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MULTIPLE POISSON KERNELS

Mauro SPREAFICO

Recently, some results appeared [2] [1] on generalizations of the integral
formula

(1)
1

2π

∫ 2π

0
Pr(θ)dθ =

1

1 − r2
,

where Pr(θ) = P (θ,r)
1−r2 , and

P (θ, r) =
1 − r2

(1 − reiθ)(1 − re−iθ)
,

is the Poisson kernel in two dimensions, with |r| < 1. Moving on along this
line of investigation, we prove in this note the following result, that is the
natural generalization of equation (1), and contains the results of [2] and [1].

Proposition 0.1. Let a = (an) and b = (bn) be two vectors in the complex

open unit N -ball, and define

Pa,b(θ) =

N∏
n=1

1

(1 − aneiθ)(1 − bne−iθ)
.

Then,

1

2π

∫ 2π

0
Pa,b(θ)dθ =

N∑
k=1

bN−1
k

1 − akbk

N∏
n=1,n 6=k

1

(1 − anbk)(bk − bn)
.

Proof. The proof is a straightforward application of the residue theorem. In
fact, assuming first that the components of b are all different, namely that
bj 6= bk, for all j 6= k, we obtain

1

2π

∫ 2π

0
Pa,b(θ)dθ =

1

2πi

∫
|z|=1

N∏
n=1

1

(1 − anz)(1 − bnz̄)

dz

z

=
1

2πi

∫
|z|=1

zN−1
N∏

n=1

1

(1 − anz)(z − bn)
dz

=
N∑

k=1

Res
z=bk

zN−1
N∏

n=1

1

(1 − anz)(z − bn)
.
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This gives the thesis in this case. To finish the proof, it is easy to verify
that the formula given in the thesis extends analytically when some compo-
nents of b are equal.
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