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Abstract

We give formulas for the analytic extension of the zeta function of the induced Laplacara
disc and on a cone. This allows the explicit computation of the value of the zeta function and of its
derivative at the origin, and hence we get a formula for the regularized determirant of
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1. Introduction

The regularized determinant of an elliptic differential operator was originally introduced
in geometric analysis to deal with the heat equation and the index theof@fnaind with
the analytic torsion ifi27], and soon became object of strong interest and intensive study
in differential geometn|12,22] and conformal geometry, where in particular it is studied
as a function of the metric for suitable classes of operators (se@e2§)], and alsd5]
where a formula is developed for the quotient of the determinant of two conformally related
conformal operators), but also in mathematical physics, where it provides a regularization

* Tel.: +16 33719626; fax: +16 33719650.
E-mail addressmauros@icmc.usp.br.

0393-0440/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.10.005



356 M. Spreafico / Journal of Geometry and Physics 54 (2005) 355-371

of the functional integra]19,36] Despite all these efforts, few explicit calculations are
available (se¢30] for a review). In particular, a complete answer has been provided for
the one-dimensional case, namely for regular operators on the cif€@fand for Sturm—
Liouville operators on the line segmen{i®,20] The main feature of the analysis of Sturm—
Liouville operators is that it allows to deal not just with the regular case, but also with the
singular one. This is obtained by using methods of functional analysis, originally developed
in the study of the asymptotic expansion of the heat kernel and the resolvent of an elliptic
operatoff23,29]and subsequently generalized to some classes of singulafldnék The
principal example of such singular operators arises from a very natural geometrical problem:
namely, the Laplace operator for a manifold with a conical singularity. The analysis and the
geometry of spaces with singularities of conical type were developed in the classical works
of Cheeger (see e.f13-15), using methods of differential geometry, while formulas for
the first terms in the asymptotic expansion of the associated heat operator were given by
Bruning and Seeley7,8] for a larger class of operators. The results mentioned suggest
the possibility of tackling with success the problem of the computation of the determinant
for a suitable operator on a cone and in particular on a disc. Consequently, some works
appeared in the literature, where the problem of getting a description of the regularized
determinant for a con€(N) over some compact manifold was faced3,24,16] The
approach is to deal not directly with the zeta function on the manif{lty), but with
the correspondent zeta function on the prodi@¥) x S, that is to say the function that
describes the functional determinant for the associated quantum field theory. However, the
explicit expression provided for the analytic continuation of the zeta functio@i(df) is
in general not effective. In this work we give a complete answer to the basic case of the flat
cone inR3, that is to say wheiV = Sll, the circle of fixed radiug this answer is given by
providing an effective analytic expression for the zeta function that allows to compute the
main zeta invariants. Our result is effective in the sense that we obtain a function of the angle
of the cone, and hence a number for the flat disc (both dependihgMore precisely, the
approach described in this work follows the line introducd8@j, where the computation of
the regularized determinant is pursued by the comprehension of the associated zeta function
(recall that for a suitable operatbrdetL = exp(—¢’(0, L))). Beside the importance of the
particular application, our main motivation is to establish a general effective method to deal
with problems where a double sum appears in the definition of the zeta function. In fact,
our approach is likely to be generalized to various more general situations, including the
case of a general cone. There are works in progress in these directions.

To state our main result, Iét, be the Laplacian on a cone of angle arcsaad lengtH
in the Euclidean space, with the metric induced from the immersion and Dirichlet boundary
condition. Then we have the following theorem.

Theorem 1. The zeta functiog(s, L,) associated to the Laplaciah, can be analytically
extended at = 0 with

1 1
€0.1) =35 (v+7)

7. L) = 1 <v+ }> logl +
6 v
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5 6 log 2v — 2vgR(—1)
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An alternative formula for the derivative using integrals of special functions instead of
series is given at the end 8kction 5 The case of the dise (= 1) follows as a particular
case, namely the following corollary.

Corollary 1. The zeta function associated to the Laplacian on a disc of radius | extends
analytically ats = 0 with

¢, L1) =3,  ¢(0,L1) = 3(logl —log2)+ 3 l0g 27 + 5 + 2¢(—1).

The remaining of these notes is dedicated to the prodfheforem 1 up to Section 3
where the one-dimensional case is outlined. The work is organized as follows. Our approach
starts from the observation that the problem on the cone can be thought as a generalization
of the one-dimensional problem of the Laplacian with a singular potential term on the line
segment. Under this point of view, the method consists in using an explicit expression for
the eigenvalues of the Laplacian to write the formal series representation for the associated
zeta function and hence in getting a suitable alternative representation for the same zeta
function, that immediately gives an analytic extension at the origin. For this purpose, the
analysis of the one-dimensional problem must be performed using the method described
in Section 3 There are two clue points: first, we use the spectral decomposition of the
operator to construct a regularized ‘spectral’ decomposition of the zeta functio(ijk.
Section 3; second, the regularization introduced allows us to use the method described in
Section 3o get the desired alternative representation of the zeta function. Eventually, some
extra work is needed, consisting in producing the right analytic extension of some other
functions appearing in the new representation of the zeta function, to get the final result for
the determinant. All this is iSection 4We delay comments and remarks to the last section.

2. Description of the problem
Let C, be the cone of angle arcsec- 0 and lengthl. Choosing the coordinates

(6, x) € ST x (0, 1], the induced metric ig = (dx)? + v—2x%(dd)?, and (after a Liouville
transformation) the Laplacian becomes

1
L,=—9+ ;Av(x),

where the operator

Ay(x) = =293 — 1,
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on s has the complete systefn, , = v?n% — %;,,.,(0) = €}, 0 € [0, 27], n € Z, each
A, having multiplicity 2, up tox, o havmg multiplicity 1. Then, we have a spectral
decomposition of.,, as

Lv = Z Lv,nn)\v,n s

nez

where

1 1 1
2 _ 2 2 2
L d x vn— dx+p(\)n—z)

With Dirichlet boundary condition atx =1, each L,, has the complete system
Dok = fvln\k Yok (x) = W} k € N — {0}, where j,, « are the (posi-

tive) zeros of the Bessel functiof,,(x) [35, 15.40] and hencel, has the complete
system

Fonik
i)"vn,k - V‘”‘ ¢U n(e)wv|n| k(x)} n = O, Zl:l, th, ey k= 1, 2, .

3. The zeta function on the line segment

In this section we present a method to deal with the zeta function associated to the one-
dimensional problem that we will generalize in the next section to treat the two-dimensional
problem. The results of this section are not n@@], and also the method uses classical
tools[34,33,1] but our approach is different and expressly conceived for the purposes of
the general case (see a[8d]). For the operatdr

° H?-1
WETgEt T

on the line interval (0/], with the discrete resolution

o — Jvn o () = LD vt V' 2xJy (v nX)
v,n l2 ’ v,n lJv+l(jv’n) ’

wherej, , are the positive zeros of the Bessel functif(x), we introduce the zeta function
o o
s, S0) =Y an =15k
n=1 n=1

1 with Dirichlet boundary condition at = I.
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for Re(s) > % also called Bessel zeta functif82]. Using the Mellin transform, we get the
analytic representation

1 )
2(s, 8) = m A lsilf(l, v) dr,

where the trace of the heat operator is

o
flev)=TreS =" gt

n=1

and from this the complex representation
1 — A\t
f@tv)=— e " R(x, v)dA,
27i Ae

where the contodris A. = {1 € C||arg(. — ¢)| = m/4}, oriented counter clockwise, for
some O< ¢ < jy 1, and the trace of the resolvent is

R(x,v) = i !

n=1 A= }\v,n .

We now observe that it is easy to express such function in terms of special functions. In fact,
taking logarithmic derivative of the infinite product representation of the Bessel function
I,(z) [35, 15.41] we get:

v 1d
R(}\‘, l)) = ? — 2_Zd_z |Ogl\)(12)

Here,z = «/—A, we set arg{A) = 0 on the line (oo, 0] and we fix the sectar, = {z €
C||argz| < m/2} for z.

At this point it is worth observing that all information about poles and residyéso$,,)
can be obtained using the representation introduced, asymptotic expansions for Bessel
functions and classical argumeiit§,21,28] This is an easy way for producing the results
relative to the so called ‘constant case’ when studying regular singular opditgfs3]
In order to obtain the derivative at= 0, we need more, and precisely we introduce the
following lemma.

2 See for examplg37, 12.22]for this type of Hankel’s integrals.
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Lemma 1. Suppose the zeta functiey, x) = Y .- ; a,(x)~* has the following represen-
tation (everything smooth in)x

z(s, x) = 1 footx_lif e MR(, x)dadr

- I'(s) Jo 271 J 4, ’ ’
where the contour is as abavand there is a primitive functior T'(A, x) for the function
R\, x) = —a“xT(x, x), satisfying the following properties

(a) Tis analytic nean. = 0,

(b) forfixed x and large. in some domain of the complex plattee function' (1, x) has an
asymptotic expansion in terms of powers and logarithms as the one consid¢réd in
(see alsd8, Section 7], namelyy_"(—A)* log*(—1), wherea runs through a discrete
set of real numbers with — —oo, andk = 0, 1. In particular, we will be interested in
the constant and logarithmic tergso we write

T(A,x)=---+ Ax)log(—A) + B(x) + - -
Then z(s, x) can be analytically extended at= 0 and
z(0, x) = —A(x), Z(0, x) = —B(x) + T(0, x).

Proof. Integrating by part, first in. and hence i, the given complex representation for
z(s, x), we get

s o0 1 e M
)= — | 1= T(x, x) dx dr.
s, ) I(s) /(; 2mi J4, =) (. x)

Next, since by definition the zeta function is well defined for lassge

S2 1 1 1 e—At d.d 5
= Sp— T\ A S s),
7(s, x) F(s+1)/o t Zﬂi//xf . (A, x) F+ 57 f(5)

wheref is regular neas = 0. Because of the pole at= 0, we have to split the complex
integral as follows to use the expansion for lakg@mallt):

/A - / T /C = / +7(0, x).

whereC, is a circle around the origin of radies Moreover, by assumption (b)

— Al — A
f € 70,0 dr =/ e—T@,x) di
A_e —A A_e —A 1t

=+ yA(x) + A(x) logr — B(x) + - - -
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where we have explicited only the relevant part and the Euler congtant—y(1)
[18, 8.366.1hppears applying the following formula

1 e _d 1 e ~d 1 yla)
2t |, oy =g | S =G =

where we have us€gd8, 8.315.1] This means that we can write

N

z(s, x) = 61D

[ 7AG) = B) = $A) +T00.)] + 52509,

where agairg is regular neas = 0, and from that, the thesis follows at once.

Applying this argument to the functias(s, S,), we have
T(r,v) =vloglz —log I,,(lz) — log 2’ I"(v + 1),

and thisT(x, v) is precisely the function that we will use in the next section to deal with
the general case. For completeness, we conclude the computations for the one-dimensional
case (compare witf81]). We have

A) = 300+ 3).
B(v)=3log 27 + (v+ 3)logl —log2’I'(v+1),  T(0,v) =0.
and this gives:

Re%(é’(s’ Sl}), S = 0) = —%(v + %)’

27Y2r(v+1)

Re®(¢'(s, Sv), s = 0) = log Jal+L/2

4. The zeta function on the cone

We introduce the zeta function associated to the opefattny the formal series

oo+

00 o0
(o L) =Y Y At =Y ek +2* Y A
k=1

k=1n=—00 nk=1

that, by classical estimate on the zeros of a Bessel funcf@#s15.40] and standard
argument on double seri¢37, 2.5] is well defined for Re() > 1. The first term can be
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treated by the means provided in the previous section, so the problems lay in understanding
the function

o0

.—2
Z(S’ U) = Z -]vn,i'

n,k=1

The remaining of this section is dedicated to the prooffbéorem land its corollary

and is split in four parts: in the first we outline a quite general method to deal with the
zeta invariants of a double series, in the second we apply the method to the case under
study, in the third we complete calculations and in the fourth we give the proof of the
corollary.

4.1. Spectral decomposition

The main feature of our approachis the following ‘spectral decomposition’ of the function
z(s, v). For Ref) > 1, we can reorder the terms in the double series and write

—2s5
2(s,v) = Z(vn) 232(’””") . )

n=1

This decomposition will allow us to deal effectively with the double sum by using the tools
introduced inSection 3 In fact, thanks to the uniform convergence of integrals and series,
we get the complex integral representation

—At

K / s—1 1
[ — t R—
r'is+1)Jo 2mi J4, =)

z(s,v) = T(s, A, v)dxde,

where

T(S, A, V) = Z(W’l)_zstn()‘q l)),

n=1

andr, (1, v) is defined using the correspondent function on the line segment, namely

tn(,\,u)=—Z|og [1+ )2( A)}

]vn k
=— Iog Lyy(vnz) — vn log 2+ vn logz — log I'(va + 1) + vn log(vn).

To proceed further, we need a generalizatioherhma 1 In fact, the functiori'(s, A, v) is
not necessarily analytic imats = 0. This depends on the behavior:f), v) for largen:
more precisely, a singular behavior can appear only from a gehmthe expansion of,.
This suggests to split it in two terms as follows. From the definition (seeSdstion 4.2,
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t,(A, v) has a uniform expansion in some domain of the complpgbane for largen (recall

vis afixed parameter). Sgf, (A, v) = 1, (%, v) — % f(x, v),wheref(x, v) is the coefficient
of the term inv—fl in the above expansion of(%, v) for largevn. Then

bahe V) = pu(h V) + — F( ),
vn

and

1 1 e*).t
, [, ——P(s, A, v)dr dr
2(s, v) F(s~|—1)/ 2711'/,1. Y (s, A, v)

4yl a ;R(2s+1)/ Sllfe—mf(x v) di dr,
I'(s+1) L J A,

where
o0
P(s, 2, v) = Y ()" pa(h, v),
n=1

is regular ak = 0. Thus, the first term in(s, v) can be treated precisely by the same means
as inLemma 1 this gives

2 1 1 — AL
S—/ f—l—,f ®  P(s 1, v)drdr
I'(s+1) Jo 2mi J 4, —)

= F(Ss+ 5 /él #~yA(s, v) + A(s, v) logs — B(s, v) + P(s, 0, v)] dr
= F(SS+ ) |:J/A(s, v) — B(s, v) — %A(s, v) + P(s, 0, v)] ,

plus a regular term, vanishing with its derivativesat 0; here
(o) oo
A(s.v) =) (m)Zay(v),  Bls.v) =Y () Zb,(v),

n=1 n=1

anda, andb, are the coefficients appearing in the asymptotic expansign, @f, v) for
fixed n and largex in the appropriate domain

pn(k,v) =+ 4+ an(v)log(=2) + by (v) + - --

3 The existence of such an expansion follows from the definition.
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We have obtained the following expression for the functibnv)

z2(s,v) = m |:)/A(s, v) — B(s, v) — %A(s, v) + P(s, 0, V)]
2
—25-1
+v I +1)§R(25+1)/
2
T @

whereh is analytic ats = 0. The method outlined is quite general, but to proceed further
we need the explicit expressionsf@&ndP; this is in the next subsection.

4.2. The values of(0, v) andz'(0, v)

To get explicit expressions foP(s, A, v) and f(A, v) we use the representati¢ab,
10.7]of the Bessel functioi, (vx):

1 ") 1.1
I,(vz) = + -Ui(z) + v, 2)|,
(v2) 1+ n21(v, 00) «/2nv(1+z2)1/4[ v 1a) +m2al )}
where
z 1 5
E(z) =vV1+72+log ———— Ui(z) = -

141122 8V1+72  24(1+H)¥?

andny,1(v, z) is the error term, bounded for largeiniformly in zin the opportune domain.
Inserting this in the expression gf(x, v) we get

f()‘" U) = _Ul(\/__)\')7
pn(X,v) = —log L, (vnz) + vulog(vnz) — vnlog2 —log I"(vn + 1) + &Ul(z).

We start by computing

/oo tsfl 1 / e*)\.l _ /00 tsfl 1 e*)\,l‘
0 2mi J A, —A ’ - 0 2mi J A, —)

Forc > 1, consider

1 eM 1
] =
27i J, —x (1— )
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where ¢ < 1; this can be computed in the new variakle= 1 — 1 (see[37, 12.22,
18,8.353.3)

! e‘t/ e (—2)7%dz = ! sin(ra)'(1L — a)I(a, 1)
—_—— — 4 —_— 7T J— s .
2 i Ay 2 1 Z Z a a a

Recalling the relation between the incomplete Gamma fungfién 8.35]and the prob-
ability integral[18, 8.25] this gives

Tl | e _I+1/2) (1
/0 =3 G dhdi = == (S +5)).

Next, we need the asymptotic expansionppfi, v) for large A and fixedn; By classical
asymptotics of Bessel and Gamma functifitfy, 8.451.5, 8.344)we get

pu(h,v) = —nvVA + a,(v) log(—1) + b, (v) + O((—1)~Y/?),

where the interesting terms are:
an(v) = 3(vn + 3),
by(v) = 3log 27 + (vn + 3)log vn — v log 2 — log I'(vn + 1).

This gives

A(s.v) = i(vn)*zsan(V) = 3V 20R(2s — 1) + 302 CR(29),

n=1
B(s,v) =Y () Zby(v) = =Y () >
n=1 n=1

x log I'(vn + 1) + $v~2 log(27v)¢r(2s) + V12 log 3 ¢r(2s — 1)
— %v’z‘f;{(Zs) — VI (25 — 1),

The last step i®(s, 0, v). Recalling the behavior df,(z) for smallz[18, 8.445] we evaluate

11
o,v)=———
pn( s V) 2w’
and hence
o0

P(s,0,v) = > (1n) 2 p,(0, v) = — {502 Y¢p(2s + 1).
n=1
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Now the explicit expressions for all the quantities involved in the definition of the function
z(s, v) are available. From E@2), we get

z(s, v) = ﬁ |:yA(s, V) — B(s, v) — %A(s, v) + P(s, 0, v)]
2 2
o1 S r's+1/2) [/ 1 5 s
+v 61D 1)§R(2s + 1)—ﬁ (E 1—2) + 61D l)h(s).

From this, by using the known behavior of the Riemann’s zeta fun¢ji() near its singular
pointz = 1[18, 9.533.2] that gives neasy = 0

1
CrR(2s+ 1) = 5t ¥ + 0(s),

and the fact that all the other quantities are regular-at0, we can compute

1 1 1 1 1 1 1
Z(O, V) = —A(O, 1)) + % = _Eng(_l) — Z—;-R(O)—'— % = ﬁV"}‘ é + E

This proves the first part cdfFheorem 1 Eventually, we can derive with respectgoand
evaluate the derivative at= 0. We get

1
/ o Y. . 1 B 5
Z(0,v) = P(0,0,v) = A'(0,v) = BO, v) + > (y |092v+2)
='7(0,V)+711|0927T—112|092+1—%U(y—longrg),

where

n(s, v) = Z(vn)_zs logl'(vn + 1) — %Zv_zs_lg‘R(Zs + 1),

n=1

and to complete the proof dheorem Iwe need the explicit computation 90, v); this is
done in the next subsection.

4.3. Computation ofi(0, v)

By definition 5(s, v) is regular att = 0. On the other side, it is clearly not allowed to
get its value at = 0 by simple substitution of the value= 0 in the defining expression,
because the two terms are not regular independently at this vakieTofget rid of the
singularity, we use the series representation for the logarithm of the Gamma fui&jon
8.343.2]
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160 = S 0n ™ [logom) | 47 logca(@) 720

[e.0]

= Z(vn) 2 |:vn logvn —vn — 5 |Ogvn +3 Llog2r

1 3 100 1 11
_ZZ(vn+k)2 Eg m+1)(m+2)2(vn+k)m+l__2_n:|

+v72[log 1R (25) — (r(29)]
= v 2 logver(2s — 1) — v P gR(2s — 1) — v P gR(2s — 1)
+ 3072 10gVER(25) — 5172 LR(25) + 3 log 20 Z ¢ r(2)
+ M(s, v) + (s, v),

where

[e¢]

_ i —2s - ; — i
M(s.v) = 5 ;(V”) [1;1 (n 1 k)2 vn} :

and

5 = (vn)~%
(s.v) = 2 XZ: (m + 1)(m + 2) Z L (m + k)ym+1’

Now, all the terms are regular at= 0 and we can computg0, v). In particular, for what
concerndM, it is convenient to decompose it as folldws

— i 3 =2 v - L - i 3 B ;
M(s,v) = P Z(vn) |:§H(2» n + 1) o+ 1i| 12 ;(Un) [vn(vn + 1)i|

n=1

this gives

1 1 1 1+1
M(O,v) = 1ZZ[§H(2 vn+1)—ﬁj| —E[V-FW(T)].

n=1

4 Wherecy is the Hurwitz zeta function.
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We can provide two alternative integral and series representations(fhn) by using the
Plana theoren85, p. 146]

M(O,v) = %{%zﬂ(Z,wl)Jr %[Iogv— Y+ 1))+ N(v) — %}

where
[ @ v+ i) + 1) — Ea(2 v — i) + 1)
N(V)_l 0 ezﬂy_l d%
or
0o 00 241
N() = ZZ | Bog+2] 1 )&

k=0n=1

and theB; are the Bernoulli numbeifd 8, 9.71] Eventually, the expression fg(0, v) is
n(0, v) = —&v(logv — 1) — vg,(—1) — 2 logv + M(0, v) + (0, v),

whereM (0, v) is given above and

1 i m i 1
P +1°
2 - (m+1)(m +2) fym] (vn + k)™

3(0,v) =

This completes the proof dtheorem 1
4.4. Proof of Corollary 1
The direct computation of the limit for = 1 of the expression given ifiheorem lis

not easy, so we proceed in the following alternative way. First, introduce the function (see
alsoLemma 3

X =Y (n+k)7,

n,k=1

for Re(s) > 2. The double sum corresponds to the ordinary one

x(s)=> (n—1n",
n=2

5 Although, notice that/(0, 1) can be simplified giving}2 (1 — L;)
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simply by recollecting the terms. Hence:

x(s) = ¢r(s — 1) — ¢r(s),

andx'(0) = ¢x(—1) + % log 2. On the other side, if we analyzds) by the same means
that we have used to analyz@, v), we obtain

X' (0)=n(0, 1)+ 7 log 27 + &,
and therefore

n(0, 1) = 310927 + (1) — &».

5. Comments and remarks

The value atthe origin of the zeta function associated to the Laplace operator on acompact
Riemannian manifolt¥l of dimensiormwith boundary is well knowf6]. Namely, provided
the heat kernel operator has the expansion

o0
Z ant(n_m)/z,
n=0

for smallt, then¢(0, Ay) = a,, — dimkerAy,. The first coefficients can be computed in
terms of local geometric quantiti¢s, 17 4.5] in particular on the dis® = C; of radiusl,
L. =1 and

1

7 247 Jyp

2Lxx|)c:l dg = %7

in agreement wittCorollary 1 The situation on the cone is more delicate, since a singular
term appears. This problem has been studig8l]irby analyzing the asymptotic expansion
of the resolvent, and gives for the Laplacian on the aGne

1
1 re
02_—1—2<V—; +ay”,

where the regular coefficient can be computed as above, aé‘%ﬁ’ is 6—1U.
We conclude by providing an alternative representatiot/{or L,). This can be obtained
studying the two-dimensional Hurwitz zeta function (&Ke¢ 0)

x(5.0) =33k +an) .

n=1k=1
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that generalizes the functignintroduced inSection 4.4This function can be studied using
the Plana theorem as jB0]. As a result we get the following lemma.

Lemma 2. The function(s, @) has a regular analytic continuation to the whole complex
plane up to simple poles at= 1 and 2 with residua—3(1 + 2) and 2 respectivelyThe
points = Qs regular and

1 1 o
X(O,OZ)ZZ-FE-F]_—Z,
, 1 1 1 1,
X (0, ) = EIogF(a+1)+ZI092n—1— &EH(—].,O(-F].)— &§H(—1,a+1)

[ Dle(l+in)  dr
ﬂﬁ'mmmfm@M4'

Alternatively, we can apply the method usedSection 4o computey’(0, «):

) 1 1
x (0, @) = n(0, a) + 2 log 27 + E(V —loga).

By comparison of the results we get the integral representation foi(the)

I'a(1+1iy) dy
ra(l—iy)ev 1

1 Y 1
n(O,a):E(a—l)—i—l/ log +§|OgF(a+1)
0

1 1,
+ E(l — '}/+ |OgOl) - &CH(—].,O[ + l),

and using this expression with= v, we obtain the following alternative representation for
the derivative of (s, L,) ats = 0:

JO, L) =% v~|—} Iogl—i-v—l—}vlogZ—i—(?—Z IogZ)i
v 6 12v

+2i/°°|0 rv(d+iy) dy
0

2 /
rvl—iy) e -1 +log (v +1) = ~ & (=1 v+1).
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