmas 3.1 and 3.2 and its corollary, we know that the + solutions of Lemma 3.2 determine a complete system
of square integrable solutions of the eigenvalue equation ∆(q)u = λu, with λ ≠ 0, satisfying the boundary condition at
x = 0. Since ∆(q)abs/rel has pure point spectrum, in order to obtain a discrete resolution (more precisely the positive part of

it) of ∆(q)abs/rel, we have to determine among these solutions those that belong to the domain of ∆(q)abs/rel, namely those that
satisfy the boundary condition at x = l. By direct application of the BC we obtain the result. For example, for forms of type
3, we obtain the system

xαq−1−1Jµq−1,n(λx)

x=l

= 0,

∂x

x2αq−1+1∂x(x−αq−1 Jµq−1,n(λx))


− λxαq−1−1Jµq−2,n(λx)


x=l

= 0,

that using classical properties of Bessel functions and their derivative, gives λ = jµq−1,n,k/l. �

Lemma 3.4 ([7,8]). With the notation of Lemma 3.2, and a±,q,n = αq ± µq,n, then all the solutions of the harmonic equation
1u = 0, are convergent sums of forms of the following four types:

ψ
(q)
±,1,n = xa±,q,nϕ(q)ccl,n,

ψ
(q)
±,2,n = xa±,q−1,n d̃ϕ(q−1)

ccl,n + a±,q−1,nxa±,q−1,n−1dx ∧ ϕ
(q−1)
ccl,n ,

ψ
(q)
±,3,n = xa±,q−1,n+2d̃ϕ(q−1)

ccl,n + a∓,q−1,nxa±,q−1,n+1dx ∧ ϕ
(q−1)
ccl,n ,

ψ
(q)
±,4,n = xa±,q−2,n+1dx ∧ d̃ϕ(q−2)

ccl,n .

Lemma 3.5. Assume dimW = 2p − 1 is odd. Then

H
q
abs(ClW ) =


Hq(W ), 0 ≤ q ≤ p − 1,
{0}, p ≤ q ≤ 2p − 1.

H
q
rel(ClW ) =


{0}, 0 ≤ q ≤ p,
x2αq−1dx ∧ ϕ(q−1), ϕ(q−1)

∈ Hq−1(W )

, p + 1 ≤ q ≤ 2p.

Proof. First, by Remark 3.1, we need only to consider the + solutions in Lemma 3.4. The proof then follows by an argument
similar to the one used in the proof of Lemma 3.3. Let us see one case in detail. Consider ψ (q)

+,1,n = xa+,q,nϕ(q)ccl,n, where
a+,q,n = αq + µq,n. In order that ψ (q)

+,1,n satisfies the absolute boundary condition (2.2), we need that

(dψ (q)
+,1,n)norm


∂ClW

= a+,q,nla+,q,n−1dx ∧ dϕ(q)ccl,n = 0

and this is true if and only if a+,q,n = 0. The condition a+,q,n = 0 is equivalent to the conditions λq,n = 0, and αq = −|αq|.
Therefore, ϕ(q)ccl,n is harmonic, 0 ≤ q ≤ p − 1, and ψ (q)

+,1,n = ϕ
(q)
ccl,n. �
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4. Torsion zeta function and Poincaré duality for a cone

Using the description of the spectrum of the Laplace operator on forms ∆(q)abs/rel given in Lemma 3.3, we define the zeta
function on q-forms as in Section 2.2, by

ζ (s,∆(q)abs/rel) =

−
λ∈Sp+∆

(q)
abs/rel

λ−s,

for Re(s) > m+1
2 . The explicit knowledge of the behaviour of large eigenvalues allows us to completely determine the

analytic continuation of the zeta function, by using the tools of Section 2.4. In particular, it is possible to prove that there can
be at most a simple pole at s = 0. We will not do this here (but the interested reader can compare it with [14]), because for
our purposes it is more convenient to investigate the analytic properties of other zeta functions, resulting from a suitable
different decomposition of the analytic torsion, as described below. For we define the torsion zeta function by

tabs/rel(s) =
1
2

m+1−
q=1

(−1)qqζ (s,∆(q)abs/rel).

It is clear that the analytic torsion of ClW is (in the following we will use the simplified notation T (ClW ) for
T ((ClW , g); ρ))

log Tabs/rel(ClW ) = t ′abs/rel(0).

Our first result is a Poincaré duality (compare it with Proposition 2.4, [4] and the result of [10]).

Theorem 4.1 (Poincaré Duality for the Analytic Torsion of a Cone). Let (W , g) be an orientable compact connected Riemannian
manifold of dimension m, without boundary, then

log Tabs(ClW ) = (−1)m log Trel(ClW ).

Proof. By Hodge duality in Eq. (2.7), the Hodge operator ⋆ sends forms of type 1, 2, 3, 4, E, and O into forms of type
4, 3, 2, 1,O, and E, respectively. Moreover, ⋆ sends q-forms satisfying absolute boundary conditions, as in Eq. (2.2), into
m + 1 − q-forms satisfying relative boundary conditions, as in Eq. (2.3). Therefore, using the explicit description of the
eigenvalues given in Lemma 3.3, it follows that Sp∆(q)abs = Sp∆(m+1−q)

rel . Using the formulas in Eqs. (3.1)–(3.3), and the
eigenforms in Lemma 3.2, a straightforward calculation shows that the forms of type 1, 3, and E are coexact, and those
of type 2, 4, and O are exact, and that the operator d sends forms of type 1, 3, and E in forms of type 2, 4, and O, respectively,
with inverse dĎ. Then, set

F (q)ccl,abs =


mccl,q,n : ĵ2µq,n,αq,k/l

2
∞

n,k=1
∪


mccl,q−1,n : j2µq−1,n,k/l

2
∞

n,k=1
∪


mccl,q,0 : ĵ2

|αq|,αq,k/l
2
∞

k=1
,

F (q)cl,abs =


mcl,q−1,n : ĵ2µq−1,n,αq−1,k/l

2
∞

n,k=1
∪


mcl,q−2,n : j2µq−2,n,k/l

2
∞

n,k=1
∪


mcl,q−1,0 : ĵ2

|αq−1|,αq−1,k/l
2
∞

k=1
.

F (q)ccl,abs is the set of the eigenvalues of the coclosed q-forms with absolute boundary conditions, and F (q)cl,abs is the set of
the eigenvalues of the closed q-forms with absolute boundary conditions. Since obviously Sp∆(q)abs = F (q)ccl,abs ∪ F (q)cl,abs, and
F (q)ccl,abs = F (q+1)

cl,abs , we have that

tabs(s) =
1
2

m+1−
q=0

(−1)qqζ (s,∆(q)abs) =
1
2

m+1−
q=0

(−1)qqζ (s,∆(m+1−q)
rel )

= (−1)mtrel(s)+
1
2
(m + 1)

m+1−
q=0

(−1)m+1−qζ (s,∆(q)rel )

= (−1)mtrel(s)+
1
2
(m + 1)

m+1−
q=0

(−1)q

ζ (s, F (q+1)

ccl,abs)+ ζ (s, F (q)cl,abs)


= (−1)mtrel(s).

Since by definition log Tabs(W ) = t ′abs(0), the thesis follows. �

5. The torsion zeta function of the cone over an odd dimensional manifold

In this section we develop the main steps in order to obtain the proof of our theorems. This accounts essentially in the
application of the tools described in Section 2.4 to some suitable sequences appearing in the definition of the torsion. So our
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first step is precisely to obtain this suitable description. This we do in this section. In the next two subsections, wewill make
the calculations necessary for the proof of our main theorems. We proceed assuming dimW = 2p − 1 odd, and assuming
absolute boundary conditions; for notational convenience, we will omit the abs subscript.

Lemma 5.1. Here j′ν,k = ĵν,0,k.

t(s) =
l2s

2

p−2−
q=0

(−1)q


∞−
n,k=1

mcex,q,n


2j−2s
µq,n,k − ĵ−2s

µq,n,αq,k − ĵ−2s
µq,n,−αq,k



+ (−1)p−1 l
2s

2


∞−

n,k=1

mcex,p−1,n


j−2s
µp−1,n,k

− (j′µp−1,n,k)
−2s


−
l2s

2

p−1−
q=0

(−1)qrkHq(∂ClW ; Q)
∞−
k=1


j−2s
−αq−1,k

− j−2s
−αq,k


.

Proof. Using the eigenvalues in Lemma 3.3

l2sζ (s,∆(q)) =

∞−
n,k=1

mcex,q,n ĵ−2s
µq,n,αq,k +

∞−
n,k=1

mcex,q−1,n ĵ−2s
µq−1,n,αq−1,k

+

∞−
n,k=1

mcex,q−1,nj−2s
µq−1,n,k

+

∞−
n,k=1

mcex,q−2,nj−2s
µq−2,n,k

+

∞−
k=1

mhar,q,0 ĵ−2s
|αq|,αq,k +

∞−
k=1

mhar,q−1,0 ĵ−2s
|αq−1|,αq−1,k

.

Since for each fixed q, with 0 ≤ q ≤ 2p − 2,

(−1)qq
∞−

n,k=1

mcex,q,n ĵ−2s
µq,n,αq,k + (−1)q+1(q + 1)

∞−
n,k=1

mcex,q,n ĵ−2s
µq,n,αq,k + (−1)q+1(q + 1)

∞−
n,k=1

mcex,q,nj−2s
µq,n,k

+ (−1)q+2(q + 2)
∞−

n,k=1

mcex,q,nj−2s
µq,n,k + q(−1)q

∞−
k=1

mhar,q,0 ĵ−2s
|αq|,αq,k + (q + 1)(−1)q+1

∞−
k=1

mhar,q,0 ĵ−2s
|αq|,αq,k

= (−1)q


∞−
n,k=1

mcex,q,nj−2s
µq,n,k −

∞−
n,k=1

mcex,q,n ĵ−2s
µq,n,αq,k


+ (−1)q+1

∞−
k=1

mhar,q,0 ĵ−2s
|αq|,αq,k.

It follows that

t(s) =
l2s
2

2p−2∑
q=0
(−1)q

∞∑
n,k=1

mcex,q,n


j−2s
µq,n,k − ĵ−2s

µq,n,αq,k


+

l2s
2

2p−1∑
q=0
(−1)q+1

∞∑
k=1

mhar,q,0 ĵ−2s
|αq|,αq,k.

Next, by Hodge duality on coexact q-forms on the section (see Eq. (2.7)) λq,n = λ2p−2−q,n, and recalling the definition of
the constantsαq andµq,n in Lemma3.2, we have thatαq =

1
2 (1+2q−2p+1) = q−p+1 = −α2p−2−q, andµq,n = µ2p−2−q,n.

Thus, fixing qwith 0 ≤ q ≤ p − 2,

(−1)q
∞−

n,k=1

mcex,q,n


j−2s
µq,n,k − ĵ−2s

µq,n,αq,k


+ (−1)(2p−2−q)

∞−
n,k=1

mcex,q,n


j−2s
µq,n,k − ĵ−2s

µq,n,−αq,k


= (−1)q

∞−
n,k=1

mcex,q,n


2j−2s
µq,n,k − ĵ−2s

µq,n,αq,k − ĵ−2s
µq,n,−αq,k


,

while when q = p − 1, αq = 0. Therefore,

t(s) =
l2s

2

p−2−
q=0

(−1)q
∞−

n,k=1

mcex,q,n


2j−2s
µq,n,k − ĵ−2s

µq,n,αq,k − ĵ−2s
µq,n,−αq,k


+ (−1)p−1 l

2s

2

∞−
n,k=1

mcex,p−1,n


j−2s
µp−1,n,k

− (j′µp−1,n,k)
−2s


+
l2s

2

2p−1−
q=0

(−1)q+1
∞−
k=1

mhar,q,0 ĵ−2s
|αq|,αq,k,

where j′ν,k = ĵν,0,k are the zeros of J ′ν . Eventually, consider the last sum in the previous equation. We will use some classical
properties of the Bessel function, see for example [24]. Recall m = dimW = 2p − 1, and therefore αq = q − p + 1 is an
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integer. Moreover, αq is negative for 0 ≤ q < p−1. Fixing such a q, we study the function Ĵ−αq,αq(z) = αqJ−αq(z)+ zJ ′
−αq
(z).

Since

zJ ′µ(z) = −zJµ+1(z)+ µJµ(z)

it follows that Ĵ−αq,αq(z) = −zJ−αq+1(z) = −zJ−αq−1(z), and hence ĵ|αq|,αq,k = j−αq−1,k. Next, fix q with p − 1 < q ≤ 2p − 1,
such that αq is a positive integer. Then, since

zJ ′µ(z) = zJµ−1(z)− µJµ(z),

the function Ĵαq,αq(z) = αqJαq(z) + zJ ′αq(z) coincides with zJαq−1(z), and hence ĵ|αq|,αq,k = jαq−1,k. Note that when q =

p − 1, αp−1 = 0 and hence jαp−1,αp−1,k = j′0,k = j1,k. Summing up,

2p−1−
q=0

(−1)q+1
∞−
k=1

mhar,q,0 ĵ−2s
|αq|,αq,k =

p−2−
q=0

(−1)q+1
∞−
k=1

mhar,q,0

j2s
−αq−1,k

+ (−1)p
∞−
k=1

mhar,p−1,0

j2s1,k
+

2p−1−
q=p

(−1)q+1
∞−
k=1

mhar,q,0

j2sαq−1,k
,

and since by Hodge dualitymq,0 = m2p−1−q,0,

=

p−2−
q=0

(−1)q+1
∞−
k=1

mhar,q,0j−2s
−αq−1,k

+ (−1)p
∞−
k=1

mhar,p−1,0j−2s
1,k +

p−1−
q=0

(−1)q
∞−
k=1

mhar,q,0j2s−αq,k

=

p−1−
q=0

(−1)q+1mhar,q,0

∞−
k=1


j−2s
−αq−1,k

− j−2s
−αq,k


.

Sincemhar,q,0 = rkHq(∂ClW ; Q), this completes the proof. �

It is convenient to introduce the following functions. We set

Zq(s) =

∞−
n,k=1

mcex,q,nj−2s
µq,n,k, Żq(s) =

∞−
n,k=1

mcex,q,n(j′µq,n,k)
−2s,

Zq,±(s) =

∞−
n,k=1

mcex,q,n ĵ−2s
µq,n,±αq,k, zq(s) =

∞−
k=1


j−2s
−αq−1,k

− j−2s
−αq,k


,

(5.1)

for 0 ≤ q ≤ p − 1, and

tp−1(s) = Zp−1(s)− Żp−1(s),
tq(s) = 2Zq(s)− Zq,+(s)− Zq,−(s), 0 ≤ q ≤ p − 2.

(5.2)

Then,

t(s) =
l2s

2

p−2−
q=0

(−1)q

2Zq(s)− Zq,+(s)− Zq,−(s)


+ (−1)p−1 l

2s

2


Zp−1(s)− Żp−1(s)


−

l2s

2

p−1−
q=0

(−1)qrkHq(∂ClW ; Q)zq(s)

=
l2s

2

p−1−
q=0

(−1)qtq(s)−
l2s

2

p−1−
q=0

(−1)qrkHq(∂ClW ; Q)zq(s),

and

log T (ClW ) = t ′(0) =
log l2

2


p−1−
q=0

(−1)q+1rqzq(0)+

p−1−
q=0

(−1)qtq(0)


+

1
2


p−1−
q=0

(−1)q+1rqz ′

q(0)+

p−1−
q=0

(−1)qt ′q(0)


,

(5.3)

where rq = rkHq(∂ClW ; Q). In order to obtain the value of log T (ClW ) we use Theorem 2.1 and its corollary applied to the
functions zq(s), Zq(s), Żq(s), Zq,±(s). More precisely, the functions zq were studied at the end of Section 2.4, andwewill study
the functions tq in Sections 5.1 and 5.2, and eventually we sum up on the forms degree q in Section 6.
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5.1. The functions tq(s), 0 ≤ q ≤ p − 2

In this section we study the functions tq(s). We apply Theorem 2.1 to the double sequences Sq = {mq,n : j2µq,n,k}
∞

n=1 and
Sq,± = {mq,n : j2µq,n±αq,k}

∞

n=1, since we have that Zq(s) = ζ (s, Sq), Zq,±(s) = ζ (s, Sq,±), where q = 0, 1, . . . , p − 2, αq =

p−q−1. Note that the sequence Sq coincideswith the sequence Sp−1 analysed in Section 5.2, with q = p−1. Sowe just need
to study the other two sequences. First, we verify Definition 2.1. We introduce the simple sequence Uq = {mq,n : µq,n}

∞

n=1.

Lemma 5.2. For all 0 ≤ q ≤ p − 1, the sequence Uq is a totally regular sequence of spectral type with infinite order,
e(Uq) = g(Uq) = 2p − 1, and

ζ (s,Uq) = ζcex

 s
2
, ∆̃(q) + α2

q


.

The possible poles of ζ (s,Uq) are at s = 2p − 1 − h, h = 0, 2, 4, . . . , and the residues are completely determined by the
residues of the function ζcex(s, ∆̃(q)), namely:

Res1
s=2k+1

ζ (s,Uq) =

p−1−k−
j=0


−

2k+1
2

j


Res1

s=2(k+j)+1
ζcex

 s
2
, ∆̃(q)


α2j
q .

Proof. By definitionUq = {mcex,q,n : µq,n}
∞

n=1, where by Lemmas 3.2 and 3.3µq,n =


λq,n + α2

q , andλq,n are the eigenvalues

of the operator ∆̃(q) on the compact manifold W . Counting such eigenvalues according to multiplicity of the associated
coexact eigenform, since the dimension of the eigenspace of λq,n are finite, and λq,n ∼ n

2
m for large n. This gives order and

genus. The last formula follows expanding the powers of the binomial in the definition of the zeta function. �

Next, for c ∈ C, define the functions

Ĵν,c(z) = cJν(z)+ zJ ′ν(z).
Recalling the series definition of the Bessel function [25] 8.402, we obtain that near z = 0

Ĵν,c(z) =


1 +

c
ν

 zν

2ν0(ν)
.

This means that the function z−ν Ĵν,c(z) is an even function of z. Let ĵν,c,k be the positive zeros of Ĵν,c(z) arranged in
increasing order. By the Hadamard factorization theorem, we have the product expansion

z−ν Ĵν,c(z) = z−ν Ĵν,c(z)
+∞∏

k=−∞


1 −

z

ĵν,c,k


,

and therefore

Ĵν,c(z) =


1 +

c
ν

 zν

2ν0(ν)

∞∏
k=1


1 −

z2

ĵ2ν,c,k


.

Next, recalling that (when −π < arg(z) < π
2 )

Jν(iz) = e
π
2 iν Iν(z), J ′ν(iz) = e

π
2 iνe−

π
2 iI ′ν(z),

we obtain Ĵν,c(iz) = e
π
2 iν cIν(z)+ zI ′ν(z)


. Thus, we define (for −π < arg(z) < π

2 )

Îν,c(z) = e−
π
2 iν Ĵν,c(iz), (5.4)

and hence

Îν,±αq(z) = ±αqIν(z)+ zI ′ν(z) =

1 ±

αq
ν

 zν
2ν0(ν)

∞∏
k=1


1 +

z2

ĵ2
ν,±αq,k


. (5.5)

Recalling the definition in Eq. (2.14) we have proved the following fact.

Lemma 5.3. The logarithmic Gamma functions associated to the sequences Sq,±,n have the following representations, when
λ ∈ Dθ,c′ , with c ′

=
1
2 min(j2µq,0

, j2µq,0,±αq
),

log0(−λ, Sq,±,n) = − log
∞∏
k=1


1 +

(−λ)

ĵ2µq,n,±αq,k



= − log Îµq,n,±αq(
√

−λ)+ µq,n log
√

−λ− µq,n log 2 − log0(µq,n)+ log

1 ±

αq

µq,n


.
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Proposition 5.1. The double sequences Sq,± have relative exponents

p, 2p−1

2 , 1
2


, relative genus (p, p− 1, 0), and are spectrally

decomposable over Uq with power κ = 2, length ℓ = 2p and domain Dθ,c′ . The coefficients σh appearing in Eq. (2.15) are
σh = h − 1, with h = 1, 2, . . . , ℓ = 2p.

Proof. The values of the exponents and genus follow by classical estimates of the zeros of the Bessel functions [24], and
zeta function theory. In particular, to determinate s0 = p, we use the Young inequality and the Plana theorem as in [26].
Note that α > 1

2 , since s2 =
1
2 . As observed, the existence of a complete asymptotic expansion of the Gamma function

follows by Lemma 5.3. This implies that Sq,±,n are sequences of spectral type. A direct inspection of the expansions shows
that Sq,±,n are totally regular sequences of infinite order. The existence of the uniform expansion follows using the uniform
expansions for the Bessel functions and their derivative given for example in [27] (7.18) and Ex. 7.2, and classical expansion
of the Euler Gamma function [25] 8.344. We refer to [15] Section 5 or to [11] Section 4 for details. This proves that Sq,± are
spectrally decomposable over Uq, with power κ = 2. The length ℓ of the decomposition is precisely 2p. For e(Uq) = 2p − 1,
and therefore the larger integer such that σh = h − 1 ≤ 2p − 1 is 2p. �

Remark 5.1. Only the term with σh = 1, σh = 3, . . . , σh = 2p − 1 namely h = 2, 4, . . . , 2p, appear in the formula of
Theorem 2.1, since the unique poles of ζ (s,Uq) are at s = 1, s = 3, . . . , s = 2p − 1.

Since we aim to apply the version of Theorem 2.1 given in Corollary 2.1, for the linear combination of two spectrally
decomposable sequences, we inspect directly the uniform asymptotic expansion of 2Sq −Sq,− −Sq,+. This give the functions
φσh .

Lemma 5.4. We have the following asymptotic expansions for large n, uniform in λ, for λ ∈ Dθ,c′ ,

2 log0(−λ, Sq,n/µ2
q,n)− log0(−λ, Sq,+,n/µ2

q,n)− log0(−λ, Sq,−,n/µ2
q,n)

= −2 log Iµq,n(µq,n
√

−λ)+ log Îµq,n,αq(µq,n
√

−λ)+ log Îµq,n,−αq (µq,n
√

−λ)− 2 logµq,n − log


1 −

α2
q

µ2
q,n



= log(1 − λ)+

2p−1−
j=1

φj,q(λ)
1

µ
j
q,n

+ O


1
(µq,n)2p


.

Proof. Using the representations given in Lemmas 5.9 and 5.3, we obtain

2 log0(−λ, Sq,n/µ2
q,n)− log0(−λ, Sq,+,n/µ2

q,n)− log0(−λ, Sq,−,n/µ2
q,n)

= −2 log Iµq,n(µq,n
√

−λ)+ log Îµq,n,αq(µq,n
√

−λ)+ log Îµq,n,−αq (µq,n
√

−λ)− 2 logµq,n − log


1 −

α2
q

µ2
q,n


.

Recall the uniform expansions for the Bessel functions given for example in [27] (7.18) pg. 376, and Ex. 7.2,

Iν(νz) =
eν

√
1+z2e

ν log z
1+

√
1+z2

√
2πν(1 + z2)

1
4


1 +

2p−1−
j=1

Uj(z)
ν j

+ O


1
ν2p


,

where

U0(w) = 1, Uj(w) =
1
2
w2(1 − w2)

d
dw

Uj−1(w)+
1
8

∫ w

0
(1 − 5t2)Uj−1(t)dt,

withw =
1√
1+z2

, and

I ′ν(νz) =
(1 + z2)

1
4 eν

√
1+z2e

ν log z
1+

√
1+z2

√
2πνz


1 +

2p−1−
j=1

Vj(z)
ν j

+ O


1
ν2p


,

where

V0(w) = 1, Vj(w) = Uj(w)−
w

2
(1 − w2)Uj−1(w)− w2(1 − w2)

d
dw

Uj−1(w).

Using these expansions, we obtain the following expansion for Îν,±αq(νz),

Îν,±αq(νz) = ±αqIν(νz)+ νzI ′ν(νz)

=
√
ν(1 + z2)

1
4
eν

√
1+z2e

ν log z
1+

√
1+z2

√
2π


1 +

2p−1−
j=1

W±αq,j(z)
1
ν j

+ O


1
ν2p


,
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where W±αq,j(z) = Vj(z)±
αq√
1+z2

Uj−1(z). Thus,

log Îν,±αq(νz) = ν

1 + z2 + ν log z − ν log(1 +


1 + z2)+ log ν +

1
4
log(1 + z2)

−
1
2
log 2πν + log


1 +

2p−1−
j=1

W±αq,j(z)
1
ν j

+ O


1
ν2p


.

This gives,

2 log0(−λ, Sq,n/µ2
q,n)− log0(−λ, Sq,+,n/µ2

q,n)− log0(−λ, Sq,−,n/µ2
q,n)

= log(1 − λ)− 2 log


1 +

2p−1−
j=1

Uj(
√

−λ)

µ
j
q,n

+ O


1

µ
2p
q,n



+ log


1 +

2p−1−
j=1

W+αq,j(
√

−λ)

µ
j
q,n

+ O


1

µ
2p
q,n


+ log


1 +

2p−1−
j=1

W−αq,j(
√

−λ)

µ
j
q,n

+ O


1

µ
2p
q,n


.

Expanding the logarithm as

log


1 +

∞−
j=1

aj
z j


=

∞−
j=1

lj
z j
,

where a0 = 1, a1 = l1 and lj = aj −
∑j−1

k=1
j−k
j aklj−k, we have that

2 log0(−λ, Sq,n/µ2
q,n)− log0(−λ, Sq,+,n/µ2

q,n)− log0(−λ, Sq,−,n/µ2
q,n)

= log(1 − λ)+

p−
j=1


−2l2j−1(λ)+ l+2j−1(λ)+ l−2j−1(λ)

 1

µ
2j−1
q,n

+

p−1−
j=1


−2l2j(λ)+ l+2j(λ)+ l−2j(λ)+

α
2j
q

j


1

µ
2j
q,n

+ O


1

µ
2p
q,n


,

where we denote by lj(λ) the term in the expansion relative to the sequence S (thus the one containing the Uj(z)) and by
l±j (λ) the terms relative to S± (thus the ones containing theW±αq,j(z)). Setting

φq,2j−1(λ) = −2l2j−1(λ)+ l+2j−1(λ)+ l−2j−1(λ)

φq,2j(λ) = −2l2j(λ)+ l+2j(λ)+ l−2j(λ)+
α

2j
q

j
,

(5.6)

the result follows. �

Remark 5.2. Note that there are no logarithmic terms logµq,n in the asymptotic expansion of the difference of the
logarithmic Gamma function given in Lemma 5.4. So we can apply Corollary 2.1.

Next, we give some results on the functions φj,q(λ), andΦj,q(s) defined in Eq. (2.16).

Lemma 5.5. For all j and all 0 ≤ q ≤ p − 2, the functions φj,q(λ) are odd polynomial inw =
1

√
1−λ

φ2j−1,q(λ) =

2j−1−
k=0

a2j−1,q,kw
2k+2j−1, φ2j,q(λ) =

2j−
k=0

a2j,q,kw2k+2j
+
α

2j
q

j
.

The coefficients aj,q,k are completely determined by the coefficients of the expansion given in Lemma 5.4.

Proof. This follows by direct inspection of the last equality in the statement of Lemma 5.4. �

Lemma 5.6. For all j and all 0 ≤ q ≤ p − 2, φj,q(0) = 0.

Proof. The proof is by induction on j. We will consider all the functions as functions of w =
1

√
1−λ

. We use the following
hypothesis for the induction, for 1 ≤ k ≤ j − 1:

φ2k−1,q(1) = 0, φ2k,q(1) = 0, (5.7)

l−2k−1(1)− l+2k−1(1) =
−2α2k−1

q

2k − 1
, l−2k(1)− l+2k(1) = 0, (5.8)
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where the functions φj,q(λ) are defined in Eq. (5.6), and the function l(λ) in the course of the proof of Lemma 5.4. First, we
verify the hypothesis for j = 1. The formulas in Eq. (5.8) follow by the definition when k = 1. For those in Eq. (5.7), we have
by definition when k = 1 that

φ1,q(λ) = −2l1(λ)+ l+1 (λ)+ l−1 (λ) = −2U1(
√

−λ)+ V1(
√

−λ)+ V1(
√

−λ)+ (αq − αq)U0(
√

−λ)

= −
1

(1 − λ)
1
2

+
1

(1 − λ)
3
2
,

and

φ2,q(λ) = −2l2(λ)+ l+2 (λ)+ l−2 (λ)+ α2
q = −2U2(

√
−λ)+ 2V2(

√
−λ)+ U1(

√
−λ)2 − V1(

√
−λ)2

= −
3
2

1
(1 − λ)

+ 2
1

(1 − λ)2
−

3
2

1
(1 − λ)3

+ 1,

and hence formulas in (5.7) are also verified when k = 1. Second we prove that all formulas hold for k = j. Recalling that
Uk(1) = Vk(1) for all k, we have from the definition that

l−2j−1(1)− l+2j−1(1) = U2j−1(1)− αqU2j−2(1)− U2j−1(1)− αqU2j−2(1)

−

2j−2−
k=1

2j − 1 − k
2j − 1


Uk(1)(l−2j−1−k(1)− l+2j−1−k(1))− αqUk−1(1)(l−2j−1−k(1)+ l+2j−1−k(1))


,

and hence, using the hypothesis we obtain

l−2j−1(1)− l+2j−1(1) = −2αqU2j−2(1)+

j−1−
k=1

2(j − k)
2j − 1

αqU2k−2(1)


2l2(j−k) −

α
2(j−k)
q

j − k



−

j−1−
k=1

U2k(1)
−2α2(j−k)−1

q

2j − 1
+

j−1−
k=1

2(j − k)− 1
2j − 1

2αqU2k−1(1)l2(j−k)−1(1)

= −
2α2j−1

q

2j − 1
− 2αqU2j−2(1)+

2αq

2j − 1
U2j−2(1)

+
2αq

2j − 1


2(j − 1)l2j−2 +

2j−3−
k=1

(2j − 2 − k)αqUk(1)l2j−2−k(1)



= −
2α2j−1

q

2j − 1
− 2αqU2j−2(1)+

2αq

2j − 1
U2j−2(1)+

2αq(2j − 2)U2j−2

2j − 1
= −

2α2j−1
q

2j − 1
,

thus proving the first formula in (5.8) for k = j. For the first formula in (5.7), φ2j−1,q(1) = −2l2j−1(1) + l+2j−1(1) + l−2j−1(1),
and hence

φ2j−1,q(1) =

2j−2−
k=1

2j − 1 − k
2j − 1


Uk(1)(2l2j−1−k(1)− l+2j−1−k(1)− l−2j−1−k(1))


−

2j−2−
k=1

2j − 1 − k
2j − 1

αqUk−1(1)

l−2j−1−k(1)− l+2j−1−k(1)


,

and using the induction hypothesis, and the previous formula with k = j just proved, this means that

φ2j−1,q(1) =

j−
k=1

2j − 1 − (2k − 1)
2j − 1

U2k−1(1)
α(i)2(j−k)

j − k
− 2

j−
k=1

2j − 1 − 2k
2j − 1

α(i)U2k−1(1)

α(i)2(j−k)−1

2(j − k)− 1


= 0

and the first formula in (5.7) with k = j follows. For the second formula in (5.8), using the hypothesis, we have

l−2j(1)− l+2j(1) = U2j(1)− αqU2j−1(1)− U2j(1)− αqU2j−1(1)

−

2j−1−
k=1

2j − k
2j


Uk(1)(l−2j−k(1)− l+2j−k(1))


+

2j−1−
k=1

2j − k
2j


αqUk−1(1)(l−2j−k(1)+ l+2j−k(1))


= −2αqU2j−1(1)+

j−1−
k=1

2j − 2k
2j

αqU2k−1(1)


2l2j−2k(1)−

α
2j−2k
q

j − k


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+

j−
k=1

2(j − k)+ 1
2j


U2k−1(1)

2α2(j−k)+1
q

2(j − k)+ 1
+ αqU2k−2(1)2l2(j−k)+1(1)



= −2αqU2j−1(1)+
2αqU2j−1(1)

2j
+

2αq

2j
(2j − 1)l2j−1(1)+ 2αq

2j−1−
k=2

2j − k
2j

Uk−1(1)l2j−k(1)

= −2αqU2j−1(1)+
αq

j


U2j−1(1)+ (2j − 1)l2j−1(1)+

2j−2−
k=1

(2j − 1 − k)Uk(1)l2j−1−k(1)



= −2αqU2j−1(1)+
(αq(2j − 1)+ αq)U2j−1(1)

j
= 0.

Eventually, for the second formula in (5.7)

φ2j,q(1) = −2l2j(1)+ l+2j(1)+ l−2j(1)+
α

2j
q

j

=
α

2j
q

j
+

2j−1−
k=1

2j − k
2j


Uk(1)(2l2j−k(1)− l+2j−k(1)− l−2j−k(1))


−

2j−1−
k=1

2j − k
2j

αqUk−1(1)

l−2j−k(1)− l+2j−k(1)


=

j−1−
k=1

2j − 2k
2j

U2k(1)
α

2(j−k)
q

j − k
− 2

j−
k=2

αqU2k−2(1)
α

2(j−k)+1
q

2j
= 0. �

Corollary 5.1. For all j and all 0 ≤ q ≤ p − 2, 0 ≤ j ≤ p − 1, Res1s=0Φ2j+1,q(s) = 0.

Next, we determine the terms A0,0(0) and A′

0,1(0), defined in Eq. (2.18).

Lemma 5.7. For all 0 ≤ q ≤ p − 2,

A0,0,q(s) = 2A0,0,q(s)− A0,0,q,+(s)− A0,0,q,−(s) = −

∞−
n=1

log


1 −

α2
q

µ2
q,n


mq,n

µ2s
q,n
,

A0,1,q(s) = 2A0,1,q(s)− A0,1,q,+(s)− A0,1,q,−(s) = ζ (2s,Uq).

Proof. For Sq Eq. (2.18) reads

A0,0,q(s) =

∞−
n=1

mcex,q,n


a0,0,n,q −

p−
j=1

b2j−1,0,0,qµ
−2j+1
q,n


µ−2s

q,n ,

A0,1,q(s) =

∞−
n=1

mcex,q,n


a0,1,n,q −

p−
j=1

b2j−1,0,1,qµ
−2j+1
q,n


µ−2s

q,n ;

for Sq,±:

A0,0,q,±(s) =

∞−
n=1

mcex,q,n


a0,0,n,q,± −

p−
j=1

b2j−1,0,0,q,±µ
−2j+1
q,n


µ−2s

q,n ,

A0,1,q,±(s) =

∞−
n=1

mcex,q,n


a0,1,n,q,± −

p−
j=1

b2j−1,0,1,q,±µ
−2j+1
q,n


µ−2s

q,n .

Weneed the expansions for largeλof l2j−1(λ), l±2j−1(λ), for j = 1, 2, . . . , p, log0(−λ, Sq,n/µ2
q,n) and log0(−λ, Sq,±,n/µ2

q,n).
Using the classical expansion for Bessel functions and their derivative (see [11] or [28] for details), we obtain

log0(−λ, Sq,n/µ2
q,n) =

1
2
log 2π +


µq,n +

1
2


logµq,n − µq,n log 2

− log0(µq,n + 1)+
1
2


µq,n +

1
2


log(−λ)+ O(e−µq,n

√
−λ).
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For Sq,±, by the same expansions in the definition of the function Î , Eq. (5.5), we obtain

Îν,±αq(z) ∼

√
zez

√
2π


1 +

∞−
k=1

bkz−k


+ O(e−z),

and hence

log0(−λ, Sq,±,n/µ2
q,n) = µq,n

√
−λ+

1
2
log 2π +


µq,n −

1
2


logµq,n − µq,n log 2

− log0(µq,n)+
1
2


µq,n −

1
2


log(−λ)+ log


1 ±

αq

µq,n


+ O(e−µq,n

√
−λ).

This gives

a0,0,n,q =
1
2
log 2π +


µq,n +

1
2


logµq,n − µq,n log 2 − log0(µq,n + 1),

a0,1,n,q =
1
2


µq,n +

1
2


,

a0,0,n,q,± =
1
2
log 2π +


µq,n −

1
2


logµq,n − log 2µq,n0(µq,n)+ log


1 ±

αq

µq,n


,

a0,1,n,q,± =
1
2


µq,n −

1
2


,

while the b2j−1,0,0,q, b2j−1,0,0,q,± all vanish since the functions l2j−1(λ), l±2j−1(λ) do not have constant terms. Therefore,

2a0,0,n,q − a0,0,n,q,+ − a0,0,n,q,− = − log


1 −

α2
q

µ2
q,n


,

2a0,1,n,q − a0,1,n,q,+ − a0,1,n,q,− = 1,

and the thesis follows. �

Applying Theorem 2.1 and its corollary, we obtain the values of tq(0) and t ′q(0).

Proposition 5.2. For 0 ≤ q ≤ p − 2,

tq(0) = tq,reg(0)+ tq,sing(0), t ′q(0) = t ′q,reg(0)+ t ′q,sing(0),

where

tq,reg(0) = −ζ (0,Uq) = −ζcex

0, ∆̃(q) + α2

q


, tq,sing(0) = 0,

t ′q,reg(0) = −Aq,0,0(0)− A′

q,0,1(0),

t ′q,sing(0) =
1
2

p−1−
j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζ (s,Uq) =
1
2

p−1−
j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζcex

 s
2
, ∆̃(q) + α2

q


.

Proof. By definition in Eqs. (5.1) and (5.2),

tq(0) = 2Zq(0)− Zq,+(0)− Zq,−(0), t ′q(0) = 2Z ′

q(0)− Z ′

q,+(0)− Z ′

q,−(0)

where Zq(s) = ζ (s, Sq), and Zq,±(s) = ζ (s, Sq,±). By Proposition 5.1 and Lemma 5.4, we can apply Theorem 2.1 and its
corollary to the linear combination above of these double zeta functions. The regular part of 2Zq(0) − Zq,+(0) − Zq,−(0)
is then given in Lemma 5.7, while the singular part vanishes, since, by Corollary 5.1, the residues of the functions Φk,q(s)
at s = 0 vanish. The regular part of 2Z ′

q(0) − Z ′
q,+(0) − Z ′

q,−(0) again follows by Lemma 5.7. For the singular part, since
by Proposition 5.1, κ = 2, ℓ = 2p, and σh = h − 1, with 0 ≤ h ≤ 2p, by Remark 5.1 we need only the odd values of
h − 1 = 2j + 1, 0 ≤ j ≤ p − 1, and this gives the formula stated for t ′p−1,sing(0). �

5.2. The function tp−1(s)

In this sectionwe study the function tp−1(s).We apply Theorem2.1 to the double sequences Sp−1 = {mp−1,n : j2µp−1,n,k
}
∞

n=1

and Ṡp−1 = {mp−1,n : (j′µp−1,n,k
)2}∞n=1, since Zp−1(s) = ζ (s, Sp−1), Żp−1(s) = ζ (s, Ṡp−1). Spectral decomposition is with

respect to the simple sequence Up−1 = {mp−1,n : µp−1,n}
∞

n=1. Since the method is essentially the same as in the previous
subsection, we just state the results here.
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Lemma 5.8. The sequence Up−1 is a totally regular sequence of spectral type with infinite order, e(Up−1) = g(Up−1) = 2p − 1,
and ζ (s,Up−1) = ζcex

 s
2 , ∆̃

(p−1)

, with possible simple poles at s = 2p − 1 − h, h = 0, 2, 4, . . . .

Lemma 5.9. The logarithmic Gamma functions associated to the sequences Sp−1,n/µ
2
p−1,n and Ṡp−1,n/µ

2
p−1,n have the following

representations, with λ ∈ Dθ,c, 0 ≤ θ ≤ π , c =
min(j2µp−1,1

,(j′µp−1,1
)2)

2µ2
p−1,1

,

log0(−λ, Sp−1,n/µ
2
p−1,n) = − log

∞∏
k=1


1 +

(−λ)µ2
p−1,n

j2µp−1,n,k


= − log Iµp−1,n(µp−1,n

√
−λ)+ (µp−1,n) log

√
−λ

+µp−1,n log(µp−1,n)− µp−1,n log 2 − log0(µp−1,n + 1),

log0(−λ, Ṡp−1,n/µ
2
p−1,n) = − log

∞∏
k=1


1 +

(−λ)(µp−1,n)
2

(j′µp−1,n,k
)2


= − log I ′µp−1,n

(µp−1,n
√

−λ)+ (µp−1,n − 1) log
√

−λ

+µp−1,n log(µp−1,n)− µp−1,n log 2 − log0(µp−1,n + 1).

Proposition 5.3. The double sequences Sp−1 and Ṡp−1 have relative exponents

p, 2p−1

2 , 1
2


, relative genus (p, p − 1, 0), and

are spectrally decomposable over Up−1 with power κ = 2, length ℓ = 2p and domain Dθ,c . The coefficients σh appearing in
Eq. (2.15) are σh = h − 1, with h = 0, 1, . . . , ℓ = 2p.

Remark 5.3. Only the terms with σh = 1, σh = 3, . . . , σh = 2p − 1 namely h = 2, 4, . . . , 2p, appear in the formula of
Theorem 2.1, since the unique non negative poles of ζ (s,Up−1) are at s = 1, s = 3, . . . , s = 2p − 1, by Lemma 5.8.

Lemma 5.10. The difference of the logarithmic Gamma functions associated to the sequences Sp−1,n/µ
2
p−1 and Ṡp−1,n/µ

2
p−1,n

have the following uniform asymptotic expansions for large n, λ ∈ Dθ,c ,

log0(−λ, Sp−1,n/µ
2
p−1,n)− log0(−λ, Ṡp−1,n/µ

2
p−1,n)

= − log I(µp−1,n
√

−λ)+ log I ′(µp−1,n
√

−λ)+ log
√

−λ

=
1
2
log(1 − λ)+

2p−1−
j=1

φj,p−1(λ)
1

(µ
p
p−1,n)

j
+ O


1

µ
2p
p−1,n


.

Proof. Proceeding as in the proof of Proposition 5.4

log0(−λ, Sp−1,n/(µp−1,n)
2)− log0(−λ, Ṡp−1,n/(µp−1,n)

2)

=
1
2
log(1 − λ)+

2p−1−
j=1

1

µ
j
p−1,n


Vj(

√
−λ)− Uj(

√
−λ)+

j−1−
k=1

j − k
j


Vk(

√
−λ)l̇j−k(λ)− Uk(

√
−λ)lj−k(λ)



+O


1

µ
2p
p−1,n


,

where we denote by l̇j(λ) the term in the expansion relative to the sequence Ṡ (thus the one containing the Vj(z)) and by
lj(λ) the term relative to S (thus the one containing the Uj(z)). Setting

φp−1,j(λ) = l̇j(λ)− lj(λ)

= Vj(
√

−λ)− Uj(
√

−λ)+

j−1−
k=1

j − k
j


Vk(

√
−λ)l̇j−k(λ)− Uk(

√
−λ)lj−k(λ)


, (5.9)

we have the formula stated in the thesis. �

Lemma 5.11. For all j, the functions φj,p−1(λ) are odd polynomial inw =
1

√
1−λ

φj,p−1(λ) =

3j+1−
k=j

aj,p−1,kw
2k+1.

Lemma 5.12. For all j, φj,p−1(0) = 0.
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Corollary 5.2. For all j, and 0 ≤ j ≤ p − 1, Res1
s=0

Φ2j+1,p−1(s) = 0.

Lemma 5.13.
A0,0,p−1(s) = A0,0,p−1(s)− Ȧ0,0,p−1(s) = 0,

A0,1,p−1(s) = A0,1,p−1(s)− Ȧ0,1,p−1(s) =
1
2
ζ (2s,Up−1).

Proposition 5.4.
tp−1(0) = tp−1,reg(0)+ tp−1,sing(0), t ′p−1(0) = t ′p−1,reg(0)+ t ′p−1,sing(0),

where

tp−1,reg(0) = −
1
2
ζ (0,Up−1) = −

1
2
ζcex


0, ∆̃(p−1) , tp−1,sing(0) = 0,

t ′p−1,reg(0) = −ζ ′(0,Up−1) = −
1
2
ζ ′

cex


0, ∆̃(p−1) ,

t ′p−1,sing(0) =
1
2

p−1−
j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζ (s,Up−1) =
1
2

p−1−
j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=2j+1

ζcex

 s
2
, ∆̃(p−1)


.

6. The analytic torsion, and the proof of Theorem 1.1

In this section we collect all the results obtained in the previous one in order to produce our formulas for the analytic
torsion, thus proving Theorem 1.1, that follows from Propositions 6.1 and 6.2. By Eq. (5.3), the torsion is

log T (ClW ) = t ′(0) =
log l2

2


p−1−
q=0

(−1)q+1rqzq(0)+

p−1−
q=0

(−1)qtq(0)



+
1
2


p−1−
q=0

(−1)q+1rqz ′

q(0)+

p−1−
q=0

(−1)qt ′q(0)


.

However, it is convenient to split the torsion in regular and singular parts, according to Remark 2.1 and the results in
Propositions 5.2 and 5.4. First, observe that the functions zq(s) were studied at the end of Section 2.4, where it was shown
that there is no singular contribution to zq(0) and z ′

q(0). So zq(0) = zq,reg(0), and z ′
q(0) = z ′

q,reg(0). Therefore, we set
log T (ClW ) = log Treg(ClW )+ log Tsing(ClW ),

with

log Treg(ClW ) = t ′reg(0) =
log l2

2


p−1−
q=0

(−1)q+1rqzq(0)+

p−1−
q=0

(−1)qtq,reg(0)



+
1
2


p−1−
q=0

(−1)q+1rqz ′

q(0)+

p−1−
q=0

(−1)qt ′q,reg(0)


, (6.1)

log Tsing(ClW ) = t ′sing(0) =
log l2

2

p−1−
q=0

(−1)qtq,sing(0)+
1
2

p−1−
q=0

(−1)qt ′q,sing(0). (6.2)

Lemma 6.1. For all 0 ≤ q ≤ p − 1,

zq(0) = −
1
2
, z ′

q(0) = log 2 + log(p − q).

Proof. This follows by Eq. (2.19). �

Lemma 6.2.
tq,reg(0) = −ζcex(0, ∆̃(q)), 0 ≤ q ≤ p − 2,

t ′q,reg(0) = −ζ ′

cex(0, ∆̃
(q)), 0 ≤ q ≤ p − 2,

tp−1,reg(0) = −
1
2
ζcex(0, ∆̃(p−1)), t ′p−1,reg(0) = −

1
2
ζ ′

cex(0, ∆̃
(p−1)).
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Proof. The first and the third formulas follows by Propositions 5.2 and 5.4, and the fact that for the zeta function associated
to any sequence S, and any number b, ζ (0, S + b) = ζ (0, S). For the derivatives, when 0 ≤ q ≤ p − 2, by Proposition 5.2,

t ′q,reg(0) = −A0,0,q(0)− A′

0,1,q(0).

By Lemma 5.7

A0,0,q(s) = −

∞−
n=1

log


1 −

α2
q

µ2
q,n


mcex,q,n

µ2s
q,n

, A0,1,q(s) = ζ (2s,Uq) =

∞−
n=1

mcex,q,n

µ2s
q,n

.

Recalling that µq,n =

λq,n + αq, and expanding the binomial, we obtain

−A0,0,q(s)− A′

0,1,q(s) =

∞−
n=1

log


1 −

α2
q

µ2
q,n


mcex,q,n

µ2s
q,n

−

∞−
n=1

mcex,q,n

µ2s
q,n

logµ2
q,n

=

∞−
n=1

log λq,n
mcex,q,n

µ2s
q,n

=

∞−
n=1

log λq,n
∞−
j=0


−s
j


mcex,q,n

λ
s+j
q,n

α2j
q

= −

∞−
j=0


−s
j


ζ ′

ccl(s + j, ∆̃(q))α2j
q ,

that gives the second formula. Eventually, the result for t ′p−1,reg(0) follows by Proposition 5.4 and the fact that αp−1 = 0
since the dimension ism = 2p − 1. �

Proposition 6.1.

log Treg(ClW ) =
1
2

p−1−
q=0

(−1)qrq log
l
2

−
1
2

p−1−
q=0

(−1)qrq log(p − q)+
1
2
log T (W , g)

−


p−2−
q=0

(−1)qζccl(0, ∆̃(q))+
1
2
(−1)p−1ζccl(0, ∆̃(p−1))


log l

=
1
2

p−1−
q=0

(−1)qrq log
l
2

−
1
2

p−1−
q=0

(−1)qrq log(p − q)+
1
2
log T (W , l2g),

where rq = rkHq(∂ClW ; Q).

Proof. Substitution in the formula in Eq. (6.1) of the values given in Lemmas 6.1 and 6.2 gives

log Treg(ClW ) =
1
2

p−1−
q=0

(−1)qrq log
l
2

−
1
2

p−1−
q=0

(−1)qrq log(p − q)

−


p−2−
q=0

(−1)qζccl(0, ∆̃(q))+
1
2
(−1)p−1ζccl(0, ∆̃(p−1))


log l

+
1
4


2

p−2−
q=0

(−1)q+1ζ ′

ccl(0, ∆̃
(q))+ (−1)pζ ′

ccl(0, ∆̃
(p−1))


.

By the second formula in Eq. (2.8)

1
4


2

p−2−
q=0

(−1)q+1ζ ′

ccl(0, ∆̃
(q))+ (−1)pζ ′

ccl(0, ∆̃
(p−1))


=

1
2
log T (W , g),

and this gives the first formula stated. For the second formula, note that the boundary of the cone ∂ClW is the manifold
W with metric l2g . The restriction of the Laplace operator on the boundary is then ∆∂ClW =

∆̃

l2
. Since for the zeta function

associated to any sequence S, and any number a,

ζ ′(0, aS) = −ζ (0, S) log a + ζ ′(0, S),

a simple calculation shows that
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−


p−2−
q=0

(−1)qζccl(0, ∆̃(q))+
1
2
(−1)p−1ζccl(0, ∆̃(p−1))


log l2 +

1
2


2

p−2−
q=0

(−1)q+1ζ ′

ccl(0, ∆̃
(q))+ (−1)pζ ′

ccl(0, ∆̃
(p−1))


= t(0,W ) log l2 + t ′(0,W ) = log T (∂ClW ). �

Proposition 6.2.

log Tsing(ClW ) =
1
2

p−1−
q=0

(−1)q
p−1−
j=0

Res0
s=0

Φ2j+1(s) Res1
s=j+ 1

2

ζcex

s, ∆̃(q) + α2

q


=

1
2

p−1−
q=0

(−1)q
p−1−
j=0

Res0
s=0

Φ2j+1(s)
q−

l=0

(−1)l Res1
s=j+ 1

2

ζ

s, ∆̃(l) + α2

q


=

1
2

p−1−
q=0

(−1)q
p−1−
j=0

j−
k=0

Res0
s=0

Φ2k+1,q(s)


−
1
2 − k
j − k


Res1
s=j+ 1

2

ζcex

s, ∆̃(q)


α2(j−k)
q

=
1
2

p−1−
q=0

p−1−
j=0

j−
k=0

Res0
s=0

Φ2k+1,q(s)


−
1
2 − k
j − k

 q−
l=0

(−1)l Res1
s=j+ 1

2

ζ

s, ∆̃(l)


α2(j−k)
q .

Proof. The first formula follows by substitution in Eq. (6.2) of the values given in Propositions 5.2 and 5.4, and observing
that, for the zeta function associated to any sequence S: a Res1

s=s0
ζ (as, S) = Res1

s=as0
ζ (s, S). The second by duality, see Section 2.2,

ζccl

s, ∆̃(q)


= ζ


s, ∆̃(q)


− ζcl


s, ∆̃(q)


= ζ


s, ∆̃(q)


− ζccl


s, ∆̃(q−1)

=

q−
k=0

(−1)q+kζ

s, ∆̃(k)


.

The third formula follows by Lemmas 5.2 and 5.8, and some combinatorics, and the last by the previous ones. �

7. The proof of Theorem 1.2: low dimensional cases

We present a proof for the case 2p − 1 = 3. We also have a similar proof for the case 2p − 1 = 5, that we omit to spare
space. The proof is in two parts: in the first we compute the anomaly boundary term, as defined in Section 3.2, in the second
we compute the singular term in the analytic torsion, using Proposition 6.2. A proof of the general case by this method is
unlikely, since we do not have general formulas for the higher coefficients eq,j appearing in the asymptotic expansion of the
heat kernel of the Laplacian on forms. However, we decided to present the proof for p = 2 here, since this together with the
direct combinatoric proof of the same result when the section of the cone is a sphere, mentioned in the introduction, makes
the result in the general case a strong conjecture.

7.1. Part 1

Sincem = 3, the unique terms that give a non trivial contribution in the Berezin integral appearing in Eq. (2.11) are those
homogeneous of degree 3. By the definition of the exponential (recall that Θ = Ω̃ , see Section 3.2), the terms of degree 3
in the integrand in Eq. (2.11) are

−
2

3
√
π
u2S3

1 −
1

√
π

ˆ̃
ΩS1;

thus

B(∇1) =
1
2

∫ 1

0

∫ B

e−
1
2

ˆ̃
Ω−u2S2

j

∞−
k=1

1
0
 k
2 + 1

uk−1Sk
j du

=
1
2

∫ 1

0

∫ B 
−

2
3
√
π
u2S3

1 −
1

√
π

ˆ̃
ΩS1


du

= −
1

2
√
π

∫ B
ˆ̃
ΩS1 −

1
9
√
π

∫ B

S3
1 . (7.1)

Eq. (3.6) and direct calculations give

S3
1 = −

1
8


m−

k=1

b∗

k ∧ ê∗

k

3

=
3
4
dvolg ∧ ê∗

1 ∧ ê∗

2 ∧ ê∗

3,
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and

(b∗

1 ∧ b∗

2 ∧ ê∗

1 ∧ ê∗

2) ∧ (b∗

3 ∧ ê∗

3) = b∗

1 ∧ b∗

2 ∧ b∗

3 ∧ ê∗

1 ∧ ê∗

2 ∧ ê∗

3.

Thus,∫ B

S3
1 =

3

4π
3
2
dvolg .

By Eqs. (3.6) and (2.10),

ˆ̃
ΩS1 = −

1
4


3−

k,l=1

Ω̃kl ∧ ê∗

k ∧ ê∗

l


∧


3−

k=1

b∗

k ∧ ê∗

k


.

Direct calculations give

ˆ̃
ΩS1 = −

1
2
(Ω23 ∧ b∗

1 −Ω13 ∧ b∗

2 +Ω12 ∧ b∗

3) ∧ ê∗

1 ∧ ê∗

2 ∧ ê∗

3

= −
1
2
(R2332 + R1331 + R1221)ê∗

1 ∧ ê∗

2 ∧ ê∗

3

= −
1
4
τ̃ ê∗

1 ∧ ê∗

2 ∧ ê∗

3,

and hence∫ B
ˆ̃
ΩS1 =

1

4π
3
2

3−
k,l=1

R̃kllkdvolg .

Substitution in Eq. (7.1) gives

B(∇1) =
1

4
√
π

∫ B
ˆ̃
ΩS1 −

1
9
√
π

∫ B

S3
1 =

1
8π2

τ̃dvolg −
1

12π2
dvolg .

By the formula in Eq. (2.12), the anomaly boundary term is

ABM,abs(∂ClW ) =
1

16π2

∫
∂ClW

τ̃dvolg −
1

24π2

∫
∂ClW

dvolg .

7.2. Part 2

By Proposition 6.2, with p = 2,

log Tsing(ClW ) =
1
2

1∑
q=0
(−1)q

1∑
j=0

Res0
s=0

Φ2j+1,q(s) Res1
s=j+ 1

2

ζcex

s, ∆̃(q) + α2

q


.

Since p = 2, α0 = −1 and α1 = 0. Since there are no exact 0-forms

ζcex

s, ∆̃(0) + α2

0


= ζ


s, ∆̃(0) + α2

0


.

By Lemma 5.2,

Res1
s= 3

2

ζ

s, ∆̃(0) + α2

0


= Res1

s= 3
2

ζ

s, ∆̃(0)


,

Res1
s= 1

2

ζ

s, ∆̃(0) + α2

0


= Res1

s= 1
2

ζ

s, ∆̃(0)


−

1
2
Res1
s= 3

2

ζ

s, ∆̃(0)


.

By duality (see Section 2.2)

ζcex(s, ∆̃(1)) = ζ (s, ∆̃(1))− ζex(s, ∆̃(1)) = ζ (s, ∆̃(1))− ζcex(s, ∆̃(0)),

and also

Res1
s= 1

2

ζ (s, ∆̃(1)) = −3 Res1
s= 1

2

ζ (s, ∆̃(0)), Res1
s= 3

2

ζ (s, ∆̃(1)) = 3 Res1
s= 3

2

ζ (s, ∆̃(0)).
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Putting all together, we obtain

log Tsing(ClW ) =
1
2


Res0
s=0

Φ1,0(s)+ Res0
s=0

Φ1,1(s)+ 3 Res0
s=0

Φ1,1(s)

Res1
s= 1

2

ζ (s, ∆̃(0))

+
1
2


Res0
s=0

Φ3,1(s)+ Res0
s=0

Φ3,0(s)−
1
2
Res0
s=0

Φ1,0(s)− 3 Res0
s=0

Φ3,1(s)

Res1
s= 3

2

ζ (s, ∆̃(0)).

By Corollary 5.2 (when q = 1), and 5.1 (when q = 0)

Res0
s=0

Φ1,1(s) = 1, Res0
s=0

Φ3,1(s) =
2

315
,

Res0
s=0

Φ1,0(s) = 2, Res0
s=0

Φ3,0(s) =
214
315

.

This gives

log Tsing(ClW ) = 3 Res1
s= 1

2

ζ (s, ∆̃(0))−
1
6
Res1
s= 3

2

ζ (s, ∆̃(0)).

To complete the proof, recall from one side that for a compact connected Riemannian manifold (W , g) of dimension
m there exists a full asymptotic expansion for the trace of the heat kernel of the Laplacian on forms for small t [29],
TrL2e

−t∆(q)
= t−

m
2
∑

∞

j=0 eq,jt
j
2 . The coefficients depend only on local invariants constructed from the metric tensor, are

in principle calculable from it, and we have the following explicit formulas for the first ones:

eq,0 =
1

(4π)
m
2


m
q

∫
W

dvolg , eq,2 =
1

6(4π)
m
2


m
q


− 6


m − 2
q − 1

∫
W
τdvolg .

From the other side, the sequence Sp+∆
(q) of the positive eigenvalues of themetric Laplacian on forms is a totally regular

sequence of spectral type, with finite exponent e =
m
2 , genus g = [e], spectral sector Σθ,c with some 0 < c < λ1,

ϵ < θ < π
2 , asymptotic domain Dθ,c = C − Σθ,c , and infinite order [17]. Therefore, the zeta function ζ (s, Sp+∆

(q)) has a
meromorphic continuation to the whole complex plane up to simple poles at the values of s =

m−h
2 , h = 0, 1, 2, . . . , that

are not negative integers nor zero, with residues

Res1
s= m−h

2

ζ (s, Sp+∆
(q)) =

eq,h
0
m−h

2

 .
These facts imply that

log Tsing(ClW ) =
1

16π2

∫
∂ClW

τ̃dvolg −
1

24π2

∫
∂ClW

dvolg .

8. The proof of Theorem 1.2: the general case

Since the argument is very close to the one described in detail in the previous sections, we will just sketch it here. We
consider the conical frustum (or more precisely its external surface) that is the compact connected oriented Riemannian
manifold

C[l1,l1]W = [l1, l2] × W ,

with 0 < l1 < l2, and with metric dx ⊗ dx + x2g . We study the analytic torsion of C[l1,l2] with relative boundary conditions
at x = l1 and absolute boundary condition at x = l2, and with respect to the trivial representation for the fundamental
group. This idea was originally suggested to M.S. by Müller; see also the preprint [30], for a similar approach. We denote by
∂1/2C[l1,l2]W , or simply ∂1/2, the two boundaries, and by log Trel ∂1,abs ∂2(C[l1,l2]W ) the torsion.

8.1. Spectrum

First, we describe the spectrum of the Laplace operator on forms. The proofs of the next lemmas are analogous to the
proofs of Lemmas 3.2 and 3.3 and will be omitted.



Author's personal copy

L. Hartmann, M. Spreafico / Journal of Geometry and Physics 61 (2011) 624–657 649

Lemma 8.1. With the notation of Lemma 3.2, assuming that µq,n is not an integer, all the solutions of the equation1u = λ2u,
with λ ≠ 0, are convergent sums of forms of the following twelve types:

ψ
(q)
+,1,n,λ = xαq Jµq,n(λx)ϕ

(q)
cex,n,

ψ
(q)
−,1,n,λ = xαqYµq,n(λx)ϕ

(q)
cex,n,

ψ
(q)
+,2,n,λ = xαq−1 Jµq−1,n(λx)d̃ϕ

(q−1)
cex,n + ∂x(xαq−1 Jµq−1,n(λx))dx ∧ ϕ(q−1)

cex,n ,

ψ
(q)
−,2,n,λ = xαq−1Yµq−1,n(λx)d̃ϕ

(q−1)
cex,n + ∂x(xαq−1Yµq−1,n(λx))dx ∧ ϕ(q−1)

cex,n ,

ψ
(q)
+,3,n,λ = x2αq−1+1∂x(x−αq−1 Jµq−1,n(λx))d̃ϕ

(q−1)
cex,n + xαq−1−1Jµq−1,n(λx)dx ∧ d̃Ďd̃ϕ(q−1)

cex,n ,

ψ
(q)
−,3,n,λ = x2αq−1+1∂x(x−αq−1Yµq−1,n(λx))d̃ϕ

(q−1)
cex,n + xαq−1−1Yµq−1,n(λx)dx ∧ d̃Ďd̃ϕ(q−1)

cex,n ,

ψ
(q)
+,4,n,λ = xαq−2+1Jµq−2,n(λx)dx ∧ d̃ϕ(q−2)

cex,n ,

ψ
(q)
−,4,n,λ = xαq−2+1Yµq−2,n(λx)dx ∧ d̃ϕ(q−2)

cex,n ,

ψ
(q)
+,E,λ = xαq J|αq|(λx)ϕ

(q)
har,

ψ
(q)
−,E,λ = xαqY|αq|(λx)ϕ

(q)
har,

ψ
(q)
+,O,λ = ∂x(xαq−1 J|αq−1|(λx))dx ∧ ϕ

(q−1)
har,n ,

ψ
(q)
−,O,λ = ∂x(xαq−1Y|αq−1|(λx))dx ∧ ϕ

(q−1)
har,n .

When µq,n is an integer the − solutions must be modified including some logarithmic term (see for example [24] for a set of
linear independent solutions of the Bessel equation).

Note that the forms of types 1, 3 and E are coexact, those of types 2, 4 andO are exact. The operator d sends forms of types
1, 3 and E in forms of types 2, 4 and O, while dĎ sends forms of types 2, 4 and O in forms of types 1, 3 and E, respectively. The
Hodge operator sends forms of type 1 in forms of types 4, 2 in 3, and E in O. Define the functions, for c ≠ 0,

Fµ,c(x) = Jµ(l2x)(cYµ(l1x)+ l1xY ′

µ(l1x))− Yµ(l2x)(cJµ(l1x)+ l1xJ ′µ(l1x)),

F̂µ,c(x) = Jµ(l1x)(cYµ(l2x)+ l2xY ′

µ(l2x))− Yµ(llx)(cJµ(l2x)+ l2xJ ′µ(l2x)),

and when c = 0,

Fµ,0(x) = Jµ(l2x)Y ′

µ(l1x)− Yµ(l2x)J ′µ(l1x),

F̂µ,0(x) = Jµ(l1x)Y ′

µ(l2x)− Yµ(llx)J ′µ(l2x).

Lemma 8.2. The positive part of the spectrum of the Laplace operator on forms on C[l1,l2]W, with relative boundary conditions
on ∂1C[l1,l2]W and absolute boundary conditions on ∂2C[l1,l2]W is:

Sp+∆
(q)
rel ∂1,abs b2

=


mcex,q,n : f̂ 2µq,n,αq,k

∞

n,k=1
∪


mcex,q−1,n : f̂ 2µq−1,n,αq−1,k

∞

n,k=1

∪


mcex,q−1,n : f 2µq−1,n,−αq−1,k

∞

n,k=1
∪


mcex,q−2,n : f 2µq−2,n,−αq−2,k

∞

n,k=1

∪


mhar,q,0 : f̂ 2

|αq|,αq,k

∞

k=1
∪


mhar,q−1,0 : f̂ 2

|αq−1|,αq−1,k

∞

k=1
.

With absolute boundary conditions on ∂1C[l1,l2]W and relative boundary conditions on ∂2C[l1,l2]W is:

Sp+∆
(q)
abs ∂1,rel ∂2

=


mcex,q,n : f −2s

µq,n,αq,k

∞

n,k=1
∪


mcex,q−1,n : f −2s

µq−1,n,αq−1,k

∞

n,k=1

∪


mcex,q−1,n : f̂ −2s

µq−1,n,−αq−1,k

∞

n,k=1
∪


mcex,q−2,n : f̂ −2s

µq−1,n,−αq−2,k

∞

n,k=1

∪

mhar,q : f|αq|,αq,k

∞

k=1 ∪

mhar,q−1 : f|αq−1|,αq−1,k

∞

k=1
,

where the fµ,c,k are the zeros of the function Fµ,c(x), the f̂µ,c,k are the zeros of the function F̂µ,c(x), c ∈ R, αq andµq,n are defined
in Lemma 3.2.
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8.2. Torsion zeta function

We define the torsion zeta function as in Section 2.2 by

trel ∂1,abs ∂2(s) =
1
2

m+1−
q=1

(−1)qqζ (s,∆(q)rel ∂1,abs ∂2
).

By a proof similar to the one of Theorem 4.1 we have the expected duality (dim(W ) = m):

log Tabs ∂1,rel ∂2(C[l1,l2]W ) = (−1)m log Trel ∂1,abs ∂2(C[l1,l2]W ).

We proceed assuming dimW = 2p − 1 odd, and assuming a relative boundary condition on ∂1C[l1,l2]W and an absolute
boundary condition on ∂2; for notational convenience, we will omit the abs, rel subscript. We define the functions

F̂c(x) = Jc(l2x)Yc−1(l1x)− Yc(l2x)Jc−1(l1x),
Fc(x) = Jc(l1x)Yc−1(l2x)− Yc(llx)Jc−1(l2x).

Note that, with these definitions F̂0(x) = F1(x) and F0(x) = F̂1(x) (remember that Y−n(x) = (−1)nYn(x) and
J−n(x) = (−1)nJn(x)). The proof of the following lemma is analogous to the proof of Lemma 5.1. The main step is to prove
that f̂|αq|,αq,k = f−αq−1,k, that f̂|αq|,αq,k = f̂αq,k, when p− 1 < q ≤ 2p− 1, and that f̂0,0,k = f1,k, where the fc,k, f̂c,k are the zeros
of the functions Fc, F̂c , respectively.

Lemma 8.3.

t(s) =
1
2

p−2−
q=0

(−1)q
∞−

n,k=1

mcex,q,n


f −2s
µq,n,αq,k + f −2s

µq,n,−αq,k − f̂ −2s
µq,n,αq,k − f̂ −2s

µq,n,−αq,k


+ (−1)p−1 1

2

∞−
n,k=1

mcex,p−1,n


f −2s
µp−1,n,0,k

− f̂ −2s
µp−1,n,0,k


−

1
2

p−1−
q=0

(−1)qrkHq(W ; Q)
∞−
k=1


f −2s
−αq−1,k

− f̂ −2s
−αq−1,k


.

We set

Zq,±(s) =

∞−
n,k=1

mcex,q,nf −2s
µq,n,±αq,k, Ẑq,±(s) =

∞−
n,k=1

mcex,q,n f̂ −2s
µq,n,±αq,k,

Zp−1(s) =

∞−
n,k=1

mcex,p−1,nf −2s
µp−1,n,0,k

, Ẑp−1,±(s) =

∞−
n,k=1

mcex,p−1,n f̂ −2s
µp−1,n,0,k

,

zq(s) =

∞−
k=1


f −2s
−αq−1,k

− f̂ −2s
−αq−1,k


,

(8.1)

for 0 ≤ q ≤ p − 1, and

tp−1(s) = Zp−1(s)− Ẑp−1(s),

tq(s) = Zq,+(s)+ Zq,−(s)− Ẑq,+(s)− Ẑq,−(s), 0 ≤ q ≤ p − 2.
(8.2)

Then,

t(s) =
1
2

p−2−
q=0

(−1)q

Zq,+(s)+ Zq,−(s)− Ẑq,+(s)− Ẑq,−(s)


+ (−1)p−1 1

2


Zp−1(s)− Ẑp−1(s)


−

1
2

p−1−
q=0

(−1)qrkHq(W ; Q)zq(s)

=
1
2

p−1−
q=0

(−1)qtq(s)−
1
2

p−1−
q=0

(−1)qrkHq(∂ClW ; Q)zq(s),

and

log Trel ∂1,abs ∂2(C[l1,l2]W ) = t ′(0) =
1
2

p−1−
q=0

(−1)qt ′q(0)−
1
2

p−1−
q=0

(−1)qrkHq(∂ClW ; Q)z ′

q(0). (8.3)
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8.3. Expansions of the logarithmic Gamma functions

We study the zeta functions Zq,±, Ẑq,±, by the method of Section 2.4. The double series associated to these zeta functions,
as defined in Eq. (8.1), are denoted by S±αq , Ŝ±αq . We show that all these double sequences are spectrally decomposable on
the sequenceUq, defined at the beginning of Section 5.1.We verify all requirements precisely as in Sections 5.1 and 5.2. First,
we need a suitable representation for the associated logarithmic Gamma functions. Proceeding as in Section 5.1, consider
for example the function

Fµ,c(z) = Jµ(l2z)(cYµ(l1z)+ l1zY ′

µ(l1z))− Yµ(l2z)(cJµ(l1z)+ l1zJ ′µ(l1z)).

Recalling the series definition of the Bessel function [25] pg. 910, near z = 0,

Fµ,c(z) =
1
π


lµ2
lµ1

+
lµ1
lµ2


−

c
µ


lµ2
lµ1

−
lµ1
lµ2


.

Thus Fµ,c(z) is an even function of z, and we obtain the product representation

Fµ,c(z) =
1
π


lµ2
lµ1

+
lµ1
lµ2


−

c
µ


lµ2
lµ1

−
lµ1
lµ2

 +∞∏
k=1


1 −

z2

f 2µ,c,k


.

Recalling that

Yµ(z) =
cosµπ
sinµπ

Jµ(z)−
1

sinµπ
J−µ(z), I−µ(z) =

2
π

sinµπKµ(z)+ Iµ(z),

and that (when −π < arg(z) ≤
π
2 ) Jµ(iz) = e

π
2 iµIµ(z), and J ′µ(iz) = e

π
2 iµe−

π
2 iI ′µ(z), we obtain

Yµ(iz) =


cosµπ
sinµπ

e
π
2 iµ

+
e−

π
2 iµ

sinµπ


Iµ(z)−

2
π
e−

π
2 iµKµ(z),

Y ′

µ(iz) = e−
π
2 i


cosµπ
sinµπ

e
π
2 iµ

+
e−

π
2 iµ

sinµπ


I ′µ(z)−

2
π
e−

π
2 ie−

π
2 iµK ′

µ(z).

So

Fµ,c(iz) =
2
π


−Kµ(l2z)(cIµ(l1z)+ l1zI ′µ(l1z))+ Iµ(l2z)(cKµ(l1z)+ l1zK ′

µ(l1z))

,

and if we define (for −π < arg(z) ≤
π
2 ) Gµ,c(z) = i2Fµ,c(iz),

Gµ,c(z) =
1
π


lµ2
lµ1

+
lµ1
lµ2


−

c
µ


lµ2
lµ1

−
lµ1
lµ2

 +∞∏
k=1


1 +

z2

f 2µ,c,k


.

Proceeding in a similar way

F̂µ,c(iz) =
2
π


Kµ(l1z)(cIµ(l2z)+ l2zI ′µ(l2z))− Iµ(l1z)(cKµ(l2z)+ l2zK ′

µ(l2z))

,

Ĝµ,c(z) = F̂µ,c(iz) =
1
π


lµ2
lµ1

+
lµ1
lµ2


+

c
µ


lµ2
lµ1

−
lµ1
lµ2

 +∞∏
k=1


1 +

z2

f̂ 2µ,c,k


;

Fµ,0(iz) =
2
π


−Kµ(l2z)I ′µ(l1z)+ Iµ(l2z)K ′

µ(l1z)

,

Gµ,0(z) = i2Fµ,0(iz) =
1

l1zπ


lµ2
lµ1

+
lµ1
lµ2

 +∞∏
k=1


1 +

z2

f 2µ,c,k


;

F̂µ,0(iz) =
2
π


Kµ(l1z)I ′µ(l2z)− Iµ(l1z)K ′

µ(l2z)

,

Ĝµ,0(z) = F̂µ,0(iz) =
1

l2zπ


lµ2
lµ1

+
lµ1
lµ2

 +∞∏
k=1


1 +

z2

f̂ 2µ,0,k


.
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These give the following representations for the logarithmic Gamma functions with z =
√

−λ,

log0(−λ, S±αq) = − log
∞∏
k=1


1 +

(−λ)

f 2µq,n,±αq,k



= − logGµq,n,±αq(
√

−λ)+ log
1
π

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


∓

αq

µq,n


lµq,n
2

lµq,n
1

−
lµq,n
1

lµq,n
2


,

log0(−λ, Ŝ±αq) = − log
∞∏
k=1


1 +

(−λ)

f̂ 2µq,n,±αq,k



= − log Ĝµn,q,±αq(
√

−λ)+ log
1
π

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


±

αq

µq,n


lµq,n
2

lµq,n
1

−
lµq,n
1

lµq,n
2


;

log0(−λ, S0) = − log
∞∏
k=1


1 +

(−λ)

f 2µp−1,n,0,k



= − logGµn,p−1,0(
√

−λ)−
1
2
log−λ− log l1 + log

1
π

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


,

log0(−λ, Ŝ0) = − log
∞∏
k=1


1 +

(−λ)

f̂ 2µp−1,n,0,k



= − log Ĝµn,p−1,0(
√

−λ)−
1
2
log−λ− log l2 + log

1
π

+ log


l
µp−1,n
2

l
µp−1,n
1

+
l
µp−1,n
1

l
µp−1,n
2


.

These representations and uniform asymptotic expansions of Bessel functions and their derivative (see the proof of
Lemma 5.10 for the functions Iν and [27] pg. 376 for the functions Kν) will give the expansion required in Eq. (2.15) of
Definition 2.1. Let us see one case in some detail. We have

log0(−λ, Sn,±αq/µ
2
q,n) = − logGµn,q,±αq(µq,n

√
−λ)+ log

1
π

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


∓

αq

µq,n


lµq,n
2

lµq,n
1

−
lµq,n
1

lµq,n
2


.

Using the cited expansions we obtain

logGµ,c(µz) = log
1
π

+ µ


1 + l22z2 −


1 + l21z2


+ µ log

l2(1 +


1 + l21z2)

l1(1 +


1 + l22z2)

+
1
4
log

(1 + l21z
2)

(1 + l22z2)

+ log


1 +

2p−1−
j=1

1
µj


Uj(l2z)+ (−1)jW−c,j(l1z)+

j−1−
k=1

(−1)j−kUk(l2z)W−c,j−k(l1z)


+ O(µ−2p)


.

Thus

logGµq,n,±αq(µq,n
√

−λ) = µq,n


1 − l22λ−


1 − l21λ


+ µq,n log

l2(1 +


1 − l21λ)

l1(1 +


1 − l22λ)

+ log
1
π

+
1
4
log

(1 − l21λ)
(1 − l22λ)

+

2p−1−
j=1

lj,∓αq(λ)

µ
j
q,n

+ O(µ−2p
q,n ),

with

a0,±αq(λ) = 1, l1,±αq(λ) = a1,±αq(λ),

aj,±αq(λ) = Uj(l2
√

−λ)+ (−1)jW±αq,j(l1
√

−λ)+

j−1−
k=1

Uk(l2
√

−λ)(−1)j−kW±αq,j−k(l1
√

−λ),

lj,±αq(λ) = aj,±αq(λ)−

j−1−
k=1

j − k
j

ak,±αq(λ)lj−k,±αq(λ).
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Substituting in log0(−λ, Sn,±αq/µ
2
q,n), we have

log0(−λ, Sn,±αq/µ
2
q,n) = −µq,n


1 − l22λ−


1 − l21λ


− µq,n log

l2(1 +


1 − l21λ)

l1(1 +


1 − l22λ)

−
1
4
log

(1 − l21λ)
(1 − l22λ)

−

2p−1−
j=1

lj,∓αq(λ)

µ
j
q,n

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


∓

αq

µq,n


lµq,n
2

lµq,n
1

−
lµq,n
1

lµq,n
2


+ O(µ−2p

q,n ).

Proceeding in a similar way we obtain

log0(−λ, Ŝn,±αq/µ
2
q,n) = −µq,n


1 − l22λ−


1 − l21λ


− µq,n log

l2(1 +


1 − l21λ)

l1(1 +


1 − l22λ)

−
1
4
log

(1 − l21λ)
(1 − l22λ)

−

2p−1−
j=1

l̂j,±αq(λ)

µ
j
q,n

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


±

αq

µq,n


lµq,n
2

lµq,n
1

−
lµq,n
1

lµq,n
2


+ O(µ−2p

q,n ),

with
â0,±αq(λ) = 1, l̂1,±αq(λ) = â1,±αq(λ),

âj,±αq(λ) = Ŵ±αq,j(l2
√

−λ)+ (−1)jUj(l1
√

−λ)+

j−1−
k=1

(−1)kUk(l1
√

−λ)Ŵ±αq,j−k(l2
√

−λ),

l̂j,±αq(λ) = âj,±αq(λ)−

j−1−
k=1

j − k
j

âk,±αq(λ)l̂j−k,±αq(λ);

log0(−λ, Ŝn,0/µ2
p−1,n) = −µp−1,n


1 − l22λ−


1 − l21λ


− µp−1,n log

l2(1 +


1 − l21λ)

l1(1 +


1 − l22λ)

−
1
4
log

(1 − l21λ)
(1 − l22λ)

−

2p−1−
j=1

l̂j,0(λ)

µ
j
p−1,n

+ log


l
µp−1,n
2

l
µp−1,n
1

+
l
µp−1,n
1

l
µp−1,n
2


+ O(µ−2p

p−1,n),

with
â0,0(λ) = 1, l̂1,0(λ) = â1,0(λ),

âj,0(λ) = Vj(l2
√

−λ)+ (−1)jUj(l1
√

−λ)+

j−1−
k=1

(−1)kUk(l1
√

−λ)Vj−k(l2
√

−λ),

l̂j,0(λ) = âj,0(λ)−

j−1−
k=1

j − k
j

âk,0(λ)l̂j−k,0(λ);

log0(−λ, Sn,0/µ2
q,n) = −µp−1,n


1 − l22λ−


1 − l21λ


− µp−1,n log

l2(1 +


1 − l21λ)

l1(1 +


1 − l22λ)

−
1
4
log

(1 − l21λ)
(1 − l22λ)

−

2p−1−
j=1

lj,0(λ)

µ
j
p−1,n

+ log


l
µp−1,n
2

l
µp−1,n
1

+
l
µp−1,n
1

l
µp−1,n
2


+ O(µ−2p

p−1,n),

with
a0,0(λ) = 1, l1,0(λ) = a1,0(λ),

aj,0(λ) = Uj(l2
√

−λ)+ (−1)jVj(l1
√

−λ)+

j−1−
k=1

Uk(l2
√

−λ)(−1)j−kVj−k(l1
√

−λ),

lj,0(λ) = aj,0(λ)−

j−1−
k=1

j − k
j

ak,0(λ)lj−k(λ).

We conclude this section with the expansions for large λ, according to Eq. (2.17). Using classical expansions of Bessel
functions Iν and Kν and their derivative for large arguments, we obtain the expansions of the functions G and Ĝ, and then
those for the Gamma functions:



Author's personal copy

654 L. Hartmann, M. Spreafico / Journal of Geometry and Physics 61 (2011) 624–657

log0(−λ, Sn,±αq/µ
2
q,n)

∼ −µq,n(l2 − l1)
√

−λ−
1
2
log

l1
l2

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


∓

αq

µq,n


lµq,n
2

lµq,n
1

−
lµq,n
1

lµq,n
2


+ O


1

√
−λ


,

log0(−λ, Ŝn,±αq/µ
2
q,n)

∼ −µq,n(l2 − l1)
√

−λ−
1
2
log

l2
l1

+ log


lµq,n
2

lµq,n
1

+
lµq,n
1

lµq,n
2


±

αq

µq,n


lµq,n
2

lµq,n
1

−
lµq,n
1

lµq,n
2


+ O


1

√
−λ


,

log0(−λ, Sn,0/µ2
p−1,n) ∼ −µp−1,n(l2 − l1)

√
−λ+

1
2
log

l2
l1

+ log


l
µp−1,n
2

l
µp−1,n
1

+
l
µp−1,n
1

l
µp−1,n
2


+ O


1

√
−λ


,

log0(−λ, Ŝn,0/µ2
p−1,n) ∼ −µp−1,n(l2 − l1)

√
−λ+

1
2
log

l1
l2

+ log


l
µp−1,n
2

l
µp−1,n
1

+
l
µp−1,n
1

l
µp−1,n
2


+ O


1

√
−λ


.

8.4. The function tq(s)

By definition in Eq. (8.2), we need to consider the difference between log0(−λ, Sn,±αq/µq,n) and log0(−λ, Ŝn,±αq/µq,n).
The expansions given in the previous subsection give an expansion for large µ

log0(−λ, Sn,−αq/µq,n)+ log0(−λ, Sn,αq/µq,n)− log0(−λ, Ŝn,αq/µq,n)− log0(−λ, Ŝn,−αq/µq,n)

= log
(1 − λl22)
(1 − λl21)

+

2p−1−
j=1

1

µ
j
q.n
(l̂j,αq(λ)+ l̂j,−αq(λ)− lj,αq(λ)− lj,−αq(λ))+ O(µ−2p

q,n ),

and for large λ

log0(−λ, Sn,αq/µq,n)+ log0(−λ, Sn,αq/µq,n)− log0(−λ, Ŝn,αq/µq,n)− log0(−λ, Ŝn,−αq/µq,n)

= 2 log
l2
l1

+ O


1
√

−λ


.

Proceeding as in the proof of Lemma 5.7, we obtain a0,0,q,n = 2 log l2
l1
, a0,1,q,n = 0, b2j−1,0,0,q = 0, b2j−1,0,1,q = 0, and

hence

A0,0,q(s) = 2 log
l2
l1

∞−
n=1

mq,n

µ2s
q,n

= 2 log
l2
l1

∞−
j=0


−s
j


α2
q jζccl(s + j, ∆̃(q)), A0,1,q(s) = 0.

This gives

A0,0,q(0) = 2 log
l2
l1
ζccl,q(0, ∆̃(q)) = 2(−1)q log

l2
l1

q−
k=0

(−1)krkHk(W ,Q),

and

t ′q,reg(0) = 2(−1)q+1 log
l2
l1

q−
k=0

(−1)krkHk(W ,Q).

Similarly, we consider the difference of log0(−λ, Sn,0/µp−1,n) and log0(−λ, Ŝn,0/µp−1,n) for the function tp−1, and we
obtain a0,0,n,p−1 = log l2

l1
, a0,1,n,p−1 = 0, b2j−1,0,0,p−1 = 0, b2j−1,0,1,p−1 = 0, and hence

A0,0,p−1(s) = log
l2
l1

∞−
n=1

mp−1,n

µ2s
p−1,n

= log
l2
l1
ζccl,p−1(s, ∆̃(q)), A0,1(s) = 0,

A0,0,p−1(0) = log
l2
l1
ζccl,q(0, ∆̃(p−1)) = (−1)p−1 log

l2
l1

p−1−
k=0

(−1)krkHk(W ,Q),

and

t ′p−1,reg(0) = (−1)p log
l2
l1

p−1−
k=0

(−1)krkHk(W ,Q).
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8.5. The regular term of the torsion

We use Eq. (8.3). First, note that as in Section 6 there is no singular contribution by the functions zq(s). Using Eq. (2.19),
and recalling that −αq−1 = −(q − 1 − p + 1) = p − q, we compute as in Lemma 6.1

z ′

q(0) = log
l2
l1

− 2(p − q) log
l2
l1
.

Therefore, substitution in Eq. (8.3) gives

log Trel ∂1,abs ∂2,reg(C[l1,l2]W ) = t ′reg(0) = 0.

8.6. The singular term of the torsion

We show that the singular part of the torsion is twice the singular part of the torsion on the cone, namely that

log Trel ∂1,abs ∂2,sing(C[l1,l2]W ) = 2 log Tabs,sing(ClW ). (8.4)

Lemma 8.4. We have the equations:

lj,±αq(λ) = lj(l22λ)+ (−1)jl∓j (l
2
1λ), l̂j,±αq(λ) = l±j (l

2
2λ)+ (−1)jlj(l21λ),

lj,0(λ) = lj(l22λ)+ (−1)j l̇j(l21λ), l̂j,0(λ) = l̇j(l22λ)+ (−1)jlj(l21λ),

where the functions lj, l̇j are defined in the proof of Lemma 5.10, the functions l±j in the proof of Lemma 5.4, and the other function
in Section 8.3.

Proof. The proof is by induction. We give details for the first equation. For j = 1, we have

l1,±αq(λ) = U1(l2
√

−λ)− W∓,1(l1
√

−λ) = l1(l22λ)+ (−1)1l1(l21
√

−λ).

Assume the equation is valid for all n < j. By definition

lj,±αq(λ)−

j−1−
k=1

Uk(l2
√

−λ)(−1)j−kW∓αq,j−k(l1
√

−λ)

= Uj(l2
√

−λ)+ (−1)jW∓αq,j(l1
√

−λ)−

j−1−
k=1

j − k
j

ak,∓αq(λ)lj−k,∓αq(λ),

and using the inductive hypothesis for lj−k,∓αq(λ), and collecting similar terms, this gives

lj,±αq(λ)−

j−1−
k=1

Uk(l2
√

−λ)(−1)j−kW∓αq,j−k(l1
√

−λ)

= lj(l22λ)+ (−1)jl∓j (l
2
1λ)−

j−1−
k=1

j − k
j
(−1)kW∓αq,k(l1

√
−λ)lj−k(l22λ)

−

j−1−
k=1

j − k
j
(Uk(l2

√
−λ))(−1)j−kl∓j−k(l

2
1λ)

−

j−1−
k=1

j − k
j

k−1−
h=1

Uh(l2
√

−λ)(−1)k−hW∓αq,k−h(l1
√

−λ)lj−k(l22λ)

−

−
k=1

1j−1 j − k
j

k−1−
h=1

Uh(l2
√

−λ)(−1)k−hW∓αq,k−h(l1
√

−λ)(−1)j−kl∓j−k(l
2
1λ).

Rearranging the summation’s indices, this reads

= lj(l22λ)+ (−1)jl∓j (l
2
1λ)−

j−1−
k=1

(−1)kW∓αq,k(l1
√

−λ)Uj−k(l2
√

−λ)

+

j−1−
k=1

(−1)j−kW∓αq,j−k(l1
√

−λ)

k−1−
h=1

k − h
j

Uh(l2
√

−λ)lk−h(l22λ)
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+

j−1−
k=1

(−1)kUj−k(l2
√

−λ)

k−1−
h=1

h
j
W∓αq,k−h(l1

√
−λ)l∓h (l

2
1λ)

−

j−1−
k=1

j − k
j

lj−k(l22λ)
k−1−
h=1

Uh(l2
√

−λ)(−1)k−hW∓αq,k−h(l1
√

−λ)

−

j−1−
k=1

j − k
j
(−1)j−kl∓j−k(l

2
1λ)

k−1−
h=1

Uh(l2
√

−λ)(−1)k−hW∓αq,k−h(l1
√

−λ).

Reordering the first two double sums as

j−1−
k=1

(−1)j−kW∓αq,j−k(l1
√

−λ)

k−1−
h=1

k − h
j

Uh(l2
√

−λ)lk−h(l22λ)

=

j−1−
k=1

j − k
j

lj−k(l22λ)
k−1−
h=1

Uh(l2
√

−λ)(−1)k−hW∓αq,k−h(l1
√

−λ),

j−1−
k=1

(−1)kUj−k(l2
√

−λ)

k−1−
h=1

k − h
j

W∓αq,h(l1
√

−λ)l∓k−h(l
2
1λ)

=

j−1−
k=1

j − k
j
(−1)j−kl∓j−k(l

2
1λ)

k−1−
h=1

Uh(l2
√

−λ)(−1)k−hW∓αq,k−h(l1
√

−λ),

the result follows. �

We are now in the position of proving Eq. (8.4). Proceeding as in the proof of Propositions 5.4 and 5.2, the singular part
of the torsion is given by some residua of the zeta function associated to the sequence U and some residua of the functions
Φ . Since the sequence U is the same for the conical frustum and for the cone, and the range of the indices are the same, we
only need to compare the functions Φ in the two cases. The functions Φ are defined in Eq. (2.16), we introduce the linear
operator

Φσh(s) = T (φσh(_))(s) =

∫
∞

0
ts−1 1

2π i

∫
Λθ,c

e−λt

−λ
φσh(λ)dλdt. (8.5)

Let us use the notation φcone and φfrust. We have

φcone
q,2j−1(λ) = −2l2j−1(λ)+ l+2j−1(λ)+ l−2j−1(λ),

φfrust
q,j (λ) = −lj,αq(λ)− lj,−αq(λ)+ l̂j,αq(λ)+ l̂j,−αq(λ).

Note that all the functions appearing in the definition of the functions φ(λ) are polynomial in w =
1

√
1−λ

. Applying the
formula in Eq. (8.5), we have that

T (lj+(l22_))(s) = l2s2 T (lj+(_))(s),

and similarly for the other. Using lemma (8.4), and odd indices, we obtain for example

Φ frust
2j−1(s) = (l2s2 + l2s1 )Φ

cone
2j−1(s).

Since by Corollaries 5.2 and 5.1 all the residua Res1 of the functionΦcone
2j−1(s) at s = 0 vanish, Eq. (8.4) follows.

8.7. Conclusion

As recalled in Section 2.3, if ∂W = ∂1W ⊔ ∂2W is the union of two disjoint components, and since the boundary term is
local,

log Trel ∂1,abs ∂2((W , g); ρ) = log τ(((W , ∂1W ), g); ρ)+ ABM,rel(∂1W )+ ABM,abs(∂2W ).

Applying this formula to the conical frustum we have

log Trel ∂1,abs ∂2(C[l1,l2]W ) = log τ(C[l1,l2]W , ∂1C[l1,l2]W )+ ABM,rel(∂1)+ ABM,abs(∂2).

Let X be a manifold of dimension 2p with boundary ∂X = ∂2C[l1,l2]W , and assume there is an isometry of a collar
neighborhood of the boundary of X onto a collar neighborhood of ∂2C[l1,l2]W . Let Z be the manifold obtained by gluing
smoothly X to C[l1,l2]W along the boundary ∂2C[l1,l2]W . Applying duality of analytic torsion [4] Proposition 2.10 to Z , and
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since the anomaly boundary term is local, it follows that ABM,rel(∂1C[l1,l2]W ) = −ABM,abs(∂1C[l1,l2]W ). Since it follows by the
definition that ABM,abs(∂1C[l1,l2]W ) = −ABM,abs(∂2C[l1,l2]W ), we obtain

log Trel ∂1,abs ∂2(C[l1,l2]W ) = log τ(C[l1,l2]W , ∂1C[l1,l2]W )+ 2ABM,abs(∂2C[l1,l2]W ).
Considering the exact sequence of the chain complex associated to the pair (C[l1,l2]W , ∂1C[l1,l2]W ), it is not difficult to see

(see for example [31] Section 3) that the Reidemeister torsion of the pair vanishes, and hence
log Trel ∂1,abs ∂2(C[l1,l2]W ) = 2ABM,abs(∂2C[l1,l2]W ).

Since the anomaly boundary term is local ABM,abs(∂2C[l1,l2]W ) = ABM,abs(∂ClW ), and hence
log Trel ∂1,abs ∂2(C[l1,l2]W ) = 2ABM,abs(∂ClW ).

The general argument presented here deserves a complete proof. This can be found in the new paper of Brüning and
Ma [32], where gluing formulas and formulas for the variation of the torsionwithmixed boundary conditions are proved.We
thank the authors for making available to us this part of the results of their still unpublished paper. Since by the calculations
of the previous subsections

log Trel ∂1,abs ∂2(C[l1,l2]W ) = log Trel ∂1,abs ∂2,sing(C[l1,l2]W ) = 2 log Tabs,sing(ClW ) = 2S(∂ClW ),
this completes the proof of Theorem 1.2.
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Appendix

The next two formulas follow from the definition of the Euler Gamma function (j ∈ N).

Res0
s=0

0

s +

2j+1
2


0
 2j+1

2


s

= −γ − 2 log 2 + 2
j−

k=1

1
2k − 1

, Res1
s=0

0

s +

2j+1
2


0
 2j−1

2


s

= 1. (A.1)

The next formula is proved in [16] Section 4.2 (0 < θ < π, 0 < c < 1, a ∈ R).∫
∞

0
ts−1 1

2π i

∫
Λθ,c

e−λt

−λ

1
(1 − λ)a

dλdt =
0(s + a)
0(a)s

. (A.2)
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