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Abstract

We compute the analytic torsion of a cone over a sphere of dimensions 1, 2, and 3, and we conjecture a general formula for the
cone over an odd dimensional sphere.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

On calcule la torsion analytique d’un cone sur une sphere de dimensions 1, 2, et 3, et on conjecture une formule générale pour
le cone sur une sphere de dimension impaire.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

An important open problem in geometric and global analysis is to extend the Cheeger Miiller theorem [4,11] to
spaces with singularities of conical type. The aim of this work is to give some contribution to the quantitative aspect
of the problem. We give explicit formulas for the analytic torsion of the class of low dimensional spaces consisting
of cones over spheres. The results cover also the smooth case of the discs, and therefore provide also a contribution
to the discussion on the extension of the Cheeger Miiller theorem to smooth manifolds with boundary, namely to the
problem of establishing the correct boundary term.

Let (W, g) be a closed connected Riemannian manifold of dimension n with metric g. Let CW denote the
completed finite metric cone over W, namely the space [0, [] x W, with the metric dr & dr + r2 g,on (0,/] x W, as
defined in [5, (2.1)]. An interesting open problem concerning the metric cone is to compute its analytic torsion. The
analytic torsion of a smooth connected Riemannian manifold (M, g) of dimension m is defined by [13, Section 6],

1 m
log7'(M) = >} (—=1)7q¢'(0, A1), (1)
q=1
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where A@ is the Laplace operator on g-forms on M, and the zeta function is defined by [13, (1.5)]:

(s, A0) = 3

reSp, AW

for Re(s) > 7, and by analytic continuation elsewhere. This definition extends to the case of a cone CW using
the Hodge theory and the functional calculus for the Laplace operator on forms developed in [5]. More precisely,
one seeks for formulas for 7(CW) as a function of some geometric invariant of W. Starting from the result of
Cheeger [5,6], and applying absolute or relative boundary conditions [13, Section 3], one obtains the eigenvalues
of the Laplacian on forms, necessary to compute the torsion. These eigenvalues turn out to be sequences of real
numbers Sp, AD = {)‘ff,)k} that correspond to the zeros of some linear combinations of Bessel functions of the first
kind and their derivatives. The index k enumerates the zero, and the index u is given by some explicit function of the
eigenvalues of the Laplacian on forms on the section of the cone, namely on W. The zeta function of this type of double
sequences can be tackled using some recent results of Spreafico [17,19-21]. The general strategy is to prove that the
sequence Sp_, A@ is spectrally decomposable over some sequence Sp n A%{,)) of eigenvalues of the Laplacian on forms
on the section. Then, one can apply the result of Spreafico to obtain the value ¢’(0, A@)). The final formula can be very
complicate in general, and not particularly illuminating. The possibility of simplifying this formula is based on two
facts: first, the explicit form of the coefficients of the uniform asymptotic expansion of the Bessel function /,,(vz) (and
of its derivative) with respect to the order v, and second, the explicit knowledge of the eigenvalues of the Laplacian on
forms on the section. While the first fact is true in general, the second one is not clear. For this reason it is interesting
to study particular cases where the second fact is also true (however, see [22] for formulas in the general case).

In this note, we study the analytic torsion of the cone over an n-dimensional sphere. More precisely, we prove in
Section 5 the following theorem, and we state a conjecture for the general case at the end of Section 6.

Theorem 1. The analytic torsion of the cone CyS}; , of angle o, and length | > 0, over the sphere S", with the
standard metric induced by the immersion in R"*2 and absolute boundary conditions is, forn =1, 2, and 3:

1 1 | I AP O
102 T (CaS}ina) = 3 log Vol(Co S/ ing) + 7 sine = S lognlsina + 2 sinar,

1 1.
10g T (CaSfsing) = = 10g Vol(Co Siing) — S (esca) + 7 sin” o

4713 sin? & 1f( " 1.,
_— —sin” «,
3 5 csco 4s1 o

3. |
log T(CanSina) =3 logVol(Co,stina) + 1 sino — - sin® o
mtsinda 3 I . 5
=§log—2 —|—Zsma—ﬁsm o,

where the function f(v) is given at the end of Section 5.

log

_— N = N =

2. Geometric setup

We describe in this section the geometric setup in details. Let S; be the standard sphere of radius b > 0 in
RS = {x € R™! | x| = b} (we simply write S” for S}). Imbed S,  in R"™2, with center in the point
{0,...,0,/sina}, with [ > 0. Let C, Slnsin o, be the cone of angle a over Slnsin o 1N R"*+2. Note that the disc corresponds
to D;’H =Cz S;'. We parameterize Cy S}’ , by:

X1 =rsinasing, sinf,_1 ---sinfz sin6, cos by,
Xy =rsinasing, sinf,_1 - --sinf3 sinH, siny,
x3=rsinasing, sinf,_1 ---sinf3 cos by,

n _
CaSl sina — |

Xp4+1 =7 sinw cosby,,
Xp42 =FCOSQ,
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with r € [0,1], 61 € [0,2x], 62, ...,6, €[0, 7], « is a fixed positive real number, and 0 < a = % =sina < 1. This is
a compact connected space. The metric induced by the immersion in R"*? is,

g=dr ®dr+ rzazgs?,

and is smooth for r > 0. Comparing with [5, Section 1], we see that the space C, Sl”Sin o 18 a completed metric cone,
and Xy = CoS/;,, — {0}, is a metric cone over S/'; . Note that the space CyS];, , is simply connected (in fact it
has the homotopy type of a point).

In order to define the opportune self adjoint extension of the Laplace operator on forms, we split the space of forms
near the boundary as direct sum AC, S}, = AS/',  @© N*CyS; ,» where N* is the dual to the normal bundle to
the boundary. Locally, this reads as follows. Let 9, denote the outward pointing unit normal vector to the boundary,
and dr the corresponding one form. Near the boundary we have the collar decomposition C, S/’ , = [0, —€) x S,
and if y is a system of local coordinates on the boundary, then x = (r, y) is a local system of coordinates in Cy S}’ -

The smooth forms on C, S}’ , near the boundary decompose as
@ = Wtan + @Wnorm>

where wnorm 1S the orthogonal projection on the subspace generated by dr, and w,y is in AST We write,

Isina”
w=w|+dr A w3,
. oo n n
where w; € C*(Cy S/, ,) ® AS/in > and
*W) =xw Adr.

Define absolute boundary conditions by,

Baps(w) = CUnormlSl"sim = a)2|Slnsina =0,
and relative boundary conditions by,
Brel(w) = wtan|Sl”Sim =owil|g.  =0.

Isino

Let B(w) = B(w) ® B((d + d")(w)). Then the operator A = (d + d*)? with boundary conditions B(w) = 0 is self
adjoint. Note that B corresponds to,

Babs(@) =0 if and only if { ©nomlsfy,, =0 )
(dw)norm|S[”siM =0,
. | @enlsy,, =0,
Brel(w) =0 if and only if [ (dT(l))tanlsl”sina _0 3)

3. The spectrum of the Laplacian on forms

In this section we give the spectrum of the Laplacian on forms. The result for » = 1, and n = 2 is in [8],
Lemmas 3, and 4. Thus we just need to study the case of n = 3. Decomposing with respect to the projections on
the eigenspaces of the restriction of the Laplacian on the section of the cone (i.e with respect to the angular momenta),
the definition of an appropriate self adjoint extension of the Laplace operator (on functions) on a cone reduces to the
analysis of the boundary values of a singular Sturm Liouville ordinary second order differential equation on the line
segment (0, /]. The problem was addressed already by Rellich in [14], who parameterized the self adjoint extensions.
In particular, it turns out that there are not boundary values (at zero) for the non-zero mode of the angular momen-
tum, while a boundary condition is necessary for the zero modes, and the unique self adjoint extension defined by
this boundary condition is the maximal extension, corresponding to the Friedrich’s extension (see [3] or [6] for the
boundary condition). The same argument works for the Laplacian on forms. However, in the present situation we do
not actually need boundary conditions (at zero) for forms of positive degree, since the middle homology of the section
of the cone is trivial (compare with [5]). Since the eigenvalues for relative boundary conditions follow by Hodge
duality, we just give the eigenvalues for absolute boundary conditions. In the following, we denote by {k: A} the set
of eigenvalues A with multiplicity k.
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(q)

coglon q-forms with absolute
Isino

Lemma 1. The spectrum of the (Friedrich extension of the) Laplacian operator A
boundary conditions is (where v = csca):
0) ) 2100 s 2 ,,27100
Sphc g Lt/ PYes Y2 (k) /)
(nH .2 219¢ .2 2100 ) 2100 L 2 ,,2700
P A5 e Voad Phezy U/ 2y VA2 dind ey VA2 (i) /1) e
o0

Sp A(C%(jsllsina {Jg’k/lz}](:ozl U {2 jsn,k/lz}n,kzl‘

Lemma 2. The spectrum of the (Friedrich extension of the) Laplacian operator A(Cq) @ on q-forms with absolute
avj

sina

boundary conditions is:

Sp Ag):slzm ={@n+ 11 Ji P VS PR
SpALG = {7 /PR @ P

uf@n+0: i o /P V@ +0: 0 /P
SpAT e = {71 /PR Uf@n+ kP

i@+ 0z i o /P U@+ D n /P
Sp Agsﬂm = @1+ D ik Pl VT PEE

where p, = /vin(n +1) + %, and where the jv,k,:l: are the zeros of the function G (z) = :t%]v (2) +2J,(2).

Lemma 3. The spectrum of the (Friedrich extension of the) Laplacian operator A9 on q-forms with absolute

3
. . Ca Sl sina
boundary conditions is:

) 2 2100 2. 2 2100
Sp Acasfsma - {-]Z,k/l }kzl U {(I’l + D™ ]Mo,mk,—/l }n,kzl’
00

SpAL = /PR, U nm+2: (7, ) Py

Al sina
U {(I’l + 1)2: jﬁo,n’ks_/lz}:?kZI U {(I’l + 1)2: j/szO,nsk/lz};.kaI’

A G  ={ 0 R /P U2+ 2 (G, ) P
U{2n(+2): 2, /P U+ D% 2 P
Sp AS:S;SM = {jlz/lz}lfil U{m+ D jio,n,k,+/lz}fk=1
U+ D% o /Pl U f2nm+2): G2 /P
SpALs =it/ PR U D% B PL

where

mon =+ v2nn+2)+1, Ui, =v(n+1),

and where the jv,k,:t are the zeros of the function Tvi (2) =xJu(2) + 2J,(2).

Proof. Recall we parameterize C, stin o

by:
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X1 = x sin¢ sin 63 sin 6, cos 0y,
Xy = x sinw sin 3 sin6; sin 0y,
CaSPiny = 1 X3 = x sina sin3 cos 62,
X4 = x sina cos 63,
X5 = Xxcosd,
where (x, 61, 62,603) € [0,1] x [0,27] x [0, 7] x [0, 7], 0 <o < /2 is a fixed real number and 0 < a =sinw < 1.
The induced metric is (for x > 0),

g =dx ® dx + (ax*sin® 6, sin” 03) 6| ® dO; + (ax” sin 63) d6, ® db> + (a*x?) dO3 ® dbs.
Using the absolute boundary conditions on forms described in Eq. (2) of the previous section, we obtain the
following equations. For the O-forms:
abs.: o,w(l,01,0,,603) =0. 4
For the 1-forms:

wx(l, 91 ’ 92a 93) = 05
axa)@] (l7 91’ 927 93) = O’

4082 4 op, (1. 61, 62, 63) =0, ®)
Oxwe, (1,01,02,03) =0.
For the 2-forms, withi =1, 2, 3:
CUxG[ (la 915 925 03) = 0,
0xwe, 6,1, 01,62,03) =0,
bs.: 172 6
0S5 G gy 05 (1, 01, 62, 63) =0, ©)
Oxwp,0; (1, 01,602, 603) =0.
For the 3-forms:
a)x0|6‘2 (l’ 017 927 93) = 09
a),X@ 0 (l’ 01’ 029 93) = 07
bs.: 173 7
0S5 ety (1, 01, 6, 63) =0, 7
0xp,6,6, (L, 61,62,63) =0.
For the 4-forms:
abs.: wyg,0,0, (1, 01,02,03) =0. (®)

Next we use the description of the eigenfunctions given in Section 3 of [6] to determine the eigenvalues. By [9] the
eigenvalues of the coexact forms of the Laplacian over S> are, with n > 1:

Dimension Eigenvalue Multiplicity

0 n(n+2) (n+1)32
1 (n+1)32 2n(n +2)
2 nn+2) (n+1)>2

And by [6] we have wo, = 2., = /v2n(n+2)+1and wuy, = v(n + 1), and the eigenforms of the Laplacian of
Cy Sfa are as follows. For the O-forms:

ol =x71 0, 09 01.62.63),  E® =x71110x)h°(61, 62, 63).
For the 1-forms:
a,gl) = xilfmfn (/\x)</>,§‘)(91, 62,63),
B =x71 . 0x)dg P01, 02, 03) + 0 (x ™ Ty, Ox)) dx A 0 (01,62, 63),
YD = 2718, (x Juy, (00)) dBO (61, 62, 63) + x 2y, (hx) dx A S AP (61,62, 63),
DV =9, (x "1 (x)) dx AR (61, 65, 63).
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For the 2-forms:

ol =xJu,, X)) (61,62, 63),

BD = J,,,0x)deD61,6,,63) + 0, (S, ) dx A @S2 (01,62, 03),

YD = x0c (Juy, 0x)) SV (01,02, 63) +x 7 T, Gx) dx A AV (61,62, 63),
8% = Jug, x) dx Ade\V (01,62, 03).

For the 3-forms:

B = xJy, 0x)dP (01,02, 03) + 3 (x g, (1)) dx A B2 (61, 62, 63),
=0 (x 7 g, 02)) AP (01,02, 63) + Ty, (Ax) dx A S A (01,62, 03),
83 = xJy, ,(x)dx A diP (61,62, 63),
E® =x21L0x)h 01,6, 63).
For the 4-forms:
5 = XZJ/,LO,n (Ax) dx A d¢P (01,62, 03), DW=, (x2J2(Ax)) dx AR (01,02, 63).

Where the ¢,§i)(91 ,02,03), fori =0, 1,2, are coexact eigenforms of the Laplacian on § 3 and K@ 61, 02,03), and
h® (81,65, 63) are harmonic forms of the Laplacian on $3. Using these functions in the boundary conditions given in
Eq. (2), we obtain the result. O

4. Zeta determinants for some class of double sequences

We give in this section all the tools necessary in order to evaluate the zeta determinants appearing in the calculation
of the analytic torsion. This is based on [17-19,21]. We present here a simplified version of the main result of those
works (see in particular the general formulation in Theorem 3.9 of [21] or the Spectral Decomposition Lemma of [19]),
that is sufficient for our purpose here.

Let S = {a,}2 | be a sequence of non-vanishing complex numbers, ordered by increasing modules, with the unique
point of accumulation at infinity. The positive real number (possibly infinite),

logn

so = limsup ,
n—00 log |an|

is called the exponent of convergence of S, and denoted by e(S). We are only interested in sequences with e(S) =
50 < 0. If this is the case, then there exists a least integer p such that the series Y - a, p-l converges absolutely.
We assume so — 1 < p < sg, we call the integer p the genus of the sequence S, and we write p = g(S). We define the

zeta function associated to S by the uniformly convergent series,

s, =) ay’,
n=1

when Re(s) > e(S), and by analytic continuation otherwise. We call the open subset p(S) = C — § of the complex
plane the resolvent set of S. For all A € p(S), we define the Gamma function associated to S by the canonical product:

L e
—_— = 1+ — an 9
e H( T )e ©

=1 n

When necessary in order to define the meromorphic branch of an analytic function, the domain for A will
be the open subset C — [0, cc0) of the complex plane. We use the notation Xy . = {z € C | |arg(z — ¢)| < %},
with ¢ 26 >0, 0 <0 <m. We use Dg. = C — Xy ., for the complementary (open) domain and
Ao =029 ={z€C]||arg(z—0)|= %}, oriented counter clockwise, for the boundary. With this notation, we
define now a particular subclass of sequences. Let S be as above, and assume that e(S) < oo, and that there exist
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c¢>0and 0 <6 < m, such that § is contained in the interior of the sector Xy .. Furthermore, assume that the loga-
rithm of the associated Gamma function has a uniform asymptotic expansion for large A € Dy (§) = C — Xy . of the
following form:

00 g(S)
log I'(=4, $) ~ Y " aa; 0(=1)% + Y _ar,1(—1)  log(—1),
j=0 k=0

where {«} is a decreasing sequence of real numbers. Then, we say that S is a totally regular sequence of spectral
type with infinite order. We call the open set Dy (S) the asymptotic domain of S.

Next, let S = {A,, k};’szl be a double sequence of non-vanishing complex numbers with unique accumulation point
at the infinity, finite exponent so = e(S) and genus p = g(S). Assume if necessary that the elements of § are ordered as
0 <A1l < Ih12] < 1A2,1] < ---. We use the notation S, (Sk) to denote the simple sequence with fixed n (k). We call
the exponents of S,, and Si the relative exponents of S, and we use the notation (so = e(S), s; = e(Sk), s2 = e(Sy)).
We define relative genus accordingly.

Definition 1. Let S = {)‘n,k}szl be a double sequence with finite exponents (sg, 51, 52), genus (po, p1, p2), and
positive spectral sector Xy ... Let U = {u,},2 | be a totally regular sequence of spectral type of infinite order with
exponent rg, genus g, domain Dy 4. We say that S is spectrally decomposable over U with power «, length £ and
asymptotic domain Dy ., with ¢ = min(cp, d, ¢’), § = max(0y, ¢, 0'), if there exist positive real numbers «, £ (integer),
c’,and 0’, with 0 < 0’ < 7, such that

A;é" }r= has spectral sector Xy ., and is a totally regular sequence of spectral type of

(1) the sequence u, S, = {
infinite order for each »n;

(2) the logarithmic I"-function associated to S, /u} has an asymptotic expansion for large n uniformly in A for A in
Dg ., of the following form:

¢ L
10g I' (=4, 4, S) = D oy, Oy, ™ + Y~ Py (Mt ™ loguy + 0(u, ™), (10)
h=0 1=0
where oy, and p; are real numbers with o9 < --- < 0y, pg < -+ < pr, the P, (1) are polynomials in A satisfying
the condition P, (0) =0, £ and L are the larger integers such that oy < rg and p < ro.

When a double sequence S is spectrally decomposable over a simple sequence U, Theorem 3.9 of [21] gives a formula
for the derivative of the associated zeta function at zero. In order to understand such a formula, we need to introduce
some other quantities. First, we define the functions:

00
—At

1 e
@Uh(s):/tslﬁ / 0, () didr. (11)
0 A9,c

Next, by Lemma 3.3 of [21], for all n, we have the expansions:

o0 P2
log I'(=2, Sy /1) ~ > " da;.00(—1)% + > ar.1.4(—2)* log(=2),

j=0 k=0
o) P2

Po, (1) ~ Y by 0(=0)% + Y by k1 (—1)F log(=2), (12)
j=0 k=0

for large A in Dy .. We set (see Lemma 3.5 of [21]):

o0

14
Ag,0(s) = Z (QO,O,n - Z bUh,O,OM;Gh) ",
h=0

n=1
00

2
Aji(s) = Z(a,-,l,n — Zbg,,,j,lu;”h>u;“, 0<j < pa (13)
h=0

n=1
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We can now state the formula for the derivative at zero of the double zeta function. We give here a modified version
of Theorem 3.9 of [21], more suitable for our purpose here. This is based on the following fact. The key point in the
proof of Theorem 3.9 of [21] is the decomposition given in Lemma 3.5 of that paper of the sum:

o0
T(s. 1. 8.U)=> u,  logI'(=x,u;*Sy).
n=1
in two terms: the regular part P(s, A, S, U) and the remaining singular part. The regular part is obtained subtracting
from 7 some terms constructed starting from the expansion of the logarithmic Gamma function given in Eq. (10),
namely

¢ L
Pl 1o S,u) =T (5,5, S, U) = Y ooy, Wy, ™ = Y~ Py (Wyuy,” log ey
h=0 1=0
Now, assume instead we subtract only the terms such that the zeta function ¢ (s, U) has a pole at s = 03, or at s = py.
Let 73(3, A, S, U) be the resulting function. Then the same argument as the one used in Section 3 of [21] in order to
prove Theorem 3.9 applies, and we obtain similar formulas for the values of the residue, and of the finite part of the
zeta function ¢ (s, S) and of its derivative at zero, with just two differences: first, in all the sums, all the terms with
index oy, such that s = oy, is not a pole of ¢ (s, U) must be omitted; and second, we must substitute the terms A, o(0)
and A6,1 (0), with the finite parts of the analytic continuations of Ag (s), and AE)’] (s). The first modification is an

obvious consequence of the substitution of the function P by the function P. The second modification follows by the
same reason noting that the functions Ay « (s) defined in Lemma 3.5 of [21] are no longer regular at s = 0 themselves.
However, they admit both a meromorphic extension regular at s = 0, using the extension of the zeta function ¢ (s, U),
and the expansion of the coefficients g ; k.n for large n. Thus we have the following result:

Theorem 2. The formulas of Theorem 3.9 of [21] hold if all the quantities with index oy, such that the zeta function
C(s, U) has not a pole at s = oy, are omitted. In such a case, the result must be read by means of the analytic extension
of the zeta function ¢ (s, U).

Next, assuming some simplified pole structure for the zeta function ¢ (s, U), sufficient for the present analysis, we
state the main result of this section.

Theorem 3. Let S be spectrally decomposable over U as in Definition 1. Assume that the functions @, (s) have at
most simple poles for s = 0. Then, ¢ (s, S) is regular at s =0, and

1 l
£(0,8)==401(0)+ > Res) @y, (s)Resi £(s, U),
h=0

s=0 §=0p

¢
¢'(0,8) = —A0,0(0) — Ay 1 (0) + % ZR6%1 Dy, (s)Resy ¢ (s, U)
h=0 = S=h

12

14
1 /
+— D Reso Py, (s)Resi £(s, U) + ) Resi g, (s)Reso £ (s, V),
K =0 s=0 s=0op, =0 s=0 s=oy,

where the notation Y means that only the terms such that ¢ (s, U) has a pole at s = o, appear in the sum.
This result should be compared with the Spectral Decomposition Lemma of [19] and Proposition 1 of [20].

Corollary 1. Let Sj) = {)‘(j)qn,k}zi?kzl’ j =1,2, be two double sequences that satisfy all the requirements of
Definition 1 of spectral decomposability over a common sequence U, with the same parameters k, {, etc., except
that the polynomials P(j) ,(A) appearing in condition (2) do not vanish for A = 0. Assume that the difference of
such polynomials does satisfy this condition, namely that P(y) ,(0) — Po) ,(0) = 0. Then, the difference of the zeta
functions ¢ (s, Sq1y) — ¢ (s, S(2)) is regular at s = 0 and satisfies the formulas given in Theorem 3.
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We conclude this section by recalling some results on zeta determinants of some simple sequences that will be
necessary in the following. These results can be found in different places, and are known to specialists. We will use
the formulation of [16]. For positive real numbers / and g, define the non-homogeneous quadratic Bessel zeta function
by:

oo jzk -5
Z(s,v,q,l)=2( 3 +q2> :

k=1

for Re(s) > % Then, z(s, v, g,[) extends analytically to a meromorphic function in the complex plane with simple

poles at s = %, —%, —%, .... The point s = 0 is a regular point, and
© D) ! + !
B v7 ) =—=\V ~ 1
v 2\"72
I,
200, v,q,1) = 2l ”(Vq). (14)

In particular, taking the limit for ¢ — 0,

ﬁlv-l—%

Z(0,v,0,1) = —log—7——.
2720 (v+ 1)

5. The analytic torsion

<ing> forn=1,2, and 3. Actually, the case n = 1 is essentially
contained in [20], and both the cases n = 1 and n = 2 are given in [8], Sections 5.4 and 5.5, so we will focus here on
the new case of C, stin - BY the analysis in Section 4, the relevant zeta functions are:

In this section we give the analytic torsions of Cy S}’

oo s—2s 72§ 2s

k=1 n,k=1 n,k=1
= zjﬁzosz,k
+ ) (1
n,k=1
< j 2“k+ U™
((s.A@) = > (4 1P T ’“‘0" +2 Z n(n+2)“‘"—
n,k=1 n,k=1

l‘Lln 2 l‘LOn
+ZXNM+DZZS+§Z<+DZZW

n,k=1 n,k=1
0o +—2s —2s T—2s
4“(S»A<3))=Z;1§y +2 Z n(n+2) “'" + Z(n+1)2 “°"’Z+
k=1 nk=1 k=1
- 2];025,/(
+ ) i+
n,k=1
0o :—2s o0 2s
(s AW) =Y T+ D P
k=1 nk=1

and by Eq. (1), the torsion is (a = sina = ),

1 3
log T(CyS},) = -3¢0, ADY +¢'(0, 4% - S8, A +2¢7(0, AW).
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Define the function:

1 3
t(s) = —Eg(s, A(l)) + ;‘(s, A(z)) — Eg(s, A(3)) +2¢ (s, A<4))
1 00 ]17,13‘? 1 00 JZTI%S
2521—28 _EZZ—ZS
k=1 k=1
00 (J//Ll k)—2s 00 ;12vk
+ Y nmn+2) == —Zn(n+2)l -
n,k=1 n,k=1
00 —2s
2 l‘-On 2 uon 2 uonk+
+Z(n+) TS Z(-I—l) 125 Z(-i-)ﬁ

nkl nkl

=
— TT

1 1
—12‘( 21(s) — —Zz(S) + Z(s) — Z(s) + Zo(s) — 5 Z+() = Ez_m),

then

3 ’ 1 / 1 / 51 1 / 1 /
log T (CaSj,) =1'(0) = 540 = 5230+ Z'(0) Z'(0) + Zy(0) — 525 =522 (0)
1 1 A 1 1
+10g12<5m(0) - EZZ(O) + Z(0) — Z(0) + Zo(0) — §Z+(O) - EZ_(O))'
Using Eqgs. (14) of Section 4, we compute z1,2(0) e z’l /2 (0). We obtain:

3 1 4 1 1 )
log T(CoSj,) = (Z + Z(0) — Z(0) + Zo(0) — EZ+(0) — EZ_(O)) log!

—i—(—logZ—i—Z/(O) Z'(0) + Z,(0) — IZ;(O) EZ/ (0)) (15)

_ Inorder to evaluate the remaining part, we use Corollary 1 of Theorem 3. We consider separately the two functions
Z(s) — Z(s), and 2Zo(s) — Z4(s) — Z_(s). In the first case, the relevant sequences are the double sequences
S={nn+2): Jm k} and S = {n(n + 2): (]M k) }, and the simple sequence Uy = {n(n +2): w1}, ,, and

Z(s) = ¢(s,9), Z (s) = ¢(s, S). In the second case, the relevant sequences are the double sequences
So = {(n + 1) jﬁ(mk} and St = {(n + D% (jm),”i,k)z}, and the simple sequence Uy = {(n + 1)*: MO0 Yo s
and Zo(s) = ¢(s, S0), Z+(s) = ¢(s, S1).

We start by analysing the two simple sequences U, j =0, 1. Recall from Lemma 3, that

pon=vvinm+2)+1,  p,=vn+1).
Consider first the sequence Uy = {n(n +2): u1,,}o0 . By definition of 1 ,, it is easy to see that

(s, UD) =v " (¢r(s —2) — Lr(5)),

and therefore U] is a totally regular sequence of spectral type with infinite order, e(U;) = g(U;) = 3, and ¢ (s, Uy)
has simple poles at s = 1 and s = 3 with residues:

1 1 1
Resg ¢ (s, Uy) = — (logv—)f——) Res; ¢(s,Uy) = ——,
s=1 v

s=1 12
1 1
RCS30§(S, U)) = v—3(y —logv —£(3)), Resél t(s, U =— (16)
c— s=
The analysis for the sequence Uy is a little bit longer. By definition Uy = {(n + 1)2 o, ,,}n |» Where

mon =vvinn+2)+1.

For a positive ¢, consider the sequence:



418 L. Hartmann, M. Spreafico / J. Math. Pures Appl. 93 (2010) 408—435

L, = {(n+ D2 /n(n+2) +q}zozl.

Then, it is clear that
¢(s, Up) =v ¢ (s, L)

The sequence Ly is the sequence of the square roots of the positive eigenvalues of the Laplace operator on the three
sphere $3 of radius 1 (see [15], and references therein). Thus,

(25, Lo) =¢(s,Spy Ags).

The zeta function ¢ (s, Sp, A g3) has been studied by various authors. We will refer to [15]. Using the results in [15],

it follows that e(Sp A(S(;)) = % g(Sp, Ag;)) =1, and that Sp A(SO3) is a totally regular sequence of spectral type with

infinite order. Since shifting the sequence does not alter its character (see [18]), it follows that e(Ug) = g(Up) = 3, and
that Uy is a totally regular sequence of spectral type with infinite order. In [15], it is also proved that ¢ (s, Sp, Ag3)

has simple poles at s = %, %, —%, for all j > 0, and formulas for the residues are given. In particular:

1 1
Res; ¢ (s, Sp,y A(S(?) =, Res; ¢ (s, Sp,. Ag(?) =,
s=3 2 s=1 4
-2 -2
and hence, ¢ (s, Lo) has one simple pole at s = 1, and s = 3 with the residues:
1
Res; ¢(s, Lo) =1, Res; ¢ (s, Lo) = %.
s=3 s=1 2

Expanding the power of the binomial, we have that

¢(s, Lg) =¢(s, Lo) — %;(s +2,Lo)g+ ) ( ?);(s +2j, Lo)q,

j= 7

and therefore,
1
Resi ¢(s.Lg) =5(1—q),  Resii(s,Ly) =1,
s=1 2 s=3
and we have the expansions:

) 1 1 1
¢(s,Up) =v*¢(s, Ly) = 5(1 — §>: + Ki(s), nears=1,
1

(s, Up) =v=¢ (s, Lq)=—3;+K3(s), near s = 3, a7
vws—3

where the K (s) are some regular functions.
Next, we start the analysis of the double sequences. We split it into two parts.

5.1. Partl

In this first part we deal with Z (s) — Z(s). Thus, we consider the sequences S and S. Using classical estimates for
the zeros of Bessel function [23], we find that e(S) = e(S‘) =2, and the relative genus are (2, 1, 0) for both sequences.
The fact that S, and S, are totally regular sequences of spectral type with infinite order, will be a consequence of
the following analysis. Note that we have the product representations (the first is classical, see for example [23], the
second follows using the Hadamard factorization theorem):

v

ho= T+
T+ D 2 )

k=1 v,k

. val S Z2
I(z)= ST} ]_[(1 + —(J'L,k)z)

k=1
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Using these representations, we obtain the following representations for the Gamma functions associated to the
sequences S, and S,. For further use, we give instead the representations for the Gamma functions associated to the
sequences Sy, / ,u% .oand S,/ M% ,» that will do as well. By the definition in Eq. (9), with z = /—A, we have:

log I'(=%, S/ (11,0)%) = —logl_[<1 + M)

k=1 Jm
= _logllL],n (Ml,n V=) + (Ml,n)lOg v —A
+ 1, log(pr,n) — pi,nlog2 —log I' (i1, + 1),

10g1—'(—)\, Sﬂ/(:ul,n) = —10 l_[<1 + ( )‘)(/‘Ll n) )

(]Ml - k)2

=—logly, (1avV=2)+ (k1,0 — Dlog /=2
+ w1 nlog(urn) — minlog2 —log I'(py,,n + 1).

A first consequence of these representations is that we have a complete asymptotic expansion of the Gamma
functions log I'(—A, Sy), and log I" (— A, S’n), and therefore S,, and S‘n are sequences of spectral type. Considering the
expansions, it follows that they both are totally regular sequences of infinite order.

Next, we prove that S and S are spectrally decomposable over U; with power x =2 and length £ =4, as in
Definition 1. We have to show that the functions log I"(—A, S,/ M% ., and log I'(—A, S‘n / ,uin) have the appropriate
uniform expansions for large n. This follows using the uniform expansions for the Bessel functions given for example
in [12] (7.18), and Example 7.2,

/12 1 | 1 1
I,(vz) = (1+U1(Z)—+U2(Z)—+U3(Z)—+0<—)),
VZrv(l + 2 v v2 v oo
where
Ui 1 5
1 )= - )
8VT+22  24(1+422)2
Uso) = 9 77 N 385
2181 +22)  192(1+22)2 T 1152(1 +22)3°
75 4563 17017 85085
Usz(z) = 7 s+ 7 9
1024(1 4222 51201 +2z2)2  9216(1 +2z2)2  82944(1 +72)2
and
, 1+ Zz)zl_tev \ 1+Zze‘)log 1+«/i+7 1 1 1 1
I'(vz) = 1+ Vi@=+ W@ +Vi@—=+0( =) ).
2mvz v v v v
Vi(z) 3 + !
1 Z)=— ’
8VI+22  24(1 +22)2
Vo) = 15 N 33 455
2= T8 +2) | 6a(1+22)2  1152(1+22)3
105 5577 6545 95095
Vi(z) = — + +

1024(1+22)2 512001 422)3  3072(14+22)7  82944(1 +72)7

Using the classical expansion for the logflrithm of the Euler Gamma function [7, 8.344], we obtain, for large n,
uniformly in A, the expansion of log I'(—A, S,/ /L% ,) and of log I'(—A4, S,/ ,u% .)» and consequently of the difference,
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log I" (=4, $u /1 ) = log I'(=h. Su/ui ) = D (@n-1() = dn-1 D)y,
h=0

l ~
=3 log(1 = 1) + (h1(2) — 91 (1))

1,n

n 1 N 1 1
+(¢2(M—¢2(M)MT+(¢3(M ¢3()»))—+0(M4 )
1n

1,n I’Lln
with
B0~ ¢ = 5 et
20-n1 2(1-n3
A 1 1 301
B20) =600 =3 Gt Ao
11 35 1 67 1 107 1

P = n =3 G-mi 16 _0ni 160_ni 48—t

Note that the length £ of the decomposition is precisely 4. For the e(U;) = 3, and therefore the larger integer such
that 2 — 1 = oj, < 3 is 4. However, note that by Theorem 2, only the term with o, = 1, and o3, = 3, namely h =2, 4,
appear in the formula of Theorem 3, since the unique poles of ¢(s, Uy) are at s = 1 and s = 3. We now apply the
formulas of Theorem 3.

First, by the definition in Eq. (11),

A e 1 1
é & _ z didt,
1(8) = Pi(s) = / 2mi / —A (2 a _)L)é 2(1 —)»)2)
Ba(s) — Pas) (3 A
2(s 2(s —/ / A(4(1—)») (1—2)2 4(1—)»)3) ’
q33(s)_¢3(s):/ls—1i./e ( 35 1 )dxdt
2mi 48(1 M 1613
0 AH,C
ol i@ 1wy
+/’ i J = \16 (157 48 (1 _ 1)} e
0 AH,C

These integrals can be computed using the formula in Appendix A. We obtain:

Reso(1(s) = @1()) = -1, Resy (@1(s) = @1() =
~ 1 ~
Re_%o(dh(S) — Dy(s)) = T R6_801 (@2(s) — Pa(s)) =

Reso((5) — 3(5)) = = Resi (63(s) — 3(5)) =

315°

Second, using this results and the residues of ¢ (s, U;) given in Eq. (16) it follows that

A A 1 -
Z(0) = Z(0) = —A0,1(0) + A0,1(0) + 2 Res; £(s, Up) Resi (@1(s) — @1(s))

s=1 s:O

1 A
+ 3 Res; £ (s, Up) Res (P3(s) — ®3(s)),
s=3 s=0

= —A0.1(0) + Ag.1(0), (18)
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and
Z'(0) — Z'(0) = —Ag,0(0) — Afy 1 (0) + A0,0(0) + Ay, (0)

1 .
+3 Re_>sl1 ¢ (s, U1)Rgsoo(¢>1(S) —1(s))

1 .
+3 RES; ¢(s, Up) Reso(@3(s) — @3(s)),

s=0
1
315v3°

A ~ 1
= —A0,000) + A0,0(0) — Ay 1 (0) + Ay 1 (0) + 7 (19)

Third, by Eq. (13) and Theorem 2, the terms A¢,9(0) and Aé’ 1(0), are:

o0

-1 -3y, 2
A00(s) =Y (a0.0.n — br.o.ouy " = b30.0uy )uy ™,
n=1
o
-1 -3y, 2
Ao.1(s) =Y (a0 n —broau, ' = b3 oauy, )u, ™.
n=1

Hence, we need the expansion for large A of the functions log I"(—A, 3‘,,/;&”), ¢A>1 A), ¢33 A), log I'(—A, Sn/M%,n),
¢1(X) and ¢3(A). Using classical expansions for the Bessel functions and their derivatives and the formulas in Eq. (12),
we obtain:

1 1
ao,0,n = 510g27f + (Ml,n + —) log iy — minlog2 —log I'(1,n + 1),

2
1 1
aO,l,nZE Ml,n+§ s

1 1

—, b =—, b =b =0,
B 3.0.0= 3¢5 1,0,1 = 03,0,1

b1,0,0=—

and

N 1 1
.o =5 log2m + (Ml,n + 5) log 1, — pmi,nlog2 —log I'(py,n + 1),

~ 1 ~
b1,0,0= 1z’ b30,0 =

This shows that Ag o(0) = Ag,o(0), and that

—, bio1=b301=0.
360 1,0,1 3,0,1

. 1 — L 1
Ao i) = Ao1(9) = =3 3 n(n +2)uyy =5 (s, Un).

n=1

Thus,

n 1
AO’I(O)_AO’I(O):_Z’

A 1 1
A 1(0) — Ay 1 (0) = 3 logv — ¢'(=2) — 3 log 2.

Substitution in Egs. (18) and (19), gives:

A 1
Z(0) =)= 7.

. 1 1 1 1
Z'0)—Z'0)=—=1 "(=2) + = log27 + — — )
0) 0) 2ogvﬂ“( )+20g ”+2v 31503
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5.2. Partll

In this second part we deal with 2Zg(s) — Z(s) —

Z_(s). Thus, we consider the sequences Sy and Si. The
sequence Sy is analogous to the sequence S analyzed in the previous part. We have that

log I"(=. Son/H§ ) = =108 Ly, (0. v/ =) + po.n 10g V=2 + 10,0 10g po.n
— to.nlog2 —log I'(po,n) —10g 140.n-
Using the uniform expansion of log 7, , (£0,n~/—A), we obtain the uniform expansion for large n
log F(_)‘-, SO,n/M%,n)
o
=Y n-roMug,”
h=0

=(—v1—A+log(l++1—1)—log2+1—logv/—1)10.n

- log(1 —A) + <—U1<J—_A> - i) :

Z MO,n
+( Us(V =) + = U1<¢_))

MOn

+ U3(«/_)+U1(~/_)U2(\/_)——Ul(d_)3+_>1 (1)

— 4+ 0
360 + ut
and hence
b1 0(0) = 1 1 +5 1 1
1,0 - 1 -~ 31 T T~
8 (1— )\)% 24 (1— )L)% 12
PPN B S N 51
2O T T —n) T8 —0)2 16(1—0)3
3000 25 1 +531 1 221 1 1105 1 1
3.00) =——— + — —
384 (- k)% 640 a —A)%

— + + —.

128 (1_}0% 1152 a _)\)% 360

Using the expansion of log 1, , (1t0,n+/—2), and that of the ¢; o(A) for large A, and the definitions in Egs. (12), we
compute:

1
ao,0,n,0 = 5 log 2 + (Mo,n + 5) IOg MO,n — HO,n 10g2 - logr(ﬂo,n + l)a

1 1
ao,1,n,0 = 5 Ho,n + 5)

1
b1,0,00= 1 b3,0,0,0 = 360" b1,0,1,0="03,0,1,0=0.

The analysis of the sequences S+ needs more work. Let us define the functions

TE(@) =+4,(2) + 2J)(2).
Recalling the series definition of the Bessel function:

p 00

Z ( l)k 2k

we obtain that near z =0,

£y — 1 2
g (Z)_(li )2”F<v)
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This means that the function f"vi (R)=z"" T,,jE (z) is an even function of z. Let z, x + be the positive zeros of TUlL (2)
arranged in increasing order. By the Hadamard factorization theorem, we have the product expansion:

+00
T =T @ [] <1— : )

=00 Zv,k,+

and therefore

s (12 D)2 (-
b (Z)_<1iv>2vr<v>g(l % )

v,k,+

Next, recalling that (when —7 < arg(z) < %),
J(iz) =T, (2),
Jiiz)=e2Ve 31 (2),
we obtain:
TE(iz) = e (£1,(2) + 21}(2)).
Thus, we define (for —m < arg(z) < %),
QF () =e 7T (iz), (20)

and hence

v o0 2
05 (2) =+1,(2) + 21}(2) = (1 + 1) < H(l + 2Z—>

v /)2VI(v) il Tkt

Using these representations, we obtain the following representations for the Gamma functions associated to the
sequences S+ ,. By the definition in Eq. (9), with z = +/—A, we have:

log I'(=x, S+.0) = —log [ | (1 + 2(_7’\)>

k=1 ‘]U-O,n N=

= —log Qi . (v/=2) + pro.n log V=2

1
—,uo,nlog2—log1“(,uo,n)—i—log(l:I: )
HO,n

A first consequence of these representations is that we have a complete asymptotic expansion of the Gamma func-
tions log I"(—A, S+ ,), and therefore both S, , and S_ , are sequences of spectral type. Considering the expansions,
it follows that they are both totally regular sequences of infinite order.

Next, we prove that S are spectrally decomposable over U with power k¥ = 2 and length ¢ = 4, as in Definition 1.
We have to show that the functions log I' (—A, S+ ,,/ M(Z),n)’ have the appropriate uniform expansions for large n. We
have:

log I' (=2, Sx.n/145,,) = —10g Qjr; (10.7/—1) + 0.0 10g /=% + 10,2 10g 10,1

)
MO,n ‘

— o.nlog2 —log I'(on) + log<1 +

Recalling the expansions given in the previous part, we obtain:

2

viog ——
1 eV 1+Z2e & 14++/1422

+ — 1 2 4
0y (vz) =Vv(1 +2°) N

1 1 1 _
X (1 + Wl,:I:(Z); + W2,i(2)§ + W3,i(Z)§ +0(v 4))’
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where p = ﬁ’ and
Wi.+(p) =Vi(p) £ p, Wa.+(p) = Va(p) £ pUi(p), W3 +(p) = V3(p) £ pUa(p),
5 7
W =-p+—p,
1,+(p) 8p+24p
Wt ()= 1 2+59 . 455
24P =7 P T 90?1527
W e () 33, 10571 16555 , 95095 ,
3P = 90047 T 153607 T 9216 © T 820447
Wi (p) =~ pt o p?
1,— p - 8 p 2417 [l
31 , 139 , 455
Woe(P) = =157t 102? ~ 11327
Wa ()= 177 5 22891 5 22715 , 95095
3= ="10047 T 153607 T 9216 P T 820447
This gives,
log I' (=2, Sux/13 )
0
= dn1 MW"
h=0
=(1—+v1—x1+log(1+1—2) —log2)uo.n
1 1\ 1
——log(1 =)+ [-Wia(WV=r)£1— —
4 12) ko
1, 1\ 1
+(~Wos W=R) + =W (V=R — = ) 5=
2 ’ 2 'U“O
\n
1 1 1\ 1
+ (W= Wo e (W=2) = W3 £ (V=2) = W] L (V=) £ =+ — | ——
3L 3360) ud
+o( ! )
— )
MO,n
and hence
o 5 1 71
1, - - - )
+ 8(1_)\)% 24(1_)\)% 12
. 111 71 13
1,-(A) =— - — -,
8 (1_)\)% 24 (1_)\)% 12
5 (x)—3 1 11 7 1 1
2T 6 1—a 8 -2 T 16(1—n)3 2
19 1 9 1 7 1 1
V) =— _Z L _
P2 = e T T8 TT6 =0} 2
b — 17 1 3% 1 203 1 1463 1 121
S 384(1_)0% 640(1_)0% 128(1_)0% 1152(1_)0% 360°
527 1 1989 1 427 1 1463 1 119
¢3,—(A)=@ 3 s T o2 7 9 240"
(1—21)2 640 (1—21)2 128 (1—21)2 1152 (1—2)2 360
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By Eq. (13) and Theorem 2, the terms Ag o(s) and Ag 1(s), are:

o0

-1 -3y, 2
A0,0£() = (a0.0m= — brooxuty, " —b30.0xu,° )u, >,

n=1

o0

1 -3y, 2
Ao1.+(8) = (a0, 1m+ —bro1+uy ' = b3 o1 zuy )u, >
n=I

425

Hence, we need the expansion for large A of the functions log I"(—A, Sni/,u%,n), ¢1,+(2) and ¢3 +(1). Using
Egs. (20) and the definition, we obtain:

NS ( - —k) -
OF@)~ =1+ bz | +0(e™),
V21 ;

for large z. Therefore,

log I (< S1.2/1,)

Thus,

1
ap,0,n,+ = EIOgZJT + <

ao,1,n
b1,0,0

b1,0,0

1
Mo.n — =

1 1
,+ = §<Mo,n - §>,
11
+="1 b3.00+ =
13
-1

1
—HonV—At 3 (Mo,n -

2

1 1
) log(—X) + 2 log2r

1
+ (MO,n - 5) log HO,n — log 2M0'nr(M0,n)

1 1
+log<1 + —> + 0(
n

)

2

121
360°
119

3,00+ = 35

360

> log o, — 10g 20" I (110,n) + log(l +

b1,0,1,+ =b3,0,1,+ =0,

Using these coefficients and the ones obtained for the sequence Sy, we conclude that

and

o0
2A0,0,0(5) — Ao,0,+(s) — Ao,0,—(s) = — Zlog(l -

240,1.0(5) — Ao,1,4(5) — Ag1—(s) =

n=1

o0

n=1

’

1 )(n+1)2

2 2s
0,1 0,1

(n+1)>2

2s
0,n

MO,n

Next, we collect the results obtained for giving the uniform expansion of the sum of the logarithmic Gamma

functions:

21og I' (=, So.n/ 1) = log I'(=A, Sp.4/145.) — log I' (=, Su.— /15 )

where

=> bn-1(y,)

h=1

=log(1 =2+ Y _ 1y,

h=2
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On—1(A) =2¢p—-1,0A) — Pn—1,+(A) — pp—1,— (1),

and
1 1
$1(0) =— 4
(1=  (1=2)2
=2ty L3 1
T T AT A= T 2a = T
$300 35 1 +43 1 67 1 +107 1
3 =—— i _——.
2 1-x2 8a-n3 8u-n: 24 a-n3

Let @,_1(s) =2®Pp—1,0(5) — Pp—1,+(s) — @Py—1,—(s). Then, using the definition in Eq. (11), and the formula for
the integral in Appendix A, we have:

2 (s + 1)
D(s) = ——=27,
1(s) N
r 1 3
Bo(s) = — T D (5 504 32)
2 2
F(s+3)/428 22 214
<D3(s)=¥ — s+ ——s2 ,
JT 315 35 315
and hence
Resg @1(s) =2, Res; @1(s) =0,
s=0 s=0
5
Reso @2(S) =——=, Res; d)z(s) =0,
S=O 2 S:O
214
Resg @3(s) = —, Res| @3(s) =0.
s=0 315 s=0

Using all these results and the residues of the function ¢ (s, Up) in the formulas given in Theorem 3, we obtain:

2Z0(0) = Z(0) — Z_(0) = —2A0,1,0(0) + Ag,1,+(0) + Ag,1,— (0),
2Z((0) — Z', (0) = Z'_(0) = —2A0,0,0(0) + A0,0,+(0) + Ag,0,— (0) — 247 | ((0)
, , 1 1 107

v2 + 31503°
Recall that

o 2
(n+1)
2A0,1,0(5) — Ap,1,+(s) — Ag,1,—(s) = E : 25
n=1 MO,I’!

1
= v 25, Ug) =v ¢ (s, Spy Ags + ﬁ),

and this gives (see [15]):

1
2A0,1,0(0) — Ao,1,+(0) — Ap,1,-(0) =¢ (0, Sp; Ags + ﬁ) =—1,
and hence

270(0) — Z1(0) = Z_(0) = —2A0,1,0(0) + A0,1,+(0) + Ag,1,-(0) = 1.
In order to deal with the other term, it is convenient to proceed as follows. Since,

00 2
Mo n — L
240,0,0(5) — Ao,0.4+(s) — Ag0,—(s) == > _(n+1)*log /;”2 Moy
n=1 0,n
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we have that

A(s) =2A40,0,0(s) — Ao,0,+(s) — Ao,0,—(s) +245 ; o(s) — Ay 1 4 (5) — Ag 1 _(s)

o0
== (n+1D)?log(pd, — g 2.

n=1

Recalling the definition of g,

A(s) == (n+ 1)*log(v’n(n+2))uy >

n=1

o0 o
= —2logv Y (n+ D% = 3 (0 + D log(n(n +2)up >

n=1 n=1
o

= —2(logv)v~% Z <_js)§(s +7,Spy Ags)v
j=0

o0

_S .
e () sn

j=0
and therefore
A(0) =—2¢(0,Sp, Ag3)logv +¢'(0, Sp, Ags)
=2logv +2¢'(—=2) +2¢'(0) +log 2.

This gives:

1 1 107
2Z0(0)—Z/ (0)—Z" (0)=—A(0 —1-—= e —
0(0) — Z,(0) — Z__(0) ()+2U( 1)2)+315v3

= —2logv —2¢'(=2) +logm + ! 1 ! + 107
s ST\ T 2) T ass
We can now compute the torsion using Eq. (15)

I 1 1
log T (CuS},) = <Z +7+ 5) log?

1 1 1 1
—log2— =1 '(=2) + = log27 + — —
og 2ogv—l—g“( )+20g 7T+2v 315

, 1 1 1 107

L 2 L3l 1
= — 10g —— _
2808 T4y T 13
We conclude this section reviewing briefly the analysis of the case n = 1, and n = 2. All details can be found in
[8]. In the case n = 1, the torsion is given by:

1 A A 1
log T(CaSllsinoe) = (Z +Z0) — Z(O)) 10g12 + Z/(O) - Z/(O) - 5 log2,

where

o0

Z6O =Y jmt 2@ =2 ()

n,k=1 n,k=1



428 L. Hartmann, M. Spreafico / J. Math. Pures Appl. 93 (2010) 408—435

Therefore, the analysis is very similar to the one performed in the previous part I, with the main difference that now
the zeta function ¢ (s, U) is v™°¢(s). Therefore, we just have a simple pole at s = 1, and we only need the expansion
of the logarithmic Gamma function up to order v,

The case of the sphere is a bit more complicate. Now,

s 301 1 , 1, 1., 1 4
l0g T (CaSfing) = ( 3 + 3 X+(0) = 5X-(0) Jlog? + 2 X}, (0) = X (0) + 5 log 5.

where

o0 o0
Xe@) =D @+ D5 X-()= ) @n+Dj2%

n,k=1 n,k=1

Un =+/V2n(n +1) + }1, and the jv,k,:l: are the zeros of the function Gf(z) = :I:%JU (z) + zJ,(2). The zeta function
¢ (s, U) is now related to the zeta function of the Laplace operator on the 2-sphere:

o 1
t(2s,U) =v 3¢ (s, Spy AY + ﬁ)
It is known (see for example [18]), that ¢ (s, Sp,. A( )) has one simple pole at s = 1. This gives:
(s,U) . + f(s)
s, = 5 A s),
3 )
where f(s) is some regular function. Thus,
1
X4+(0) — X_(0)=—A0,1,+(0) + Ao,1,-(0) + 2 Re%l (®2.4(s) = D2, (5))
§=l
X'.(0) = XL (0) = —(A0,0,+(0) + A | 4 (0) — Ag,0,—(0) — Ay ; _(0))
1
+ = Res0(<1>2,+(s) — @2,_(s))
Ve 5=0
14
+ <ﬁ + K) Re%1(¢2,+(s) — @, _(s)).
5=
Next, proceeding as in the part II above, and introducing the functions,

Gi( _ l /
L (2) = inv(z) +2J,(2),

we obtain the product representation:

o1 (z) = T
HV(Z)_:I:2IV(Z)+ZIV(Z)_(1 )2vr<v)n< vki>

where H;—L () =e” %i”GﬂE(i 7). This allows to obtain the expansion:

o0
log I' (=2, Spy+/17) = Z b1+ My "

h=0
= (1 = VT=A+log(1 +T—=2) —log2) uy
1 1 1
—ZIOg(l—)&)‘f‘( Wi+(V—A) £ __E)E
) 1 1
+ (—WZ,ﬂ:(V —A) + 5W1,i(’v —A) = g) 2 + O(Mﬁ)

where p = ——, and

(1-»2
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1 1
Wi +(p)=Vi(p) £ 3P Wr +(p)=Va(p) £ EPU1(P),

SR TESE S Wa(py o — 2y 1O s 455 6
Wi e lps L Wa e 22 19, 455
LI =T P o 22 =70 TP T st
This gives,
br ) — o ()= —(— :
2+ MmN\ T a-n )
and hence using the definition in Eq. (11),
o0
By () — By (5) 1/;3—11 /e“ 1 1
§)— Dy _(s)=—= — .
2+ 2 2 i ) A \1—x (=12
0 Ag,¢

Using the formula in Appendix A, we obtain:

1
@2.4.(5) = D2 (5) = S I'(s + 1),
and hence

1
Re%o(¢2,+($) — Py _(5)) = 7 Re%l (D2,4(s) — P2, (5)) =0.
§= 5=
This gives:

Z4+(0) —Z_(0) = —A0,1,+(0) + Ap,1,-(0)

Z4,(0) = Z/-(0) = (A00.+0) + Ag 4 (0) = Ao0-(0) = Ay 4 _(O) + 7.

Eventually, using the expansion for large z of the functions HF(z), we obtain:
2 1 1 1
log I'(=A, Sp+/15) = —tnvV/ =1 + 5\ M0 =3 log(—A) + 3 log 2

1
+ (Mn - 5) log py —log 2H7 I (wy)
+1 (lzl: : )+0( : )
og — |
2pp V=2

1 1 1
ao.0.n+ = 3 log2m + (,un — 5) log iy — log2#" I'(uy,) + log(l + o )
n

1 1
ao,1,n,+£ = 5 Mn — 5 s

1
b20,0,+ = —3 bro1,+=0.

This immediately shows that Ag 1,4+ (s) = Ag,1,—(s), and therefore X (0) — X_(0) = 0. Next,

A0 0.+(s) — Ao _(s) Ew:(2n+1)u—2s<1og<1+ ! ) log<1 ! ))
0,0, — A40,0,— = - -
- f— " 2un 2pp

= F(s,v).

and hence
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Note that this series converges uniformly for Re(s) > 2, but using the analytic extension of the zeta function
¢ (s, U), has an analytic extension that is regular at s = 0. Therefore,
1 2
X (0 -X_(0)= —Re%OF(s V) + — 72 = —log— —fW+— 72
\)

and this concludes the proof in this case. A power series representation for the function f(v) is (see [8, Appendix B])

2 1
f(v) =log —+ §( Py Ag;);)

< I (—k=$\Ek+)+3.5p, AL
+ Z—o (2k+1)22k 22j j p2k+2j+1

+k£0

6. The higher dimensional cases

In case of a smooth compacted connected Riemannian manifold (M, g) with boundary d M, the analytic torsion is
given by the Reidemeister torsion plus some further contributions. It was shown in [4], that this further contribution
only depends on the boundary, namely that

logT(M)=1logt(M)+ c(0M).

In the case of a product metric near the boundary, the following formula for this contribution was given by
Liick [10]:

1
logT(M)=1logt(M) + Zx(aM)logZ.

In the general case a further contribution appears, that measures how the metric is far from a product metric:

1
logT (M) =logt(M) + Zx(BM)logZ—i-A(aM).

A formula for this new anomaly contribution has been recently given by Briining and Ma [2]. More precisely, in [2,
Eq. (0.6)] is given a formula for the ratio of the analytic torsion of two metrics, gg and g1,

rM,g) 1
oz o =5 [ (B(V/™) = B(V™)) e

oM

where VI'M s the connection form of the metric g;, and the forms B(VJ.TM ) are defined in Eq. (1.17) of [2]
(see Eq. (25) below, and observe that we take the opposite sign with respect to the definition in [2], since we are
considering left actions instead of right actions). Note that we use the formula of [2] in the particular case of a flat
trivial bundle F. Taking g; = g, and g an opportune deformation of g, that is a product metric near the boundary,

T(M,
A@M) = log L M- 8D
T(M, go)
and therefore
1 1
log T(M) =logt(M) + ZX(aM) log2 + 3 /(B(V{M) — B(V{™)). (22)
oM

Since the whole boundary contribution is a local invariant of the boundary, it makes sense to compute the
contribution given by the formula in Eq. (21) with respect to the metric induced by the immersion and an opportune
product metric in the case of a cone M = CW. Our result is stated in the following lemma.
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Lemma 4. Consider the two metrics:
=dr ®dr + azrzggn,
go=dr ®dr + azlzggn,

on Cy S}, where a = sina. Then, (p > 0)

2 [p—3]
logw a_ : i( ) Gk X(Szp)
T(CaS;?, £0) 4)ﬂ@—qwhﬂ (p—j + h)a2i=n ’
o LCeSia 80 5~ 27 () (- 22— 1)
T(CaS; ", g0) i /@ =) = D= Q(p—j+h)—Da2G=-m  4r(p—1!

Proof. The proof is a generalization of the proofs of Lemmas 1 and 2 of [8]. We first recall some notation
from [1, Chapter III] and [2, Section 1.1]. For two Z/2-graded algebras A and B, let A ® B = A A B denote the
Z./2-graded tensor product. For two real finite dimensional vector spaces V and E, of dimension m and n, with E
Euclidean and oriented, the Berezin integral is the linear map,

B
/:AV* ® AE* — AV*,

B n(n+1)
A (—1) 2
@B Bler..... et
T2

where {e; };?:1 is an orthonormal base of E. Let A be an antisymmetric endomorphism of E. Consider the map:

R [ .
A A= 5 Z (ej, Aep)e’ né.
ji=1
Note that

[STSY

A
= Pf(g): (23)

dina ! associated to the metric gj, and £2; the curvature two form.

Let ® be the curvature two form of the boundary Sl";m}x with standard Euclidean metric. Let (w;)¢; denote the entries

with line a and column b of the matrix of one forms w;. Then, we introduce the following quantities, where i denotes
the inclusion of the boundary (see [2, Egs. (1.8) and (1.15)]),

B
[«
and this vanishes if dimE = n is odd.
Let w; be the connection one form over C, S )

1
Si=3 Y (i%wj —i*wo) g™,
k=1
1 m—1
Ql = E (i*Qj)Gkgléek A éel,
k=1
=a=li:9k@ 24)
2 j—

Direct calculations starting from the metrics g; allow to obtain explicit formulas for all these forms. The calcula-
tions in the present case are a slight generalization of the calculations presented in the proof of Lemma 2 of [8], and
we refer to that work for further details. We find that the non-zero entries of the matrices appearing in Eq. (24) are
(where {e%} is the dual orthonormal base on the boundary),
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m—1 1
. x - ro s o an 0
(i*w1 —i*wo) o, = —a 1_[ sin; do; = —7¢ i

j=i+1

(i*.Ql)@" o = 1—a l_[ sin6; 1_[ sin® 0, dO; A do

Jj=i+1 s=k+1
llz(i—l)e /\ee i <k,
e eml 6,d6; Ay = —s e A, i<k
]];[Llsm sl:Lsm k=3¢ Ne i <k.
This gives:
S2— 1 On A Ok A 200 A 26k
1_—mh§1e NN LN

Then, recalling R = 21— 2812 by Eq. (1.16) of [2], it is easy to see that

2 @

Following [2, Eq. (1.17)], we define:

1 | 1 B o |
TCyS/
B v o Isma __f/ 71,/{_181?(114. (25)
( j 20 ZF(%—FI) !

T c(Sm 1
From this definition it follows that B(V, Isiney “vanishes identically, since Sy does. It remains to evaluate

m—1

B(v, ““%ne) B (25) gives:

1 1 1B o0 1
m- 1 _.2\q2
B(VITCaSlsma) — _f/e(az u )Sl Zk—ukilsfdu
2 m I'G+D
O =
B 1
1 > 1 1
=§/ Z T/(_z_bﬁ) W dus<
=0 k=1 JIrG+1) / a
i . N
- / Z(J)L reey
2(-m 1
2 o,cljr(2 1) = \h) @h+k)a*i=h
Since the Berezin integral vanishes identically whenever k + 2 = m — 1, we obtain:
[2_1] ] . h B
TCoS"! 1 1 j (—1) B
IECIES S ) R
2 ; j!F(%)g h) (m—2(j —h) — 1)a2G-n

Now consider the two cases of even and odd m independently. First, assume m =2p + 1 (p > 0). Then, using
Eq. (23), Eq. (26) gives:
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resr 1 Ly (—1)! ;
A¥lsina) __ B 2P
B[ =1 T S () o [ S

= i -
_1 ; B
B 1 [p—31 1 i ] (_l)h /(_a2)p
A S e -D =\ (=i )
1 ; B
'3 2’: j (D [
= — T EE—— - €
4 W=D = \n) (p = j +ma2i=h

aZP[”_%] 1 ey (—1)h e
B ]Z '(p—J)'hX(:)(h) (p—j+ha*i=h Pf(g)

(p—11 .

2p 2 1 j ) . .,

_Cl j ( ) .

~ 2 ZO +Z<h)(p—j+h)a2(j_h)e(s ,gE),
]:

I(p — 7)!
JMp =M=

where e(S2P, gE) is the Euler class of (S2P, gE), and we use the fact that

= ()= fon-2)

Therefore,
1 TCaSlzl-) aZp [P_%] 1 J j (_l)h 2p
s [ B = S s ()G e [ <)
2p J:O I’l:() 2P
S S
Isin la
[p—31
2 2 J j h
_ d Z (=1 X(Szp)-
8 = ]'(P—J)'h:O (p—Jj+ha*i=h

Second, assume m =2p (p = 1). Then, Eq. (26) gives:

p—1

B
B
=0 J 'F(p—J+ D7 Q2(p = j+h)—Da2i=m J 71

21) 1
lsma

TCyS

1
B(V, =3
J

Now we evaluate [® 8?77 Recalling that
2
R=-=87,
72

we obtain that

1p12p2
/'Szpl /Sszpz (— )2p1 /S]RP—l’

and using the explicit definitions of these forms given in Eq. (24), we have:

B B op—1 2p—1 p—1
o1 (=P la?r2 . .
/Slp =T Z(l*a)l—l*wo gk Z()ege A&l
k=1 i,j=1
(—1)Pa?r!
= 22p—1
o€

a(D)=1

cpx Y sgn() (@1 — o) 62207 Vo .. (207 Vo 2p),

433
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(=1)P2p—1D

where cp = “—5;,——. Using the same argument used in the final part of the proof of Lemma 2 of [8], we show that
T 2
B 2p—1
_ —DPa?rt2p— 1) 7 4
/8121’ 1_ g )“217_1;;’ ) [T Gin6))/ a6y A--- A dps.
Jj=
Then,
SZp I_ (— 1)[7(2p 1)( 1)[702]7 1(219 ! VOI(SZp—l)
% 2p— 12p(la)2p 1 la
2[7 1
_(=1Per=h (—)ra?r=12p — D! 277 (la)*P~!
= 7[21;271 2p—12p(la)2p—l (p—1D!
L oa?lep-n! 1
P T PR
and
. B(v ey 5 i(1> (—1)" / / s
2 : S (p—j+5 i \n) Qp—j+ 1)~ Da2i P
Slzslino: Slsma
RS i@ (1" 2r-12p— 1)
JIN(p—j+ 5 S\ @ —j+h) = Da2i=m —54p 5 _ 1))

]
‘p_ 2 Z( ) el 2-1(2p — 1))
G- p-onE=\n)ep—jtn - D20 a1t

~.
Il
=}

We have now all the terms appearing in Eq. (22). In fact, the Reidemeister torsion of the cone over a sphere was
computed in [8, Proposition 2],

1 1
5 VOI(CO‘ Sln;ma)

Comparing with the results given in Theorem 1, we detect the contribution of the singularity. It is easy to see that
the formula in Eq. (22) holds for the cone over the circle and over the 3-spheres, while a contribution due to the

singularity appears in the case of the sphere. This motivates the following conjecture, that is a theorem for p < 3.

log7(Co St ! )=

[sina

Conjecture 1. The analytic torsion of the cone CyS; gn O: of angle o, and length | > 0, over the odd dimensional

sphere §2P=1 \ith the standard metric induced by the immersion in R™ L and absolute boundary conditions is
(where p > 0):
_ 1 _
log T (CoS77)) = < log Vol (C, S75)

[sino 2 [sina

(=D sin?=Do 2p — DIsin®?a

Z ‘(2(p—J)—1)‘ Z(h> Qp—j+h -1  4°(p—-1)!

h=0
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Appendix A

We give here a formula for a contour integral appearing in the text. The proof is in [17, Section 4.2].
Let Ag . ={reC||arg(A —¢)|=0},0<6 <m,0<c<1,areal, then

o0

‘/‘[S_IL. ﬁ#d}hdt:M
2mi —A (1—A) I'(a)s
0 Ag ¢
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