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FOR SPLIT METACYCLIC SPHERICAL SPACE FORMS
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M. SPREAFICO

(communicated by Nigel Ray)

Abstract
Given a free isometric action of a split metacyclic group

on odd dimensional sphere, we obtain an explicit finite cellu-
lar decomposition of the sphere equivariant with respect to the
group action. A cell decomposition of the factor space and an
explicit description of the associated cellular chain complex of
modules over the integral group ring of the fundamental group
follow. In particular, the construction provides a simple explicit
4-periodic free resolution for the split metacyclic groups.

1. Introduction

In [11] S. Tomoda and P. Zvenwgrovski studied the cohomology ring of the tridi-
mensional spherical space forms. The basic idea is to produce an explicit resolution
for the fundamental group π of these spaces (the family of such groups is explic-
itly known). This is indeed a longstanding problem in algebraic topology, and we
refer to the clear and complete description given in the first sections of [11] (see
also [1]). The abelian case, i.e., π a cyclic group, was studied in seminal works of
de Rham and Seifert. The next case to be investigated was π a generalized quater-
nionic group. A resolution for these groups can be found, for example, in [2, Chap.
XII, Sec. 7], but as observed in [11], no proof is presented. Proceeding along this
line of investigation, Tomoda and Zvengrowski presented explicit resolutions for gen-
eralized quaternionic, binary tetrahedral, octahedral, and icosahedral groups, with
explicit contracting homotopies. They also gave the ring structure of the remaining
two families of groups, the split metacyclic groups and the P8.3k (generalized binary
tetrahedral) by using other techniques. For complete this investigation explicit res-
olutions for these two last families of groups is needed. This is the purpose of our
project, which starts in this work where we study the case of the split metacyclic
groups.

Our approach is based on the original idea of Swan [9]. Let a finite group π act
freely on a sphere Sn. Then, in order to obtain a resolution for π, it is sufficient
to obtain a π-equivariant CW decomposition of Sn. Of course, the main problem
in applying this approach is computational, and this is the reason why, after it was
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successfully exploited for the cyclic groups, it was somehow abandoned. We were
back to this technique in [7], where we studied the generalized quaternionic groups.
In particular, we followed the clever geometric setting introduced by F. Cohen in [3,
Chap. 9]. In that work, the cyclic group is considered, and a sophisticated description
of the cellular complex was obtained using the join decomposition of a sphere in
some spheres of lower dimension. We refer to that book for all the basic details of
the construction. In [7], the ideas of Cohen were used, and after some substantial
improvement of his technique, a cellular decomposition of the sphere Sn, equivariant
with respect to the action of the generalized quaternionic groups, was obtained. We
show in this work that this technique is, in fact, powerful enough in order to deal
with another class of groups: the split metacyclic groups.

2. Preliminaries and notations

2.1. Split metacyclic groups
We denote by D2t(2h+1), with t > 2 and h > 0, the split metacyclic groups with

presentation [14, 2.2]

D2t(2h+1) = 〈x, y | x2h+1 = y2
t

= 1, yxy−1 = x−1〉.

The trivial case t = h = 0 is not considered. The case h = 0 gives a cyclic group C2t

(Z/2t in multiplicative notation), the case t = 1 gives the dihedral groupD2(2h+1) and
the case t = 2 gives the generalized quaternionic group Q4(2h+1) ([14, 2.2] and [11,
Section 5.2]). All these cases have been studied elsewhere, so we will assume here that
t > 3 and h > 1.

The split metacyclic groups also have the following semidirect product struc-
ture [11, Section 5.2]:

D2t(2h+1)
∼= C2h+1 ⋊ϕ C2t ,

with ϕ : C2t → Aut(C2h+1), defined by ϕ(1) = −1. This is related with the split short
exact sequence

1 // C2h+1
i

// D2t(2h+1)
p

// C2t

s
mm

// 1,

where i is an inclusion onto the normal subgroup generated by i(x) = x, p(y) = y
(the generator of C2t), p(x) = 1, and the splitting maps is s(y) = y. Note also that
(D2t(2h+1))ab = C2t .

Remark 2.1. The elements of D2t(2h+1) can be written as follows:

D2t(2h+1) = {1, x, x2, . . . , x2h, y, xy, . . . , x2hy, . . . , y2
t−1, xy2

t−1, . . . , x2hy2
t−1}.

2.2. Matrix representation of group actions
Since notation will have a relevant bearing on the following developments, we

spend a few lines recalling the notation adopted for the matrices representing the
groups actions, according to [13]. Let V,W be fixed finite dimensional vector spaces
over a field F of characteristic zero, with dimV = n, dimW = k. Denote by V † =
HomF(V,F) the dual space. Let e = {e1, . . . , en} and b = {b1, . . . , bk} be given bases
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of V and W , respectively. Let M(n, k;F) denote the set of matrices with n lines and
k columns, with standard matrix product. To each homomorphism ϕ ∈ HomF(V,W )

we associate the matrix M(ϕ) ∈ M(n, k;F) defined by M(ϕ) = (ϕj,l = b†k(ϕ(ej))),
where (ϕj,l) denotes the matrix with entry ϕj,l at line j and column l, i.e.,

ϕ(ej) =

k∑

l=1

ϕj,lbl.

The application M : HomF(V, V ) → M(n, n;F) is a homomorphism of groups, if
we equip HomF(V, V ) with the product ϕ1 · ϕ2 = ϕ2ϕ1 (juxtaposition denotes com-
position), i.e., M(ϕ1 · ϕ2) = M(ϕ1)M(ϕ2).

Next, let ρ : G → AutF(V ) be a group representation. We identify representations
with right π actions on V , and hence we use the multiplication · in AutF(V ), namely
ρ(g1) · ρ(g2) = ρ(g2)ρ(g1). Then, the composite Mρ : G → M(n;F) is a group homo-
morphism: Mρ(g1g2) = Mρ(g1)Mρ(g2).

We conclude by observing that we will, in general, denote by juxtaposition the
action of a group element g on a vector v, whenever the representation is clear. We
will use the following equivalent notations:

vg = ρ(g)(v) = (v1 · · · vn))Mρ(g).

2.3. Free actions on spheres

The groups D2t(2h+1) are groups of type I according to the table of Theorem 6.1.11
of J. Wolf [13], with A = x, B = y, m = 2h+ 1, n = 2t, r = −1, d = 2, n′ = 2t−1 and
satisfy any of the three conditions given below the table (where d is defined, n′

is defined in [13, Theorem 5.5.1]). Then, according to Wolf [13, Theorem 5.5.6] the
irreducible faithful complex representations of D2t(2h+1) have degree 2, are fixed point
free and are explicitly given by (note we use transposed notation with respect to [13])

πk,l(x) = Mρk,l(x) =

(

e
2πki
2h+1 0

0 e−
2πki
2h+1

)

,

πk,l(y) = Mρk,l(y) =

(

0 e
πli

2t−2

1 0

)

,

where k and l are integers with (k, 2h+ 1) = (l, 2) = 1. By the same theorem, all
possible automorphisms of D2t(2h+1) are of the form

ϕa,b,c :

{

x 7→ xa,

y 7→ ybxc,

with integers a, b, c with (a, 2h+ 1) = (b, 2) = 1, b = 1 mod 2. Moreover, the compo-
sition πk,lϕa,b,c is equivalent to πak,bl, and πk,l is equivalent to πk′,l′ if and only if
l′ = l mod 2t−1 and k′ = ±k mod (2h+ 1).

These facts allow us to determine the following set of representative representations
for the different classes of equivalent representations:
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Lemma 2.2. The non-equivalent irreducible complex representations of D2t(2h+1) are

πk,l : D2t(2h+1) → U(2,C),

πk,l :







x 7→

(

e
2πki
2h+1 0

0 e−
2πki
2h+1

)

,

y 7→

(

0 e
πli

2t−2

1 0,

)

with k = 1, 2, . . . , h, l = 1, 3, . . . , 2t−1 − 1 and (k, 2h+ 1) = (l, 2) = 1. All these rep-
resentations are fixed point free.

Next, consider the actions of D2t(2h+1) on odd spheres S4n−1. By [13, 7.4], all
possible actions are direct sums of the πk,l. Namely, let k = (k1, . . . , kn) be a vector
of integers prime to (2h+ 1) and let l = (l1, . . . , ln) be a vector of integers prime to
2. Then define the representation

πk;l = πk1,l1 ⊕ · · · ⊕ πkn,ln : D2t(2h+1) → U(2n,C),

where πkj ,lj : D2t(2h+1) → U(2,C) have the following form:

πkj ,lj (x) =

(

e
2πkji

2h+1 0

0 e−
2πkji

2h+1

)

=

(
ζkj 0
0 ζ−kj

)

,

πkj ,lj (y) =

(

0 e
πlji

2t−2

1 0

)

=

(
0 ξlj

1 0

)

.

Remark 2.3. Note that all the real representations associated to the representations
in Lemma 2.2 are orthogonal.

We call the factor S4n−1/πk;l(D2t(2h+1)) a split metacyclic spherical space form,

and we denote it by S4n−1
2t(2h+1);k;l. It is not difficult to see that the following repre-

sentatives of homeomorphic classes of split metacyclic spherical space forms can be
chosen.

The proof of the following proposition is straightforward and will be omitted (com-
pare with [8, Section 12] and [7, Lemma 2]).

Proposition 2.4. Any split metacyclic spherical space form is homeomorphic to one
of type S4n−1

2t(2h+1);k1,...,kn;l1,...,ln
, with 1 6 k1 6 k2 6 · · · 6 kn < h, 1 6 l1 6 l2 6 · · · <

2t−1 and (k, 2h+ 1) = (l, 2) = 1.

2.4. Curved join

Given two unitary complex numbers z1, z2 ∈ C, consider the ordered pair (z1, z2)
in C× C = R4. Since there exists only one plane in R4 through the origin, z1 and
z2, we can take the oriented arc from z1 to z2 in the unitary circle on this plane and
with length π/2. We denote this arc by z1 ∗ z2 and its end points by z1 ∗ ∅ and ∅ ∗ z2.
If the two points, say w1 6= w2, lay on the same circle, then we use the notation
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[w1, w2] for the oriented arc from w1 to w2. For any two subsets Z1 and Z2, with
Z1 × Z2 ⊂ S1 × S1 ⊂ C× C, we define their curved join by

Z1 ∗ Z2 = {z1 ∗ z2 | z1 ∈ Z1, z2 ∈ Z2} . (2.1)

For example, S1 ∗ S1 = S3. This process generalizes as follows: Identify Cm with
R2m, and, given the standard orthonormal basis {e1, . . . , e2m} of R2m, for each r 6= s,
denote by Πr,s the plane generated by {er, es}. Suppose Πr1,s1 ∩Πr2,s2 = {0}. Let Z1

and Z2 be subsets of the unit circles of Πr1,s1 and Πr2,s2 , respectively. Then the
curved join Z1 ∗ Z2 is well defined by equation (2.1). In particular, we denote by
Σl the unit circle laying in the l-th complex hyperplane of C2n. Then, we have an
homeomorphism of the iterated curved join

S4n−1 = Σ1 ∗ · · · ∗ Σ2n.

For further use, it is convenient to identify the basis vector with their final points
and to use the ej to denote the points in S4n−1. Then, for example, the canonical
basis of R4 in S3 is

e1 = (1, 0, 0, 0) = 1 ∗ ∅, e2 = (0, 1, 0, 0) = i ∗ ∅,

e3 = (0, 0, 1, 0) = ∅ ∗ 1, e4 = (0, 0, 0, 1) = ∅ ∗ i.

It will be also useful to identify S3 = S1 ∗ S1 with the union of two solid torus
along the common boundary. Each S1 is then the central circle inside one of the
solid torus. We can then represent the two half spheres S1 ∗ S1

± (where S1
± denotes

the north/south hemisphere of S1) as in Figure 1, where the framing is given by the
geodesic lines joining the end points of the basic vectors ej (see [3, Section 26] for
details).

I-e1
Ie1

I-e3

Ie1

Ie3

I-e1

I-e3

Ie2

I-e2

I-e4

Ie3

Ie4

I-e2

Ie2

Figure 1

It is clear that the curved join is homeomorphic to the usual join:

J(X,Y ) =
X × I × Y

({x} × 0× Y ) ∪ (X × 1× {y})
.

However, the usual join J(X,Y ) and the curved join X ∗ Y are not isometric. The
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metric of the curved join is the metric of the sphere, and the segments are segments
of geodesic. In particular, this is fundamental when we describe the natural action
appearing definition of the spherical space forms. More precisely, let π be a finite
group acting freely and orthogonally on a sphere Sn, and let h be a positive integer.
Then, there is a natural action of π on Sh(n+1)−1 defined by

(Sh(n+1)−1 ⊂ (Rn+1)h)×G → Sh(n+1)−1 ⊂ (Rn+1)h,

((x1, . . . , xh), g) 7→ (gx1, . . . , gxh).
(2.2)

This action coincides with the action

(Sh(n+1)−1 = S(h−1)(n+1)−1 ∗ Sn)×G → Sh(n+1)−1 = S(h−1)(n+1)−1 ∗ Sn,

((x, t, y), g) 7→ (gx, t, gy),

where the join is the curved join.

We conclude with a technical result.

Lemma 2.5. We have the following formula for the boundary:

∂(X ∗ Y ) = ∂(X) ∗ Y + (−1)dimX+1X ∗ ∂(Y ).

3. The tridimensional case

In this section we present the two major technical results of this work: in the first
subsection we describe the fundamental domain F for the action of D2t(2h+1) via the
representation πk,l on the tridimensional sphere S3, and in the second subsection we
achieve a CW decomposition of F by first obtaining an equivariant CW decomposi-
tion of S3. Both the fundamental domain and the CW decomposition for the higher
dimensional cases will follow by those for the tridimensional case and some general
results, and will be presented in Section 4.

3.1. The fundamental domain

In order to deal with the fundamental domain, we will use the approach and the
notation introduced in [7]. First, recall that if G is a finite group acting on a space
S, then a fundamental domain of the action of π on S is a connected closed subset F
of S such that S =

⋃

g gF and gF ∩ g′F has empty interior for all g 6= g′ ∈ G. The
first important difference with respect to the case of the quaternion studied in [7]
is that in the present case the fundamental domain can change when we change the
representation. We start by observing that the image of the cyclic subgroup generated
by x, πk,l(〈x〉) is independent on k and l, while the image of the subgroup generated
by y, πk,l(〈y〉) is independent on k but depends on l. This means that the fundamental
domain cannot change when we change the parameter k, but, in principle, depends
on l. Thus, in order to determine the fundamental domain, we can fix k = 1 in the
representation.

Next, consider the curved join description of S3 = S1 ∗ S1 given in the previous
section. Let us introduce the following minimal angle:

ε =
4π

|D2t(2h+1)|
=

2π

2t−1(2h+ 1)
.
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Since l is odd it is prime to 2t−1, and we have 2t−2 distinct values for l. So for

each fixed l we have 2t−1(2h+1)
2t−2 = 2(2h+ 1) possible different fundamental domains

in S3. Let us introduce some further notation. We denote the final point of the basis
vector ek by the same notation ek. Recall from Section 2.4 that this is the point of
the circle Σk with real coordinates (0, . . . , 0, 1,

︸ ︷︷ ︸

k

. . . 0) in R4n. Let A1 denote the arc

of Σ1 of length θ1
2 = 2t−2ε starting at e2 in the positive direction, and let A2 denote

the arc of Σ2 of length θ2 = (2h+ 1)ε starting at e4 in the negative direction; see

Figure 2 (recall ζ = e
2π

2h+1 , ξ = e
2π

2t−1 ):

A1 = [i, ζ
1
2 i] ∗ ∅ = e2 ∗ ζ

1
2 e2, A2 = ∅ ∗ [i, ξi] = e4 ∗ ξe4.

Next, we describe the action of the group generators x and y in the representation
π1,1. Let αj = [zj , wj ] be an arc of Σj , and let R(θ) denote the rotation of angle θ.
Then,

ρ1,1(x)(α1 ∗ α2) = R(θ1)(α1) ∗R(−θ1)(α2),

ρ1,1(y)(α1 ∗ α2) = R(θ2)(α2) ∗ α1.

Observe that the notation α1 ∗ α2 means the arc α1 = [z1, w1] in Σ1, starting at
the point z1 of Σ1 and ending at the point w1 of Σ1, joins the arc α2 = [z2, w2] in Σ2,
starting at the point z2 of Σ2 and ending at the point w2 of Σ2.

In more detail, we have:

(X1) ρ1,1(x)(α1 ∗ ∅) = [R(θ1)(z1), R(θ1)(w1)] ∗ ∅. ,
i.e., x rotates α1 by 2t−1ε in the positive sense in Σ1.

(X2) ρ1,1(x)(∅ ∗ α2) = ∅ ∗ [R(−θ1)(z2), R(−θ1)(w2)],
i.e., x rotates α2 by 2t−1ε in the negative sense in Σ2.

(Y1) ρ1,1(y)(α1 ∗ ∅) = ∅ ∗ [z1, w1],
i.e., y moves α1 from Σ1 into Σ2.

(Y2) ρ1,1(y)(∅ ∗ α2) = [R(θ2)(z2), R(θ2)(w2)] ∗ ∅,
i.e., y moves α2 from Σ2 into Σ1 and rotates it by (2h+ 1)ε in the positive sense
in Σ1.

The proof follows by definition and Lemma 2.2, and the fact that the action of the
group generators on the standard basis vectors b1 = (1, 0) and b2 = (0, 1) of C2 are

ρ1,1(x)(b1) = ζ
1
2 b1, ρ1,1(x)(b2) = ζ̄

1
2 b2,

ρ1,1(y)(b1) = b2, ρ1,1(y)(b2) = ξb1.

Remark 3.1. Note that

ρ1,1(x
a)(α1 ∗ α2) = R(aθ1)(α1) ∗R(−aθ2)(α2),

ρ1,1(y
2b)(α1 ∗ α2) = R(bθ2)(α1) ∗R(bθ2)(α2),

ρ1,1(y
2b+1)(α1 ∗ α2) = R((b+ 1)θ2)(α2) ∗R(bθ2)(α1).

The main purpose of this section is to prove the following result:

Proposition 3.2. A fundamental domain for the action of the group D2t(2h+1) on

S3 via the representation π1,1 is F1,1 = A1 ∗A2 = [i, ζ
1
2 i] ∗ [i, ξi].
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-e1

e2

e1

-e2

-e3
e3

-e4

-e1
e1

-e2

-e3

e4

e3

-e4

(2h+1) e2
t-2

e

The arc A1 The arc A2

Iz
1/2

e2 ixe4

Figure 2

In Figure 3 we represent the fundamental domain F1,1 using the description of
S3 introduced at the end of Section 2.4. In the figure the fundamental domain is
illustrated as embedded in S3, framed by the geodesic line joining the end points of
the basis vectors ej . The end points of the arcs Aj are also displayed. In Figure 4 the
fundamental domain appears without the framing. This will be useful in the following
lemmas in order to describe the cell decomposition of the fundamental domain:

I-e1
Ie1

I-e3

Ie1

Ie3

I-e1

I-e3

Ie2

I-e2

I-e4

Ie3

Ie4

Ie2

I-e2

I z
1/2

e2

I xe4

Figure 3

The proof of Proposition 3.2 is based on the following lemmas:

Lemma 3.3. Consider P ∗Q and P
′

∗Q
′

as two subsets in S1 ∗ S1, Int(P ∗Q) ∩
Int(P

′

∗Q
′

) 6= ∅ if and only if Int(P ) ∩ Int(P ′) 6= ∅ and Int(Q) ∩ Int(Q′) 6= ∅.

Lemma 3.4. The rotations on the two circles Σj determined by the action of the
group elements on F1,1 in the representation ρ1,1 satisfy the following bounds:

1. For all a = 1, 2, . . . , 2h, ρ1,1(x
a)(A1 ∗A2) = R(aθ1)(A1) ∗R(−aθ1)(A2), with

0 6 θ1 < 2π, i.e., the rotations determined by xa on Σ1 and Σ2 are less than
2π.
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e4

ixe4

(2h+1) e

2
t-2

e
Ie2

Iz
1/2

e2

Figure 4

2. For all b = 1, 2, . . . , 2t−1,

ρ1,1(y
2b−1)(A1 ∗A2) = R(bθ2)(A2) ∗R((b− 1)θ2)(A1),

with 0 6 bθ2 6 2π e 0 6 (b− 1)θ2 < 2π, i.e., the rotation determined by y2b−1

on Σ1 is less than or equal to 2π, and that on Σ2 is less than 2π.

3. For all a = 1, 2, . . . , 2h, b = 1, 2, . . . , 2t−1,

ρ1,1,(x
ay2b−1)(A1 ∗A2) = R(aθ1 + bθ2)(A2) ∗R(−aθ1 + (b− 1)θ2)(A1),

with 0 6 aθ1 + bθ2 < 4π and 0 6 −aθ1 + (b− 1)θ2 < 2π, i.e., the rotation deter-
mined by xay2b−1 on Σ1 is less than 4π, and that on Σ2 is less than 2π.

4. For all b = 1, 2, . . . , 2t−1 − 1, ρ1,1(y
2b)(A1 ∗A2) = R(b θ2)(A1) ∗R(b θ2)(A2),

with 0 6 bθ2 < 2π, i.e., the rotations determined by y2b on Σ1 and Σ2 are less
than 2π.

5. For all a = 1, 2, . . . , 2h, b = 1, 2, . . . , 2t−1 − 1, ρ1,1,(x
ay2b)(A1 ∗A2) = R(aθ1 +

bθ2)(A1) ∗R(−aθ1 + bθ2)(A2), with 0 6 aθ1 + bθ2 < 4π and 0 6 −aθ1 + bθ2 <
2π, i.e., the rotation determined by xay2b on Σ1 is less than 4π, and that on Σ2

is less than 2π.

Proof. This follows by lengthy direct verification. We show the proof for one illustra-
tive case, and we refer to [6, 2.2.7] for the complete details. We prove case (3). The
rotation on Σ1 determined by the action of xay2b−1 on F1,1 consists of rotating the
arc A1 by an arc of length (2t−1a+ (2h+ 1)b)ǫ in the counterclockwise sense by (X1)
and (Y2). Since the maximum values of a and b are max(a) = 2h and max(b) = 2t−1,
the maximum rotation is

(2t−1 max(a) + (2h+ 1)max(b))ǫ = (2th+ 2t−1(2h+ 1))ǫ.

Since 2th < 2t−1(2h+ 1), it follows that 2th+ 2t−1(2h+ 1) < 2 (2t−1) (2h+ 1).
Whence, the maximum rotation of A1 will be less that 4π (recall 2t−1(2h+ 1)ǫ = 2π).
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The rotation on Σ2 determined by the action of xay2b−1 on F1,1 consists of rotating
the arc A2 by an arc of length (−2t−1a+ (2h+ 1)(b− 1))ǫ in the counterclockwise
sense by (X2) and (Y1). Taking the maximum and minimum values for a and b
(min(b) = 1), the maximum rotation is

(−2t−1 min(a) + (2h+ 1)(max(b)− 1))ǫ = ((2t − 2)h− 1)ǫ < 2π.

Lemma 3.5. The following affirmations are true:

1. For all a = 1, 2, . . . , 2h, Int(ρ1,1(x
a)(F1,1)) ∩ Int(F1,1) = ∅.

2. For all b = 1, 2, . . . , 2t−1 − 1, Int(ρ1,1(y
2b)(F1,1)) ∩ Int(F1,1) = ∅.

3. For all b = 1, 2, . . . , 2t−1, Int(ρ1,1(y
2b−1)(F1,1)) ∩ Int(F1,1) = ∅.

4. For all a = 1, 2, . . . , 2h, and b = 1, 2, . . . , 2t−1 − 1,

Int(ρ1,1(x
ay2b)(F1,1)) ∩ Int(F1,1) = ∅.

5. For all a = 1, 2, . . . , 2h, and b = 1, 2, . . . , 2t−1,

Int(ρ1,1(x
ay2b−1)(F1,1)) ∩ Int(F1,1) = ∅.

Proof. The method of proving these facts is always the same: we first show that
the geometric condition is equivalent to some equations in Z, and then that such
equations have no solutions, by contradiction. We outline the proof here; all details
can be found in the proof of Proposition 2.2.8 of [6].

1. In order to prove Lemma 3.5 first recall that the action of x does not interchange
the points of the two planes of Σ1 and Σ2, and the rotation determined by xa is 2t−1aǫ.
Then, by direct analysis of the geometric description and by Lemmas 3.3 and 3.4,
Int(ρ1,1(x

a)(F1,1)) ∩ Int(F1,1) ∩ Σ1 = Int(ρ1,1(x
a)(A1)) ∩ Int(A1) can be non-empty

only if the following condition is fulfilled:

(a1) 2t−1a = c, with c = 1, 2, . . . , 2t−2 − 1.

If this is the case, since max(c) = 2t−2 − 1, then a 6
2t−2−1
2t−1 < 1 is not an integer.

2. The proof is analogous to the previous one, given that Int(ρ1,1(y
2b)F1,1) ∩

Int(F1,1) ∩ Σ2 = Int(ρ1,1(y
2b)(A2)) ∩ Int(A2) can be non-empty only if:

(b1) (2h+ 1)b = 2t−1(2h+ 1)− d, with d = 1, 2, . . . , 2h.

3. In order to prove this affirmation, we need a combination of the previous con-
ditions, since now the action of the group elements can interchange the planes. First,
we find that Int(ρ1,1(y

2b−1)F1,1) ∩ Int(F1,1) ∩ Σ1 can be non-empty only if:

(a1) (2h+ 1)b = c, c = 1, 2, . . . , 2h+ 2,

while Int(ρ1,1(y
2b−1)(F1,1)) ∩ Int(F1,1) ∩ Σ2 can be non-empty only if one of the fol-

lowing two conditions is fulfilled:

(b1) (2h+ 1)(b− 1) = −d, d = 1, 2, . . . , 2h+ 2,

(b2) (2h+ 1)(b− 1) = 2t−1(2h+ 1)− d, d = 1, 2, . . . , 2h+ 2.

We show that none of the combinations (a1) and (bk), k = 1, 2, is possible. Assume
(a1) and (b1) hold. Then there are integers a and b such that
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{

(a1) (2h+ 1)b = c,

(b1) (2h+ 1)(b− 1) = −d.

Since 1 6 c, d 6 2h+ 2, and b is an integer, the (a1) gives c = 2h+ 1, and b = 1,
while (b1) gives d = 2h+ 1 and b = 0, and hence the system has no integer solutions.
Assume (a1) and (b2) hold. By (a1) we get, as before, that c = 2h+ 1, and b = 1,
while (b2) gives d = 2h+ 1, and b = 2t−1, whence again the system is incompatible.

4. We have that Int(ρ1,1(x
ay2b)(F1,1)) ∩ Int(F1,1) ∩ Σ1 can be non-empty only if

one of the following two conditions is fulfilled:

(a1) 2t−1a+ (2h+ 1)b = 2t−1(2h+ 1) + c, c = 1, 2, . . . , 2t−2 − 1,

(a2) 2t−1a+ (2h+ 1)b = 2t−1(2h+ 1)− c, c = 1, 2, . . . , 2t−2 − 1,

while Int(ρ1,1(x
ay2b)(F1,1)) ∩ Int(F1,1) ∩ Σ2 can be non-empty only if one of the fol-

lowing three conditions is fulfilled:

(b1) −2t−1a+ (2h+ 1)b = −d, d = 1, 2, . . . , 2h,

(b2) −2t−1a+ (2h+ 1)b = d, d = 1, 2, . . . , 2h,

(b3) −2t−1a+ (2h+ 1)b = 2t−1(2h+ 1)− d, d = 1, 2, . . . , 2h.

Next we show that none of the combinations (aj), j = 1, 2, and (bk), k = 1, 2, 3,
is possible. Assume, for example, that (a1) and (b1) hold. Then, there are integers a
and b such that

{

2t−1a+ (2h+ 1)b = 2t−1(2h+ 1) + c,

−2t−1a+ (2h+ 1)b = −d.

This gives
{

a = h+ 1
2 + c+d

2t ,

b = 2t−1(2h+1)+c−d

2(2h+1) .

We show that either a or b is not an integer. If d = c, then 2c
2t 6

2t−2−1
2t−1 < 1

2 , and
hence h < a = h+ 1

2 + 2c
2t < h+ 1, and a is not an integer. Next, assume c 6= d and

h > 2t−3. Then, since min(d) = 1 and max(c) = 2t−2 − 1,

c− d

2(2h+ 1)
6

2t−3 − 1

2h+ 1
< 1.

While since max(d) = 2h and min(c) = 1,

c− d

2(2h+ 1)
>

1− 2h

2h+ 1
> −1.

Since c 6= d, it follows that b is not an integer. The last possibility is c 6= d and

h < 2t−3. Then, c
2t 6

2t−2−1
2t < 1

4 and d
2t 6

2h
2t < 1

4 . This means that: h < a = h+

+ 1
2 + c+d

2t < h+ 1, so a is not an integer. The proofs for the other combinations are
similar.

5. We find that Int(ρ1,1(x
ay2b−1)(F1,1)) ∩ Int(F1,1) ∩ Σ1 can be non-empty only if

one of the following two conditions is fulfilled:

(a1) 2t−1a+ (2h+ 1)b = c, c = 1, 2, . . . , 2h+ 2,

(a2) 2t−1a+ (2h+ 1)b = 2t−1(2h+ 1)− c, c = 1, 2, . . . , 2h+ 2,
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while Int(ρ1,1(x
ay2b)(F1,1)) ∩ Int(F1,1) ∩ Σ2 can be non-empty only if one of the fol-

lowing two conditions is fulfilled:

(b1) −2t−1a+ (2h+ 1)(b− 1) = −d, d = 1, 2, . . . , 2h+ 2,

(b2) −2t−1a+ (2h+ 1)(b− 1) = 2t−1(2h+ 1)− d, d = 1, 2, . . . , 2h+ 2.

The proof consists of showing that none of the combinations (aj), j = 1, 2, and
(bk), k = 1, 2, is possible. Assume, for example, that (a1) and (b1) hold. Then there
are integers a and b such that

{

2t−1a+ (2h+ 1)b = c,

−2t−1a+ (2h+ 1)(b− 1) = −d.

This gives
{

a = −(2h+1)+c+d

2t ,

b = 1
2 + c−d

2(2h+1) .

Next we show that either a or b is not an integer. If d = c, then b = 1
2 is not an integer.

Now, assume c 6= d. Then, since min(d) = 1 and max(c) = 2h+ 2,

c− d

2(2h+ 1)
6

1

2
.

While since max(d) = 2h+ 2 and min(c) = 1,

c− d

2(2h+ 1)
> −

1

2
.

So b = 1 and c = 1
2t−1 . It follows that c is not an integer. The proofs for the other

combinations are similar.

The proof of Proposition 3.2 follows by these lemmas and by the fact that F1,1

has the correct volume. Next, we give the fundamental domain F1,l for the other
representations. A pictorial description of F1,l is given in Figures 5, 6 and 7, which
corresponds to Figures 2, 3 and 4, where z = m(2h+ 1), with l = 2m+ 1.
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Proposition 3.6. A fundamental domain for the action of the group D2t(2h+1) on
S3 via the representation π1,l, where l = 2m+ 1, is

F1,l = R(mθ2)(A1) ∗A2 = [ξmi, ξmζ
1
2 i] ∗ [i, ξi].

Proof. First, note that the action of the group elements in the representation π1,l,
l = 2m+ 1 is as follows: ρ1,l(x) = ρ1,1(x), while

ρ1,l(y)(α1 ∗ α2) = R(lθ2)(α2) ∗ α1,

where αj are arcs in some Σ, i.e.,

1. y moves α1 from Σ1 into Σ2,

2. y moves α2 from Σ2 into Σ1 and rotates it by (2h+ 1)lε in the positive sense
in Σ1.
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Thus,

ρ1,l(y)(F1,l) = R(lθ2)(A2) ∗R(mθ2)(A1),

and by Remark 3.1,

ρ1,l(y
2c)(F1,l) = R((cl +m)θ2)(A1) ∗R(clθ2)(A2),

ρ1,l(y
2c+1)(F1,l) = R((c+ 1)lθ2)(A2) ∗R((cl +m)θ2)(A1).

Second, note that, by definition,

R((cl +m)θ2)(A1) ∗R((cl +m)θ2)(A2) = ρ1,1(y
2cl+2m)(F1,1),

R((c+ 1)lθ2)(A2) ∗R((cl + 2m)θ2)(A1) = ρ1,1(y
(2c+1)l+2m)(F1,1),

and

R(clθ2)(A1) ∗R(clθ2)A2 = ρ1,1(y
2cl)(F1,1),

R((cl +m+ 1)θ2)(A2) ∗R((cl +m)θ2)(A1) = ρ1,1(y
(2c+1)l)(F1,1).

These equalities show that

ρ1,l(y
b)(F1,l) ∩ Σ1 = ρ1,1(y

bl+2m)(F1,1) ∩ Σ1, (3.1)

ρ1,l(y
b)(F1,l) ∩ Σ2 = ρ1,1(y

bl)(F1,1) ∩ Σ2. (3.2)

We are now able to prove that the translated of F1,l do not have common internal
points. Assume that

Int(ρ1,l(x
ayb)(F1,l) ∩ Int(F1,l) 6= ∅.

Recalling Lemma 3.3, this means that both affirmations below are true:

Int(ρ1,l(x
ayb)(F1,l)) ∩ Int(F1,l) ∩ Σ1 6= ∅,

Int(ρ1,l(x
ayb)(F1,l)) ∩ Int(F1,l) ∩ Σ2 6= ∅.

Suppose first that

Int(ρ1,l(x
ayb)(F1,l)) ∩ Int(F1,l) ∩ Σ1 6= ∅. (3.3)

By equation (3.1), this means that

Int(ρ1,1(x
aybl+2m)(F1,1)) ∩ Int(F1,l) ∩ Σ1 6= ∅,

and by definition this gives the equation (in Σ1)
{

R(aθ1 + (cl +m)θ2)(Int(A1)) ∩R(aθ1 +mθ2)(Int(A1)) 6= ∅, b = 2c,

R(aθ1 + (c+ 1)lθ2)(Int(A2)) ∩R(aθ1 +mθ2)(Int(A1)) 6= ∅, b = 2c+ 1.

Since this is just an equation in Σ1, it is invariant under rotation, whence equivalent
to the equation

{

R(aθ1 + clθ2)(Int(A1)) ∩ Int(A1) 6= ∅, b = 2c,

R(aθ1 + (cl +m+ 1)θ2)(Int(A2)) ∩ Int(A1) 6= ∅, b = 2c+ 1.
(3.4)

By definition, equation (3.4) comes from the condition

Int(ρ1,1(x
aybl)(F1,1)) ∩ Int(F1,1) ∩ Σ1 6= ∅. (3.5)
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Since F1,1 is a fundamental domain with respect to the representation ρ1,1, condi-
tion (3.5) implies that

Int(ρ1,1(x
aybl)(F1,1)) ∩ Int(F1,1) ∩ Σ2 = ∅,

and by (3.2), and recalling that F1,l ∩ Σ2 = F1,1 ∩ Σ2, we have that

Int(ρ1,l(x
aybl)(F1,l)) ∩ Int(F1,l) ∩ Σ2 = ∅. (3.6)

So we have proved that condition (3.3) implies condition (3.6). Next, observe that
all the implications used to prove the last equation are in fact double implications,
and hence condition (3.6) implies condition (3.3). This conclude the proof.

3.2. Cellular decomposition
In whole generality, if X = Sk/π, where π is some finite group acting freely by

isometries, F is the fundamental domain of the action of π, and q : Sn → X is the
natural quotient map, then q is a covering map, Sn = X̃ is the universal covering
space of X, q|F : F → X is surjective, and it is a relative homomorphism for the pair
(F , ∂F) → Int(Top(X)), onto the interior of the top cell of X (recall X is a compact
manifold). It is clear that a π equivariant cell decomposition K̃ of Sn determines a
cell decomposition L̃ of F , where L̃ is a subcomplex of K̃, and K̃ = πL̃, and that
q(L̃) will give a cell decomposition L of X. Moreover, at least one lift of each cell
of L will lay in L̃. Therefore, we can choose for each cell c ∈ L one single cell c̃ ∈ L̃,
which will be called a representative lift of c. Since all the other cells of L̃ are in the π
orbit of some cell c̃ (i.e., are translated by the action of some group element), the cell
complex of L̃ can be described using the cells c̃ and some of their translations. This
set of cells Z̃ will be called a minimal set of representative lifts, and Z̃ a minimal cell
decomposition of F . It is clear that q(Z̃) = L. Taking all the complete orbits of the
cells in Z̃, we will obtain the cell complex K̃ = πZ̃, which is a π equivariant cellular
decomposition of Sn.

We pass now to determine a D2t(2h+1) equivariant cell decomposition of S3. By
Proposition 3.6, F1,l = A1(l) ∗A2 ⊆ Σ1 ∗ Σ2, where A1(l) = R(mθ2)A1, as defined in
the theorem, and for simplicity will be denoted by A1 here. The Aj are segments of
geodesic arcs in the two factors Σj of S3 = S1 ∗ S1. The end points of the Aj are
obviously images of some common point of S3 by the action of some different group
elements. This defines a cell decomposition Ñj of the Σj , as follows: Fix a point of

S3, and identify this point with e4. The 0-cells of Ñj are the elements of the orbit

D2t(2h+1)e4 that lay in Σj . The 1-cells of Ñj are the geodesic arc segments joining
such points (that all lay in Σj , since the action is orthogonal). It is clear that the Aj

are realized by two subcomplexes Bj ⊆ Nj . Since the join preserves subcomplexes, the

join L̃ = B̃1 ∗ B̃2 gives a cell decomposition of F1,l. It is clear that K̃ = D2t(2h+1)L̃ is
a D2t(2h+1) equivariant cell decomposition of S3 = Σ1 ∗ Σ2. This gives the following
lemma:

Lemma 3.7. A D2t(2h+1) equivariant cell decomposition of S3 is K̃ = D2t(2h+1)L̃,

where L̃ is defined above. The subcomplex L̃ is a cell decomposition of F1,l. The

quotient L = L̃/πk,l(D2t(2h+1)) gives a cell decomposition of S3
2t(2h+1);k;l.

In order to proceed, we need the group elements that define the minimal action
on each of the two circles Σj , i.e., the two elements gj ∈ D2t(2h+1) such that, for any
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given fixed zj ∈ Σj , j = 1, 2,

gjzj ∗ zj = ǫ. (3.7)

A straightforward calculation gives the following relationships:

Lemma 3.8. The elements gj ∈ D2t(2h+1), which satisfy equation (3.7), are gj =

xαjy2βj , where αj and βj are integers satisfying the following equations:

k2t−1α1 + l(2h+ 1)β1 = 1 mod 2t−1(2h+ 1),

−k2t−1α2 + l(2h+ 1)β2 = −1 mod 2t−1(2h+ 1).

It is easy to see that if the pair (α1, β1) satisfies the first equation of Lemma 3.8,
then the pair (α2 = α1, β2 = −β1) satisfies the second equation of the lemma. Thus,
we define the pair (α, β) as the two integers that satisfy the following equation:

k2t−1α+ l(2h+ 1)β = 1 mod 2t−1(2h+ 1). (3.8)

We are now in the position of describing the minimal set of lifts Z̃ of the cells
of L in S3 and their boundaries. In order to describe this complex, we use a “semi-
algebraic” notation, namely, after fixing one 0-cell, e4, we denote the other 0-cells by
action of the groups elements. Higher dimensional cells are obtained by joining lower
dimensional ones as before. Addition is used to denote cells constructed by glueing
adjacent cells.

Since the description changes if 2h+ 1 is greater or smaller than 2t−2, we split the
statement in the following two lemmas. The proof is the same.

Proposition 3.9. Let z = m(2h+ 1), and let (α, β) be integers satisfying the con-
ditions given in equation (3.8). Assume 2h+ 1 > 2t−2. Then, a minimal set Z̃ of
representative lifts c̃q,s (where the first index denotes the dimension) of the cells of
the cellular decomposition L of S3

2t(2h+1);k;l (recall l = 2m+ 1) defined in Lemma 3.7
is:

c̃0,1 = e4,

c̃1,1 = e4 ∗ (x
αy−2β)e4,

c̃1,2 = e4 ∗ (x
αy2β)z+2t−2

y−1e4,

c̃1,3 = e4 ∗ (x
αy2β)zy−1e4,

c̃2,1 = (xαy2β)zy−1e4 ∗ (x
αy−2β)2h+1e4 ∗ (x

αy2β)z+2t−2

y−1e4,

c̃2,2 = (xαy−2β)2h+1−2t−2

e4 ∗ (x
αy−2β)2h+1e4 ∗ (x

αy2β)zy−1e4,

c̃2,3 = e4 ∗ (x
αy−2β)2h+1−2t−2

e4 ∗ (x
αy2β)zy−1e4,

c̃3,1 =
2h∑

s=0

(xαy−2β)sc̃1,1 ∗
2t−2

∑

s=1

(xαy2β)z+sy−1c̃1,1,

with the boundaries:
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∂1(c̃1,1) = (xαy−2β − 1)c̃0,1,

∂1(c̃1,2) = ((xαy2β)z+2t−2

y−1 − 1)c̃0,1,

∂1(c̃1,3) = ((xαy2β)zy−1 − 1)c̃0,1,

∂2(c̃2,1) =
2t−2

∑

s=1

(xαy2β)z+sy−1c̃1,1 − (xαy2β)z+2t−2

y−1c̃1,2 + (xαy2β)zy−1c̃1,3,

∂2(c̃2,2) =

2h∑

s=2h+1−2t−2

(xαy−2β)sc̃1,1 + (xαy2β)zy−1c̃1,2 − (xαy2β)zy−1c̃1,3,

∂2(c̃2,3) =

2h−2t−2

∑

s=0

(xαy−2β)sc̃1,1 − (xαy2β)zy−1c̃1,2 − c̃1,3,

∂3(c̃3,1) = (1− ((xαy2β)z+2t−2

y−1)−1)c̃2,1 + (1− ((xαy2β)zy−1)−1)c̃2,2

+ (1− (xαy−2β)2
t−2

)c̃2,3.

Proof. The proof of this lemma is geometric, and it is based on an explicit descrip-
tion of the cell decomposition L̃ of the fundamental domain. First, since S3

2t(2h+1);k;l

is connected, one 0-cell c0,0 is sufficient in L, and we fix the lift c̃0,0 of c0,0 by
identifying it with the end point of the basis vector e4. Next, since the quotient
space is a manifold and the fundamental domain is a 3-dimensional disc, it is clear
that we can take just one top cell. Namely, we can lift the top cell of L, and
this will be exactly L̃, with the boundary glued on the 2-skeleton of L̃, which is
precisely its boundary. By definition, L̃ = B̃1 ∗ B̃2. So the next step is to identify
the B̃j . The main problem here is that it is not difficult to realize that the two

1-dimensional complexes B̃j are, in fact, in the same D2t(2h+1) orbit, and hence
they cannot give a set of lifts of 1-cells. This can be seen in detail in the con-
tent of Lemma 3.8. In fact, by definition, the 0-cells of B̃j are the points in the
orbit of e4 that belong to Aj . By definition (Proposition 3.6), A1(l) = (xα1y2β1)ze2 ∗

(xα1y2β1)z+2t−2

e2 = (xα1y2β1)zy2
t−1e4 ∗ (x

α1y2β1)z+2t−2

y2
t−1e4, since e2 = y2

t−1e4,
and A2 = e4 ∗ (x

α2y2β2)2h+1e4 ((αj , βj) are defined in Lemma 3.8). Thus, the points

of the orbit of e4 that belong to B̃1 are the gu1 y
2t−1e4, where g1 = xα1y2β1 , and

z 6 u 6 z + 2t−2, while the points of the orbit of e4 that belong to B̃2 are the gu2 e4,
where g2 = xα2y2β2 , and 0 6 u 6 2h+ 1. Thus, choosing one 1-cell

c̃1,1 = e4 ∗ (x
α2y2β2)e4,

we have that

B̃1 =

z+2t−2

⋃

u=z

(xα1y2β1)uy2
t−1c̃1,1, B̃2 =

2h⋃

u=0

(xα2y2β2)uc̃1,1.

We are now in the position of giving representative lifts in Z̃ of the 1-cells of L.
Note that the 1 skeleton of L̃ contains, beside the B̃j , the arcs segments I1 = e4 ∗

(xα1y2β1)z+2t−2

y2
t−1e4, I2 = e4 ∗ (x

α1y2β1)zy2
t−1e4, I ′1 = (xα1y2β1)z+2t−2

y2
t−1e4 ∗

(xα2y2β2)2h+1e4 and I ′2 = (xα1y2β1)zy2
t−1e4 ∗ (x

α2y2β2)2h+1e4; see Figure 8. (The
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corresponding figure for the case 2h+ 1 < 2t−2 is Figure 9.) We see that I ′1 and
I1 and I ′2 and I2 are respectively in the same orbit, and none of them is in some orbit
of the Nj . Thus we choose the minimal set of lifts of 1-cells to be the set:

c̃1,1 = e4 ∗ (x
α2y2β2)e4,

c̃1,2 = e4 ∗ (x
α1y2β1)z+2t−2

y2
t−1e4,

c̃1,3 = e4 ∗ (x
α1y2β1)zy2

t−1e4,

where the last two cells represent, respectively, onto I1 and I2.
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We pass now to choose the 2-cells of Z̃. The procedure is similar; we need to
identify the orbits of the two cells in L̃. Figure 8 can again be useful, where the three
2-cells with different orbits are displayed in different colors. The final minimal set of
2-cells is given in the statement. It is not difficult to see that the unique 3-cell of Z̃
is c̃31 , and is, in fact, the whole L̃.

Eventually, we compute the boundaries using Lemma 2.5, and we write the coef-
ficients in ZD2t(2h+1) using the known description of the orbit of the point e4. This
completes the proof.
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Proposition 3.10. Let z = m(2h+ 1), and let (α, β) be integers satisfying the con-
ditions given in equation (3.8). Assume 2h+ 1 < 2t−2. Then, a minimal set Z̃ of
representative lifts c̃q,s (where the first index denotes the dimension) of the cells of
the cellular decomposition L of S3

2t(2h+1);k;l (recall l = 2m+ 1) defined in Lemma 3.7
is:

c̃0,1 = e4,

c̃1,1 = e4 ∗ (x
αy−2β)e4,

c̃1,2 = e4 ∗ (x
αy2β)z+2t−2

y−1e4,

c̃1,3 = e4 ∗ (x
αy2β)zy−1e4,

c̃2,1 = (xαy2β)z+2t−2−(2h+1)y−1e4 ∗ (x
αy−2β)2h+1e4 ∗ (x

αy2β)z+2t−2

y−1e4,

c̃2,2 = (xαy2β)zy−1e4 ∗ (x
αy−2β)2h+1e4 ∗ (x

αy2β)z+2t−2−(2h+1)y−1e4,

c̃2,3 = e4 ∗ (x
αy−2β)2h+1e4 ∗ (x

αy2β)zy−1e4,

c̃3,1 =

2h∑

s=0

(xαy−2β)sc̃1,1 ∗
2t−2

∑

s=1

(xαy2β)z+sy−1c̃1,1,

with the boundaries:
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∂1(c̃1,1) = (xαy−2β − 1)c̃0,1,

∂1(c̃1,2) = ((xαy2β)z+2t−2

y−1 − 1)c̃0,1,

∂1(c̃1,3) = ((xαy2β)zy−1 − 1)c̃0,1,

∂2(c̃2,1) =

2t−2

∑

s=2t−2−2h

(xαy2β)z+sy−1c̃1,1 − ((xαy2β)z+2t−2

y−1 + (xαy−2β)2h+1)c̃1,2,

∂2(c̃2,2) =

2t−2−(2h+1)
∑

s=1

(xαy2β)z+sy−1c̃1,1 + (xαy−2β)2h+1c̃1,2 + (xαy2β)zy−1c̃1,3,

∂2(c̃2,3) =

2h∑

s=0

(xαy−2β)sc̃1,1 − ((xαy2β)zy−1 + 1)c̃1,3,

∂3(c̃3,1) = (1− ((xαy2β)z+2t−2

y−1)−1)c̃2,1 + (1− ((xαy−2β)2h+1)−1)c̃2,2

+ (1− ((xαy2β)zy−1)−1)c̃2,3.

We displayed in Figures 10 (case 2h+ 1 > 2t−2) and 11 (case 2h+ 1 < 2t−2) the
cells of the decomposition L of S3

2t(2h+1);k;l, which are in bijective correspondence

with the cells of the minimal set Z̃.

4. The higher dimensional cases

The definition of a fundamental domain for the action of the split metacyclic
groups on the higher dimensional spheres and the construction of the equivariant
cell complex of S4n−1 are based on the following general result, which permits us to
reduce the natural cellular decomposition of a join of spheres by considering blocks
of cells. Recall the action on the join representation of the spheres, as described at
the end of Section 2.4.

Lemma 4.1. Let π be a finite group acting freely and orthogonally on a sphere Sn.
Assume we have a π-cellular decomposition K̃ of Sn, with fundamental domain F ,
and hence that we have a cellular decomposition L̃ of F , where L̃ is a subcom-
plex of K̃, K̃ = πL̃, and L = L̃/π is a cell decomposition of Sn/π. Assume that
we have a subcomplex Z̃ of L̃ that is a minimal decomposition of F of lifts of
the cells of L. Let k be a positive integer k 6 2, and consider the natural action
of π on Sk(n+1)−1 in equation (2.2). Then we have a π-cellular decomposition K̃ ′

of Sk(n+1)−1, with fundamental domain F ′ = S(k−1)(n+1)−1 ∗ F , and a minimal cell
decomposition L̃′ of F ′, where L̃′ is defined as follows: The (k − 1)(n+ 1)− 1 skele-
ton of L̃′ is L̃′

((k−1)(n+1)−1) = K̃. The (k − 1)(n+ 1) skeleton L̃′
((k−1)(n+1)) of L̃′ is

obtained by attaching k0 (k − 1)(n+ 1)-cells to L̃′
((k−1)(n+1)−1) = K̃, where k0 is the

number of 0-cells c̃0,l of Z̃ and the attaching map is given by the join K̃ ∗ c̃0,l. The

(k − 1)(n+ 1) + 1 skeleton of L̃′ is obtained by attaching k1 (k − 1)(n+ 1) + 1-cells
to the (k − 1)(n+ 1) skeleton L̃′

((k−1)(n+1)), where k1 is the number of 1-cells c̃1,l

of Z̃ and the attaching map is given by the joint L̃′
((k−1)(n+1)) ∗ c̃1,l. This procedure
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continues up to dimension k(n+ 1)− 1, giving the cell decompositions L̃′ of F ′, and
K̃ ′ = πL̃′ of Sk(n+1)−1.

Proof. Identify Sk(n+1)−1 with S(k−1)(n+1)−1 ∗ Sn. It is clear by the definition of join,
that the join B̃ = K̃ ∗ K̃ provides a π cellular decomposition of S(k−1)(n+1)−1 ∗ Sn.
Since the join preserves subcomplexes, C̃ = K̃ ∗ L̃ is a cell decomposition of F ′ =
S(k−1)(n+1)−1 ∗ F . We now define a new decomposition L̃′ of F ′ reducing the number
of the cells of C̃ by defining new cells that are blocks of the cells of B̃. This procedure
simplifies the resolution of the group Z[π].

First, let the subcomplex L̃′
((k−1)(n+1)−1) = K̃ ∗ ∅ = {[x, 0, y0]} of K̃ ∗ L̃ be the

(k − 1)(n+ 1)− 1 skeleton of L̃′. Note that C̃ is a k(n+ 1)− 1 disc, and that the
boundary of C̃ is precisely K̃ ∗ ∂L̃, because K̃ has no boundary. Thus, the action of
π onto B̃ will send the interior of C̃ in sets that intersect only in their boundaries,
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and hence C̃ is a fundamental domain of the π action on B̃.

Next, we start the construction of L̃′. Let c0,j be a 0-cell of L, and c̃0,j a lift of

c0,j that lays inside L̃. Include c̃0,j in C̃ as ∅ ∗ c̃0,j . Then, ∅ ∗ c̃0,j belongs to K̃ ∗

∂L̃, and K̃ ∗ c̃0,j is a disc of dimension (k − 1)(n+ 1), that is, in fact, a block of

cells of dimensions up to (k − 1)(n+ 1) of C̃. Note that, by definition of the join,
the interiors of each pair of discs K̃ ∗ c̃0,j and K̃ ∗ c̃0,h 6=j are disjoint, and that the

intersection of the boundaries lays in K̃ ∗ ∅. Let the discs c̃′(k−1)(n+1),j = K̃ ∗ c̃0,j be

the k0 (k − 1)(n+ 1) cells of L̃′. They are attached to the (k − 1)(n+ 1)− 1 skeleton
by the definition of the join. The (k − 1)(n+ 1) skeleton of L̃′ is L̃′

((k−1)(n+1)) =⋃
c̃′(k−1)(n+1),j .

Let c1,j be a 1-cell of L, and c̃1,j a lift of c1,j that lays inside L̃. Include c̃1,j in C̃

as ∅ ∗ c̃1,j . Then, ∅ ∗ c̃1,j belongs to K̃ ∗ ∂L̃. Moreover, c̃′(k−1)(n+1)+1,j = K̃ ∗ c̃1,j is a

disc of dimension (k − 1)(n+ 1) + 1 whose interior lays inside K̃ ∗ ∂L̃− L̃′
((k−1)(n+1)),

while the boundary belongs to L̃′
((k−1)(n+1)). By definition of the join,the interiors
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of each pair of discs c̃′(k−1)(n+1)+1,j , c̃′(k−1)(n+1)+1,k 6=j are disjoint, and the inter-

section of the boundaries of the two discs lays in L̃′
((k−1)(n+1)). The c̃′(k−1)(n+1)+1,j

are, in fact, blocks of cells of dimensions up to (k − 1)(n+ 1) + 1 of C̃. The discs
c̃′(k−1)(n+1)+1,j are the k2 (k − 1)(n+ 1) + 1 cells of L̃′. They are attached to the

(k − 1)(n+ 1) skeleton by the definition of the join. The (k − 1)(n+ 1) + 1 skeleton
of L̃′ is L̃′

((k−1)(n+1)) =
⋃

c̃′(k−1)(n+1)+1,j .

This procedure continues up to the dimension k(n+ 1)− 1 and gives a complex of
dimension k(n+ 1)− 1 that has the same realization of C̃ and thus the desired new
cell decomposition L̃′ of S(k−1)(n+1)−1 ∗ F .

Since the c̃q,j are lifts of the cq,j , it follows that K̃
′ = πL̃′ has the same realization

as B̃. This completes the proof.

Applying the lemma, we see that the fundamental domain of the action ofD2t(2h+1)

on S4n−1 via any representation πk,l follows immediately from the definition of the
fundamental domain F given in Proposition 3.6. In a similar way, the equivariant cell
decomposition of S4n−1 follows by that of S3 given in Propositions 3.9 and 3.10. The
unique point to be completed is the boundary of the cell c̃4q,1, q > 0. But this follows
easily considering that c̃4q,1 = S4q−1 ∗ c̃4q−1,1, and hence its boundary is given by the
collection of all the cells of S4q−1, i.e., all the orbits of π. All details can be found in
the chain complex, which is explicitly given in the next section.

5. The chain complex

We are now in the position of giving the chain complex of ZD2t(2h+1) modules for

the split metacyclic spherical space forms S4n−1
2t(2h+1);k;l = S4n−1/πk;l(D2t(2h+1)).

Following standard notation in algebraic topology, we will denote by C(K̃,Zπ)
the integer chain complex of the universal covering space of a finite complex K with
the action of the fundamental group acting by covering transformations. This is a
complex of free finitely generated modules over Zπ.

Theorem 5.1. The chain complex C(S̃4n−1
2t(2h+1);k;l,ZD2t(2h+1)) of the universal cov-

ering space of the split metacyclic spherical space forms S4n−1
2t(2h+1);k;l, with the action

of the fundamental group acting by covering transformations, is the following periodic
complex of free finitely generated ZD2t(2h+1) modules:

· · · // C4q+3
∂3

// C4q+2
∂2

// C4q+1
∂1

// C4q // · · · ,

where

C4q = ZD2t(2h+1)[c4q],

C4q+1 = ZD2t(2h+1)[c4q+1,1, c4q+1,2, c4q+1,3],

C4q+2 = ZD2t(2h+1)[c4q+2,1, c4q+2,2, c4q+2,3],

C4q+3 = ZD2t(2h+1)[c4q+3].

The boundaries are ∂0 = 0 and
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∂4q(c4q) = (1 + x+ · · ·+ x2h)(1 + y + · · ·+ y2
t−1)c4q−1,

∂4q+1(c4q+1,1) = (xαy−2β − 1)c4q,

∂4q+1(c4q+1,2) = ((xαyβ)z+2t−2

y−1 − 1)c4q,

∂4q+1(c4q+1,3) = (y2βz−1 − 1)c4q.

If 2h+ 1 > 2t−2,

∂4q+2(c4q+2,1) = y2βz−1





2t−2

∑

s=1

(xαy2β)sc4q+1,1 − (xαy2β)2
t−2

c4q+1,2 + c4q+1,3



 ,

∂4q+2(c4q+2,2) =

2h+1∑

s=2h+1−2t−2

(xαy−2β)sc4q+1,1 + y2βz−1(c4q+1,2 − c4q+1,3),

∂4q+2(c4q+2,3) =
2h−2t−2

∑

s=0

(xαy−2β)sc4q+1,1 − y2βz−1c4q+1,2 − c4q+1,3,

∂4q+3(c4q+3) = (1− (x2t−2

y2βz+2t−2−1)−1)c4q+2,1 + (1− y1−2βz)c4q+2,2

+ (1− (xαy−2β)2
t−2

)c4q+2,3.

If 2h+ 1 < 2t−2,

∂4q+2(c4q+2,1) =

2t−2

∑

s=2t−2−2h

(xαy2β)sy2βz−1c4q+1,1 − (xαy2β)2
t−2

y2βz−1c4q+1,2

+ y−2β(2h+1)c4q+1,3,

∂4q+2(c4q+2,2) =

2t−2−(2h+1)
∑

s=1

(xαy2β)sy2βz−1c4q+1,1 + y−2β(2h+1)c4q+1,2

− y2βz−1c4q+1,3,

∂4q+2(c4q+2,3) =

2h∑

s=0

(xαy−2β)sc4q+1,1 − (y2βz−1 + 1)c4q+1,3,

∂4q+3(c4q+3) = (1− (x2t−2

y2βz+2t−2−1)−1)c4q+2,1 + (1− y2β(2h+1))c4q+2,2

+ (1− y−2βz+1)c4q+2,3,

here (α, β) is a pair of integers satisfying equation (3.8), and z = m(2h+ 1), with l =
2m+ 1. This complex is exact in all middle dimensions, namely Im(∂j+1) = ker(∂j),
for 0 < j < 4n− 1.

Remark 5.2. One can show by direct calculations that the complex in Theorem 5.1
is semi-exact.

It is clear that taking the augmentation of the complex described in Theorem 5.1 we
obtain a 4-periodic free resolution of Z overD2t(2h+1). This result should be compared
with the ones given in [12, Chap. 7] (on which [11] is based), which has a larger rank
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in all dimensions. On the other side, we note that the resolution in Theorem 5.1
is not the minimal one, since according to the work of O. Talelli [10], a minimal
resolution for Z over the split metacyclic groups has two generators in dimensions
4q − 2 and 4q − 1. Also note that, by applying the method of Gruenberg [5], we
obtain a resolution with one generator in dimension 0, two generators in dimension 1
and three generators in dimension 2 (see, for example, [4, 4.6]). With some algebraic
manipulations we could modify the boundaries given in Theorem 5.1 in such a way
that two of the boundaries of the 1-dimensional chains coincide with the boundaries
obtained by the Gruenberg resolution. However, we are not able to proceed further
in this direction.
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L.L. Fêmina ligialf@famat.ufu.br

Mathematics Faculty, UFU, Federal University of Uberlândia, Av. João Naves de
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