Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 61, Issue 3, March 2011

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Journal of Geometry and Physics 61 (2011) 624-657

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

The analytic torsion of a cone over an odd dimensional manifold

L. Hartmann®*, M. Spreafico®

3 UFSCar, Universidade Federal de Sdo Carlos, Brazil
b JCMC, Universidade Sdo Paulo, Brazil

ARTICLE INFO ABSTRACT

ATfiCl_e history: We study the analytic torsion of a cone over an orientable odd dimensional compact
Received 11 July 2010 connected Riemannian manifold W. We prove that the logarithm of the analytic torsion
ggi%“’ed inrevised form 19 November of the cone decomposes as the sum of the logarithm of the root of the analytic torsion of

the boundary of the cone, plus a topological term, plus a further term that is a rational linear
combination of local Riemannian invariants of the boundary. We show that this last term
coincides with the anomaly boundary term appearing in the Cheeger Miiller theorem [3,
MSC: 2] for a manifold with boundary, according to Briining and Ma (2006) [5]. We also prove
5852 Poincaré duality for the analytic torsion of a cone.

© 2010 Elsevier B.V. All rights reserved.

Accepted 22 November 2010
Available online 30 November 2010

Keywords:

Zeta determinants
Analytic torsion
Cone

1. Introduction and statement of the results

Analytic torsion was originally introduced by Ray and Singer in [ 1], as an analytic counterpart of the Reidemeister torsion
of Reidemeister, Franz and de Rham. The first important result in this context, nowadays known as the Cheeger-Miiller
Theorem, was achieved by Miiller [2] and Cheeger [3], who proved that for a compact connected Riemannian manifold
without boundary, the analytic torsion and the Reidemeister torsion coincide, as conjectured by Ray and Singer in [1]. The
next natural question along this line of investigation was to answer the same problem for manifolds with boundary. It was
soon realized that the answer to such a question was a highly non trivial one. Liick proved in [4] that in the case of a product
metric near the boundary the term is topological, and depends only upon the Euler characteristic of the boundary. The
answer to the general case required 20 more years of work, and is contained in a recent paper of Briining and Ma [5] (see
also [6]). The new contribution of the boundary, beside the topological one given by Liick, called an anomaly boundary term,
has a quite complicated expression, but only depends on some local quantities constructed from the metric tensor near the
boundary (see Section 2.3 for details). The next natural step is to study the analytic torsion for spaces with singularities,
and the simplest singular space is a cone over a manifold, CW. Cones and spaces with conical singularities have been deeply
investigated by Cheeger in a series of works [3,7] (see also [8]). Due to this investigation, all information on L?>-forms, the
Hodge theory, and the Laplace operator on forms on CW are available. Further information on the class of regular singular
operators, that contain the Laplace operator on CW, are given in the works of Briining and Seely (see in particular [9]). As
a result it is not difficult to obtain a complete description of the eigenvalues of the Laplace operator on CW in terms of the
eigenvalues of the Laplace operator on W. With all these tools available, namely on one side the formula for the boundary
term, and on the other some representation of the eigenvalues of the Laplace operator on the cone, it is natural to tackle the
problem of investigating the analytic torsion of CW. A possible extension of the Cheeger Miiller theorem could follow, or
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not. Indeed, in case of conical singularity such an extension would require the intersection R torsion more than the classical
R torsion (see [10]). However, if the cone is a rational homology manifold, then the two torsions coincide (see [3], end of
Section 2), and the classical Cheeger Miiller theorem is expected to extend. If (W) is the chain complex associated to some
cell decomposition of W, then the algebraic mapping cone Cone(C(W)) gives the chain complex for a cell decomposition of
CW. It is then easy to see that the R torsion of CW only depends on the choice of a base for the zero dimensional homology.
Even if Poincaré duality does not hold, it does hold between the top and bottom dimension, and therefore we can fix the base
for the zero homology using the Riemannian structure and harmonic forms (see [1] Section 3, see also [11]). The result for
the R torsion is T (CW) = 4/Vol(CW). On the other side, one wants the analytic torsion. The analytic tools necessary to deal
with the zeta functions appearing in the definition of the analytic torsion, constructed with the eigenvalues of the Laplace
operator on CW, are available by works of Spreafico [ 12-14]. In these works, the zeta function associated to a general class
of double sequences is investigated. In particular, a decomposition result is presented and formulas for the zeta invariants
of a decomposable sequence are given (see Section 2.4). This technique applies to the case of the zeta functions appearing in
the definition of the analytic torsion on CW. This approach was used in [15] to study the cone over an odd low dimensional
sphere, and is applied here to the general case, proving a conjecture stated in [15] (see Corollary 1.1). This method was
originally used to deal with the zeta determinant of the Laplace operator on a cone in [16] (see also [17]), and consequently
in [18,19,11,15] to study the zeta determinants of the Laplacian on forms and analytic torsion type invariants. In particular,
in [19] a general formula for the analytic torsion of a cone is given. The formula is obtained using a method introduced by
one of the authors of this paper in some older works [16,13] and some results of Lesch [20,21], and it is not particularly
illuminating as it is stated, since essentially it is just an application of the formulas given in those works. In the abstract
of [19], it is stated that the result is obtained ‘by generalizing some computational methods of M. Spreafico’, however such
generalization is already contained in [13,18], and an even further generalization is contained in the preprint [17], of which
the author of [19] seems to be unaware.

We are now ready to state the main results of this paper (we refer to the on line version of this work [22] for further
developments and results), for we fix some notation. Let (W, g) be an orientable compact connected Riemannian manifold
of finite dimension m without boundary and with Riemannian structure g. We denote by ;W the cone over W with the
Riemannian structure

dx ® dx + x’g,

on CW — {pt}, where pt denotes the tip of the cone and 0 < x < [ (see Section 3.1 for details). The formal Laplace operator
on forms on CW — {pt} has a suitable L*-self adjoint extension A Jrel 0N W with absolute or relative boundary conditions
on the boundary dGW (see Section 3.3 for details), with pure discrete spectrum SpAps/rel. This permits us to define the
associated zeta function

§(57 Aabs/rel) = Z )\75,
AesD-;-Aabs/rel
for Re(s) > mT“ This zeta function has a meromorphic analytic continuation to the whole complex s-plane with at most
isolated poles (see Section 4 for details). It is then possible to define the analytic torsion of the cone (the trivial representation
of the fundamental group is assumed)

1 m+1
10g Taps/ret (W) = 5 Z(—])qqé'/(o, qub)s/rel)'
q=0

In this setting, we have the following results (analogous results with relative boundary conditions also follow by Poincaré
duality on the cone, proved in Theorem 4.1).

Theorem 1.1. The analytic torsion on the cone C;W on an orientable compact connected Riemannian manifold (W, g) of odd
dimension 2p — 1is

1821 2(p — 1
l0g Taps(GW) = 2 3 (— 1) rkH (W; @) log 22—

1 3 log T(W, Pg) + S(dGW),

N

q=0

where the singular term S(dC;W) only depends on the boundary of the cone:

qbzlpl 1\ 4 3 -
S@aW) = 2 D3 Reso Dari4(s) < > )Z(—nh Res; ¢ (s, A™) (q —p + 1207V,
=0 j=0 k=0 =0 J=Kk /= s=j+4

where the functions ®,i.1,4(s) are some universal functions, explicitly known by some recursive relations, and A is the Laplace
operator on forms on the section of the cone.

It is important to observe that the singular term S(dG;W) is a universal linear combination of local Riemannian invariants
of the boundary, for the residues of the zeta function of the section are such a linear combination (see Section 7 for details).
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Theorem 1.2. With the notation of Theorem 1.1, the singular term of the analytic torsion of the cone GW coincides with the
anomaly boundary term of Briining and Ma, namely S(0GW) = Apm,ans (OGW).

See Section 2.3 for the definition of Agy aps (AG;W). If W is an odd sphere, we have:

Corollary 1.1. The natural extension of the Cheeger Miiller theorem for a manifold with boundary is valid for the cone over an
odd dimensional sphere, namely

0g Tans (GS?P~) = 1og T(CIS™™") 4 Apwi,abs (ICIS™ ™).

In particular, if a denotes the radius of the sphere, then

_ @2p— 1! & 1 ko (oq)keigit
Apm,abs (OGS = E - 2%k+1
Pp-Ds p—1-0ICk+1) & (k—DI2j+ D!

The result in the corollary should be understood as a particular case of the still unproved general result that the analytic
torsion and the intersection R-torsion of a cone coincides up to the boundary term, for the intersection R-torsion is the
classical R-torsion for the cone over a sphere. We point out that we also have a purely combinatoric proof of the result
stated in Corollary 1.1, independent from Theorem 1.2. To contain space, we omit the proof here; it will appear somewhere
else (see also [22]).

We conclude with a remark on the even dimensional case, namely when the dimension of the section W is even. It is
clear enough that all the arguments used in the odd dimensional case go through also in the even dimensional case, and that
the anomaly boundary term is the one of Briining and Ma. So we obtain formulas for the analytic torsion as in the theorems
above. However, in the even dimensional case some further term appears: this was described in some detail for W = S?
in [11]. Since we do not have a clear understanding of this new term yet, we prefer to omit the not particularly illuminating
formulas for the even dimensional case here.

2. Preliminaries and notation

In this section we introduce some notation necessary in the following. As usual (W, g) is a compact connected oriented
Riemannian manifold.

2.1. Manifolds with boundary

If W has a boundary oW, then there is a natural splitting near the boundary of AW as a direct sum of vector bundles
AT*OW & N*W, where N*W is the dual to the normal bundle to the boundary. Locally, let d, denote the outward
pointing unit normal vector to the boundary, and dx the corresponding one form, then near the boundary we have the
collar decomposition Coll(dW) = (—e¢, 0] x dW, and if y is a system of local coordinates on the boundary, then (x, y)
is a local system of coordinates in Coll(dW). The metric tensor decomposes near the boundary in this local system as
g = dx ® dx 4+ g;(x), where g;(x) is a family of metric structures on W such that g;,(0) = i*g, wherei : oW — W
denotes the inclusion. The smooth forms on W near the boundary decompose as @ = ®ian + ®norm, Where wporm is the
orthogonal projection on the subspace generated by dx, and wya, is in C*° (W) @ A(0W). We write w = w1 + dx A w,, where
wj € C*(W) ® A(0W), and

* Wy = —dx A *w. (2.1)
Define absolute and relative boundary conditions by

Baps(@) = Wnormlow = w2]ow = 0, Brel(w) = Weanlaw = w1lsw = 0.
Note that, if w € £29(W), then B,ps(w) = 0 if and only if Bej (*@) = 0, B (w) = 0 implies By (dw) = 0, and B,ps(w) = 0

implies Byps(dfw) = 0. Let B(w) = B(w) @ B((d + d')(w)). Then the operator A = (d 4 d")? with boundary conditions
B(w) = 0is self adjoint, and if B(w) = 0, then Aw = 0ifand only if (d + d")w = 0. Note that B correspond to

_ . e | ®norm|ow = 0,
Baps(w) = 0 if and only if {(da))normlaw Z o, (2.2)
B(w) = 0 ifand only if | Vunlow =0 (2.3)
el = Y @ @)anlow = 0. :

2.2. The form valued zeta functions and the analytic torsion

The Laplace operator A@ with boundary conditions Bps /rel has a pure point spectrum Spqub)S Jrel consisting of real non

negative eigenvalues. The sequence Sp +A§‘t’,)s Jrel is a totally regular sequence of spectral type accordingly to Section 2.4, and
the forms valued zeta function is the associated zeta function, defined by
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@ — (@ — -
{(S, Aabs/rel) - é'(S, Sp+Aabs/rel) - Z A S’
)‘ESP+A£%)S/1'el

when Re(s) > % The analytic torsion Taps /et (W, g); p) of (W, g) with respect to the representation p : 71 (W) — O(k, R)
is defined by

1 m
log Tapseel (W £): p) = 5 ) (=1)a8" (0, Ay ).
q=1

The following duality holds for the analytic torsion [4]

l0g Tans (W, £); p) = (=)™ log Tret (W, £); ). (2.4)

We will omit the representation in the notation whenever we mean the trivial representation. Next, recall some classical
results of the Hodge theory in order to define closed, coclosed, exact and coexact zeta functions. We restrict ourselves to
the case of a manifold without boundary (see [1] for the case of a manifold with boundary). Setting #9(W,E,) = {w €

Ww, E,) | Aw = 0}, the space of the g-harmonic forms, we have the Hodge decomposition
QRUW,E,) = #HIW,E,) ®dR7 " (W,E,) ®d' 27 (W,E,). (2.5)

This induces a decomposition of the eigenspace of a given eigenvalue A # 0 of A into the spaces of closed forms and

coclosed forms: €% = €%, @ €9, where

6% ={we QW,E) | Aw = ro, do =0}, &9 ={w € RUW,E,) | Aw = ro, d'w = 0}.

o =
Define exact forms and coexact forms by

e (@)

A,ex

={we 1W,E)) | Aw = Ao, w = da}, @

A,CeX

={we RTMW,E) | Aw = o, v = dia).

Note that, if & # 0, then €% = &,

Aex’

and SA(q) g9

‘cd = &, cex» and we have an isometry

1
-1
$: 6%~ s dio o (2.6)
whose inverse is \/lxd. Also, the restriction of the Hodge star defines an isometry » : df 2@tV (W) — d™-9-D (W), and
that composed with the previous one gives the isometries:

1 _ 1 Y
—dx: 89 — gmatD —dtx: g0, — g Y. 2.7)

ﬁ Acl A,cex ’ \/X A,ccl

By the very definition, we have

{(S, A(Q)) — Z dim 8}5‘1))\’—5 — é-cl(sv A(Q)) + CCCl(ss A(q))’
reSpy A@

where

a(s, AD) = Y dim&DAT,  Lea(s, AD) = > dimgDa.
reSpLA@ reSpyLA@

Since, by (2.6), Za(s, A@) = Zea(s, A9~D), we obtain from the above relations the following formulas for the torsion of
a closed m dimensional manifold W

1 m 1 m .lm71
log T(W, 8); p) = 5 3 _(=1)%¢'(0, AD) = = 3 (=1)7¢,(0, AD) = =2 (=)0, AD).
q=1 g=1 q=0

In particular, again using duality, for an odd dimensional manifold W of dimensionm = 2p — 1,

(=1P

p—1
log T((W, 8); p) = ) (=1)7(0, AD) + =—=¢/(0, A7)

g=1

(=DP

p—2
= — > (=140, A9) + Tgc’d(o, APy, (2.8)

q=0
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2.3. The Cheeger Miiller theorem for manifolds with boundary, and the anomaly boundary term of Briining and Ma

In case of a smooth orientable compact connect Riemannian manifold (W, g) with boundary 0W, for any representation
p of the fundamental group (for simplicity assume rk(p) = 1), the analytic torsion is given by the Reidemeister torsion plus
some further contributions. It was shown by Cheeger in [3] that this further contribution only depends on the boundary,
and Liick proved the following formula in the case of a product metric near the boundary, where x (X) denotes the Euler
characteristic of X [4]

1
log Taps (W, 2); p) = logt (W, 2); p) + 2% (0W) log 2.

In the general case a further contribution appears, that measures how the metric is far from a product metric. A formula
for this new anomaly boundary contribution is contained in a recent result of Briining and Ma [5]. More precisely, in [5]
(Equation (0.6)) is given a formula for the ratio of the analytic torsion of two metrics, g and gp. Using their notation for
7,/2 graded algebras, we identify an antlsymmetrlc endomorphism ¢ of finite dimensional vector space V (over a field of

characteristic zero) with the element ¢> i k:] (d(vj), Vi)V A Vg, Of AZV For the elements (¢ (vj), vi) are the entries of
the tensor representing ¢ in the base {vk} and this is an antisymmetric matrix. Now assume that r is an antisymmetric
endomorphism of A2V. Then, (Rix = (r(vj), v)) is a tensor of two forms in A2V. We extend the above construction
identifying R with the element

1 m

=3 Z (r(vj), vi) A Oj A Dy, (2.9)

j.k=1

of A%V A AZV. This can be generalized to higher dimensions. In particular, all the construction can be done taking the dual
V* instead of V. Accordingly to [5], we define the following forms

1 m—1
/SJ = E Z(l*w] — i*(l)o)ok AN é;:
k=1 (2.10)

1 m—1 1 m—1

i*Qj Zlﬂjk,/\ek/\e,, @Zzz@kl/\éz/\é;k-
k =1 k=1

Here, w; are the connection one forms, and £2;,j = 0, 1, the curvature two forms associated to the metrics go and g,

respectively, while © is the curvature two form of the boundary (with the metric induced by the inclusion), and {ek}}:‘:_ol is
an orthonormal base of TW (with respect to the metric g). Then, set

1 k—1 ok
B(V)) = = // 1—F(§+1)u 4;du. (2.11)

Taking g, = g, and go an opportune deformation of g, that is a product metric near the boundary, and a flat vector bundle
F, the formula of [5] reads

0g Tabs((Wv gl); P) _ 1/ B(V,)
Tws(W.20):0) 2 Jow

Note that the right side of this equation is (as expected) a local quantity, and is well defined if there exists a regular collar
neighborhood of the boundary. If this is the case, we define the Briining and Ma anomaly boundary term (with absolute BC)

by

N\.—n

1
Apm,aps (W) = —/ B(V1), (2.12)
2 Jow
and we have
1
log Tans (W, g); p) = log T (W, g); p) + ZX(aW) log 2 + Apwm,abs (AW). (2.13)

2.4. Zeta determinants

This section is essentially contained in Section 4 of [15], to which we refer for details. Given a sequence S = {a,};2 of
spectral type, we define the zeta function by

(5,8 =) _a.’,
n=1
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when Re(s) > e(S), and by analytic continuation otherwise, and for all A € p(S) = C — S, we define the Gamma function
by the canonical product,

5) . .
Z e )

v H( k) S d (2.14)

r( P

Given a double sequence S = {A; };—; of non vanishing complex numbers with a unique accumulation point at the
infinity, finite exponent so = e(S) and genus p = g(S), we use the notation S,, (S;) to denote the simple sequence with fixed
n (k), we call the exponents of S,, and S, the relative exponents of S, and we use the notation (sg = e(S5), s1 = e(Sy), s» =
e(Sy)); we define relative genus accordingly.

Definition 2.1. Let S = {A, n %1 be a double sequence with finite exponents (s, s1, 52), genus (po, p1, p2), and positive
spectral sector Xy, ,.LetU = {un} ; be a totally regular sequence of spectral type of infinite order with exponent ry, genus
g, and domain Dy 4. We say that S is spectrally decomposable over U with power «, length £ and asymptotic domain Dy ,
with ¢ = min(cy, d, ¢’), & = max(6y, ¢, "), if there exist positive real numbers «, £ (integer), ¢/, and ', with 0 < 0’ < 7,
such that:

)Ln,k

o0
(1) the sequence u,“S, = { s }k=1 has spectral sector Xy .+, and is a totally regular sequence of spectral type of infinite

order for each n;
(2) the logarithmic I"-function associated to S,/uy has an asymptotic expansion for large n uniformly in A for A in Dy ¢, of
the following form

[ L
logT'(—A, u,“Sy) = Z G, (Mu, " + Z P, (M)u, ” loguy, + o(u, ™), (2.15)

h=0 1=0
where o and p; are real numbers withog < -+ < 0y, po < -+ < py, the P, (1) are polynomials in A satisfying the

condition P, (0) = 0, £ and L are the larger integers such that o, < rg and p; < ro.

Define the following functions, (Ag . = {z eC||arg(z—0o)| = g} oriented counter clockwise):

®, (s) = f T ! e_qu (VdAdt (2.16)
R 2mi Ja, . =2 " ' '

By Lemma 3.3 of [ 14], for all n, we have the expansions:

log ['(—2, Sy /uty) ~ Zawn( x>1+2am( ¥ log(—1),

k=

(2.17)
Pop (1) ~ Z Borya3.0(—1) + Zb(,,, k1(=1) log(—2),
j=0
for large A in Dy .. We set (see Lemma 3.5 of [ 14])
00 ¢
Apo(s) = Z (ao,o,n - Z boh,o,ounoh) T
=t =0 (2.18)

00 L
—on ) ks ,
Aals) =) (Clm,n - ba,,,j,]“,,””) u,”, 0<j=<ps.
n=1 h=0

Theorem 2.1. Let S be spectrally decomposable over U as in Definition 2.1. Assume that the functions @, (s) have at most simple
poles for s = 0. Then, ¢ (s, S) is regular at s = 0, and

£(0,8) = —Ap1(0) + — ZRe51 @, () Res; ¢ (s, U),

—0 s=0 S=0p

£'0.5) = —Ao,o(o)—ABJ(O)ﬂL%Z 4y () Resy ¢ (s, U)

s=0 S=o0p
+ - 2(; Rstiso Dy, (S) Res1 (s, U) + ;) Rsisol D, (S) Reso ¢(s, U),

where the notation Z means that only the terms such that ¢ (s, U) has a pole at s = oy, appear in the sum.
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Remark 2.1. We split the formula in Theorem 2.1 in a regular part and a singular part as follows. We call {(0,S) =
—Ap.1(0) and §r’eg(0, S) = —Ao0(0) — Ag 1(0) the regular parts of ¢(0,S) and of ¢'(0, S), respectively. We call {sng =
£(0,5) — &reg(0, S), and {S’ing =:'(0,S) — {r’eg(O, S) the singular parts.

Corollary 2.1. Let S = {AG.nktpre1-J = 1....,J, be a finite set of double sequences that satisfy all the requirements
of Definition 2.1 of spectral decomposability over a common sequence U, with the same parameters «, £, etc., except that the

polynomials P ,(A) appearing in condition (2) do not vanish for A = 0. Assume that some linear combination ZL] P, p (X)),
with complex coefficients, of such polynomials does satisfy this condition, namely that 2121 CiP),p(A) = 0. Then, the linear

combination of the zeta function Zle G¢ (s, Sy) is regular at s = 0 and satisfies the linear combination of the formulas given
in Theorem 2.1.

We conclude recalling some formulas for the zeta determinants of some simple sequences. The results are known to
specialists, and can be found in different places. We will use the formulation of [23]. For positive real [ and g, define the non
homogeneous quadratic Bessel zeta function by

00 2 =S
]u,<
2s.v.q.D) =) <l—2’ + qz) :

k=1

for Re(s) > % Then, z(s, v, q, ) extends analytically to a meromorphic function in the complex plane with simple poles at
s=1,—2,—3,....The point s = 0 is a regular point and
1 1 I,(1
z(0,v,q,1) = -3 (v + 5) , Z(0,v,q,) = —log~/2ml v Q). (2.19)
ql}

In particular, taking the limit for ¢ — O,

lv+%
Z(0,v,0,1) = —log \1/_”—
2720 (v + 1)

3. Geometric setting and Laplace operator

3.1. The finite metric cone

Let (W, g) be an orientable compact connected Riemannian manifold of finite dimension m without boundary and with
Riemannian structure g. Embedding W in the opportune Euclidean space R¥, and R¥ in some hyperplane of R¥*", with
opportune h, disconnected from the origin, a geometric realization of the cone CW is the given by the set of the finite length
[ line segments joining the origin to the embedded copy of W. Let x be the euclidean geodesic distance from the origin. We
equip CW — {p} with the Riemannian structure dx ® dx+x2g, and we denote by Cio.nW the space (0, I] x W with this metric.

We denote by G;W the compact space Cio,jW = Cio,yW U{p}, and we call it the (completed finite metric) cone over W. We call
the subspace {I} x W of C;W, the boundary of the cone, and we denote it by dC;WW. This is of course diffeomorphic to W, and
isometric to (W, I>g). Following common notation, we will call (W, g) the section of the cone. Also following usual notation,
a tilde will denote operations on the section (of course § = g), and not on the boundary. All the results of Section 2.1 are
valid. In particular, given a local coordinate system y on W, then (x, y) is a local coordinate system on the cone.

We now give the explicit form of «, d' and A. See [7,8] Section 5 for details. If » € £29(Cio W), set

o, y) = fiwy) + L®)dx A w(y),

with smooth functions f; and f, and w; € £2(W). Then a straightforward calculation gives
*0(x,y) = X"2THX)F0y () + (= DX (0 dx A xon (1), (3.1)

do(x.y) = fi(0)doy) + i (X)dx A 1) — L)X A dan V), . (3.2)
d'ox.y) = x2fi@)d 1) = ((m =20+ 2 'H(0) + 32 (X) 020) — 2 2L dx A dTr (), '

A0(y) = (~2AX) — (m = 2% '3H(X0) 01 () + XA () — 2 H)dwa()
+ A (F2RMA0) +020) (<0200 — (m = 29+ DX 105X
+(m =29+ 2% 2HX) — 20 w1 1) (33)

3.2. Riemannian tensors on the cone

We give here the explicit form of the main Riemannian quantities on the cone. Recall that a tilde denotes quantities
relative to the section, that we have local coordinate (x, y1, . .., ym) on GW, and that the metric is g; = dx ® dx + x?g. Let
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{br}i-; be a local orthonormal base of TW, and {b}}}L, the associated dual base. Then, ey = 9y, e = dx, ek = bk, ey =
xb;, 1 < k < m. Direct calculations give Cartan structure constants cjxo = 0, 1 < j, k < m, coy = —Cpot = —H 1 <kl<
i 1 < j, k, I < m, and the Christoffel symbols are I'py = 0,1 < k,I < m, Tjox = —Tjxo = 7",1 <j, k<
[, 1 < j, k, I < m. The connection one form matrix relative to the metric g; has components

1
k k :
w10 = —w1j =——€ =—b/, 1<j=m,
X

m
*
w1 jk = E Chje, = — E Cjef = E Cpibi = o, 1<j,k<m.
h=1 h=1

To compute the curvature we calculate

m m
dorg = — Y (b)) Ady ==Y (dbg)dy A dyi,

=1 Lk=1

where b;f = ZZ’:l byjdyk, and, for 1 < j, k < m, dw jx = a(:)jk; while

m m m
.~
— (w1 A 0o = (W1 A w1)ok = E w100 N\ W11k = E w100 N W11k = — E bi' A wy,
=0 =1 =1

(w1 A w)jk = Za)l,jl A w1 = W1jo A ©1,0k + Zwuz A w1k = —b A by + (& A @)jk,
=0 1=1
for 1 <j, k < m. The curvature two form has components

21,00 =0,

m

m
210=—Y_ @bydy Ady— Y bf Ak, 1<j<m,

Lk=1 =1
21jc = day — b} Ab; + (@ A @) = 2 — bf Ab;, 1=<j k<m.
Next, considering the metric g = dx ® dx + g, similar calculations give:
Wo,0f = 0, 0<j<m, Wo jk = (I)jk, 1<j,k<m. (3.5)

By Egs. (3.4) and (3.5),

1 .
le_ize;@Ae;:_EZb*Abk Zbk/\ek, (3.6)

80 =0. (3.7)
We also need the curvature two form @ on the boundary dC;W. A similar calculation gives ®j, = fzjk. Note in particular
that it is easy to verify Equation 1.16 of [5]: O =02 — 2/52. For

R L. I
25%:——Zb*Ab*Ab*Ab;:, @:52 Q2 A b7 A B,
j.k=1 k=1

while (i*$2) = ]k b A by, gives

_— | ~ ~
FQu= 5 > (25 — b} Ab;) AT A DL
j.k=1

3.3. The Laplace operator on the cone and its spectrum

We study the Laplace operator on forms on the space G;W. This is essentially based on [7,9]. Let us denote by .£ the formal
differential operator defined by Eq. (3.3) acting on smooth forms on Co yW, I'(Co yW, AT*C(o,yW). We define in Lemma 3.1
a self adjoint operator A acting on L*(C;W, AP W), and such that Aw = Lo, if » € domA. Then, in Lemma 3.2, we list
all the solutions of the eigenvalue equations for .£. Eventually, in Lemma 3.3, we give the spectrum of A.
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Lemma 3.1. The formal operator £ in Eq. (3.3) with the absolute/relative boundary conditions given in Egs. (2.2)/ (2.3) on
the boundary dC,W defines a unique self adjoint semi bounded operator on L>(CGW, A T*C;W), that we denote by the symbol
Aaps/ Arel, Tespectively, with pure point spectrum.

Proof. Let L@ denote the minimal operator defined by the formal operator .£?, with domain the g-forms with compact
support in C W, namely domL@ = Co(ConW, AT*C(o,yW). The boundary values problem at the boundary x = |,
i.e. 9G;W, is trivial, and gives the self adjoint extensions stated. The point x = 0 requires more work. First, note that L
reduces by unitary transformation to an operator of the type

D? 4+ —~ D=—ii (3.8)
X2’ dx’ '
where A(x) is a smooth family of symmetric second order elliptic operators [9] pg. 370. More precisely, there exists a unitary
transformation v, between the relevant spaces with the suitable L? structures, see [9] for details. Under the transformation
Vs L@ has the form in Eq. (3.8), with A(x) the constant smooth family of symmetric second order elliptic operators in
(W, ADT*W x AGDT*W):

A@ 4 (g _ q) (; —gq-— 1) 2(—1)%d

A(x) = A(0) = ) ) m m
2(=1)%d" AD 4 (5 +2- q) (5 +1-— q)

Next, by its definition, A(x) satisfies all the requirements at pg. 373 of [9], with p = 1 (in particular this follows from the
fact that A(x) is defined by the Laplacian on forms on a compact space). We can apply the results of Briining and Seeley [9],
observing that in the present case we are in what they call the “constant coefficient case” (Section 3 of [9]). By Theorem
5.1 of [9], the operator L extends to a unique self adjoint bounded operator A@. Note that this extension is the Friedrich
extension by Theorem 6.1 of [9]. Note also that boundary condition at x = 0 is necessary in general in the definition of the
domain of A@, see (L2) (c), pg. 410 of [9] for these conditions.

Eventually, by Theorem 5.2 of [9], the square (here p = 1, so m = 2) of the resolvent of A is of the trace class. This
means that the resolvent is Hilbert Schmidt, and consequently the spectrum of A@ is pure point, by the spectral theorem for
compact operators. Note that we do not need the cut off function y appearing in Theorem 5.2 of [9], sincehere0 < x <. O

Lemma 3.2 ([7)). Let {9\", & n, 9,1} be an orthonormal base of T'(W, AWT*W) consisting of harmonic, coexact and exact

eigenforms of A@ on W. Let A, , denote the eigenvalue of @9 and Meex.q.n its multiplicity (so that Meex q.n = dim 89, =

dim 8c(gl)n) Let ], be the Bessel function of index v. Define oy = %(1 +2g—m)and pgn = [ Agn + ag. Then, assuming that
Lq,n 1S nOt an integer, all the solutions of the equation Au = A2u, with A # 0, are convergent sums of forms of the following six
types:

(@)

winn = X Ui, (/\X)wéé’i,n’

i = X O0dQE ) + (e, , G A 9D

Dy = XTI )OS D Xy, (0dx A dT )

_ 1 3 -2
O = X2 Gadx A delST?
@

+EN = Xaqfilaq\ ()‘X)(plgg)r
—1
Y5 = B g,y G0 dx A gd

When g 5 is an integer the — solutions must be modified including some logarithmic term (see for example [24] for a set of linear
independent solutions of the Bessel equation).

Proof. The proofis a direct verification of the assertion, using the definitions in Eqs. (3.1)-(3.3). First, by the Hodge theorem,
there exists an orthonormal base of A@T*W as stated. Thus, we decompose any form w in this base. Second, we compute
Aw, using this decomposition and the formula in Eq. (3.3). This gives some differential equations in the functions appearing
as coefficients of the forms. All these differential equations reduce to equations of the Bessel type. Third, we write all the
solutions using Bessel functions. A complete proof for the case of the harmonic forms can be found in [8] Section 5. O

Note that the forms of types 1 and 3 are coexact, those of types 2 and 4 exacts. The operator d sends forms of types 1 and
3 in forms of types 2 and 4, while d' sends forms of types 2 and 4 in forms of types 1 and 3, respectively. The Hodge operator
sends forms of type 1 in forms of type 4, 2 in 3, and E in 0.

Corollary 3.1. The functions + in Lemma 3.1 are square integrable and satisfy the boundary conditions at x = 0 defining the
domain of Avel/ans. The functions — either are not square integrable or do not satisfy these conditions.
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Remark 3.1. All the — solutions are either not square or their exterior derivatives are not square integrable. Requiring the
last condition in the definition of the domain of Arej/aps, it follows that there are no boundary conditions at zero. This was
observed by Cheeger for harmonic forms when the dimension is odd in [7] Section 3.

Lemma 3.3. The positive part of the spectrum of the Laplace operator on forms on G;W, with absolute boundary conditions on
3C1W is:

o0

@ _ ) 21> ) 2 ) 21>
SpyAgps = {mcex.q,n e }nk=1 U | Meex,g—1,n -J,Lq_m,aq_l,k/l U | Meex,g—1,n -J,iq_m,k/l

n,k=1 n,k=1

) 2|~ e 2|
U {mhar,q Jlaglagk/ T }k:] U {mhar.qfl :]\aq_ﬂ,aq,k/l }k=1 .

o0

) {mcex,qu,n : jiq_z,n,k/lz}

With relative boundary conditions:

n,k=1

ee}

oo o
@ _ .2 2 ) 2 .2 2
Sp.Ag = {mcex,q,n rigniel! } U {mcexyq_l,n g k! }nk_l U {mcex,q—l,n 5 L }

n,k=1 n,k=1

e e]

00
.2 2 A 21%° .32 2
U {mcex,q—z,n ']Hq—l.nv—“q—z’k/l } U {mhar,q -]\aql,k/l }k=1 U {mhar,q—l 'J\aq,1|,k/l }k—l )

n,k=1
where the j, i are the zeros of the Bessel function ], (x), thej'u,c,k are the zeros of the functionfﬂ’c(x) =d,Xx +x l; x),c e R,
ag and g o are defined in Lemma 3.2.

Proof. By Lemmas 3.1 and 3.2 and its corollary, we know that the + solutions of Lemma 3.2 determine a complete system

of square integrable solutions of the eigenvalue equation A@u = Au, with A # 0, satisfying the boundary condition at

x = 0. Since qub)s Jrel has pure point spectrum, in order to obtain a discrete resolution (more precisely the positive part of

it) of A;‘é)s /rel» W have to determine among these solutions those that belong to the domain of Ag‘é)s Jrel» Namely those that
satisfy the boundary condition at x = L. By direct application of the BC we obtain the result. For example, for forms of type
3, we obtain the system

x“q—l_ljﬂ (Ax)] =0,

x=l

q—1,n

By (1B (x 1, G)) — AL G| =0,

x=I

that using classical properties of Bessel functions and their derivative, gives A = j,,, _, nk/l. O

Lemma 3.4 ([7,8]). With the notation of Lemma 3.2, and a1 qn = o % [4q.n, then all the solutions of the harmonic equation
Au = 0, are convergent sums of forms of the following four types:

@ _ g, @
+,1,n — Xt Peci,no
N -1 — -1
(iq,)Z,n = xai’qilyndgoégl,n) + ai»q—l,nxai’qil‘” 1dX A (pégl,n )’
5 (-1 -1
f,)a,n = xai’q_l'”+2d‘ﬂc(gl,n) + o g1 X=X A D
E)zl,n = x%q-2nt1dx A El(pc(gljnz).
Lemma 3.5. Assume dim W = 2p — 1is odd. Then
HIW), 0<q=<p-1
q _ 5 = = 5
Has (GW) = {{0}, p<q<2p—1.
q _ ol 0<q=p.
Hoa QW) = {{xz‘”q_ldx AUV D e 3T W)}, p+1<q=<2p
Proof. First, by Remark 3.1, we need only to consider the + solutions in Lemma 3.4. The proof then follows by an argument
similar to the one used in the proof of Lemma 3.3. Let us see one case in detail. Consider 1#5:1,)1,” = x”+-qﬂg0£gl)’n, where
Ay qn = Qq + [Lgn- In order that wf’)m satisfies the absolute boundary condition (2.2), we need that
d @ _ la+’q’n_1d d (@ =0
( 1p+’1!n)n0rm - a+,q,n XA (pccl.n -
aqw
and this is true if and only if a; 4 , = 0. The condition a; 4, = 0 is equivalent to the conditions A, = 0, and og = —|ag].

(@)

ccl,n

() ()

Therefore, ¢ +in = Pecpne U

is harmonic,0 < q<p — 1,and ¢
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4. Torsion zeta function and Poincaré duality for a cone

Using the description of the spectrum of the Laplace operator on forms Ai‘,?s /rel 8iven in Lemma 3.3, we define the zeta
function on g-forms as in Section 2.2, by

¢(s, Ag%)s/rel) = Z A7,

@
AESP Aabs/rel

for Re(s) > mT“ The explicit knowledge of the behaviour of large eigenvalues allows us to completely determine the
analytic continuation of the zeta function, by using the tools of Section 2.4. In particular, it is possible to prove that there can
be at most a simple pole at s = 0. We will not do this here (but the interested reader can compare it with [14]), because for
our purposes it is more convenient to investigate the analytic properties of other zeta functions, resulting from a suitable

different decomposition of the analytic torsion, as described below. For we define the torsion zeta function by

1 m+-1
tabs/rel(s) = E Z(_l)qqc (s, qub)s/rel)'
q=1

It is clear that the analytic torsion of ;W is (in the following we will use the simplified notation T(GW) for
T((GW, g); p))

log Tabs/rel aw) = t;bs/rel(o)'

Our first result is a Poincaré duality (compare it with Proposition 2.4, [4] and the result of [ 10]).

Theorem 4.1 (Poincaré Duality for the Analytic Torsion of a Cone). Let (W, g) be an orientable compact connected Riemannian
manifold of dimension m, without boundary, then

log Taps (GW) = (—=1)" log Trel (GW).

Proof. By Hodge duality in Eq. (2.7), the Hodge operator x sends forms of type 1, 2, 3, 4, E, and O into forms of type
4,3,2,1,0, and E, respectively. Moreover, * sends g-forms satisfying absolute boundary conditions, as in Eq. (2.2), into
m + 1 — g-forms satisfying relative boundary conditions, as in Eq. (2.3). Therefore, using the explicit description of the

eigenvalues given in Lemma 3.3, it follows that SpA(q) = SpA(mH*q). Using the formulas in Egs. (3.1)-(3.3), and the

abs rel
eigenforms in Lemma 3.2, a straightforward calculation shows that the forms of type 1, 3, and E are coexact, and those
of type 2, 4, and O are exact, and that the operator d sends forms of type 1, 3, and E in forms of type 2, 4, and O, respectively,
with inverse d*. Then, set
F(Q)

00 00 00
— ) 2 .2 2 L2 2
cl.abs = {mcd,q,n ‘]Mq,n,aq,k/l }n 1 U {mccl,q—l,n ']Mq—l,n,k/l }n - U {mccl,q,o -]\aql,aq,k/l }kzl )

@ _ 2 2] .2 2] 2 2|
Feans = {mcl,q—l,n N }n - U\ Md.g-2.n g if! et U Melg=1.0 “Jiay_yj.aq_q.k/ 1 it

Fc(cq1) abs 1S the set of the eigenvalues of the coclosed g-forms with absolute boundary conditions, and Fc(flbs is the set of
the eigenvalues of the closed g-forms with absolute boundary conditions. Since obviously SpAgf))s = Fc(fl{abs U Fc(flbs, and
F8 b = F%), we have that

1 m+1 1 m+1 ]
tas(s) = 5 3 (=17(5, ALY = 5 D (=1L (s, A"
q=0 q=0
1 m+1
= CDt® + 5 m+ D3 D™ A
=

1 m+1
= ()"t + S+ 1) Y (=D (£ FE) + £ Fhn) ) = (=Dt (9).
q=0

Since by definition log T,s (W) =t/

15s(0), the thesis follows. O
5. The torsion zeta function of the cone over an odd dimensional manifold

In this section we develop the main steps in order to obtain the proof of our theorems. This accounts essentially in the
application of the tools described in Section 2.4 to some suitable sequences appearing in the definition of the torsion. So our
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first step is precisely to obtain this suitable description. This we do in this section. In the next two subsections, we will make
the calculations necessary for the proof of our main theorems. We proceed assuming dim W = 2p — 1 odd, and assuming
absolute boundary conditions; for notational convenience, we will omit the abs subscript.

Lemma 5.1. Herej/, , = j, ok

[2s P —2
t(s) = —Z( 1)4 (Z Meex.q.n (21quk j;ji,aq,k—j;ji,_aq,k))

n,k=

L (me 1,1(1-;;;,,,,,(—@-;”,“,,{)25))

n,k=1
ZsP1

_ Z( 1)k, (AGW; Q) Z (J_aq N I<> .

Proof. Using the eigenvalues in Lemma 3.3

) ) 00
2s @y _ =25 =25 :—2s
l ;(Sa A ) - mCEX,qynjuqm,aq,k + mCEX»Q*L”—’Mq,Ln,aq,l,k + mcex,quTL]/qu,]'n,k

n,k=1 n,k=1 n,k=1

o0 o0 o0
:—2s 5=2s 525
+ E Meex,q—2,1 1, " 1k T § Mhar,q,0) jog | rg k T § Mhar,g—1.0jay_1],aq_1.k°
n,k=1 k=1 k=1

Since for each fixed q, with0 < q < 2p — 2,

(o) oo (o)
(=1 Y Meex gy agic + D@+ D Y Meex gy i+ D@+ D Y Meex gy
n,k=1 n,k=1 n,k=1

00
+ ( 1)q+2(CI + 2) Z Meex, q, rL];Lq .k + Q( 1)q Z Mhpar, q, (1]|_a§$\ ag.k + (q + 1)(_1)q+1 Z mhar,q,&i\;ﬁ,aq,k

n,k=1 k=1
00 00 R 00 R
= (_1)q (Z mcex,q,nj;qz;,k - Z mcex,q,nj;iiyaqyk> + (_‘l)qu1 thar,q,oj@ﬁaq,k'
n,k=1 n,k=1 k=1
It follows that
2 n 2% 2p—
t(s) == qX%)( 1)q n;] Meex,q,n <]l:qunk _j;:(ii,aq,k> + = l qZ%J (— 1)q+1 Z Mhar,q, OJ\aq| ag.k

Next, by Hodge duality on coexact g-forms on the section (see Eq. (2.7)) Aq.n = Azp—2—q,n, and recalling the definition of
the constants o and j14 , in Lemma 3.2, we have that g = %(1 +2q—2p+1) = q—p+1= —ay—2—gand g, = Uop—2—gn-
Thus, fixing g with0 < g < p — 2,

00 00
_1\4 —2s _ 5-2s __1\(@2p—2—9) =25 5-2s
(=1 Z Meex,q,n (]Mq,mk ]Mq’n,anc) + (=1 Z Mcex,q,n (JMq,n,k ]Mq,ih—aq,k)

n,k=1 n,k=1
00
(_1\q § : =25 G-2s _5-2s
=1 Meex,q,n <2]Mq,n,k Jliq,nsotq,k Jﬂq.n’*aq,k ’
n,k=1

while when g = p — 1, oy = 0. Therefore,

|25 b= 2
q 5—2s 2-2s
l'(S) - Z( 1) Z Mecex,q,n (zfﬂqn k J,uq,n,th,k _Juq,nﬁaq,k>
n,k=1
[2s 21
1 -2 1

+ (_1)p Z Meex,p—1,n (J,Lp ok T (I,U-p 1,1 k) s) + = Z( 1)Q+ tharqo]|aq| ag.k

n,k=1

where j/v, K= ]A'U,o,k are the zeros of /. Eventually, consider the last sum in the previous equation. We will use some classical
properties of the Bessel function, see for example [24]. Recall m = dimW = 2p — 1, and therefore ¢y = ¢ — p 4+ 1isan
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integer. Moreover, o4 is negative for 0 < g < p — 1. Fixing such a g, we study the functionj_aq,aq (2) = 0g)—a,(2) +z]/_aq (2).
Since

24,@) = 212 + Wi @)

it follows thatj_aq,aq (@) = =2 -—0;+1(@) = =7 o, ,(2), and hence]ﬁ‘aqmq,k = j-ag_1.k- Next, fixqwithp—1<qg<2p—1,
such that oy is a positive integer. Then, since

7(2) =212 — Wu(2),
the function ]Aaq,aq (2) = agle,(2) + z](;q () coincides with z],,1(2), and hence f‘aqmq,k = jaq,l,k- Note that when q =
p—1,ap-1 = 0and hence jy, ;a, .k =16,1< = j1.x- Summing up,

2p—1 2p—1

Mhar,q,0 my, 1,0 Mhar,q,0
Z( 1)+ tharqu]\aq| 2k Z( 14! Z = —hara0 4 ()P Z e;rp + Z( 1)7+! Z MMhar.g.0
= 7ozq 1,k k=1 ozq 1.k
and since by Hodge duality mg o = ma,—1—g,0,

( 1)q+lzmharqoj g 1’<+( 1)pzmharp 10]1k +Z( l)qzmharq()]_aq

k= q=0 =1

( 1)q+ Mhar,q,0 Z (J—aq 1.k -’:if; k) :

=0

'U
N

Il
'U Q
._A o

-D

Since Mhar,q,0 = rkH, (AGW; Q), this completes the proof. O

It is convenient to introduce the following functions. We set

00 00
:—2, 7 +/ -2
Zq(s) = Z mcex,q,n]ﬂq,sn,k, Zq(s) = Z mcex,q,n(]uq’nyk) Sv

n.k=1 n,k=1
o N (5.1)
— 2-2s _ —2s
qui(s) - Z mcexsqﬂ]uq.n,ﬂ:aq,k’ Zq(s) - Z (J—aq 1.k _]—aq ) ’
n,k=1 k=1

for0<g<p-1,and

tp,1(5) p 1(8) — p 109), (5.2)
tg(s) = 2Z4(5) = Z44.(5) = Z4-(5), 0=<q=p—2. |
Then,
125 - 1 12
t(s) = _Z( D (224(5) — Zg+(5) — Zy—(5)) + (—=1)? -5 = (2165 = Zy-1(9))
[2s b= 1
_ Z( 1) IrkH, (IGW; Q)z4(s)
q=0
25 p—1 2s p—1

5 2 (D) = = Y (= DIkH(BGW: Q)z4(5).
q=0 q=0

and

.
logT(CW) = £'0) = 5 <Z< Dz ©) + 3 1)"tq<0>) (Z( Dzl ) + S (-1 <o>)

q=0 q=0 q=0 q=0
(5.3)

where ry = rk#,(0GW; Q). In order to obtain the value of log T(C;W) we use Theorem 2.1 and its corollary applied to the
functions z4(s), Z4(s), Z4(s), Zg,+ (). More precisely, the functions z, were studied at the end of Section 2.4, and we will study
the functions t, in Sections 5.1 and 5.2, and eventually we sum up on the forms degree q in Section 6.
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5.1. The functions t,(s),0 < q<p—2

In this section we study the functions t,(s). We apply Theorem 2.1 to the double sequences S; = {mg, : jiq L kinep and
Sq+ = {Mgn : j;zl,q.n:taq,k}r?il’ since we have that Z,(s) = ¢(s, Sq), Zg,+(S) = ¢ (S, Sq+), whereq = 0,1,...,p — 2, 0q =

p—q— 1. Note that the sequence S, coincides with the sequence S,_; analysed in Section 5.2, with ¢ = p— 1. So we just need
to study the other two sequences. First, we verify Definition 2.1. We introduce the simple sequence Uy = {mgn : tUqn}ie -

Lemma5.2. For all 0 < q < p — 1, the sequence U, is a totally regular sequence of spectral type with infinite order,
e(Uy) =gy =2p—1,and

£(s.Up) = ;( A9 + 7).

The possible poles of ¢(s,Ug) areats = 2p—1—h,h = 0,2,4, ..., and the residues are completely determined by the
residues of the function feex(s, A@), namely:

p—1—k _ 2k+1
Res; (s, Uy) = Z( 2 ) Rest oo (5, 4) o2,

s=2k+1 ‘= J s=2(k+)+1

Proof. By definition Uy = {Mcex.q.n : q.n}neq, Where by Lemmas 3.2and 3.3 gn = ,/Aqn + o, and Aq , are the eigenvalues

of the operator A@ on the compact manifold W. Counting such eigenvalues according to multiplicity of the associated

coexact eigenform, since the dimension of the eigenspace of A, , are finite, and A4 , ~ nm for large n. This gives order and
genus. The last formula follows expanding the powers of the binomial in the definition of the zeta function. O

Next, for ¢ € C, define the functions
Joe@ = dv(@ +7,).

Recalling the series definition of the Bessel function [25] 8.402, we obtain that nearz = 0

Juctey = <1 + %) 2v12“v(v)'

This means that the function z‘”fv,c(z) is an even function of z. Let ]A'V,c,k be the positive zeros of ]A,,,C(z) arranged in
increasing order. By the Hadamard factorization theorem, we have the product expansion

oe@ = 0@ [] ( ‘ )

k=—00 .]V c,k

and therefore

Vv

. c z e z?
Joc(@) = (1 + ;) 2T ) g (1 -5 ) .

-]v,c,k

Next, recalling that (when —7 < arg(z) < 7)

Li2) = eV, (2),  Ji(iz) = e2Ve 3 (2),

we obtain ], ¢ (iz) = e>" (cl,(z) + 2, (2)). Thus, we define (for —7 < arg(z) < 2)

Ic(2) = e 2V], (iz), (5.4)
and hence
iv,iaq(z) = tagl,(2) + 2, @z) = (1+£ 1) szm) 1—[ (1 +J : k). (5.5)
v, th

Recalling the definition in Eq. (2.14) we have proved the following fact.

Lemma 5.3. The logarithmic Gamma functions associated to the sequences S, + , have the following representations, when

. / l . ) )
A € Dy ¢, withc’ = 5 mln(]#q,o’]#q,O»i‘xq)'

log (=%, Syt.0) = logl_[ (1 + - )

-]/Lq n,Tog.k

R o
= —logly, ,.4a,(V—2A) + ugnlog v/ —A — pugnlog2 —log I'(pg.n) + log (1 + - > .

Maq,n



638 L. Hartmann, M. Spreafico / Journal of Geometry and Physics 61 (2011) 624-657

Proposition 5.1. The double sequences S, + have relative exponents ( , 2”2—_1, %) relative genus (p, p — 1, 0), and are spectrally
decomposable over U, with power k = 2, length £ = 2p and domain Dy .. The coefficients oy, appearing in Eq. (2.15) are

op=h—1,withh=1,2,...,0 =2p.

Proof. The values of the exponents and genus follow by classical estimates of the zeros of the Bessel functions [24], and
zeta function theory. In particular, to determinate s, = p, we use the Young inequality and the Plana theorem as in [26].
Note that @ > % since s, = % As observed, the existence of a complete asymptotic expansion of the Gamma function
follows by Lemma 5.3. This implies that S, + , are sequences of spectral type. A direct inspection of the expansions shows
that S, + , are totally regular sequences of infinite order. The existence of the uniform expansion follows using the uniform
expansions for the Bessel functions and their derivative given for example in [27] (7.18) and Ex. 7.2, and classical expansion
of the Euler Gamma function [25] 8.344. We refer to [15] Section 5 or to [11] Section 4 for details. This proves that S, 4 are
spectrally decomposable over Uy, with power x = 2. The length £ of the decomposition is precisely 2p. For e(U;) = 2p — 1,
and therefore the larger integer such thato, =h—1<2p—1is2p. O

Remark 5.1. Only the term withop, = 1,04, = 3,...,0, = 2p — 1namely h = 2,4, ..., 2p, appear in the formula of
Theorem 2.1, since the unique poles of ¢ (s, Uy) areats =1,s=3,...,s =2p — 1.

Since we aim to apply the version of Theorem 2.1 given in Corollary 2.1, for the linear combination of two spectrally
decomposable sequences, we inspect directly the uniform asymptotic expansion of 2S; — S, — — S, +. This give the functions

¢‘7l1 .
Lemma 5.4. We have the following asymptotic expansions for large n, uniformin A, for A € Dy /,

21og I'(—=A, Sq.n/pe ) — 108 T (=1, Sq /12 ) — 10g T (=X, Sq—n/ 112 )

. . a?
= —2log I;Lq,n (KgnvV—2A) + lOgluq.n,aq (KgnvV—2) + IOquq'n,faq (KgnV—2A) — 2 log Mqn — log (1 - Tq)

q,n

2p—1 1
=log(1 =1+ ) _ ¢q()——+0 <

=1 Kaq,n

)
(Mq,n)zP .

Proof. Using the representations given in Lemmas 5.9 and 5.3, we obtain

210g T (—A, Sqn/ e ) — 108 T(=A, Sq g n/11d ) — 108 T (=X, Sq.—n/ 12 )
R . o?
= —2logl,, ,(ugnv—2) + 1081, , oy (gnvV —2) + loglﬂqm,_aq (MgnvV/ —A) — 21og g n — log (1 — MTq .
q,n

Recall the uniform expansions for the Bessel functions given for example in [27] (7.18) pg. 376, and Ex. 7.2,

o /szevmgﬁ 2p—1 Ui2) 1
IV(UZ)Z I 1+Z—]+O Tp y
V2mv(1 +22)4 v v

=1

where
1, 5. d 1 (v 2

1

with w = ,and
1422
/ (1 4+ 2)teV 142 B 10 L V@) 1
I (vz) = 1+Y 2= +0(=)].
2mvz = Vv vP
where

w 2 2 2 d
Vo(w) =1, Vi(w) = Uj(w) — 5(1 —w)Uj—(w) —w* (1 —w )@Uj_l(w).
Using these expansions, we obtain the following expansion for iv,iaq (vz),

fv,iaq(vz) = toyl, (vz) + vzl (vz)

w2 B 2] 1 1
\/E 1+ Z Wiaq,j(z)_j +0[ — s

V-

= Vo(14+22)3°

2
= Y
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where W, j(2) = Vj(z) £ —==Uj-1(2). Thus,

‘/ +
~ 1
logly +4,(vZ) = vV 1+22+vlogz —viog(1++v1+2%) +logv + 2 log(1+2%)

2p—1 1
__loanv—l—log <1+2Wiaqj(z) <ﬁ)> :

Jj=1
This gives,

210g T (—A, Sqn/ e ) — 108 T(=A, Sq.n/ 112 ) — 108 T (=X, S —n/ 12 )

2p1 /—
log(l—k)—Zlog(l-l—Z Uv=m o( ))
//an

j=1 /qu n

2p1 " 2p1W_a
+10g<1+2]: +q](\/_)+ (Ml >>+log<1+zl: (V=R o<%)>

Mq n ,U~q n MHaq,n
Expanding the logarithm as

1) — J
o(+52) -2 0
j=1 j=1
whereay = 1,a; =y and |; = q; — ’k 1 i ,kaklj_k, we have that
210g T (=1, Sqn/ e ) — 108 T(=A, Sq g n/1ad ) — 108 T (=X, Sq.—n/ 12 )

P 1
=log(1—X) + Z (—=2hj—1 () +l )+ (M) 5= 2—1

j=1 Hg.n
1 | 1 1
+ ) | =200 + ;) +zzj(x>+ — +0|— ).
j=1 Mq n Mq,n

where we denote by [;(A) the term in the expansion relative to the sequence S (thus the one containing the U;(z)) and by
ljjE (1) the terms relative to Sy (thus the ones containing the W, j(z)). Setting

a1 () = —2bi () + B, (0) + L;_ (M)
21 (5.6)
Baai(h) = 2l (1) + 1, <A)+zzj(x>+7

the result follows. O

Remark 5.2. Note that there are no logarithmic terms log uq, in the asymptotic expansion of the difference of the
logarithmic Gamma function given in Lemma 5.4. So we can apply Corollary 2.1.

Next, we give some results on the functions ¢; 4(A), and @; 4(s) defined in Eq. (2.16).

1
1-A

Lemma 5.5. Foralljand all 0 < q < p — 2, the functions ¢; (1) are odd polynomial in w =

2]

2j-1 .
$2j-14(A) = Zazj—nq,kakH]_], $2jq(X) = ZGZI» w4 24
k=0 k=0 J

The coefficients a; q  are completely determined by the coefficients of the expansion given in Lemma 5.4.
Proof. This follows by direct inspection of the last equality in the statement of Lemma 5.4. O

Lemma 5.6. Foralljandall0 < q <p — 2, ¢; 4(0) = 0.

Proof. The proof is by induction on j. We will consider all the functions as functions of w = ij We use the following
hypothesis for the induction, for 1 < k <j — 1:

$ak-1,4(1) =0, ¢k q(1) =0, (5.7)
—2ua Zk

—, L, (1) — 2k(l) =0, (5.8)

2k 1(1) 2k 1(1) 1
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where the functions ¢; ,(1) are defined in Eq. (5.6), and the function () in the course of the proof of Lemma 5.4. First, we
verify the hypothesis for j = 1. The formulas in Eq. (5.8) follow by the definition when k = 1. For those in Eq. (5.7), we have
by definition when k = 1 that

$rq() = =20 +1F () + 17 0) = =201 (V=) + Vi(V=2) + Vi(V =) + (etg — ) Up(v/— )
1 4 1 .
1-2?  (1-2)3

and

$2.0(0) = =2V + (W) + L, (W) + of = =20 (vV=1) + 2Vo(vV=1) + U1(V=1)* = Vi(v/—1)?

31 o 1 31 iy
o201 -=-0 (1—-2)2 20-23 7

and hence formulas in (5.7) are also verified when k = 1. Second we prove that all formulas hold for k = j. Recalling that
Ur(1) = V(1) for all k, we have from the definition that

b (1) — 2] 1 (1) = Uz (D) — aqUpj—2(1) — Upj—1(1) — aqUpj—2(1)
—-1-
- Z A Uk(l)(lz_j,l,k(l) — Ly (D) — aqUea (D (g (D) + 4, (1))

and hence, using the hypothesis we obtain

2- 1 b
Usks (D) 2bipy —
—7 %l 2D | 21—k ik

Q20011 5
2G—k)—1
—E Upe(1) —2—— E 21 20qUpk—1 (D lz—1y—1(1)
k=1

L (1) = I (1) = —20qUs 2(1)+Z

k=1

20
= — 204Upj—2(1) + 2% = 1U2j—2(1)

2 2j—3
2}_ 20 — Dy 2+Z<21—2 k)orgUi(1)loj—k (1)
k=

20" 20, 20y(% = DUsyz _ 207"
= — — 204Uy 5(1) + Uyj—2(1) + - ’
T qUzj—2(1) 5i—12 2(1) 2 — 1 2j—1

thus proving the first formula in (5.8) for k = j. For the first formula in (5.7), ¢2j—1,4(1) = —2bL;—1(1) + 1271(1) + 1271(1),
and hence

L2 —1-k
GrraD = > T Z (U @y — Gy (1) — Ly, (1))

k=1 2] -1
2j—2 ..
2j—1—k _
= 2 Ui (D) (b (D) = By (D).
= 2j—1

and using the induction hypothesis, and the previous formula with k = j just proved, this means that

2 —1—@2k—1) a(i)20=k i2i—1-2k . (2001
¢2} 1q(1) - kX_]: 2] 1 U2k 1(1)—k -2 Z ZJTO[(I)UZk_](l) (m> =0

k=1
and the first formula in (5.7) with k = j follows. For the second formula in (5.8), using the hypothesis, we have

L (1) = I;(1) = U2j(1) — agUsj-1(1) — Upj(1) — aqUpi 1 (1)

(U (1) — (1)) +Z § (U (DT () + 15, (1)

19— ok a2] 2%
= —204U5-1(1) + Z aqUa—1(1) | 2hj—2k (1) — ik
k=1
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i 2(—k)+1
2G—-k+1 20,
- —U D 4 oy Up 2 (1)2hy 141 (1
"; 2 (21{ : )2(1—’)+1 qU2k—2 (D)2l +1( ))

2(¥qU2j_](1) ZO[q
2

]—k

= —2aqUz1(1) + (21 — Dhj—1(1) + 24 Z Uk—1 (Db (1)

2j—2
—20arqUnj 1(1)+— (uz, 1D+ 2= Dby 1 (D) + Y 2 — 1= B Ue(Dy1 k(l))
k=1

(0g(2j — 1) + ag)Up—1(1)

= —2aqUy-1(1) + ; =0.
Eventually, for the second formula in (5.7)
2]
P2i.q(1) = —2b;(1) + L;(1) + 15;(1) + T
2% 2—1..
_ % =K G @by () — (1) — 15, (1
- ] +Z 2]. ( k( )( 217k( ) zjfk( ) 2];/(( )))
k=1
2j—1
2j —k _
-> aqUi—1(1) (L (1) = I_ (1))
pur i)
=1 4 2(—k) j 2(—k)+1
2j — 2k o o,
=) = Uai(1) = —2) Uy r(D———=0. O
—~ 2 —k P 2j

Corollary 5.1. Foralljandall0 < q <p —2,0 <j <p—1,Res;;_oPj+1,4(s) = 0.
Next, we determine the terms Ag ¢(0) and A{),] (0), defined in Eq. (2.18).

Lemma 5.7. Forall0 <q<p -2,

= oz; Mg.n
#0,0,¢(S) = 2A0,0,4(S) — Ao,0,¢,+(5) — Ap0,¢,—(8) = — Zlog 1—— =

2
n=1 'U“qm /’Lq,n

A0,1,¢(8) = 2A0,1,4(S) — Ao, 1,4+ (S) — Ap,1,4—(S) = (25, Uy).

Proof. For Sy Eq. (2.18) reads

00 p

—2j+1 —2s

AO,O,q(S) = § Meex,q,n | d0,0,n,q — § b2] 1,0,0,gMyq, nj Mgn
n=1 j=1
00 p

j+1 —2s.

AO,l,q(s) = E Meex,q,n | do,1,n,q — § b2] 1,0,1,qMy¢, nj Kgns
n=1 j=1

for Sg +:

00 p

_ 2 : § : —2j+1 —2s

AO,O,q,i(S) - Mcex,q,n <a0,0,n,q,i - b2] 1,0,0.q, i,uq nj ) Mq no
n=1 j=1

00 p

—2j+ —2s

AO,l,q,:I:(s) = E Meex,q,n <a0,1,n,q,i - E ij—LO,LIJ»iru“q,n ) Mgn -
n=1 j=1

Weneedtheexpansmnsforlargekoflzj 1), lzj ), forj=1,2,...,p,logT'(=A, S, n/,u, p)andlogI'(—A, Sqin/uq )
Using the classical expansion for Bessel functions and their derlvatlve (see [11] or [28] for detalls) we obtain

1 1
logI'(—A, Sq,n///qz],n) = 5 log2m + (Mq,n + 5) log tq.n — q.nlog2

1 1
— log'(ugn+1) + 3 (,uq,n + 5) log(—2) + O(eFany=hy,
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For Sg,+, by the same expansions in the definition of the function I, Eq. (5.5), we obtain

R Jz€e? ( > . B
Iy +q,(2) ~ 14+ ) bz ") +0(e™),
I N2 k:z]

and hence

1 1
log (=4, Sq.+.n/ g ) = HgnV = + 3 log2m + (Mq,n - 5) l0g j4q.n — pq.nlog2

1 1
— log I'(ug.n) + 3 (Mq,n - 5) log(—2) + log (1 + ) + 0(e ey,

Mq,n
This gives
1 1
Qp,0,n,q = 5 log2m + Mgn + 5 log Hgn — Maqn log2 — log 1ﬂ(lqu,n + 1),
1 1
Qp,1,n,q = 5 Maq,n + 5 ,

1 1 " oy
ao,0,n,q,+ = 3 log2m +  pgn — = ) 10g pig,n — log 24 " (g n) +1log | 1 £ ,

Mq,n
1 1
o, 1,n,q,+ = E Mgn — E s

while the byj_1,0,0,4. b2j—1,0,0,q,+ all vanish since the functions 1 (}), l;cj_l (1) do not have constant terms. Therefore,

2
Y
20,0, — d0,0,n,9,+ — do,0,ng— = —log| 1———1,
a.n
200,1,n,q — o,1,n,g+ — do,1,ng— = 1,
and the thesis follows. O

Applying Theorem 2.1 and its corollary, we obtain the values of t;(0) and t,; (0).

Proposition 5.2. For0 < q <p— 2,
tq(o) = tq,reg(o) + tq,sing(o)a t (0) = tq reg(o) + tq smg(o)
where
— — A@ 2 —
tq,reg(o) - _g‘(ov Uq) - _é‘cex (0» A + O(q) s tq.sing(o) - O,
t(_/],reg(o) = _tAq,O,O(O) - A;,OJ(O)’

P—1 p—1
t' . (0)= Reso aj41,4(5) R Res (s, Ug) = = L5 Reso @ s) R Res S A0 4 2.
sin 0 ¥2j+1,q l ¢ 0 ¥2j+1,q 1 Ceex ,
q, g j o =0 2 ] 5 $—0 2 q

Proof. By definition in Egs. (5.1) and (5.2),
tq(0) = 2Z4(0) — Z, +(0) — Z, _(0), t[I(O) = ZZL;(O) - Zé,+(0) — Z;,f(O)

where Z,(s) = ¢(s,Sq), and Z; +.(s) = &£(S, S¢,+). By Proposition 5.1 and Lemma 5.4, we can apply Theorem 2.1 and its
corollary to the linear combination above of these double zeta functions. The regular part of 2Z,(0) — Z; +(0) — Z; _(0)
is then given in Lemma 5.7, while the singular part vanishes, since, by Corollary 5.1, the residues of the functions @y 4(s)
at s = 0 vanish. The regular part of ZZ 0) — +(0) Z’ _(0) again follows by Lemma 5.7. For the singular part, since
by Proposition 5.1, k = 2,{ = 2p, and op = h -1, Wlth 0 < h < 2p, by Remark 5.1 we need only the odd values of
h—1=2j41,0 <j <p—1,and this gives the formula stated for t p—1,smg(0) a

5.2. The function tp_1(s)

In this section we study the function t,_; (s). We apply Theorem 2.1 to the double sequences S,_; = {mp_1. : jipfl,n,k}gil
and Sp_1 = {mp_1, : (i;/Lp_Ln,k)z}gil' since Zp_1(s) = &(S, Sp—1), Zp—1(s) = (s, Sp—1). Spectral decomposition is with

respect to the simple sequence Up_1 = {mp_1n @ Up—1,n}ae ;. Since the method is essentially the same as in the previous
subsection, we just state the results here.
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Lemma 5.8. The sequence U,_ is a totally regular sequence of spectral type with infinite order, e(Up—1) = g(Up—1) =2p — 1,
and ¢ (s, Up—1) = Ceex (5, AP~D), with possible simple polesat s =2p — 1 —h,h =0,2,4, ....

Lemma 5.9. The logarithmic Gamma functions associated to the sequences Sy_1 n/ “5—1,:1 and S,_1 ./ /L;_]yn have the following
min(ilz"pfl,l '(i/”pflj )2)

2
205 44

representations, with A € Dy, 0 <6 <m,c =

’

ad (=Mps
log I'(=A. Sp-1n/ip 1) = —log] ] (1 +

k=1 Jupq,n,k

= —log Iup,m (Mpfl,n\' -\ + (Mpfl,n) log v/ —A
+ Up—1.n IOg(Mp—] n) — Mp—1,n log 2 — log 1_‘(Mp—l,n + 1),
: =) (Up—1.n)?
logI"'(—A, Sp_1_,,/ulz,_1’n) = logl_[ (1 + 7 p_Ln )

2
Mp—1,ns k)
= - lOgIMp_l_n (Mp—l,n V=) + (Mp—l.n — 1) log~/—A
+ Up—1,n lOg(Mpfl,n) — Mp—1,n log2 — log r(,vafl,n +1).

Proposition 5.3. The double sequences S,_; and Sp_1 have relative exponents ( , @, %) relative genus (p, p — 1, 0), and

are spectrally decomposable over U,_1 with power k = 2, length £ = 2p and domain Dy . The coefficients oy, appearing in
Eq.(2.15)areo, =h—1,withh =0,1,...,£¢ = 2p.

Remark 5.3. Only the terms with o, = 1,0, = 3,...,0, = 2p — 1 namely h = 2,4, ..., 2p, appear in the formula of
Theorem 2.1, since the unique non negative poles of £ (s, U,_1) areats = 1,s =3, ...,s = 2p — 1,by Lemma 5.8.

Lemma 5.10. The difference of the logarithmic Gamma functions associated to the sequences S,_1 5/ M§—1 and Sp—l,n / Mﬁ—m
have the following uniform asymptotic expansions for large n, > € Dy c,

log (=X, Sp—t.n/ti 1) — 10g T(=A, Sp_1.n/M_1 )
= - lOgI(MprnV -A) + logll(,udpfl,n v —XA) +logv—A
2p—1 1
IOg(1 - )V) + Z ¢]p 1()‘-) p )] ( 2p > .

= My _1.n Mp_1.n

Proof. Proceeding as in the proof of Proposition 5.4
logI'(—A, Sp—l,n/(,up 1, n)z) — logI"'(—A, S‘p 1 n/(ﬂp 1, n)z)

2p—1
(vw AEVIVER )+Z © () - Uk(x/—x)l,-_k(x))>

log(l —0+ )

jll’Lp]n
1
+OT’
Mpln

where we denote by lj(k) the term in the expansion relative to the sequence S (thus the one containing the Vi(z)) and by
l;(}) the term relative to S (thus the one containing the U;(z)). Setting

Pp-15(4) = 0) = ()
= Vi(vV=1) — U(v=A )+Z ; (vk(d_ k) = UV =24 (5.9)

k=

we have the formula stated in the thesis. O

Lemma 5.11. For all j, the functions ¢; ,_1()) are odd polynomial in w = =

3j+1

2Uet1
Gjp-1(2) = Zaj,pfl,kw 1
k=

Lemma 5.12. For allj, ¢j ,—1(0) = 0.
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Corollary 5.2. Forallj,and0 < j < p — 1, Res; @yj11p-1(s) = 0.
s=0
Lemma 5.13.
A0,0,p—1(5) = A0,0p-1(5) — Ag,0,p-1(5) = 0,
. 1
#40,1,p-1(5) = Ao,1,p—1(5) — Ao, 1,p-1(S) = 5{(25, Up—1)-

Proposition 5.4.

tp—l(o) = tp—l,reg(o) + tp—l,sing(o)’ p 1(0) p 1, reg(o) + t;;—l,sing(o)’
where

1 1 ~ (p—1)
tp71,reg(0) = _55(0’ Up71) = _Egcex (Oa A ) s tpfl,sing(o) =0,

] / ~ —
tl/’*l’mg(o) = —C/(O, Up—l) = _zgcex (0, A(p l)) )

=
—_

14 S -~
Resg @7j11,4(5) RES1 ¢(s,Up—q) = ZReso Dir1,4(5) Res1 Ceex (5, A(p—n)'
s=0 J — s—0

t;)— 1,sing (O) =

N =
~.
Il
<)

6. The analytic torsion, and the proof of Theorem 1.1

In this section we collect all the results obtained in the previous one in order to produce our formulas for the analytic
torsion, thus proving Theorem 1.1, that follows from Propositions 6.1 and 6.2. By Eq. (5.3), the torsion is

log? (& b1
log T(CW) =t'(0) = 5 (Z(—Uqﬂrqzq(o) + Z(—l)qfq(0)>

4=0 4=0

1 p—1 p—1
+3 (;(—1)4+1rqz;(0) + ;(—1)%;(0)) .

However, it is convenient to split the torsion in regular and singular parts, according to Remark 2.1 and the results in
Propositions 5.2 and 5.4. First, observe that the functions z,(s) were studied at the end of Section 2.4, where it was shown
that there is no singular contribution to z;(0) and z (O) S0 24(0) = 74 reg(0), and z, (O) =7/ . (0). Therefore, we set

IOg T(GW) = lOg Treg(ClW) + lOg TSlng(ClW)’
with

q.reg

log 2 (5=
10g Treg (GW) = £/, (0) = g (Z( 1)q+1rqzq<0)+2( 1>qtqreg(0>)

q=0 q 0
1 (2
5( 0( DTz, (0)+Z( 1)threg(0)) (6.1)
q=
2 P— 1 p—1
10 Tsing (GW) = t,,,(0) = (=1)7tg5ing (0) + 5 D (=D g 0. (6.2)
=0 q=0

Lemma6.1. Forall0 <qg<p -1,
1
2(0) = =, z,(0) = log2 + log(p — q).

Proof. This follows by Eq. (2.19). O

Lemma 6.2.
tq,reg(o) = —Ceex(0, A(q))’ 0<q<p-—2,
t‘;qFEg(O) = _gc/ex(o’ A(q))’ 0 = q = p— 23

1 - 1 o
tp—],reg(o) = _Egcex(oa A(p 1)), t[/)—l,reg(o) = _ECC/GX(O’ A(p ]))-
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Proof. The first and the third formulas follows by Propositions 5.2 and 5.4, and the fact that for the zeta function associated
to any sequence S, and any number b, £ (0, S 4+ b) = ¢ (0, S). For the derivatives, when 0 < q < p — 2, by Proposition 5.2,

t(_/],reg(o) = _‘AO,O,L](O) - <7%6,]’14(0)'

By Lemma 5.7

2 [e%s)
m m,
A0.0.4(5) = § 'log <1 - ) —22L horg(9) = (25, Up) = Z Al
q,n

=1 M = HMagn

Recalling that g, = \/Aqn + og, and expanding the binomial, we obtain

2
—A (s) — Ay (s) = i lo 1— Ot_q Mcex,g,n _ i Meex,q,n lo
0,0,q 01,4 = g 2 o qu )

an) Hagn = M
cex,q,n —S mcex,q,n 2j
= Ytewran Tt = Yotowrn 3o () et
J Ag.n
= Z ( ) Cea(s +1, A(q))azj

that gives the second formula. Eventually, the result for ), .,
since the dimensionism =2p — 1. O

(0) follows by Proposition 5.4 and the fact that o,_; = 0

Proposition 6.1.

1 I -
log Treg (W) = 5 (—1)%rq log 575 Z( 1)rglog(p — q) + = log T(W,g)
q=0 q =0

p
(Z —1)%ca(0, A9) + %(—D””cccl(o, A“’”)) log!

1% I 15
=3 ( 1)7r, log 373 Z( 1)rglog(p — q) + = log T(W, Pg),
q=0 q =0

where ry = tk#Hg(IGW; Q).

Proof. Substitution in the formula in Eq. (6.1) of the values given in Lemmas 6.1 and 6.2 gives

p—] —1

l
log Treg (W) = Z( 1)rg log - — —Z( 1)1y log(p — )
q 0 q=0

p—2
(Z( 192,a(0, 49) + S (D7 (0, AP ”)) log!

q=0
—2
+ o (2 D (=)0, AD) 4 (=1)7¢/y (0, AP ”))
q=0

By the second formula in Eq. (2.8)

1 (. %3 Lo o 1
2 (22(—1>q+1:cd(o, AD) + (=1)Pg/y(0, AP ”)) = 5 logT(W, ),

4=0

and this gives the first formula stated. For the second formula, note that the boundary of the cone dG;W is the manifold

W with metric I?g. The restriction of the Laplace operator on the boundary is then Ajqw = 12 Since for the zeta function
associated to any sequence S, and any number a,

¢'(0,aS) = —¢(0,S) loga + ¢'(0,S),

a simple calculation shows that
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p—2 p—2
(Z( 1920 (0, A@) + 1 5 (1" (0, A ”)) logI* + ;(22(—1)‘1“;c’d<0, AD) + (—1)P¢/4 (0, A“’—”))

q=0 q=0
=t(0, W) log? +t'(0, W) = log T(ACW). O

Proposition 6.2.

1 p—1 p—1 5
log Tsing(CGW) = = ) (1)1 Z Reso @7j11(5) Re51 Ceex (5, A9 + 065)
2 — — s=0 5=
q=0 Jj=0 =j+3
1 p—1 p—1
= 5D (D7) Resg ¢zj+1(5)2( 1) Resy £ (s, A7 + af)
4=0 j=0 =0 =0 s=it;

1 b1 p—lXj: _1_ ( ~()) 2G—k)
=-) (=1 Resg 4>zk+1,q(5)< 2 ) Resy Ceex (5, AP ) o™
2 q=0 =0 k=0 =0 Jj—k s=j+1 !

1 p—1p-1 j 1
==Y 3> Resg 4>zk+1,q(5)< ? )Z( 1! Res ¢ (s, A7) g™,
2 q=0 j=0 k=0 =0 i=k )= s=j+1

Proof. The first formula follows by substitution in Eq. (6.2) of the values given in Propositions 5.2 and 5.4, and observing

that, for the zeta function associated to any sequence S: aRes; ¢ (as, S) = Res; ¢ (s, S). The second by duality, see Section 2.2,
S=50 S=asgp

Ceat (5. AD) = ¢ (5, A@) — £ (5, AD) = ¢ (5, A@) — Leq (5, AT D) Z( D (s, AV) |

The third formula follows by Lemmas 5.2 and 5.8, and some combinatorics, and the last by the previous ones. [

7. The proof of Theorem 1.2: low dimensional cases

We present a proof for the case 2p — 1 = 3. We also have a similar proof for the case 2p — 1 = 5, that we omit to spare
space. The proof is in two parts: in the first we compute the anomaly boundary term, as defined in Section 3.2, in the second
we compute the singular term in the analytic torsion, using Proposition 6.2. A proof of the general case by this method is
unlikely, since we do not have general formulas for the higher coefficients e, j appearing in the asymptotic expansion of the
heat kernel of the Laplacian on forms. However, we decided to present the proof for p = 2 here, since this together with the
direct combinatoric proof of the same result when the section of the cone is a sphere, mentioned in the introduction, makes
the result in the general case a strong conjecture.

7.1. Part 1

Since m = 3, the unique terms that give a non trivial contribution in the Berezin integral appearing in Eq. (2.11) are those
homogeneous of degree 3. By the definition of the exponential (recall that ® = £2, see Section 3.2), the terms of degree 3
in the integrand in Eq. (2.11) are

2 5 4 1 =2
—3ﬁu5 —EQS],
thus

[ R RN 1 k—1 gk

o=z ) e ér(’gﬂ)“ v
1P 2 S

= _L/ os, —L/Bﬁ (7.1)

27 97 !

Eq. (3.6) and direct calculations give

1, b3 Ak ak A
—= Zbk/\ek = —dvol; Ae] Aej A es,
8 k=1 4
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and
(b] Ab5 A€ AES) A (b5 Ae}) =b] Abs AD; AET AESAES.

Thus,

B
/55'_ — dvolg.
4732

T
By Egs. (3.6) and (2.10),

3
ZQ,{,/\ekAe, A Zb:/\éz .
k,I=1 k=1

Direct calculations give

2 1 o
28 = —5(923 ADy — Qi3 Ab5+ Qi ADY) ANE AE AE
1 Ak Ak A Ak
= —E(staz + Riz31 + Rizz1)e; A €5 A€
1~A>s< Ak Ak
= A AE,
and hence
B, 3
/ Q’Sl 4 Z dldeOl
w2 k=1

Substitution in Eq. (7.1) gives

1 [Pz | 1
B(V]) = m QS] — m /31 87‘[2 'CdVOl T]ﬂdvolg.

By the formula in Eq. (2.12), the anomaly boundary term is

1 1
2 IOW) = — 7dvol, — —— dvol,.
BM,abs( I ) 16772 aqw & 2472 v/E)C[W ¢

7.2. Part 2

By Proposition 6.2, withp = 2,
log Tsing(GW) = 3 Z( 19 ZReSO Pj+1,4(5) Resy Leex (5., A@ 4+ a2).
q 0 j=0 s=0 s=j+1
Since p = 2, g = —1 and oy = 0. Since there are no exact 0-forms
Leex (5, AP +ad) = ¢ (5,49 + of) .
By Lemma 5.2,
Resi ¢ (5, 4¥ +ag) =Resi £ (s, A7),
5—2 S—2
Res; ¢ (s, AQ + o) =Res; ¢ (s, A?) — 1Res ¢ (s, A9).
= 23
By duality (see Section 2.2)
Leex (5, AM) = £(5, AV) = Lex(5, AT) = £(5, AV) = Leen(s, AY),
and also

Res1 Z (s, Ay = _3 Res1 Z(s, Ay, Res1 Z (s, Ay =3 Res1 Z (s, Ay,

S—2 5—2 5—2 S—2

647
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Putting all together, we obtain

1 -
10g Tsing (W) = 5 (Reso @1.0(s) 4+ Resy @1.1(s) + 3Resy @1,1(5)) Res; ¢ (s, A?)
s=0 s=0 s=0 1

S=2

1 1 ~
+ 3 (Reso @3 1(s) + Resg @3 0(s) — 5 Resy @1,0(s) — 3 Resy @3,1(5)) Res; ¢ (s, A?).
3

s=0 s=0 s=0 s=0 s=3

By Corollary 5.2 (when g = 1), and 5.1 (when q = 0)

2
Resqg @11(s) = 1, Resy @3 1(s) = —,
kS0 1,1(5) keso 3,1(8) 35

214
Resy @4 0(3) =2, Resy @3 0(5) = —.
s=0 ’ s=0 ’ 315

This gives

10y _ 1 A0
log Tsing (GW) = 3Res; { (s, A™) — E Resi ¢ (s, A™).
1 3

s=5 s=3

To complete the proof, recall from one side that for a compact connected Riemannian manifold (W, g) of dimension
m there exists a full asymptotic expansion for the trace of the heat kernel of the Laplacian on forms for small ¢ [29],

—tA@ —m L . . . . .
Trpe 4" = 72 Z]‘.’:oo eqjt2. The coefficients depend only on local invariants constructed from the metric tensor, are

in principle calculable from it, and we have the following explicit formulas for the first ones:

1 m 1 m m—2
eq.0 = — ( )/ dvolg, eq2 = - (( >—6< ))/ tdvol,.
4m)z \a/) Jw 6(4m)z \\ ¢ q—1 w

From the other side, the sequence Sp +A(q) of the positive eigenvalues of the metric Laplacian on forms is a totally regular

sequence of spectral type, with finite exponent e = % genus g = [e], spectral sector Xy . with some 0 < ¢ < A,
€ < 0 < 7, asymptotic domain Dy . = C — X ¢, and infinite order [17]. Therefore, the zeta function ¢ (s, Sp+A(q>) has a
meromorphic continuation to the whole complex plane up to simple poles at the values of s = mT_h h=0,1,2,...,that

are not negative integers nor zero, with residues

€q.h
Res; (s, Sp,A@) = q—_h
s=mzh r (mT)

These facts imply that

1 1
log Tgine (GW) = —— Tdvol, — —— dvol,.
g smg( l ) 16772 acw g 2472 ./BC,W g

8. The proof of Theorem 1.2: the general case

Since the argument is very close to the one described in detail in the previous sections, we will just sketch it here. We
consider the conical frustum (or more precisely its external surface) that is the compact connected oriented Riemannian
manifold

CipigW = 1[I, L] x W,

with 0 < I; < I, and with metric dx ® dx + x?g. We study the analytic torsion of Cpiy 1,7 with relative boundary conditions
at x = [; and absolute boundary condition at x = I, and with respect to the trivial representation for the fundamental
group. This idea was originally suggested to M.S. by Miiller; see also the preprint [30], for a similar approach. We denote by
01/2C11,, 1, W, or simply 94 ,, the two boundaries, and by 1og Ty 3, abs 3, (i1, W) the torsion.

8.1. Spectrum

First, we describe the spectrum of the Laplace operator on forms. The proofs of the next lemmas are analogous to the
proofs of Lemmas 3.2 and 3.3 and will be omitted.
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Lemma 8.1. With the notation of Lemma 3.2, assuming that .4 , is not an integer, all the solutions of the equation Au = Au,
with A # 0, are convergent sums of forms of the following twelve types:

(@) —
I/IJr 1,n,A — xaqjll«q,n ()‘X)(pc(g))(,n’

‘//(q1 = = XY, (M)

cex,n’

W_(‘_q)z A = x%-1], a—1.n (M)&goc(g;p + ax(xaq_]Jﬂqﬂ,n (x))dx A (pc(g;;)’
Y@, = XY, Gdel ) + 8 1Y, (u))dx A gl D

MHq—1,n cex,n Hq—1,n cex,n

Pl 5 = X g (e, ) de@ Y + x0T (dx A dTdelS Y

+,3,n, cex,n cex,n °
YO =X Y, G0)delS ) x0T, Oxdx A dEde )

cex,n
1 2
P, = Xt “(deAd¢<q )

cex,n °

w(q =Xy, GX)dx A dpld 2

cex,n
)
Vi = X laq )01y

Y, = XY (A

har>

WJ(rq)OA = O (X1 iy (A0))dX A (pf(‘z‘f’;)’

-1
YDy, = (X Y, () dx A il ).
When g o is an integer the — solutions must be modified including some logarithmic term (see for example [24] for a set of
linear independent solutions of the Bessel equation).

Note that the forms of types 1, 3 and E are coexact, those of types 2, 4 and O are exact. The operator d sends forms of types
1, 3 and E in forms of types 2, 4 and 0, while d sends forms of types 2, 4 and O in forms of types 1, 3 and E, respectively. The
Hodge operator sends forms of type 1 in forms of types 4, 2 in 3, and E in O. Define the functions, for ¢ # 0,

Fuc(0) = Ju(bx) (Y, (ix) + hixY, (X)) — Y, (lbx)(c], (1ix) + L)), (1),
ﬁu.c(x) = Ju () (€Y, (%) + LxY), (X)) — Y, (1) (d (%) + L)), (lox)),

and when c = 0,

Fuo®) = Ju (b)Y, (%) = Y, (b)), (1),
Fuo() = (0], (lx) — Y, (%)), (1x).

Lemma 8.2. The positive part of the spectrum of the Laplace operator on forms on Cy, 1,;W, with relative boundary conditions
on 9;Cyy, 1,)W and absolute boundary conditions on 0,Cyy, 1, )W is:

00 %)
()] _ . F2 . F2
Sp+Arel d1,abs by T mcex,q,n 'fuq,n,aq,k k=1 U mcex,q—l,n . fuqq,n,aqq,k nk=1

oo o0

. f2 . F2
U {mcex,q—l,n 'fuqq,n,—oqu],k} U {mcex,q—z,n 'qufz,n,—aquyk}

n,k=1 n,k=1

[e¢]

00
.2
U {mhar,q—LO 'flaq—l\v“qfl’k}kzl

£2
Uim :
har,q,0 f\aq|,aq,k ket

With absolute boundary conditions on 9,Cy, 1,;W and relative boundary conditions on 0,Cyy, 1,)W is:

o0 o0
_ .28 . f—2s
Sp A abs dreldy — {mcex,q,n ‘fuq,n,aq,k}n 1 U {mcex,q—l,n : Mq_liyn,aq_l,k}

n,k=1
. F—2s
) {mcex,q—l,n 'qu—Ln»—Olq—l’k}

o0 U ,f—Zs
Meex,q—2.n - Hg—1,n:—0tg—2.k
00
U {mhar,q :f\aql,aq,k}k:l U {mhar,q—l :f\aq,ll,aq,],k}kzl )

oo

n,k=1 n,k=1

o0

where the f, .  are the zeros of the function F,, . (x), thefw,k are the zeros of the function I:‘,,”C(x), ¢ € R, agand pg , are defined
in Lemma 3.2.



650 L. Hartmann, M. Spreafico / Journal of Geometry and Physics 61 (2011) 624-657
8.2. Torsion zeta function

We define the torsion zeta function as in Section 2.2 by

m+1

1
trel d1,abs 9 (S) = 5 Z( 1)qq§(5 Are] d1,abs 82)
q=1

By a proof similar to the one of Theorem 4.1 we have the expected duality (dim(W) = m):

log Tips 91.rel 3, (C[Il,lz]W) = (—1)"log Trel 91,abs 9y (C[ll,lz]w)~

We proceed assuming dim W = 2p — 1 odd, and assuming a relative boundary condition on 9;Cy, ;,;W and an absolute
boundary condition on d,; for notational convenience, we will omit the abs, rel subscript. We define the functions

Fo(®) = Je(bx)Ye_1(hx) = Ye(bx)Je—1(1hx),
F. (X) =] (l]X)YC,1 (I2X) Y (llx)chl (IZX)-

Note that, with these definitions I:‘O(x) = Fi(x) and Fp(x) = 191 (x) (remember that Y_,(x) = (—1)"Y,(x) and
J_n(®) = (—=1)"J,(x)). The proof of the following lemma is analogous to the proof of Lemma 5.1. The main step is to prove

thatf‘aqmq,k :f,aq_hk, th.‘;ltquLaq,l< :faq,k, whenp —1 < q < 2p—1,and thatfy o x = f1.x, where the f. «, f.  are the zeros
of the functions F, F, respectively.

Lemma 8.3.
t(s) = EPZ:( 1) i m <f—2s _|_f—2s f—zs _f—25 >
2 < — cex.q:n \J g n,oq,k Iq,n,—oq,k q,n,0q.k Hq,n,—oq,k
q= n,k=
bl Z Meex,p—1.n (,;251 ok —f i, ) Z( 1)9rkH, (W Q)Z(f_aq P 1k)
n,k=1 k=1
We set

00 )
—2s 5 £—2s
Zq,i(s) = Z mcex,q.nfﬂqynﬁiaq,k, Zq,i(s) = Z mcex,q,nfﬂqyn,iaq,k,

n,k=1 n,k=1
00 00
-2 5 _
prl(s) = Z Meex,p—1 nfMp s] 0,0,k prl,:l:(s) = Z Meex,p—1 nfﬂp Lm0,k (8.1)
n,k=1 n,k=1
00
_ —2s £—2s
Zq(s) - Z ( —Olq_],k - —(Xq_],k) ’
k=1

for0<g<p-1,and

tp—1(8) = Zp—1(8) — Zp—1(s),

A (8.2)
tg(S) = Zq4(5) + Zo— () — 2g4(5) = Z4—(s), 0<q<p—2.
Then,
15 15( D (2046 +2-©) = 2449 = 24— )) + 12 (516) =1 9))
=z - , —8) — 4q, —4q,— - by 1 1
2 — q,+ q,+ q 2 p— P
1 p—
EZ —1)IrkH,(W; Q)z4(s)
q=
124 121
= 5 2 (D) = 5 Y (= DIkH(IGW; Q)24(5),
q=0 q=0
and
10g Trel 4. abs 3, (City g W) = £(0) = Z( 1, (0)——2( DIrk#ty (IGW; Q)z;(0). (8.3)

qO q=0
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8.3. Expansions of the logarithmic Gamma functions

We study the zeta functions Z; ., ZLi, by the method of Section 2.4. The double series associated to these zeta functions,

as defined in Eq. (8.1), are denoted by S, §iaq. We show that all these double sequences are spectrally decomposable on
the sequence Uy, defined at the beginning of Section 5.1. We verify all requirements precisely as in Sections 5.1 and 5.2. First,
we need a suitable representation for the associated logarithmic Gamma functions. Proceeding as in Section 5.1, consider
for example the function

Fuc(@ = Ju(b2)(cY,(hz) + hzY, (h2) = Y, (b2)(d,(hz) + hZ), (hz)).

Recalling the series definition of the Bessel function [25] pg. 910, near z = 0,

Fooo (B Y (b
e T e\ AN YA

Thus F,, ((2) is an even function of z, and we obtain the product representation

1 | c [IF P\ &= 72
F,(z)=—((i+i>——<i—i)> 1- :
w@ =\ rg) - —w) ) I -7

Recalling that

COS (LT
Y. (2) = sin;ur]"(z) -

2
_.(2), I_,(2) = —sinunK,(z 1,(2),
Smlmju() 1(2) — sinpuw W (2) +1,(2)

and that (when —7 < arg(z) < Z)J,(iz) = e, (2), andJ/, (iz) = e%i“e‘%ill’t(z), we obtain

COS UTT x. e~ 2in 2 .
Vu(iz) = | Sotredi 4 = ) 1,(2) — Ze 3K, (@),
sin 1 sin T

COS UTT 7z e zin
ez

sin umw sin umw

x; 2 x x
Y, (iz) =e 7' ( )I,’L(z) - ;e’f'e’fl“KZL(z).

So
2
F,c(iz) = - (—I(M(lzz)(clﬂ(l1z) + l1z1,;(l1z)) +1,(Lbz) (K, (lhz) + llzI<;(llz))),

and if we define (for —m < arg(z) < %) Guc(2) = iZFM'C(iz),

coo= (2 hy (L N\ (e 2o
e s Illt IlZL 22 lllL II; 1 /3, c,k ‘

Proceeding in a similar way

3

=
Il

~ . 2

Fucliz) = -~ (K. (h2)(cl, (b2) + bal,, (1h2)) — 1,(12) (K, (b2) + LZK), (12))) ,
. . 1//L I c [ I\ & z?

c,(z):p,(iz):—((i+i>+—<i—i)) 1+ =—|:
e e ~\\¢ AN E 2

2
Fuoliz) = — (=K, (L)1), (hz) + 1, (b2)K, (112)) ,

Go(@) = PRuolin) = —— (2 4 1 ﬁ 12,
WO O T e \ T 2 )

k=1 nw,c,k

. 2
Fuoliz) = — (K. (b)), (hz) — 1,(L2)K], (12)) ,

0@ = Froiy = —— (240 ﬁ -
= 1 = —_— —_ —_ = .
o o Lz \If " I 2

k=1 ©.0,k
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These give the following representations for the logarithmic Gamma functions with z = 4/—A,

logM'(—=A, Siay) = logl_[<1+ 2( ») )

k=1 q,n,Tog.k
— 1 Lo e ag (LT L
= log GMEI n, iOlq( ) + lOg —+ log <(1Mq n + l;‘m + lq‘q,n - ll;q,n ’

Hq,n
. A
log ['(—A, Siq,) = 1%[]<1+A( ) )

q,n,Eogq.k
R — 1 Lo e ag (LT L
= - IOg Gun,qviaq( _)‘) + lOg -+ IOg Mq,n + MHq,n + Hgn — Hqn ;
w fon e AV

logI'(—A,Sy) = — logl_[ (1 + z(_—k))

k=1 Hp—1,n,0,k

1 Mq,n l#qn
= —log Gun,p—l,o(“/ —\) — 5 log—X —logl; + log — +log ( + - ) ,

qun Ill-q,n
N A
logI'(—A, Sg) = logl_[ (1 + - (=4) )

ﬂp 1,n.0.k

lﬂp 1,n ll‘«p—Ln

A 1 Hp—1,n l/‘p 1,n
= —log Gun,p_LO(\/ -\ — 3 log—A —logl, + log — + log ( + ]—) .
1 2

These representations and uniform asymptotic expansions of Bessel functions and their derivative (see the proof of
Lemma 5.10 for the functions I, and [27] pg. 376 for the functions K,) will give the expansion required in Eq. (2.15) of
Definition 2.1. Let us see one case in some detail. We have

lﬂq n l.uq.n o ll/-q,n qu,n
IOg F(—)\, Sn,iaq /I’L;n) - lOg G[l.n g Eaq (I‘Lq nv — ) + IOg —+ lOg luq n + llltq,n + ) lz,l,q’n - ﬁ .
2 Man \ Iy L

Using the cited expansions we obtain

LAA+,/1+ I%ZZ) 1 1+ I%ZZ)

1
log Gy.c(1z) = log — + <\/1 + Bz2 — \/l + lﬁzz) + pnlog >
4 L+ J1+B22) 4 (+57)

2p—1 j—1
+ log (1 + Z (U (b2) + (=YW ;(h2) + ) (=1 U)W - k<hz)) + ouﬂp))

k=1

Thus

L(1+,/1—Bx

108 Gpiy . taq (HgnV/'—A) = g <\/1 —Br— \/1 — I%A) + [tq.nlog
L(1+,/1—Bx)

(1—z%x>+2"zllqu<> 0u),

1 1
+ log — + - log
T Mq,n

4 71 -B
with

a0 +eg(A) =1, D 4gy(A) = 01,14,(1),

j—1
0 g (M) = Ui/ =2) + (=1 Way j(1V/=2) + > UoV/ =2 (=1 W ji(liv/= 1),
k=1

k
oy (V) = G 1q,(A) — Z—ak g Wik e (V).
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Substituting in 1og I' (— A, Sp 44, /ué’n), we have

LA+ \1=60 1 (1-py)
log F(—)\,Sn,iaq/uin) = (\/1 —Br— \/1 — B > Wq.nlog — —log—1—

2
L+ J1—-2y 4 a-hd

2p— 11 ()\,) IMq.n ll/-q.n a luq’” lﬂq’n
¥ 2 1 q [b 1 P
B Z —— [Han + [Han + [an - [an +O(M p)
= uon 1 2 Han \ b 2

Proceeding in a similar way we obtain

~ ) 5 " LA+,/1-— l%)») 1 (1— l%)»)
logI"'(—A, Sn,iaq/uq,n) = —lUgn \/1 —x - \/1 — A ) — pgnlog — —log

2
L+ /1—2y 4 (a-=5LY

2p— ll ()\‘) ll/-q,n qun l#q,n l#q,n
dkag ) 2 % [ b 1 -
- n + n + Llgn  ilan + O(/’L )
2 T\ ) g g g ) ) o0

with
fotayW) =1, 11 1qy(A) = 1,14,(A),

j—1
8 g (M) = Wag j (/= 2) + (= 1YUi (v =2) + D (= D Ui v/=1) Wetg i (/= 2),
k=1

j-1
A R j—k. ~
bt V) = g (V) = ) 5 g W)y ()
k=1

. L(1+,/1—BX)
logI"'(—A, Sn,O/MIZ;_Ln) = —Mp-1,n (\/1 - l%)‘ - \/l - l%)‘> — MUp-1,n log
L(1+,/1—Bx)

1 1— 12)\' 2p—1 ’l\ A ll’-p—l,n lﬂp—Ln B
_ _10g( ) Z o) +log | Z— 4 40— | + 0, 2 ).

Mp—1,n Mp—1,n
4770a-60 Sl e

with
do,o(A) =1, Lio(h) = dro(h),

j—1
000 = Vi(bvV=1) + (= 1/U(h/=0) + Y (=D Ue(bv/ =2V i(lav/= 1),
k=1

j-1
N . ji—k. n
Lo = a0 — Y 5 doWlko(2):
k=1

L(14,/1—Bx)

log I'(=%, Sno/K2,) = —p-1n <\/ 1-Br—/1- I%A) — lip-1nlo0g
L(14/1—Bx)

1 (1 _ 12)\4) 2p—1 l 0(}») ll/-p—l.n ll/-p—l.n
— —log—~ — e +log | 2 +I— ) +0ou* ),
4 (1-— l%)») Z ij . 1’1*17—1-" llz‘p—l.n My 1n

with
ap,o(A) =1, lio() = ag0(A),

j—1
a,000) = Uj(lov/=2) + (=1YV;(he/=2) + Y Ui/ =2 (= 1Y V(v =20),
k=1

=1 . K
ho(h) = a0(8) — T ako(h-4(2).

k=1

653

We conclude this section with the expansions for large A, according to Eq. (2.17). Using classical expansions of Bessel
functions I, and K, and their derivative for large arguments, we obtain the expansions of the functions G and G, and then

those for the Gamma functions:
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IOg F(—)\, Sn,iaq //’Lﬁ n)

l lﬂq n lqlq,n Olq qu n qu n
~ —/Lq,n(IZ l])\/ - = log l_ + lOg l”q - + lgq’n + fan lqu " l”q " + O ,
log ' (=4, Sn ey /12 1)
1) lgq‘" llfq‘" o luq " l“q "
~ (b — )V — 2 log 2 410 i N, [ - +o — ),
Mq, n( 2 1) 2 g l] g llfq’n llz qn //Lq,n lp,q n lp,q n \/_
lﬂp 1,n /‘«p 1,n
logI'(—A, Sn,O/M;_l,n) ~ _,vafl,n(lz V=2 + = ) lOg I + log <lp,p Tn Mp ]n) + O \/_— >
. l Mp—1,n /‘«p 1,n
logI'(—A, Sn,O/M;Z;—l,n —Mp—1n(le =)V —=A+ = lOg A + log <lup 1n Mp ln) + O \/__ :

8.4. The function ty(s)

By definition in Eq. (8.2), we need to consider the difference between log I'(—4, Sy +«,/144.n) and log ' (—2, §n,iaq/uq,n).
The expansions given in the previous subsection give an expansion for large i

10g T (=X, Sn,—aq/Ma.n) + 108 T(—A, Snay/1qn) — 108 T (=X, Snag/thqn) — 108 T (=2, Sy —ay/Hg.n)
—AB) 5
= log (1—x12 +Z ,aq(x>+zj g ) = lag) = gy () + 0(ug 2P,
and for large A

logI"'(—A, Sn,aq/ﬂq,n) + log I'(—A, Sn,aq/ﬂq,n) —logI'(—A, §n,aq/ﬂq,n) —logI'(—A, §n,—aq/ﬂq,n)

L 1
=2lo +0 .
5 (F—A)

Proceeding as in the proof of Lemma 5.7, we obtain ap g,qn = 2log % ao,1,qn = 0, byj—1,004q = 0, byj—1,0,1,4 = 0,and
hence

mqn

l I . .~
AOO q(S) - 210g 2 Z =2lo g Z Z < )O‘;J{ccl(s +Ja A(q))’ AO,l,q(s) =0.
n=1

This gives

AOOq(m—ZIog g 0, AP) = 2(= 1)‘!log Z( Dirk# (W, Q).
L k=0

and
tr reg(0) = 2(—=1)**" log 1;( Dk (W, Q).

Similarly, we consider the difference of log I"(—A, Sp,0/tp—1,n) and log I"(—A, §n,0/up_1,n) for the function t,_4, and we
. I
obtain ao’o,n,p_l = log f, aO,l,n,p—l = 0, ij—l,0,0,p—l = O, sz_1,0,1’p_1 = O, and hence

by My l ~
Ao,0,p-1(5) = 10gl—2 Z Mi - = log l—zfccl,p—1(5, Ay, Agi(s) =0,
142 1

p—1,n
—1
Aoop-1(0) = log chq(o APTY) = (—1)P~ 1log Z( Dtk (W, Q),
1 k=
and
p—1

/ I k k
t_1eg(0) = (=1 log 1—2 > (=Drkatt W, Q).

1 k=0
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8.5. The regular term of the torsion

We use Eq. (8.3). First, note that as in Section 6 there is no singular contribution by the functions z,(s). Using Eq. (2.19),
and recalling that —og_; = —(q — 1 — p 4+ 1) = p — ¢, we compute as in Lemma 6.1
1)
E.
Therefore, substitution in Eq. (8.3) gives
10g Trel 9,.abs 3,.reg (City 11 W) = t1q(0) = 0.

, 1
Z,(0) = logl—2 —2(p —q) log
1

8.6. The singular term of the torsion

We show that the singular part of the torsion is twice the singular part of the torsion on the cone, namely that

log T 1,abs 97,sing (C[h,lz]w) = 2log Tabs.sing aw). (8.4)

Lemma 8.4. We have the equations:
hitag) = LBV + (CVEFEEGED,  Tag, (W) = B + (= DLER),
Lio(d) = LBA) + (—V5EBR), Lo = LB + (=1 LEBR),

where the functions [;, 1]» are defined in the proof of Lemma 5.10, the functions lji in the proof of Lemma 5.4, and the other function
in Section 8.3.

Proof. The proof is by induction. We give details for the first equation. For j = 1, we have

bty ) = Ur(bv/=14) = We 1 (hv/=1) = h(GA) + (= D)'h(BV=2).

Assume the equation is valid for all n < j. By definition

j—1
bitag (V) = > U/ =) (= 1Y W jie(iv/=2)
k=1

' L
— U(v/=2) + (= 1Y Wegy b/ —2) — Z’J—.ak,mq (Mt 7ag V),

k=1

and using the inductive hypothesis for [, +4, (1), and collecting similar terms, this gives

j—1
bitag () = > U/ =) (= 1Y W jic(i/=2)
k=1

-1
) —k
= LB + (- VIF @B - ZJ]—.(—1>’<w¢a,,,k<llx/—wj,k(z%x)
k=1
j—l ]_ k .
- 5 UV =) B
k=1
j—-1 j— ke
= Y =D Un(laV =2 (= D W i/ =)l (BA)
k=1 h=1

. P k k—1 .
-> 11—”1—. D Un(V/ =2 (= D " Wag kn (/=2 (=1 IF  (51).
h=1

k=1

Rearranging the summation’s indices, this reads

j—1
= LB + (VIFGLN) = (=D Waa e (b =) Ui (/=)
k=1
k—nh

j=1 k—1
+ ) ) W jriV/=1) Y i Un(v/=2)len(B2)
k=1 h=1
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j—1 k—1
h
+ Y (D UV =2 ) ]—.W:Faq,lkh(l]v—k)lﬁ(ﬁx)
k=1 h=1

-1

j—k = _
-> ) D Un(la /=) (=D " Wag e n(liv/=2)
k=1 h=1

j-1

iy ‘ k=1
- J]—.<—1)f*klﬁ,<<lfx> D Un(oV/=2) (=) "W i (hV/=2).
h=1

k=1

Reordering the first two double sums as

Z( 1 ™ Wagg joi(hv/ =1 >Z

]— . _ I —
= ]J—.‘zj_k(léx) Z U (IV/ =) (=1 "W i (/=)
h=1

k=1

j—1
D (=D U

k=1

Uh(’zv Mle—n(B2)

h
Wepaq i (liv/ =Ry (22)

j—

Z K1y ’<1*,<(12x>2uh(1ﬂ_ ) (=D " Wy ion (/=2

k=1
the result follows. 0O

We are now in the position of proving Eq. (8.4). Proceeding as in the proof of Propositions 5.4 and 5.2, the singular part
of the torsion is given by some residua of the zeta function associated to the sequence U and some residua of the functions
@. Since the sequence U is the same for the conical frustum and for the cone, and the range of the indices are the same, we
only need to compare the functions @ in the two cases. The functions @ are defined in Eq. (2.16), we introduce the linear
operator

1 —At

Boy(5) = T By (L)(S) = / e A SNCAL TS (85)
0 Agec —

2mi
Let us use the notation =" and ¢™'. We have
P55 1) = =2l 1 () + L, () + Ly, (),
¢frust(k) —liag ) = —qg (1) + I ag(A) + [ —ag(A)-

Note that all the functions appearing in the definition of the functions ¢ (1) are polynomial in w =
formula in Eq. (8.5), we have that

T (- (5)(5) = BT (- () (s),
and similarly for the other. Using lemma (8.4), and odd indices, we obtain for example

DI (s) = (B + B D5 (5).

ﬁ. Applying the

Since by Corollaries 5.2 and 5.1 all the residua Res; of the function ¢;"](s) at s = 0 vanish, Eq. (8.4) follows.

8.7. Conclusion

As recalled in Section 2.3, if 0W = 9;W LI d,W is the union of two disjoint components, and since the boundary term is
local,

log Trel 91,abs 9 (W, g2); p) =logt((W, 0;W), g); p) + ABM,rel(al W) + ABM,abs(BZW)-
Applying this formula to the conical frustum we have
1og Trel 3, ,abs 3, (Crip 1,1W) = log T (Cpyy 1;1 W, 01Criy 1,1 W) + Agm,ret (31) + Am,abs (02).

Let X be a manifold of dimension 2p with boundary 0X = 0,Cy; ;,;W, and assume there is an isometry of a collar
neighborhood of the boundary of X onto a collar neighborhood of 9,Cj;, 1,jW. Let Z be the manifold obtained by gluing
smoothly X to Cp, 1,)W along the boundary 9,Cy;, 1,)W. Applying duality of analytic torsion [4] Proposition 2.10 to Z, and
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since the anomaly boundary term is local, it follows that Agw; re1 (91 Cyy 1,
definition that Agm,abs (01Cji;,1,)W) = —Agm,abs (02C1;,1,1W), we obtain
log Trel 9, abs 9, (Ciiy, 1, )W) = 108 T (Cpy, 1,1 W, 01Chi, 10 W) + 2AM, abs (02Cpi, 1, W)
Considering the exact sequence of the chain complex associated to the pair (Cjj, 1,)W, 91Cyy, 1,)W), it is not difficult to see
(see for example [31] Section 3) that the Reidemeister torsion of the pair vanishes, and hence
log Trel 9;,abs 9, (Ciiy, 1,1 W) = 2AsM, abs (02C1; 1,1 W).
Since the anomaly boundary term is local Agm abs (02C1,1,1W) = Agm,abs (0GW), and hence
10g Tiel 3;.abs 3, (Ciip, 1,1 W) = 2Apm,abs (OGW).

The general argument presented here deserves a complete proof. This can be found in the new paper of Briining and
Ma [32], where gluing formulas and formulas for the variation of the torsion with mixed boundary conditions are proved. We
thank the authors for making available to us this part of the results of their still unpublished paper. Since by the calculations
of the previous subsections

10g Trel 9;,abs 3, (Cjiy,,1W) = 108 Trel 9,.abs ,,sing (Ci1y.,1W) = 2108 Taps sing (GW) = 25(AGW),
this completes the proof of Theorem 1.2.

W) = —Apm.abs (01Cp, 1,1 W). Since it follows by the

l1,1
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Appendix

The next two formulas follow from the definition of the Euler Gamma function (j € N).

I (s+ 2ZH) i I (s+ 2
Resg ———2~ =—y —2log2+2Y ——, Res; ———271 —
e ), T TR gy R,

The next formula is proved in [16] Section4.2 (0 <8 < w,0 <c < 1,a € R).

00 1 —At 1 r
/ 51— e——d)»dt = M. (A.2)
0 271 Jpy o —A (1—x)¢ I'(a)s
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