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We use relative zeta functions technique of W. Muller to stigate the regularized partition
function of a finite temperature quantum field theory on a uiitécs space-time with noncompact
spatial section. As an application, we study the case of lessscalar field with singular delta-
like potential, as described in [1].
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1. Introduction

To begin with, we recall that the partition function for a feitemperature
quantum field theory on a ultrastatic space-time with corhpgmatial section is
constructed as follows. Let be a compact Riemannian manifold of dimension
and consider the produ® = S x M, whereS? is the circle of radius- = g/2x7, and
B =1/T is the inverse of the temperature. LEtbe some nonnegative self-adjoint
operator (typically the Laplacian) acting on some functgpace (we shall deal with
scalar fields) defined o/ and H = —32 + L. The canonical partition function at

temperaturel’ of this model may be formally written ag = det‘%(ﬁzH), where £

is some renormalization constant. It is well known that somigs interpretation to
this functional determinant can be given using zeta functiegularization. The zeta
function regularization technique was first introduced bgyRand Singer [22] to
define the regularized determinant for the Laplacian on $pramd used by Hawking
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[17] in order to regularize Gaussian path integrals on a emirgpace time, and
soon became a fundamental tool in mathematical physics amg provide a way
for regularizing the partition function of a quantum fieldedny at finite temperature
on compact domains. Recall that the zeta function of a nativeg self-adjoint
operatorA is defined by (where SpA denotes the positive part of the spectrum of
A) C(s; A) = Zkespﬂ A%, when Rds) > s (for some suitableyg), and by analytic
continuation elsewhere. Sinc® is compact, zero is not a pole af(s; H), and
using the zeta function, the regularized functional deteamt of H is defined by

dett = e | o,

and the partition function is
1 1
logZ = Eg’(o; H) — ég(o; H) log ¢2.

Introducing the geometric zeta function, namely the zetaction of the restriction
L of H to M, the following equations hold (we assume here for simplichat
kerL = ¢):
¢, H)=-8 Resig(s;L), 1)

s=—3

'(0;H)=—-p Resi)f(s; L)—-28(1—-log2 Resi ¢(s; L)y —2logn (B; L), (2)
S:*Z S:_i

where the generalized Dedekind eta function for a positiei-agljoint operatorA
in some Hilbert spacé<(M), where M is compact, is defined by [20]

@ a = ] (1-e),

AESPA

and Reg,_,, f(s) denotes the coefficient of the tery — so) % of the Laurent
expansion of f(s) at s = so (see for example [5] p. 420). This is a classical and
well-known result (see for example [14, 11]), and we havedud#iee formulation
of [20] (see also [6, 10] and [13] for an extension), and itde&o the natural
question of a suitable generalization for noncompact domai

In this paper we will try to answer rigorously this questiondawe prove a
generalization of equations (1) and (2) that holds for a twanscalar field on a
noncompact domain. In this case, we shall consider oparatach that the spectrum
involved is no longer only discrete and a continuous coutiiim appears. With regard
to the treatment of the continuous spectrum, we will folldve tapproach of Nller
[19]. However, we should mention that the introduction ofatige traces appeared
in the seminal paper [2], where the so-called second virgadfficient, proportional
to the relative trace Te #Ho+V) — o=BHo) (here Hy is free Hamiltonian), was
expressed in terms of the trace of scattering matrix, then-Béhlenbeck formula.
More recently, functional determinants in quantum fieldotlyehave been investigated
with relative zeta functions (see for example [12]). The meatatical counterpart of
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these approaches in the physical literature makes use dh Keemula (see [4]).
Beside the natural interest of the generalization itself, would like to note that
on a more general ground, scattering methods have beenedpipli the physical
literature (see for example the review [18]) in order to gtuguantum vacuum
effects between material bodies and our result providesgaeraus justification of
these formal approaches. Furthermore, a motivation is gigen by the recently
growing interest in delta interactions, namely a theorycdbed by a scalar field
in a flat space-time perturbed by pointlike (uncharged) fimiges”, modelled by
delta-like potentials. Since these are solvable quanturdetso it is quite natural to
analyze explicitly these examples, as illustrative agia of our results. Actually,
the case of one delta interaction turns out to be partigularteresting, since it
can be completely solved, and thus plays the role of the ngadxample, as the
Laplacian on the circle is the leading example for the cormpase.

2. Relative determinants

We introduce in this section the mathematical tools necgssa order to state
our main results. This is essentially based on the work dflléd [19], however,
we will reformulate the approach of tller in terms of the resolvent rather than of
the heat semigroup, because in specific applications we &avexplicit expression
for the resolvent function instead than that for the heanhd&erAnyway, it is well
known that one may investigate equivalently the resolventamw elliptic operator
instead of heat semigroup.

Let H be a separable Hilbert space, and ltand Ay be two self-adjoint
nonnegative linear operators {H. Suppose that Sp = Sp.A U Sp,A, where Sp,
is the point spectrum, and Sps the continuous spectrum, and we assume both O
and oo are accumulation points of Sh It is convenient to split the point spectrum
in the null part, S@A = {Ao = 0}, that has finite multiplicity, plus the positive part,
Sp;;A = {Aj}]J.:l, where each eigenvalue is counted according to multiglidiet
H ="H.®H, be the orthogonal decomposition into the subspaces thatspund to
the continuous and the point spectrum 4f respectively, and le#. and A, denote
the restrictions ofA to H. and H,, respectively. LetR(A, T) = (AI — 7)~1 denote
the resolvent of the operatdf, and p(T) the resolvent set. Then, we introduce
the following two sets of conditions. First, we assume tha sequence is
a totally regular sequence of spectral type with finite e, as defined in
[25]. This implies that the following conditions hold:

(A.1) The operatorR(x, A,) is of trace class for allk € p(A));

(A.2) asi — oo in p(A,), there exists an asymptotic expansion of the form

KA
. 1 & .
TrR(x, A,) —dim kerApX ~ Z Zaj,k(_)‘)a’ logk(—2),
j=0 k=0
where —oo < -+ <o) <y <so—1, anda; - —oo, for large j, and
a;’k =0 for k > 0O;
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(A.3) as1» — 0, there exists an asymptotic expansion of the form
: 1 &, '
TrR(x, A,) — dimkera, ~ ~ > b=,
j=0

where 0= g, < p; < ..., and g, — o0, for large ;.
Second, we assume the following conditions on the pair, Ag):
(B.1) the operatoR (%, A.) — R(), Ap) is of trace class for alk € p(A.)Np(Ag);
(B.2) asx — oo in p(A.) N p(Ag), there exists an asymptotic expansion of the

form
[ele) Kj

Tr(R(h, Ae) — RO, Ao) ~ DY ajx(=1)% logh (—1),
j=0 k=0
where —oco < -+ < @1 < ag, «; — —oo, for large j, and a;, = 0 for
k> 0;
(B.3) asAr — 0, there exists an asymptotic expansion of the form

Tr(R(h, Ao) — RO, Ag) ~ Db (=),
j=0

where -1 < By < B1 < ..., and B; — +oo, for large ;.
We introduce the further consistency condition (that wik lalways tacitely
assumed)
(C) a0 < Bo-

By results of [25], it follows that the zeta function of the esptor A, is well
defined by the uniformly convergent series

(si Ap) =Y A7%,
j=1

when Re(s) > so > ap+ 1, and by analytic continuation elsewhere. In particular,
the heat semigroup&'» is of trace class, and the following equations hold:

: 1 . 1
Tre ' —dimkerd, = — / e (TrR(A, A,) —dim kerAp—) dr, (3)
211 Jay _, A

where the Hankel type contour isy_, = {» € C | |arg(A +a) =5}, oriented
counter clockwise, with some fixed > 0, 0< 6 < m,

1
T'(s)

We can prove similar results for the relative heat semigrama the relative
zeta function, using [19]. We introduce the following lemma

C(s; Ap) = / 1 (Tre"*» — dimkerA,) dt. 4)
0

LEmMMA 2.1. If the pair of nonnegative self-adjoint operatoKd’, Tp) satisfies
conditions (B.1)—(B.3) then it satisfies the conditiond.1)—(1.3)of [19].
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Proof: The proof that conditions (B.1) and (B.2) imply conditiorf$.1) and
(1.2) of [19] follows from the equation

1
el —egf=_— / e (R, T)— R(, To)) dA, (5)
27Tl AQ,fa

and 2.2 of [25], respectively. Next, assume (B.3). Then, day fixed 8,,
|Tr (R(A, T) — R(A, To)) — b (=)=t < K| — AP,

We can use this bound for the remainder in order to obtain) (4£319]. Using
the expansion given by condition (B.3) of the difference bé tresolvents in Eqg.
(5), the remainder is

J
=5 [ e (THRGT) — RO To) = 3 by (077
j=0

JT1 A@,fa

and thus it satisfies the bound
(0] < K / eI (=1 [P,
|A0,—a|

where the integral is a finite constant. |

Therefore, assuming conditions (B.1)-(B.3) for the paimohnegative self-adjoint
operators(A., Ag), all the results of [19] hold, and in particular we can defihe t
relative zeta function for the paifA., Ag) by the following equation

. — 1 > s—1 —tAc _ A—tAp
£(s; Ae, Ag) = F(S)A *~Hr (e e 1) dt, (6)

when op+1 < Re(s) < o+ 1, and by analytic continuation elsewhere. Back to the
pair (A, Ag), note that

Tr (€74 —e ") = Tre "» 4 Tr (e74 — e7'10),

and the problem decomposes additively into the two termsingyifrom the pure
point and the continuous spectrum, namel; A, Ag) = {(s; Ap) + (s; Ac, Ao).
Thus, if we define the regularized relative determinant of thair of operators
(A, Ag) by

det(A, Ag) = e_%{(S;A’AO)’x:O’
then we have the decomposition
det(A, Ag) = det(A,)det(A,, Aop),

and the two regularizations can be treated independentiiz Juggests to introduce
the following definition for the zeta regularized partitibmction of a model described
by the operatorA, under the assumption that there exists a second operajor
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such that (using the above decomposition) the operatpr satisfies assumptions
(A.1)-(A.2) and the pair of operator&A., Ag) satisfies assumptions (B.1)—(B.3),

logZ = %g’(o; Ap) - %;(o; Ap)loge? + %4/(0; A, Ag) — %@(o; Ac. Ao)log 2. (7)

This is the natural generalization of the classical zetailgggation technique to
the relative case. We conclude this section with a techriesiilt.

LEMMA 2.2. Assume that the nonnegative self-adjoint operalordecomposes
additively as sum of two nonnegative self-adjoint comngutiperators7; and 7>,
where e /"1 is compact trace class and satisfies an expansion for smadls
Zj‘;o Z,ﬁoc/_kﬂf logt 7, with —co < o <y1 < ..., y; — +oo, for large j, and
cix = 0 for k > 0. Then, if there exists an operatofy such that conditions
(B.1)—(B.3) hold for the pair (7>, Tp), then conditions(1.1)—(1.3) of [19] hold for
the pair (T, T1 + Tp), and viceversa. In particular, the following equation held

Tr(e" — e'1t10)) = Tre™ 1Ty (e7'72 — 7'0) .

Proof: By standard properties of the heat semigroup

e—tT _ e—t(Tl-‘rTo) — e—l‘Tl (e—l‘T2 _ e—tTQ) .

Suppose that (B.1) holds fdff», Tp). Then, e’’2—e~'70 is of trace class by Lemma
2.1, and the above equation implies that’e- e~'(71+70 is of trace class. Therefore,
the equation given in the statement of the lemma holds. Thigiés that, if (B.2)
and (B.3) hold for (T3, Tp) and (A.2) holds forTi, then (1.2)-(1.3) of [19] hold
for (T, Ty + Tp). The proof of the converse is similar. O

3. Relative partition function

Let M be a smooth Riemannian manifold of dimensien and consider the
product N = Slﬁ x M, where S! is the circle of radiusr. Let & be a complex

line bundle ovg;N, and L a self-adjoint nonnegative linear operator on the Hilbert
spaceH (M) of the L? sections of the restriction af onto M, with respect to some
fixed metricg on M. Let H be the self-adjoint nonnegative operatir= —32+ L,

on the Hilbert spaceH(N) of the L? sections of£, with respect to the product
metric du®>@® g on N, and with periodic boundary conditions on the circle. Assume
that there exists a second operafay defined onH(M), such that the pai(L, Lo)
satisfies the assumptions (B.1)—(B.3) of Section 2 (since haee seen that the
problem decomposes additively in point and continuous, pegtassume here without
loss of generality that the point spectrum is empty). ThgnLbmma 2.2, it follows
that there exists a second operafds defined inH(N), such that the paifH, Hp)
satisfies those assumptions too. Under these requiremeatsntroduce the relative
zeta regularized partition function of the model descrilisdthe pair of operators
(H, Hp) using equation (7), and we can prove the following result.
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PrROPOSITION 3.1. Let L be a nonnegative self-adjoint operator o, and
H=-382+L, on S} x M as defined above. Assume that there exists an operator
Lo such that the pair(L, Lp) satisfies conditiongB.1)—(B.3) Then,

¢(0; H, Ho) = —ﬁReaz(s L, Lo),
s=—3
¢'(0; H, Ho) = —ﬁRe%g“(s L; Lo) —2B(1—log2 Re&{(s L, Lo)

?——z S——z
—2logn(B; L, Lo),
where Hy = —83+Lo and the relative Dedeckind eta function is defined by
o0
logn(z; L, Lg) = / log (1 — e ™)e(v; L, Lo)dv,
0
e(; L, Lo) = — lim (rv®€?"7i; L, Lo) — r(v’€; L, Lo)),

Tl e—0t
r(A; L, Lo) =Tr(R(A, L) — R(A, Lg)).

Proof: Since (L, Lo) satisfies (B.1)—(B.3), by Lemma 2.2H, Hy) satisfies
(1.1)—(1.3) of [19] and the zeta function is defined by

1 o0
“H, Hy) = —— £ Tr (e — e7'Ho) gy,
Csi HoHo) = 1 /0 ( )

when g+ 1 < Re(s) < 8o+ 1. By Lemma 2.2

Tre" —e) =Y e »2 Tr (et —e'to),
neZ
and hence, using the well-known Jacobi summation formulaol&in
¢(s; H, Ho) = 1y e r2 Tr e 'lo) dr
F(s) nEZZ: )
— \/_r 5 z—lTr( —tL e—tLo) dt
I'(s)
2 © O 7T2r2i12
+ ﬁr/ ts‘%‘lze‘ mTr (et —e ') dr
F(S) 0 n=1 (8)
1 1
:ﬁrf‘ s—=)¢ls—=;L,Lg
I'(s) 2 2
2\/_7' / (e—tL e—lLo) dt
F(s)

= z1(s) + Zz(S)-
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The first term, z1(s), can be expanded near= 0, and this gives the result
stated. In fact, by Proposition 1.1 of [19s; H, Hp) is regular ats = 0, and this
implies that the pole ok (s; L, Lo) at s = —% is simple. To deal with the second
term, since(L, Lg) satisfies (B.1)—(B.3), we can write

1
Tr (e—lL _ e—lLo) = / e MTr (R(A, L) — R(A, Lg))dA.
2mi Ap—a

Now, it is convenient to change the spectral variablé te A%, with the principal
value of the square root, i.e. with ©argk < 7. Then,

1
Tr(e't —e ') = = / e 1Tr (R(K?, L) — R(KZ, Lo))kdk,
T Jy

where y is the linek = —ic, for somec > 0. Writing k = v€?, andr(x; L, Lg) =
Tr(R(A, L) — R(A, Lo)), a standard computation leads to

Tr (eftL — eftLO) = / efvzle(v; L, Lo)dv, 9)
0
C(s; L, Lg) = / v%e(v; L, Lo)dv, (10)
0
where we have introduced the trace of the relative spectedsore
e(v; L, Lo) = I|m L (PTG L, Lo) — r(v€€: L, Lo)), (11)
+ Tl

associated to the pair of operato(rs, Lo).
As a result, the second termgy(s), of Eq. (8) becomes

2 J'rznzr2
z2(8) = Nl e / / _vz’e(v; L, Lo)dvdt,
F(S) 0

and we can do the integral using for example [16] 3.471.9. We obtain

A /mr SN [ ynr\s—3
z2(s) = I ;/0 <T) K‘P%(Znnrv)dv. (12)

Since the Bessel function is analytic in its parameter, lergat —%, and
Kf%(z) = \/zzze—z, Eq. (12) gives the formula for the analytic extension of Heta
function ¢(s; H, Hp) nears = 0. We obtain

722000 =0, z5(0) = —2/ log(1— e #")e(v; L, Lo)dv, (13)

and the integral converges by assumptions (B.2) and (B., Bg. (11) for the
trace of the spectral measure. This completes the proof.
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Note that Eq. (7) is the natural generalization of the zetaction technique
from the absolute (compact) to the relative (noncompactecand that Proposition
3.1 extends the main result of the absolute case (see Egsand)(2)) to the
relative one. Namely, the partition function of the modebkatéed above satisfies
the equation stated in Corollary 3.2, that follows from E@) &nd Proposition 3.1.

COROLLARY 3.2.

logZ = B (log2¢ — 1) Res ¢(s; L, Lo) — g Reg ¢(s: L, Lo) —logn (B; L, Lo) .
. 1 1

A=72 S:_é

Next, we show that a further feature of the compact case, lyathe behaviour
for small temperature, extends to the noncompact case.

COROLLARY 3.3. For large B

IOgZ = —Evacuunf3 + O (,B_E) >
with somee > 0, and whereE,scuum iS the vacuum energy

1
Evacuum= — (|09 2 -1 Re% ¢(s; L, Lo) + E Re&i ¢(s; L, Lo).

S:—? Azi?

Proof: By definition
Evacuum= — lim dglogZ.
B—+o00

The result follows from the equation given in Corollary 3dhce we show that
logn (B; L, Lo) = O(B~°), for large B. Recall the definition of the Dedekind eta
function

logn(t; L, Lo) =/ log (1 — e ™")e(v; L, Lo)dv.
0

We split the integral atv = 1. Since the above integral converges uniformly for
large v, the fl‘” is O(e ") for large t. For the other integral, we use the expansion
of the trace of the relative resolventi; L, Lo) for small » assumed by condition
(B.3), to obtain from the definition of the relative spectrakasure, Eq. (11), that
e(v; L, Lo) = O(w'™Pi), where g, is the first noninteger exponent in (B.3). O

REMARK 3.4. EqQ. (10) defines the relative zeta function whegp+ 1 < Re(s) <
Bo+ 1. In general, the meromorphic continuation of this quantiys a simple pole
at s = —1/2 and the formal definition of the vacuum energy

o0
Evacuum= / ve(v; L, Lo)dv,
0

is meaningless. Our formula in Corollary.3 provides a rigorous regularization
scheme for this formal definition.
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4. Zeta regularized partition function for delta interacti ons

We analyze in this section two natural applications of thehwoe presented in
Section 2. The geometry of our model is given by a scalar fieldthe three-
dimensional flat space interacting with one or two externaldé described by
delta-like potentials, thus the geometric operator dbswyi our model is formally
L = —A — 1108(0) — 18(a), where A is the Laplace operator ifR3, w; are real
constants (the strength of the interactions), ands a fixed point inR3. Models
of this type have been studied by different authors (see [B8, I1@ particular, in
the case of a one-point interaction, a rigorous definitioss baen also obtained
by Green’s function approach, and formulae for the heat édlehave been given
[23, 21, 24]. However, a unified approach valid for finitely mpapoints interaction,
was presented by Albeverio et al. in [1], using Fourier tfama, a method first
used in [3]. We will use this approach.

4.1. One-point interaction in three dimensions

The concrete geometric operator describing our moddl is —A,, where —A,
is defined in Theorem 1.1.1.2 of [1] by the resolvent with tredldwing kernel

ker(x, x', M + Ay) ™) = —Gr(x —x) — ;%Gf(x), (14)

e

with A = k% € p(=A,.), Imk > 0, o is a real parameter related to the strengi
(we haveu; =0 in the present case) [1] 11.1.1.30, and the free Green iommdts

giklx]
Gi(x) =

4t |x|’

Note that the casexr = oo corresponds to the negative free Laplace operator
—A = —A,. By [1] Theorem 1.1.1.4 the spectrum ofA, is purely abso-
lutely continuous S@-A,) = [0, o0), if « > 0, while has one negative eigenvalue,
A= —4ra)? if « <O.

The complete operator describing our model ls= —32 — A,, and, because
of the above result on the spectrum efA,, we assumex > 0. Proceeding as in
Section 3, we introduce the unperturbed operaifar= —3> — A, and we consider
the pair of operatorg§H, Hp). The partition function of our model is given by Eq.
(7), without the part arising from the point spectrum, and meed to study the
analytic continuation of the relative zeta functiars; H, Hy). We first check that
the requirements (B.1)—(B.3) of Section 2 are satisfied by plair of operators
(L, Lo) = (—A,, —A), and this is true as a particular instance of a general class of
pairs of operators considered in Section 4.1 of [19] (an@resfces therein for this
particular type of potential) or in Section 1.6 of [4]. Hovesy note that we will be
able to verify directly conditions (B.1)-(B.3). Next, ugirEq. (14), the difference
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of the kernels of the resolvents of the geometric operaters i

g2iklx|
Ar|xP(dra — ik)

ker(x, x', R(A, —Ay)) — ker(x, x', R(A, —A)) =

and is class trace, since it follows

1
Tr(R(A, —Ay) — R(A, —A) = —.
FR(C ) ( ) 2ik(Amra — ik)
A further simple computation gives the trace of the relatypectral measure
4o
5 _AO(’ _A = ’ 15
et )= tra 102 (13
and the following formulae for the main geometric spectiahdtions:
e(4mx)2t
Tr(e—t(—Aa) _ e—t(—A)) = (1 — CI)(4]'[0[\/Z)) y (16)
1(4ra)=>
P —Agy —A) = S 17
§(s ) 2 cosms (7
1 1
n(t; —Aq, —A) = logT'(2at) + > log 20t — 2at(log 20t — 1) — > log 2r.
(18)

The formula in Eq. (16) follows from the definition, since niEq. (9) and (15),

2

oo efv t
Tr(en "8 — g4 = 4a/ —————dv,
o (4ra)?+v?

and next we can apply [16] 3.363.2 (the probability integhahction is defined
accordingly to [16] 8.250—recall tha&r is nonnegative). Note that the integral
representation for the trace of the difference of the heatraiprs given in Eq. (16)
satisfies the conditions (1.1)—(1.3) of [19] for the pair gbecators (—A,, —A).
The formula in Eq. (17) follows using Egs. (10), and (15). Témme result also
follows using the formula in Eq. (9), and the previous redolt the trace of the
difference of the heat semigroups, under the condition ®eafs) > 0, and using
[16] 6.286.1. The formula in Eq. (18) follows by definition cajl6] 4.319.1.
Expanding the formula in Eq. (17) near= 0, we obtain

Res ¢(s; — Ay, —A) = 2a, Reg ¢(s; — Ay, —A) = —4alog 4.
1 1

s=—3 s=—3

Using these results in Corollary 3.2, we obtain the explictmula for the
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partition function

logZ =2(log4dral — 1) aB —logn (B; —Ay, —A)

=2(log4ral — 1) af —logT 2up) — % log 208 + 2af(log 208 — 1)

1

— log 2r.
+2 g

Note that, using the classical expansion for the Gamma ifumcthis result is
consistent with Corollary 3.3. The regularized vacuum gyefiollows immediately
from the above expression.

4.2. Two-point interactions in three dimensions

The concrete geometric operator describing our modelis= —A,,, where
—Aqy., IS defined in Theorem 11.1.1.1 of [1], by the resolvent withe tfollowing
integral kernel

1
ker(x,x', (A + Aga) ™) = —Gi(x —x') = Y T (k) ;4 Gi(x — a))Gi(x' — ay),
Jj1=0

with A = k? € p(=Ay.), IMk > 0, and where thex; are real parameters (see [1]
11.(1.1.25)), and

ik
Fa,a (k) - %o~ o _Gk(ak)
—G(a) o1 — g,

Note that the caser; = oo corresponds to the negative free Laplace operator
—A = —Aw4 anday = oo to the case considered in Section 4.1. By [1] Theorem
1.1.1.4 the spectrum of-A,, is purely absolutely continuous $pA,,) = [0, c0),
plus at most two negative eigenvalues. The eigenvalues rasemt if del’, ,(k) =0
for Imk > 0. An explicit analysis (see also the end of Section I.1.1 [d])
shows that the condition necessary in order to have a purahfinuous spectrum
is 4r2apa1a® > 1. We will proceed assuming this condition.

The unperturbed geometric operator-ig\, and the fact that the pai—A, ., —A)
satisfies conditions (B.1)—(B.3) follows as in Section 4The difference of the
resolvents has trace

a? 21 (o + a1)a — ika + ke

TrRkZa_Aaa _sz,_A = — —.
(R( a) ( ) ika (4rapa — ika) (drona — ika) — €#ika

This allows to write a formula for the trace of the relativeespral measure.
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Using the definition in Eq. (11), we obtain

e(v; —Aga, —A)

_a 27 (a0 + a1)a — iav + €4 27 (g + @1)a + iav + e 24
a? (4rag —iv) (Amoag —iv) — €49 a2 (Agaga + iv) (Arara + iv) — e 2av

b

Note that in the limit case; — oo the relative spectral measueév; —A, ., —A)
reduces smoothly to the ongv; —A,,, —A), considered in Section 4.1.

The formula for the trace of the relative spectral measumvalto compute all the
quantities appearing in Proposition 3.1, and thereforeltmio an explicit result for
the partition function using Corollary 3.2. For, note thia¢ functione(v; —Ag.4, —A)
is a smooth function, as it is the quotient of powers and tragoetric functions.
To compute the values of the residue and of the finite part ef zhta function
£(s; —Aga, —A) ats = —%, we use the expansions efv; —A, ., —A) for small
and largev. For small v,

a 4 (ag + ar)a + 2
m 16m20pa1a? — 1

e(v; —Agq, —A) = + O(v),

while for large v,

—2c0%2av) + 4r (o + a1)a
- Tav?

Using the integral representation for the zeta functioregivn Eq. (10), we can
split the integral atx =1,

$(s; =Agar —A) = Co(s; @) + {oo(s5 @)

e(v; —Agq, —A) + 0(0_3).

1 00
= / v Ze(v; —Agq, —A)dv +/ v Ze(v; —Aga, —A)dv.
0 1

Making use of the above expansion of the functie(@; —A, ., —A) for small

v, we see thatyy(s; a) is regular nears = —%, and its value is

1
{O( — %; a) = A ve(v; —Ag.as —A)dv.

Next, ¢-(s;a) is not regular nears = —%. However, using the asymptotic
expansion given above

{oc(s; a) = za(s; a) + zp(s; a)

0 2 2av) — 4
= / v (e(v; —Aga, —A) + cos2av) 7 (oo + al)a) dv
1

Tav?

o 2cog2av) — 4
_/ s g2av) ﬂ(ao—i—al)adv_
1

Tav?
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Using the expansion of the functioa(v; —A, ,, —A) for large v, we see that

that z4(s; @) is regular ats = —% and its value is
1 o 2cos2av) — 4 (og +
zA( —— a) = / vile(w; —Aga, —A) + §2av) (@0 + a)a dv.
2 1 ’ mav?
The last termzg(s; a) is not regular ats = —%. However, we can deal with

this term exactly:

o 2 cog2 — 4
zp(s;a) = —/ v 82av) Z(O{O—i_al)adv
1 Tav
2 (> _,,c092av) 1
= - T —dv+4 —,
— v 2 v+ (ag+oz1)2S+l
and therefore
2Ci(2a
Res zp(s; a) = 2(ap + 1), Reg zp(s; a) = ( )-
1 1 ma

s=—3 s=—3
As a consequence, the partition function of our model in trge 4r%wgoia® > 1
is

logZ = — b v (e(v; —Agq, —A)
21

N 2 cog2av) — 47;(0{0 + al)a) v
Tav

Ci(2a)

wa

—/ log (1 — e %)e(v; —Agq, —A)dv.
0

+ 2(c0 + 1) (log2¢ — 1) B —

/3 1
B — —/ ve(v; —Agq, —A)dv
2 Jo

Note that the zeta-function regularization used implieg thresence of the
renormalization scalé in the final expression for the canonical partition functiém
the present case, the dependence drops out as soon as oterastéd in evaluation
of physical quantities, as for example the Casimir forcefinge as the derivative
of the regularized vacuum energy with respect to externaamatera.
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