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R torsion and analytic torsion of a conical frustum

Luiz Hartmann and Mauro Spreafico

ABSTRACT. We show how a suitable regularization of the Reidemeister torsion and of
the analytic torsion of the conical frustum over an odd dimensional closed manifold M
give the intersection torsion and the analytic torsion of the cone over M, respectively.
We describe the same result in terms of Ray and Singer metrics.

1. Introduction

Recently important advances have been made in the description of the analytic torsion
of compact Riemannian manifolds with boundary [2, 3, 18]. In particular, in the last two
works a formula for the analytic torsion of a compact oriented Riemannian manifold with
boundary and absolute or relative boundary conditions was given. On the other side, in
a series of works [10, 11, 12, 14|, we presented explicit calculations of the analytic torsion
of some class of manifolds and pseudomanifolds. In particular formulas for the torsion of
a cone over a compact manifold where given.

When working with cones, a natural question arises: if we truncate the cone we end
up with a manifold. Does the analytic torsion of the cone coincide with some limit of the
analytic torsion of the truncated cone? This question was suggested to us by W. Miiller.
The answer is given in the Section 5 below, for an odd dimensional section, and is positive
after a suitable regularization. As an important related problem, we tackle and answer
the same question for Ray and Singer metrics [1]. In the last section we describe in details
a particular case, namely the frustum over a circle. It is clear that the technique used
for the circle admits a straightforward generalization to the case of any section. In the
appendix, we present an explicit calculation of the intersection torsion of a cone, that was
proved to coincide with its analytic torsion [13].

2. Geometric setting

Let W be a compact connected oriented m dimensional Riemannian manifold with
metric g. The conical frustum (or truncated cone) over W is the product manifold
FW = [l1,l2] x W, where 0 < I; < ly, with metric (in the local coordinates (z,y),

Key words and phrases. Reidemeister Torsion, Analytic Torsion, Ray and Singer Metrics.
2010 Mathematics Subject Classification: 57Q10, 58J52.
This work was supported by FAPESP grants 2010/16660-1 and 2008/57607-6.

28



R torsion and analytic torsion for a conical frustum

where y is a local system on W)
gF = dz ® dx + z°g.

The boundary of FW is the disjoint union OFW = W; LU W5 of two copies of W with
metric lf-g, that we denote by W; = (W, ljz-g).

3. Reidemeister torsion and Reidemeister metric on the frustum

In this section we prove relations between the R torsion and the R metric of the frustum
FW and of its section W. For we first review some necessary notation.

3.1. R torsion of a chain complex

Let V' be a real vector space of dimension n. Denote the one dimensional vector space
A"V by detV. For V = {0}, set det {0} = R. For a finite dimensional real graded vector
space V, = @qu Vy, set

detV, = ®(det%)(*1)q,
qEZ

where L™! denotes the dual line of a one dimensional vector space L. A set of dim 'V,

linear independent vectors vy = {vg1,...,Vqdimv, } of V4 induces a nonzero vector detv,
. dim V, . dim V, _1ya .
given by Aj:i ‘04,5 in det'Vy, and a nonzero vector detv = ®qf(]) ?(det vq)( D" in det Vs,

where for a nonzero vector [ in a one dimensional vector space L, [=! € L™! is defined by
I=Y1) = 1.
Let C be a finite dimensional complex of finite dimensional vector spaces,

) Om—1 02

C: Con —27 Covs =

G Co.

There is a natural isomorphism called Euler isomorphism (see for example [9] pg. 481)
€ :detC — det H(C), (1)

where we denote by H(C) the homology of the complex C. Let ¢, = {¢q,;} and hy = {hg ;}
be given preferred bases for C, and H,(C), respectively, for each ¢. These bases induce
bases detc = @ o(detcy) "D of detC, and deth = " (dethy)=D" of det H(C).
Then:

&(detc) = gldeth/dete) et

where (£(deth/dete)y=1 ¢ R+ is the torsion of C in the basis ¢ and h, and is defined as
follows. Let Z, = ker 9, By = Imdy41, and H,(C) = Z,/B,. Let b, = {b, ;} be a set of
independent vectors in C, with 9;(b,) # 0, and let z; = {2, ;} be a set of independent
vectors in Z, with p(zq,;) = hq,;. Then, considering the sequence

0 B, Zy ——= H,(C) 0,

a basis for Z, is given by the basis 0441(bg+1) of By and the set z,. We denote this basis
by Og+1(bg+1),24 (see [15] for details). By the same argument, the sequence
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0 Z, C,

determines the basis 0gy1(bg+1),2q, bg of Cy. Let (Og+1(bg+1),24, bg/cq) denote the matrix
of the change of basis. Then, the torsion of C is the class

7(Cic,h) = ] Idet (9g41(bgr1), 2q, bg/cg)| 1",
q=0

in R*. It is easy to see that the torsion is independent of the graded bases b = {b,}
and on the lifts z = {z,}, but depends on the graded basis ¢ = {c,} and h = {h,}.

More precisely, 7(C;c,h) depends on the volume elements detc = ®7", (Aqu,j)(_l)q i

;”:OAdimCQCq, and deth = @7 (Athyj)(fl)q in ®yLoA"H,(C), where r, = rkH,(C)
(see for example [17]).

We remark that 7(C;c, h) is invariant under ‘algebraic’ subdivision of the complex C
(see [15] Section 5 for definition and details). In particular, this means that if the complex
C is associated to some simplicial or cellular complex, and the basis c is the basis of the
simplices (cells), then £M/) is invariant if we change the basis c by the simplicial (cellular)

basis of some subdivision of the simplicial (cellular) complex.

n

3.2. R torsion of the cylinder of a chain complex

Recall that the cylinder of the complex C is the mapping cylinder of the identity
id: C — C, i.e. the complex C,(Cyl(C)) = C, ® Cy—1 ® C, with boundary

(o 1 0
d=[0 -a 0
0 -1 9

A preferred basis for C,(Cyl(C)) is ¢g ={cg,; 080,08 ¢c4—1:P0,050B ¢y, }. By
construction, C'yl(C) has a homology graded preferred basis, and therefore its Whitehead
torsion is well defined. We denote the preferred basis of H,(Cyl(C)) by h,, and we let 7,
denotes a lift of Hq. Now we have the decomposition

B,(Cyl(C)) = Tmdy 1 = (Imdyy 1 + ker d,) @ Tmd, & (Imd, 11 + ker d,),

and hence a set of independent elements in C,(Cyl(C)) with nontrivial image is given by
by = {0y 0B 0,000® b, 4,00b, 150,00 251, 0,0®dy(byn) G0}, that we denote
by: by ®0840,0006b,,08b;—100,002,_160,080,(by) ®0. A basis for Z,(Cyl(C)) is
then by, 7,, and a basis for C,(Cyl(C)) is Jyy1(bgr1), 24, by Reordering and simplifying,
we obtain the new basis

9q+1(bg+1), Zq, Bq =0q+1(bg+1) ®0$ 0,24,b ® 0D 0,
08 9y(by) 0,082,140 0,08bs_1 &0,
0@0@,5‘q+1(bq+1),0€90@zq,()@()@ bq.
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R torsion and analytic torsion for a conical frustum

This gives (with some care at the high dimensions)

|det (Og+1(bg+1), Zg, Bq/éq)|
= |(i;}1(ﬁq)/hq)||det (9g+1(bg+1), 24, bq/cq)mdet (9q(bg),zg—1,bg—1/cq-1)];
where i : C — Cyl(C) denotes the inclusion, and for the torsion
7(C;c, h)

7(Cyl(C): & h) = ldet (i)

3.3. R torsion of a manifold

Let (K,L) be a pair of connected finite cell complexes of dimension m, and (K, L)
its universal covering complex pair, and identify the fundamental group © = 71 (K) with
the group of the covering transformations of K. Note that covering transformations are
cellular. Let C((K,L);Z) be the chain complex of (K, L) with integer coefficients. The
action of the group of covering transformations makes each chain group Cq((f( ,L);7)
into a module over the group ring Zm, and each of these modules is Zn-free and finitely
generated with preferred basis given by the natural choice of the g-cells of K — L. Since
K is finite it follows that C((K, L);Z) is free and finitely generated over Zz. We obtain
a complex of free finitely generated modules over Zr that we denote by C((K, L);Zm).
Let p : m = O(R, k) be an orthogonal representation of the fundamental group on a
real vector space V' of dimension k, and consider the twisted complex C((K,L);V,,) given
by V ®z, C((K, L);Zr). Bases and volume elements are given in the obvious way by
taking tensor product of a fixed basis of V' and basis of C and H(C). In particular, we
fix the chain basis to be the preferred basis of the cells, and therefore we omit ¢ from the
notation. Then, the torsion of (K, L) with respect to the representation p is the class

(K, L); p,h) = 7(C((K, L); V,); h),

of RT. Next, let M be an n dimensional orientable compact connected Riemannian man-
ifold with metric g and possible boundary OM. The torsion of M can be defined taking
any smooth triangulation or cellular decomposition of M. Moreover, the volume element
deth can also be fixed by using the metric structure. More precisely, given a graded
orthonormal basis a = {a,} for the space of harmonic forms with twisted coefficients
inV,, H(M,V,) = @ H,(M,V,), either with absolute or relative BC, and applying the
Hodge-de Rham map

Aavsg = (DIPIRM 0% - HY (M, V,) — Hy(M,V,), (2)

rel abs
where P is the Poincaré duality isomorphism, = is the Hodge star, and RY, is the de
Rham map (see for example [21], pg. 164, for details), we obtain a preferred homology
graded basis A,ps(a), that fix the volume element det.A.ps(a). With this notation, the R
torsion of (M, g), and the relative R torsion of (M,9M, g) are:

TR((M, 9);p) = T7(C(M;V,); Aabs(a)),
TR((Ma aMa g);p) = T(C((M, aM)v Vp); Aabs(a))~
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3.4. Reidemeister metric

An inner product on a finite real vector space V' induces a norm | ||gety on detV,
and a dual norm || ||(getvy-1 on (detV)~! . For a finite complex C of finite dimensional
real vector spaces with inner product, as in Section 3.1, we denote by || ||getc the norm

on detC defined by (see [1] (1.5), this is the metric defined by requiring that the cells

have unitary norm)
H ”detC = ® H ||(deth)(—1>q.

qEZ
We denote by || ||get rr(c) the norm on det H(C) induced by || |[|qetc via the Euler
isomorphism, equation (1), namely

| laesercy = 1€ )laetc- (3)

An equivalent definition is by requiring either that the image £(detc) of a unitary
element detc € detC is unitary, or that £ is an isometry [8].

If (M,0M) is a compact connected oriented manifold with possible boundary, then
there is a class of distinguished CW decompositions (given by the smooth triangulations)
of (M,0M). Let (K,L) be one of these CW decompositions, and let ¢ the preferred
graded basis of the chain complex C((X, L);V,) given by the cells of (K, L), as described
in Section 3.3. If an inner product is defined on V', denoting the induced norm on detV
by || |laetv, a norm is defined on det C((K, L);V,) by setting

llc ® vllaetc(x,Ly:v,) = lvllaet v,

in other words by setting that the cells have unitary norm. Then, the Euler isomorphism,
applied either on the absolute or on the relative complex, determines either a norm on
det H(M;V,) = det H(C(K;V,)) oranormondet H((M,0M);V,) = det H(C((K, L); V,))
by (3). Following standard notation, we denote these norms by

R R
I HdctH(M;V,,)v and | ”dctH((M,aM);V,,)?

and we call them Reidemeister metric on det H(M;V,) and on det H((M,0M);V,), re-
spectively [1], Definition 1.4. It is clear that the preferred element &£(detc) of det H(M;V),)
(det H((M,0M);V,)) determined by the Euler isomorphism is unitary in this norm. It is
also clear that these norms are independent of the triangulation.

3.5. R torsion of the frustum

From now on, we assume that a suitable compatible cell decompositions has been
fixed for W and FW, and we use the shorter notation C(W) for the associated chain
complexes, H(W) for the homology and H (W) for the harmonic forms, and similarly
for the frustum. It is clear that C(FW) = C(W x I) = Cyl(C(W)), however in order
to compute the R torsion we need to give to each complex the graded homology basis
induced by the geometry. For we have at least two approaches: first apply the definition,
and second use the exact sequence of the pair (FW, W5). We start with the first approach,
and we will sketch the second one at the end of the section.
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R torsion and analytic torsion for a conical frustum

In order to deal with the R torsion of FW, we need some results on harmonic forms.
By Hodge theory, it is clear that the space of harmonic ¢ forms on the frustum H4(FIW)
with absolute BC is isomorphic to the space of harmonic ¢ forms on W, H{(W) (see
Lemma 3.2). We need an explicit map. For we study the harmonic forms using the
approach of [4] (see also [19]). It is clear that the formal solutions of the eigenvalues
equation on FW and on the cone over W are the same, hence the next lemma follows (see
[12] Sections 3.3 and 8.1 for more details and for the notation).

Lemma 3.1. Let {cp]g‘i)r, goé‘ll)n, <p£31) .} be an orthonormal base of T (W, ADT*W) consisting

of harmonic, closed and coclosed eigenforms of AD on W. Let Ag,n denote the eigenvalue

of @&Zin and Ml q.n its multiplicity. Define ag = %(1 +2¢—m), pgn = [/ Agn+ ag,

and a4 gn = Qg E g n. Then, all the solutions of the harmonic equation Au =0 on FW

are convergent sums of forms of the following four types (here a tilda denotes intrinsic
operations on the section W as in [6], beginning of Section 3):

(9)

q
ccl,n?

()  _ ax,
+,1,n =T ;t,q,n(p

(@) —1n J,(a—1) i1 (a=1)
+,2,n =g+ 1md(loccl,n +ai#]*1’n$aiyq nn dq’./\saccl,n7

~ (o1 -1
W0, =t 2ol g et g (0D

cclyn
zbil’)&n =gt+a-2ntlgpe A Jcpé‘é;?.

Next, introducing absolute BC (as defined in [21, Section 4] , or see [11, Section 2]):
Baps(w) = 0 if and only if wperm|ow = 0 and (dw)norm|ow = 0, we have the following
result, whose proof is by direct verification: namely, take the four types of forms as
given in Lemma 3.1 and apply absolute BC to each. The unique forms that satisfy the
absolute BC are the 1/181))1’0, where Ay 0 = 0 by definition. Sufficiency is easily verified: for

(w@w)mm =0, and (dz/;&qy)l’o)norm = a,ﬂq,nxa*»qvnflwg)lyo, and this vanishes at x = [}
and z = Iy if and only if a_ 4, = ¢ — \/Agn +¢*> = 0. The result for relative BC is

similar.

Lemma 3.2. The space of harmonic forms with absolute BC, HL (FW), coincides
with the constant normal extension of the forms in HYW). Moreover, HI(W) is iso-

morphic to Hfgl(FW), the space of harmonic forms with relative BC, wvia the map

w s (—1)m 92 My A w.
Next, let us denote by %, the Hodge operator in the metric g. Let go = I2g. Tt is
clear that x4, = l;nizq*g. A g-form w on FWW decomposes as w = w1 + dx A wy. Writing

w(z,y) = fr(@)w(y) + f2(x)dz A ws(y), a simple calculation gives

rgpw = &P fo (1) xg waly) + (—1)%2™ 2 fr(x)dw A *gwi (y).
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As vector spaces H1(W) = HI(W2). If w is g form in H9(W), denote the the constant
extension of w in K (FW) by . Then

||CLJH12§Q = /Ww/\*lggw = l;"*QQ/Ww/\*gw:l;"*Qt]Hng,

and
l2
01, = [ wnms = [Cam s [ wnege = Tyl
FW 15 w
where
— m+%—2q (ZS’LJFl*Qq - l7171+1*24) ’ if |m +1- 2Q| 7& Oa
a In 2, if  m+1-2¢=0.

By the definition of the de Rham map A%, = (—1)9P~ 1-ATT;;1 Dxge on FW (see [21],
Section 3), we have the following commutative diagram of isometries of vectors spaces,
where the " denotes the dual block complex (we use here only the first line of squares of
the diagram, the second line will be used at the end of this section, in the second proof)

m— q+1

FIV) —%% ot () 5 m—at L (FW, OF W) <2 H,(FW)

rel

abs(
T @) T(l)qmj/n{qdw/\ T T(l)q\/ﬁl

\/ﬁ
HI(W) H=UW) —e H™ (W) =L H (W)
i m 2q \L l;n—2q i \L /l;n—2q
HI(Ws) M (Wy) — o fm— 9(Wy) <2 Hy(Wo)

Commutativity of the first square follows by the given formula for the Hodge operator
and Lemma 3.2. Commutativity of the other squares follows by construction. For suppose
a cell decomposition of W is fixed. Then, a cell decomposition of FW is determined
with g¢-cells, either the g-cells of W or the product I X ¢, where ¢ is a (¢ — 1)-cell of
W. Namely, we are using the direct sum decomposition of the cellular chain complex
Cq(FW) =Co(W) @ Cy1 (W) @ Cy(W). Fix a preferred basis for the chain vector spaces.
It is clear that the dual block in FW of {0} x ¢ is [0,1/2] x ¢, where ¢ is the dual block
of ¢ in W. Next, recall the de Rham maps A? and Agp,rel on W and on FW are defined
respectively by

A)E = [w AL ) = [

where ¢ denotes the dual block in W of a cell cpf W, and d the dual block in FW of a cell
d of FW — 8FW. Tt follows that A" %" (w)(d) is non vanishing only on the dual block

grrel
d of (¢ + 1)-cells d of type {0} x ¢. Hence, w must have a nontrivial normal component,
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ie, w= fao(x)dzr A wsa(y), and the unique contributions are

l2

AZF,rel(w)(d) = [__ fo(z)dz Awa(y) = fQ(T/)de/Wz(y)-

(C,O) ll

This gives the isomorphisms in the vertical lines of the last square, and their coefficients.
Now realize the imbedding of W in FW as W5. Let «, be an orthonormal basis for

m—2
H9(W). Then, an orthonormal base for H?(W3) is [, 2 qaq, and applying the de Rham
maps we obtain

_ m-—2q m—2 m—2q

— q _ _
Agqlly 2 agg) = 1y 2 Agglags) =1y 2 P, 1“4;2 T xg, (g 5)
_ m-—2q m—2q
2

=1l ° ZS”_Q"qulAZ%q *g (Qq,5) = Iy Agq(agj),

m—2q m—2q
and hence a basis hy for Hy(W2)isl, 2 Ay q4(aq), and zg =1, 2 Ay 4(0y). Next, consider

the conical frustum (FW, gg). An orthonormal basis for HZ, (FW) is I‘q_%dq, and

abs

1 1 1
-3 . _ -3 . _ —3p—1 gm+l—gq .
Age abs,q (Fq aq,j) = T * Ageabs,g(dq,5) = Tg P, A *gr (Gg,5)

gF,rel

_1 1 e 1
I *L'yPy 1Ag g () = TG Ay q(aq;)-

-

Then the basis h is Ié (hq ® 0@ 0), and hence 2, =T'Z (2, ® 0@ 0). Thus

= .y . %’rk
(et (Fg1(bgr1)s Zgs ba/Eq)| =T et p(0g 41 (bgs1), Ag (@), be/cq)|
x |det p(9y(bg), Ag(ctg—1),bg—1/cq-1)];

and

“ —1)724rk —1)¢
m((FW,ge);0) = [T T5 "2 ™ det p(0g1 (bys1), Ag(g), by /eg)| P
q=0

m
—1)919
=TI ™ (W, 9): ).
q=0

We have proved the following proposition.

Proposition 3.3. The R torsion of the conical frustum with respect to the homology basis
induced by the orthonormal harmonic basis is:

log TR ((FW, g); p) = log TR (W, g); p) + tk(p) log 7(T),
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where

log 7(T) _1 f:(—l)qr log R P
PP 2p+1-29) p=5

log 7(T) ! 2pil (—1)%rqlog w m=2p—1,p>1
2 q=0,9#p ' (2p = 2q) o
+ (_21)]3 rp loglog i—j,

where rq = tkHg(W).

We conclude this section with another proof of Proposition 3.3. Consider the short
exact sequence of chain complexes associated to the pair (FW, W),

0 — C(W3) = C(FW) — C(FW, W) — 0,
by Milnor [15, Section 3], we have

log TR ((FW, gr); p) = log TR (W, 139); p) + log TR ((FW, W2), gF); p) + tk(p) log 7(T2),

where the complex 7 is defined by the long exact homology sequence of the pair, namely
Ta co.—>= H(Wy) — Hy(FW) — H (FW, Wy) — ..., (4)

with 7—2’3q+2 == Hq(WQ), 7—2’3q+1 = Hq(FW) and 7-2’3q = Hq(FVV, WQ)

It is clear that both the relative homology and the relative torsion are trivial (for the
second is the torsion of a simple homotopy trivial pair). Therefore the torsion of 73 is given
by the graded product of the torsions of the isomorphisms: i9, 4 : Hy(W) — Hy(FW).
Using the graded homology basis given above, we can now compute the determinants of
the change of basis in the vector spaces of the sequence in equation (4). At H,(W, W) the

m— Tark
determinant is 1, at H,(W>) is 1 and at H,(FW) is (12Fq2q> ’ (p), where r, = rkH, (W).

Applying the definition of Reidemeister torsion to the complex 73, we obtain (where D
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denotes the class of the determinant of the matrix of the change of basis)

3

3

log7(T2) =

(]

(=1)*log D(Tz,4)

Q
I
<)

7

3

3

m
(—1)*@log D(H,(FW, W) + > (=1)*"*" log D(H,(FW))
0 q=0

Q
I

(=1)*"*2log D(Hy(Ws))

n
NE

Il
o

(=1)*"! log D(H,(FW))

¢

2
(=)

m lm—2q

—1k(p 1)etl Tq log 2
tk(p) Y (-1 .
q=0

This agrees with Proposition 3.3 since a simple calculation (using for example the
variational formula for the torsion) shows that

m

log TR ((W,1%g); p) = log Tr((W, 9); frk (p) D (—1)trg(m —2q)logl.  (5)
q=0
3.6. R metric on the frustum

We now read the result of Proposition 3.3 in terms of Reidemeister metrics. The direct
sum decomposition of the chain complex of the frustum determines a homomorphism

iy C(W) — C(FW),

that induces an isomorphism on homology: i, : H(W) — H(FW). In particular, explicit
calculation shows that given cycles representing the homology classes of H(W), we can
choose the same cycles to represent the homology classes of H(FW). In other words the
map i, is an identification. Then, we have that the following square commutes if ¢ is the
map that sends the preferred cell basis detc of det C(W') onto the preferred cell basis det ¢
of det C(FW), (note that ¢ is not induced by )

det C(W) —Z> det C(FW)

cu | e

det H(W) - det H(FIV)

This gives the following corollary of Proposition 3.3.
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Corollary 3.4. The isomorphism det (i.) : det H(W) — det H(FW) s an isometry with
respect to the R metrics. In other words, identifying det H(W) and det H(FW') by det (i),
we have

et (i) (I lee zremy = I etet 2rowr)-
4. Analytic torsion and Ray and Singer metric

In this section we express the analytic torsion and the Ray and Singer metric of the
frustum FW in terms of those of the section W.

4.1. Analytic torsion

The analytic torsion is defined starting with the de Rham complex associated to the
compact connected oriented Riemannian n-manifold (M, g) with twisted coefficients in
V, [21]. The zeta function of the Laplace operator A@ on ¢ forms in Q(M,V,) is
defined by the meromorphic extension (analytic at s = 0) of the series

C(&A(Q)): Z A0,

AeSp, AlD)

convergent for Re(s) > 5, and where Sp, denotes the positive part of the spectrum. If
M has no boundary, the analytic torsion of (M, g) is

n

log T((M,9):p) = 3 D (~1)7a'(0, A®). (6)
qg=1

If M has a boundary, we denote by Tops((M, g); p) the number defined by equation (6)
with A satisfying absolute BC, and by Tye1((M, g); p) the number defined by the same
equation with A satisfying relative BC.

The analytic torsion can be computed either by the definition or by using the suitable
extension of the Cheeger Miiller theorem, that gives the analytic torsion in terms of the
R torsion computed in the basis induced by the orthonormal basis of harmonic forms. In
this section we will follow the second approach, while in the last section we will show how
to compute the torsion applying the definition in a particular case.

4.2. Ray and Singer metric

Analytic torsion permits to define a new metric on the space det H(M). Let M be
an n dimensional orientable compact connected Riemannian manifold with metric g and
possible boundary OM. Let V), a real flat vector bundle, and consider twisted coefficients
as in Section 3.3. Then, the L? norm on the space of harmonic forms H,ps(M) induces
a norm on the line det H,ps(M), and we define the Ray and Singer metric on det H(M)
by [1, (2.7)

Idet Aabs( IS meary = Tabs(M,9); o) llaet 2 (11
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where det A,ps is induced by the de Rham map (see equation (2) in Section 3.3)

det Aups = ®(det Aabs,q) (=0*

q=0

and (detAaps q) " denotes the inverse of the dual of Aaps.q-

4.3. The analytic torsion of the frustum

Using recent works of Briining and Ma [2, 3], and classic work of Liick [18], the Cheeger
Miiller theorem for an oriented compact connected Riemannian n-manifold (M, g) with
boundary reads [3, Theorem 3.4] (see [11, Section 6] or [12, Section 2.3] for details on our
notation)

ik(p)
4

log Tuns((M, g); p) = logr((M, g);p) + X(0M)log 2 + rk(p) Apm,abs (OM),

rk
log Ty (M. 9): ) = log 7 (M. O, 9):) + "2 (90) 0g 2 + () Ap ca (9M).

where p is an orthogonal representation of the fundamental group, and where the bound-
ary anomaly term of Briining and Ma is defined as follows. Using the notation of [2] (see
[12, Section 2.2] for more details) for Z/2 graded algebras, we identify an antisymmetric
endomorphism ¢ of a finite dimensional vector space V (over a field of characteristic zero)
with the element ¢ = %sz:1<¢(vj)7vk>@j A oy, of A2V. For the elements (d(vy), vi)
are the entries of the tensor representing ¢ in the base {vg}, and this is an antisymmet-
ric matrix. Now assume that r is an antisymmetric endomorphism of V' with values in
A2V. Then, (Rj = (r(vj),vx)) is a tensor of two forms in A*V. We extend the above
construction identifying R with the element

PO

R=5 > (r(v),von) Ad; Ay,

Gok=1

of A2V A A2V. This can be generalized to higher dimensions. In particular, all the
construction can be done taking the dual V* instead of V. Accordingly to [2], we define
the following forms (Where i: OM — M denotes the inclusion)

l\D\»—l

g 7w — 1" wo Ok/\ek
n—

=

1
~ 1%

e _ 1 R

i Quen N ELNEr, O = 5 Eh_ Op.n NeL NEj.

Here, w and wq are the connection one forms associated to the metrics go and g1 = g,
respectively, where g¢ is a suitable deformation of g that is a product near the boundary.
Q is the curvature two form of g, © is the curvature two form of the boundary (with
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the metric induced by the inclusion), and {ej}}Z} is an orthonormal base of TM (with
respect to the metric g). Then, setting

// -16- u2$2 = 1 WISk du
r( +1) ’

the anomaly boundary term is

1
ApM,abs(OM) = (=1)"*T Apy el (OM) = 5/ B
OM

It is not too difficult to see that in the case of the frustum FW, the boundary term
Apm(W;) is independent on [j, either with absolute or relative BC. For, let {by}7,
and {ex}}", denote local orthonormal bases of TW and TFW respectively. Then, direct
calculations (see [12, Section 3.2], see also Section 6 for an example) give 0, = QNC
(recall that a tilda denotes intrinsic operators on the section W, see Lemma 3.2), and

J+1 m J 11 ]+1 m

Slw, = Zekm}; = JZb*Ab* ZbkAé;.

We have the following result.

Lemma 4.1. The anomaly boundary term on the frustum is: if m is odd
ApM abs(OFW) = —Apm vet (OFWW) = 0, ABM abswy relw, (OFW) = /W B;
if m is even
ApM,abs(OFW) = ApM rel (OFW) = ApM.absy retiw, (OFW) = /W B.
Proposition 4.2. The analytic torsion of the conical frustum is

1
log Tabs((FW, g); p) = log Tr((FW, gr); p) + 51k(p)x (W) log 2
_ m+1
S0 [ B,
log Tuvew sy (FW, ge): ) = 5rk(p)x(W) log2-+1k(p) | B.
w

4.4. The Ray and Singer metric on the frustum
In terms of metrics, Theorem 3.4 of [3] combined with Corollary 5.1 of [18] reads
Idet Aus(IEE prary =23 A GO T
Applying this equation to the torsion of the frustum, we have the following result, that

is a second corollary of Proposition 3.3.
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Corollary 4.3. The Ray Singer metrics on the frustum and on its section are related by
the following equation:

ldet (i) (IS rewy = 227Xk Amsnans OFWD | BE ).

This result can also be obtained applying the definition. For
|det (AgF,abS>( )Hg«f;\StH(FW) = Tans(FW, gr)|| ||det7-labs(FW)7

and this gives the formula in the corollary, since from one side:
Tubs(FW, gF) = Tr(FW, gF)Q%rk(p)x(W)erk(p)ABM,abs(aFW)
_ T(T)rk(p)TR(VV, 9)2%rk(p)x(W)erk(P)ABM,abs(aFw),

and from the other, by simple calculation like the ones in Section 3.5, we have that
et (i) Mldet tapaFvy = T(T™ O lges 2wy
5. Limit case

In this section we study the limit case I; — 0T, and the relation with the torsion of
the cone C;,W = FW/W;. We first recall the formula for the analytic torsion of the cone
(formulas for relative BC follow by duality, as proved in Theorems 1.1 and 1.2 of [12]). In
this section we analyze the case of odd dimensional sections, so we assume m = 2p — 1,
p > 1; we also assume that p is the trivial representation of rank one (pg), and hence we
omit it from the notation.

Theorem 5.1 ([12]). The analytic torsion of the cone C;W on an orientable compact
connected Riemannian manifold (W, g) of odd dimension 2p — 1 is

p—1

1 2p —
log Tans (CiW, 9c) = 5 D (—1)7 ek Hy (W Q) log M
q=0

1
+ 5 log T((W,1%9); po) + Apm,abs(OC,W).

Using equation (5) and duality
2p—1 p—1 m

1
Z (=1)ry(2p—1—2q) = Z(—l)qrq@p —1-2¢) = 3 Z(—l)qrq(m —2q),
q=p q=0 q=0
the formula for the analytic torsion of the cone Cj, W reads:
1 1 p—1 lg(P—Q)
== . Z —1)4 2
log Tans (C1, W, 9c) = 5 log (W, 9); po) + 5 qZ:O( 1)7rqlog =)
+ ABM’abS(E)CbW).

Consider the formula for the R torsion of the frustum given in Proposition 3.3. It
is clear that in the limit I; — 07 the last p terms diverge. This suggests the following
approach.
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Let (W, g) be an oriented compact connected Riemannian manifold of dimension m.
Such a space has a class of distinguished CW decompositions (given by the smooth trian-
gulations). Let K be one of these CW decompositions, and let ¢ be the preferred graded
basis of the chain complex C(W;V,) given by the cells, as described in Section 3.3. Fix
the sets b and z as in Section 3.1, and let A(a) denote the graded basis for homology
induced by the metric structure as in Section 3.3, and use the notation

Dy = |det (9g+1(bg+1), 24, bg/cq)| € RT.

Let K denote the dual block complex, and K, the g-skeleton. It is clear that the p—1
homology of K(,_1) coincides with the cycles of K, and the bijection is cellular. Consider
the torsion

p—1
T(K(pfl)QX) = T(C(K(pflﬁvp)ﬂ() = H |det(8q+1(bq+1)7zqabq/cq)‘ € R+7
q=0
where the z, are cycles projecting onto some fixed basis x, for Hy(K(,_1)), as in Sec-

tion 3.3. We can fix x using the geometry. Since K is another decomposition of W, there
is a common subdivision T' of K and K. The identity maps id : W = |K| — W = |T| and
id : W = |K| — W = |T| are cellular, and hence restrict to maps id(g) : Kg) = T(q) and
id(g) : (R’)(q) — T{q), i.e., T(4 is a common subdivision of K4 and (IA()(q). It follows that
K4 and (K )(q) have the same torsion up to the choice of the homology volume elements,

by [15, 7.1]. Consider the chain complex associated to (K),—1). Let
Dq = \detp(5q+1(6q+1),ﬁq, E’q/éq)l eR*.

By duality qu = hgp_l_q, ﬁq = D;pl_l_q, and hence

2p—1

o i o
q=0 q=p

and
2p—1

T oo = T] oo T[4
g=0 q=0 q=0

It is clear that the basis A(aq) gives an homology basis for H,(K(,_1)) for all ¢ < p—1.
Moreover, z, 1 = 9p(by), A(ap_1) gives a basis for H,_1(K(;,—1)). This basis depends on
the b, however, if we change the set b, by b;), we have

D;_l =kDp_1,
for some real constant k # 0. Also, the dual basis change gives the change

D) =k"'D, 1.
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It follows that there exists a family B of homology basis w,_1 of H,_1(K(,_1)), but a
unique volume element detw,_, such that
_ T(K(pfl) s W)
T((K1)p—1); W)
This fixes the basis in the class B, i.e x = w, and with this choice
R(W,9) = (T(Kp-1);w))*.
Back to the frustum, by Proposition 3.3, we have that

2p—1

m(FW,gr) = [[ T m(W.g)
q=0

2p—1 (1) ”
—1)1la
= [l r(Kporyiw)
q=0

This suggests to consider the factor

log e (FW, g¢) L AY)
_ _1)ala T K
T(K(p—1); W) Hzipl Fg )1 T(K(p—1);wW)
1t [2P—24 _ 12p—2q
5 —1)%r,log 22—t
i q=o( Jralos (2p — 29)

For simplicity, we call the above fraction the geometrically reqularized R torsion of FW
and we use the notation

TR(FW, gF)

2p—1 (—1)1 5
VW o) IT,2, T 7

Tr(FW,gF) =

It is easy to see that the limit is

1 1 p—1 lg(?*‘])
lim log Yr(F =1 5 2 (=1)Trglog oo
111—>H(}+ og Tr(FW, g) B og (W, g) + B qz:;)( )irqlog 2(p—q)’

and this coincides precisely with the analytic torsion of the cone up to the boundary term.
Comparing with Proposition 4.1 of [12], we see that

lim TR(FW, gF)

_ —1)a’a
O W) TI, T

where the right hand side is the intersection R torsion of the cone [7, 13] (see also the
appendix). We have proved the following result:

= ITR(CZQW),

Theorem 5.2. In the limit FW — CW, the geometrically regularized R torsion of the
conical frustum FW over an oriented compact connected odd dimensional manifold W
gives the intersection torsion of the cone CW over W.
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Remark 5.3. We resist the temptation of writing a formal result for the Reidemeister
metrics, since it would require a rigorous description of the intersection Reidemeister
metric on the cone. However, formally the result would have the following form

lIdet (i) ( )litey (e

w .
= = [l det (7))l Get rmprowy-
I Weet 22wy

By analogy, we define the geometrically regularized analytic torsion of FW by
Tobs(FW, gF)

VT T, Ty

Yabs(FVVv gF)

Then,
FW
Yabs(F[[ 7gF) TR( gF) T ABM’abS(aFW)~

ViRW g T2, T

In order to complete the analysis of the limit case, we need to consider the boundary
term. From Section 4 the boundary term of the frustum is

1 1
ApM,abs(OFW) = f/ B+ f/ B,
Wa Wi

2 2

and hence there is a jump discontinuity and

1
ABM,abs(aFW>|11:0 = 5 W B = ABM,abs(aClQW)7

this completes the proof of the following result.

Theorem 5.4. In the “limit case” FW — CW, i.e. Iy = 0, the geometrically regular-
ized analytic torsion of the conical frustum FW over an oriented compact connected odd
dimensional manifold W gives the analytic torsion of the cone CW over W.

In terms of Ray and Singer metrics, this gives the following corollary.
Corollary 5.5. Leti: W — FW and j : W — CW denote the inclusions, then

lIdet (2.0 IS #rwy

I I3 rrw

= ||det (5*)( )||§estl"‘H(C12W)'

Proof. By Corollary 4.3
Idet (i Ag) (IS mrerw)
V1ldet () COIES 1w

Hodge duality implies that the orthonormal graded basis

= 0P fldet (Ag)( IS -

a={ag=ag1 N Nagdimmnaw)}
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of det H(W) satisfies the relation

Qq,j = *A2p—1—q,j>

and hence
p—1 p—1
q q+1
deta = ®(detaq)(_1) ®(det xag) 7Y o
q=0 q=0

Identifying *H?P~1~7 with (H9)!, we write

p—1
deta = <®(detaq)(—1)q>

q=0

2

If H(W) denotes the truncated complex H(W) = @Z;é HI(W). Then, a = @s;é ag
is a graded basis for H (W), deta is a basis for det H(W), and we have

deta = (deta)?.
Moreover, the map of complexes
J = T H(CW) — H(W),

is an isomorphism. Whence the map det (j*) is well defined and a simple calculation

shows that
[[det ()~ ( Maetmcr,wy =Xl Naeemowy =X/l laerreow),
where
p—1 -
—1 9.9
X = Hfé "
7=0 1L =0

Thus, by definition and Theorem 5.1,

[[det (j.Ag)( )HdRéStImH(CIZW) =x 2|l det (Age ans () ~1)( )||dReStI"‘H(CL2W)
=X "2T(CiW, go)lldet (7°) () llaet 2e(cr, w)

=/T (W, g)eterav=@QAW) I 1w
=eAoma 00, flldet (Ag)( IS o
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6. The case of a circle

In this section we develop explicit calculations on a simple example, namely the case
W = S} the circle of radius sinc. Set F = FS! then F is the finite surface in R3

sin a? sin a?
parametrized by
r1 = rsinacost
F—/ 22= rsinasinf
T3 = Trcosa

with (r,0) € [l1,12] X [0, 27], and the metric is the metric induced by the immersion given
by gr = dr @ dr + (sin” a)r?df @ db.

6.1. R torsion

Let K denotes the cellular decomposition of F described in Figure 1, with subcomplexes
L; that are cellular decompositions of W;. Let K be the universal covering complex
(that is a cellular decomposition of the space F = [I1,l5] x R). It is easy to see that
the integral cellular chain complex of K with the fundamental group acting by covering
transformations gives the following chain complex of Zm-modules, where 7 = 71 (F) = Z,

C(F; Zm) : 0 — Zr[cy] — Zm[c1 0,11, C1,2] — Zr[co0,c01] —> 0,
with boundaries (where we are representing Zm by Z[t])

Oa(c2) =c11+cr0—tcig —cia,

o1 (01,0) =tco,1 — Co,1, o1 (61,1) = Cp,1 — C0,0, 81(01,2) = tco,0 — C0,0-

Taking the trivial representation pg : @ — O(1,R), and considering the complex of
vector spaces C(F;R,,) = R x,, C(F;Zw), we have Ho(F;R,,) = Hi(F;R,,) = R,
Hy(F;R,,) = 0. In order to compute the R torsion, we fix bases for homology. In
dimension zero, take 1 € H°(F). Then, ||1|| = /Vol(F) = /(12 — [})7sinc, and using
the de Rham map A> = Pyt A2 % : HO(F) — Co(K, E,,) we get

rel

abs [ 1 _ rsin adr A df B R L
A7 <||1||> = Po A <|1||> =P ( Vol(F)(¢o,1 + €0,0) )

=\ VOl(F) (6071 —+ CO,O)-

In dimension one, consider dff € H*(F), satisfying absolute BC. Then ||df||? is given by
27 _1Jog L2 and we want to apply the de Rham map A> = —P 1A%e1*~ Now, the map

sin « 1

ALy HY(F) — CY(K, E,,) is defined by A, (h)(¢) = [, h. Using the basis of C(K, E,,,),

rel * rel
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C1,0

C1,0

K

Co,1

F1GURE 1. Cell decomposition of F.

we have AL (dr) (¢1,1) = 0, since (¢)] is a circle with constant r, and

1 b2 1 (log%)é
rel( rsin o] d] T) (é1,0 — ¢1,2) A I 2 sina)]

do (log 2)%
This gives A?bs (W) = ——h’
lldel (2w sina) 2

by for boundary and h, for homology
{01(b1), 20,00} = {co,1 — co,0, v/ VOI(F)(co,0 + co,1), 0},

(log 12)=

(27 sina) 2

(¢1,0 — ¢1,2). Therefore, taking the following bases

{02(b2), 21,61, } = {c10+ 1,2,

{33(63)7 22, bg} - {@,@,Cz},

(Cl,O - Cl,2>7 Cl,l}a

the torsion is

2 . 1

Vol(F)  wsina(2(13 —13))2

r(F, gF) = H |det (Og+1(bg+1)s 245 bg/cq)| = (log 12) % = (log lz)% .
o I

T
(27 sina) 2

q=1
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Similar calculations for the pairs (F,dF) and (F, W5) give, respectively,

1

lo 1
Vol(F) (log T) 2
mr(F, OF, = = L ;
R( gF) (27rsina)% 7T sin a(Q(l% — l%))%
(log 12) 2

TR(Fa W27 gF) =1.

Triviality of the last is expected since this corresponds to the cone relative to a point,
up to simple homotopy type.

6.2. Anomaly boundary term

We determine the forms & and B appearing in the definition of Apn aps(9OF). Since
the last is local, and the boundary OF = W; LI W5 is non connected, we consider the three
metrics: gr, and g; = dr ® dr + sin? al?d@ ® df. In the first metric, an orthonormal basis

ise, = %, e =dr,ep, = ﬁ%7 and e’ = rsin adf. The nontrivial Christoffel symbols
are: Tp'p = —L and Ty =1, and the connection one form is
1 .
(w)'p = ——€’ = —sinadh,
T

implying the vanishing of the curvature. In the metric g; it is easy to see that the
connection one form vanishes identically. Applying the definition

1, ., o . 1. .
- S‘Wl = 8|W2 = §(ij1 - ijo,zl)rgee = 3 sin ad@eg,

is the inclusion of the boundary W), giving

*

(where i

1 [t B 1 (1)t B sina
By TF = 7/ / - ) o J S A— 1 50 =(=1)
w, (V') 3/, Tt %)Swjdu NG sin adfe” = (—1) 5 de,

and hence

1

ABM,abs(Wj) - BW]- (V?F) = sin Q,
281 ine 2
J
—1)i+1 )
Apm ret(W)) = % sin .

6.3. Analytic torsion

In this section we compute the analytic torsion of F in the trivial representation. The
technique is the one used in [11], and we refer to that work for details. We write 2 = sina,
for convenience. So the Hodge operator is x1 = Zdr A df, xdr = ~df, xdf = —Zdr,
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*xdr A df = Z, and the Laplace operator reads

AQ(f)

1 V2
—O2f - =0 f — 0, f,
T T
2 1 1 212
AO (fydr + fodo) = (affr — S50+ 5 hr = ~Onf + ;am) dr
2 1 2
+ <3ff9 - %agfe + ;&fg — Tagfr) do

(2) 2 1 2V2 1 2
r r r

Proceeding as in [11, Section 3] or [10, Lemma 3], we find a complete system of eigen-
forms for A, and imposing absolute and relative BC respectively, we obtain the spectrum

spAY) = {2 SRS S UR (7% Sl
SpAL, = {2: @i} U2 alud U@, U {ad), s

SPAGL = {21l U{ad ity

SpAly ={2: RS SN UR T TS S

SpAlL) = {2: A0S SN UR /A0S SANENIUR (7% SALUR (1% SR

SpAZ ={2: @} U{adst,

where the ayp i, Gun i are the zeros of the function Fy,(z), Fun,ky respectively (here J_g
is replaced by Yp):

Fun(z) = Jun(ZQZ)J—l/n(llz) - Jun(llz)J—vn(ZQ'Z),

Fl’n(z) = leln(llz)J/—vn(ZQZ) - Jtlln(lzz)‘]/—vn(llz)

The torsion zeta function is
12
abs/rel 5 Z Ag{))s/rcl)
qg=1

and using the above description of the spectra, after some simplification, we obtain

') 00 [e'S)
—2s ~—29 —29 ~—2s
tabs( ) = *trel E Aynke — E Ayn k +5 2 : T 9 ok - (7)
n,k=1 n,k=1 k 1

To compute the derivative at zero of the last two functions, Z(s,Sp) = > poy ag, >,
Z(s,50) = S50, @y 3", we use Proposition 2.4 of [22]. For we need the asymptotic ex-
pansion for large A of the Gamma functions associated to the sequences So = {aox}72
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and Sy = {ao )52, (see [22, Sec. 2.1]). Proceeding as in [11, Section 5.2], we have the

product representations (for —m < arg(z) < %)

“+oo 2
Golz) = Foliz) = g10 53 <1+ : )

%k

Golz) = Fy(iz) = - (Z2z112l2> 11 ( aoi > ,

k=1

that give

logT'(—\, Sy) = logH (

log (=, Sp) = logH (1 +

2 l
) = —log Go(V—X) + log - + log log l—Q,
1

~ 2 _ g2
) = —log Go(V—A) — log 7 + log 2 ll.

ao k lily

Using classical expansions for the Bessel functions, we have the expansions for large A
1 l
log T'(=\, So) ~ log V=X + 5 loglily + log logl—Q +1log2— (o — h)V=AX,
1

~ 1
logT(—\, Sp) ~logvV—\ — B log 1l + log(lg - l%) —(la =)V =X,
that give

1 l
Z'(0,Sp) = —3 loglyly — loglogf —log 2,

- 1
74(0,80) = 3 loghls — log(12 — 13).

For the double series we use Theorem 3 of [11] and its corollary. For we consider the
zeta functions: Z(s,S) = 3.0 _ a5, and Z(s, S) = 3%, _, a2, associated to the

. - —25 100 G — [;2s
double series S = {a,, 5 }2% 1, S vk

mok—1+ respectively. We first prove that the
two double sequences are spectrally decomposable over the sequence U = {(vn)?}2,,
with power 2 and length 3 according to Definition 1 of [11] (for the proof see [10, Sec-
tion 5.5]). Next, we need uniform asymptotic expansions of the associated Gamma func-
tions (A, S, /(vn)?), T(\, Sn/(vn)?), for large n, and expansions for large \. We have

the product representations (—m < arg(z) < ) [11, Section 5.2]

sinmy (15 1Y\ 1 22
G, =F,(iz) = 2 1 1
(0 = Rulis) = 2 ( 15)H< T )

v,k

~ o . vsinmy (1
Gulz) = PR (i2) = — (f - > hlp2? ] H ( )
Vk
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This gives
3 ll/7l ZVTL
logT'(=\, S,/ (vn)?) = — log G (vnv/—=X) + log sin(vn) + log (2 - 1) )
vnm

ZT’R lVTl

log'(=\, S,/ (vn)?) = —log Gon(vnv/—X) + log % + log (;in - glm)

— 1Og(—)\l1l2),

and using the asymptotic expansions of the Bessel functions and of their derivatives for
large index [20, (7.18), Ex. 7.2] we have the desired expansions. According to equation (7),
we just need to work with the difference Z(s, S) — Z(s, S). After some computations, we
obtain the asymptotic expansion for large n (uniformly in A)

logT(=A, Sn/(un)2)— logT'(—=\, S, /(vn)?)

_ —%bg(l )1 — A) + qbl(A)Vin 40 <(1> ,

vn)?

where ¢1(\) = Vi(l1vV/ =) — U1 (liv/=X) — Vi(Iav/=X) + U1 (lav/=X), and using the coeffi-

cients in the expansions of the Bessel functions given in [20, (7.18), Ex. 7.2]

1 1 1 1 L :
BN =35 ((1 BYTVERNG _z%A)%> 2 <(1 —BNE (1 —Z%Mg) |

Applying the definition [11, (11)]

> T L e (N
1<s>—/0 ' 2m./AM_A (\)dAdt

s e (105 +3) 1T(s+3)
‘(Zg‘l?)<2 r@)s 2 T(3)s )

and Resg,—o ®1(s) = Res1,—g P1(s) = 0. On the other hand, the expansion for large A is

~ 1
log (=X, S,/ (vn)?) —logT'(—=\, S,/ (vn)?) = —log(—\) — log 41 +o<>.
g I'( /(vn)”) —log I'( /(vn)) g(=A) —loglily T
Recalling the definition in [11, (13)], we have apo, = —loglils, ag1,, = —1, and
b170,0 = b17071 = 0 that gives
> logl 12 =1
A A = —
0,0( ; 0,1(8) n; (vn)2s’
and
1 1
Ao,0(0) = 5 loghls, Ao1(0) = 3, Ap,1(0) = —logv + log 27.

Collecting all these results and applying Theorem 3 of [11] we obtain

~ 1
7'(0,8) - Z'(0,5) = —3 loglyls + log v — log 2,
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that by equation (7) gives
™
logTabs(FugF) logTrel(F gF) - tabs( ) = IOg

6.4. Some limits

The geometry of F has at least two natural limit cases: the cone over W5, reached for
Iy — 0T, and the cylinder over W5, reached for I; = l,. We investigate in this section
the value of the torsion of F in these two limit cases. The first case is an instance of the
general case discussed in Section 5. It is easy to realize that in the limit for {; — 07, the
torsion of the conical frustum diverges. So consider the geometric regularized R torsion
(the extension to analytic torsion is straightforward). Then, W = S} i, the circle of
radius /2 sin o, and Wg) is its preferred 0 cell. Since m = 1 = p, the volume element detw
is fixed by the Ray and Singer basis for the homology of S'. Thus,

TR((Sl2 slna)(O ) ‘det(ho/COH
Looking at the calculation of the torsion of a sphere in [14], the harmonic basis in di-

mension 0 is 1/, /Vol(S} ), and applying the de Rham map hy = { Vol(S}, o )c0, o}

losina
Since p = po, then TR((S}, ¢ina)(0);X) = /VOI(SE 1 o) = V27ly sin . Therefore,

T (F, gr) = r(F, 9r) _ Tr(F, 9F)

1 . r, 2 w(13—12)sin o '
TR (S )0 %) () Y e
This gives

hm Tr(F, gr) \/Vol C’Sll2 sina) = \/ng sina = 7'R(C'Sll2 sin o 9C)-

l1—>

Next, consider the cylinder. This is reached by fixing by = I3 sina and h = (lo—11) cos v,
and taking the limit for & — 0. The result is

1 — _ 1y 1
bi,h ﬁiﬁla—m+ Tabs(F, gr) = 2mby = Vol(Sp, ) = (S}, 95y ),

where the 9sy, is the standard metric (see [14]), consistently with the fact that a cylinder
has the same snnple homotopy type of a circle.

7. Appendix: the intersection torsion of a cone

In this appendix, based on some work in progress by the same authors, we sketch
the calculation of the intersection torsion of the cone CW. First we review some facts
about intersection torsion. Let W be a compact connected manifold without boundary
of dimension m. Let K be a regular cellular decomposition of W (CW or simplicial). Let
CK = (K x I)/(K x {0}) be the cone on K. Then, CK is a cellular decomposition of
CW. CW is an m + 1 dimensional pseudomanifold with boundary, either in the CW or
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simplicial category. A perversity p = {p, }?:2 is a sequence of integers such that p; = 0
and pj+1 = p; or p; +1. The null perversity is 0; = 0, and the top perversity is t; = j —2.
Given a perversity p, the complementary perversity p° is pj = t; — p; = j — p; — 2. The
perversity: m = {m; = [j/2] — 1} is called lower middle perversity. Let N be a finite
m dimensional regular cellular complex. If ¢ is an integer and p a perversity, a cell e of
N, is said (p, ¢)-allowable if dim(e N X) < ¢ — n + p,. The intersection cellular family of
perversity p associated to N is the subfamily of the (p,¢)-allowable cells of N, namely
{IPN(g) }yto, where IPN(g is the subcomplex

IPN(g) = {e € Ny | e is (p, g)—allowable}.

It is easy to see that

K <n-—
P _ (q)» q Pn,
F(CK) @ = { (CK) (), q=n—pn.

The ¢ intersection cellular chain module of N with perversity p is the module
IPCq(N) = Hq(IPNg), IPN(4_1)).

The intersection cellular chain complex of perversity p of N is the complex IPC(N)
of modules IPC,(N), with the boundary operator naturally induced by the restriction of
the boundary operator of the relative cellular chain complex. The intersection homology
of N is the homology of the intersection chain complex IPC(N). It is not difficult to see
that

CQ(K) q < a,
IPC(CK) = Hu(CK),Kwu-1)), q=a,
C,(CN) q > a.

where a = m+1—py41. A direct calculation gives the intersection homology of C K, for
example in the lower middle perversity:

Hy(K), g<a—1=p,

I"H,(CK) =I""H,(CK) = { 0 0>a_1-0p

Next, recalling that the cone of a chain complex C is the algebraic mapping cone of
the chain identity of the augmentation C, i.e., the chain complex C = C'C of length m + 1
with

¢ CodChr, O<g<m+1,
4 CO S¥ Z7 q= 07

and boundary operator
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and using the notation C = CC(K), C = C(K) = C(K; Zm(K)) we obtain that
IPC(CK) :

Omt1 Dast2 Oa—1 o1

Co.

Cerl CaJrl @+1C @Za 1 O Cafl

It is clear that the cell bases ¢ of C(K) and ¢ of C(CK), determine chain bases for the
complex IPC(CK) in all dimension ¢ # a. Moreover, a calculation similar to the one of
Section 3.2 shows that the matrix of the change of basis for the complex C are

(aﬁ-l( ¢+1)s b /Cq) (9g+1(bg+1),24: bg/cq)(9q(bg). 2g—1,bg—1/cq-1),

where the z, are cycles projecting on some fixed homology basis h, of H,(K).

Denote by IPz, a fixed basis for Z, ;. This together with ¢ and ¢ completes a chain
basis for IPC(CK), that we denote by IPc. A new graded basis for IPC(CK) is given in
all dimensions up to a and a— 1, by those of C(CK) and of C(K), respectively. It remains
to deal with the following part of IPC(C'K):

13a10a1 Iaal—aal
. * +IpC(C'I{) —C @Za 112) (CK)a 1—Ca 1.

We denote by IPb and IPz the basis for the boundary and for the cycles of the complex
IPC(CK). Since for each 2 ® z € Co ® Zo_1, da(x ® 2) = Ba(z) + 2z ® 0, it follows that
ImIP0, = Z,—1 @0, and we can choose as a set IPb, = 0 ® {9,(ba),zs—1}. The image
will be IP9,(IPb,) = {0a(ba),za—1} @ 0.

At g = a, it is easy to see that the homology IPH, is trivial. Therefore, IPz, = 0.
Also, the basis for the boundary is given as in the cone, i.e.,

P04 41(1Pbat1) = at1(bat1) = {0at1(bat1),Za} & 0, by & Da(ba)-
Hence the new basis at ¢ = a is:
IP044+1(IPbgy1), IPby = {Oa+1(bat1),Za, ba} ®0,{0a(ba),za—1} @ 0.
The change of basis is
(IPO4+1(IPbgs1), IPby /IPc,)
=({0a+1(ba+1);2Za;ba} & 0,{0a(ba), a1} & 0/ca & IP24-1)
=(0at1(bat1),Zasba/ca)(0a(ba), za—1/1720—1)-
Observing that
(0a(ba),Za—1/1Pza—1) =(0a(ba); Za—1,ba—1/1"Z4—1,ba—1)
= (0a(ba); Za—1,ba—1/ca-1)(Ca—1/1°2a—1,ba-1),
the change of basis is
(IP0a11(IPbay1), IPba/IPca) =(0at1(bat1)sZas ba/Ca)(Da(ba); Za—1,ba—1/Ca-1)
(Ca—l/IpZa—l, ba—l)-
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In dimension ¢ = a — 1, we have seen that IP0,(IPb,) = {04(bs),za—1} ® 0, and that
IPb,_1 = b,_1. Now, it is easy to see that IPH,_; = 0. Hence, IPz,_; = ), and the new
basis at ¢ = a — 1 is:

Ipaa(lpba)a Ipba—l = {6a(ba)7 Za—l} @0, ba—l @0,

and the change of basis
(Ipaa([pba)a Ipba—l/IpCa—l) = (8a<ba)7 Za—1, ba—l/ca—1)~

We define the intersection torsion of CK with respect to the perversity p and the

intersection chain and homology bases IPc, IPh, to be the following class in the Whitehead
group of Zm (K)

m—+1
T(IPC(CK); IPh, I°c) = ] [(1P0441(IPbgs1), IPhg, IPby /TPc,)] 1",
q=0
Using the previous calculations we find that
T(IPC(CK); IPh, IPc)

a—2
= H [(Ith/j*(hQ))](_l)q [(anrl(qurl? Zgs bq/cq)](_l)q [(aa(ba)7 Za—1, bafl/cafl)](_l)a71
q=0

[(8a+1(ba+l), Za, ba/ca)](_l)a [(aa(ba); Zg—1, ba—l/ca—l)](_l)a
m—+1

[(Ca1/TPza1,ba-1)] D" T (a1 (bgsr, bg/eg)) "
q=a+1

a—2
= H [(Iphq/j*(hq))](_l)q [(8q+1<bq+1a Zg; bq/cq)](_l)q [(Cafl/lpzaflv bafl)](_l)a-

q=0

In order to proceed we fix m = 2p — 1, odd, and p = m, the lower middle perversity.
Then, m =m¢ and a =p+ 1.

Then
p—1
T(I"C(CK); I™h,I"c) = H[(Imhq/j*(hq))](_l)q[(aq+1(bq+1vzqa bq/cq)}(_l)q
q=0

[(I™zp, bp/cp)](_l)p-

This class depends on the basis I™z,, however there is a natural way to fix this
basis. First, we twist the complexes by the representation p, as above, and we con-
sider torsion of the complex of vector spaces I"C(CK;V,), i.e., the positive real number
T(I™C(CK;V,);I™h, I™c).

Next, by the same argument of Section 5, i.e., by duality, we fix the basis b,. Whence
this basis is fixed, we fix the basis 1™z, by requiring

[(I™zp,bp/cp)] = 1.
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With this choices, 7(I™C(CK); I™h, I™c) only depends on the basis I™h, and moreover
satisfies the equation
p—1
(I"C(CK); I™h, 1) = [ [(1™hq /i (h))) " \/F(C(K )iy 0)
q=0
S(C(K)ih,0)
(4]

Here the notation j, is for the restriction of the map j, onto the truncated graded
complex @g;é H, (W), while the square brackets denote the Whitehead class of the matrix
of the map. As in the proof of Corollary 5.5, j, is an isomorphism, and hence the
Whitehead class as well as the determinant below are well defined.

Assuming a Riemannian metric on W and the usual metric on the (nonsingular part
of) the cone [12, Section 1] and fixing the the homology bases by the de Rham map as
in Section 3.3 (this is possible since by means of the Riemannian structure defined on
the nonsingular part of CW, L? forms can be used to extend the construction of Ray
and Singer and to define suitable de Rham maps from L? harmonic forms to intersection
homology [6]), we obtain what we call the intersection R torsion of the cone CW:

I"TRr((CW, gc); p) = T(IMC(CK;V,); I™A(a), IMc).

By the previous result, we have that

Tr((W, 9); p,h)
|det ()]
It remains to compute |det (j.)|. This clearly follows by the choice of the homology

basis on W and CW, and can be obtained by a calculation similar to the one used for
the cylinder in Section 3.5. The result is

I"tr((CIW, gc); p) =

(2 g))
N pP—qa))\ °
|det (4.)] = HO( e ) .
e

Acknowledgements: We thanks the referee for his careful reading the first version of
the manuscript, and for suggesting to consider the problem under the point of view of
metrics anomaly, that added some interesting feature to the result.
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