Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

NUMBER
THEORY

Editar=in-Chiel Editorial Board
David Goss Avmer Ash Fh. Michel

1. Brian Conrey K. Saundararsjal

Caterina Consani Harald . Szark

5J. Edixhoven Dinesh 5 Thakey

Remald Graham Rehert C Vaughan

Jubn 5. Hsia ILarie-France Vigneras
Mark Kisin Fernanclo Rodrigues Villegas
Tait Yuen Lan 0. Wan

Wenzhi Lup D, Zaglet

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Journal of Number Theory 129 (2009) 2035-2063

Contents lists available at ScienceDirect =
Journal of Number Theory '
www.elsevier.com/locate/jnt

On the Barnes double zeta and Gamma functions

M. Spreafico

ICMC, Universidade Séo Paulo, Sdo Carlos, Brazil

ARTICLE INFO ABSTRACT

Articl.e history: We present a complete description of the analytic properties of the

Received 9 May 2007 Barnes double zeta and Gamma functions.

Revised 5 November 2008 © 2009 Elsevier Inc. All rights reserved.

Available online 23 May 2009

Communicated by D. Zagier

Contents
T INtrodUCtiON . . . . ottt e e e e 2035
2. Heat kernel asymptotics, poles residues and particular values of ¢»>(s; a, b, x) and xa(s;a,b) ..... 2038
3. Analytic extensions: Integral representation of {>(s;a,b,x) and xa(s;a,b) .................. 2040
4. Finite part at the poles of £>(s;a,b,x) and x2(s;a,b) ... ..o i i 2041
5.  Integral representation of £;(0;a,b,x), x5(0;a,b) and I (x;a,b) .............. ... ... .... 2045
6. Series representation of ¢3(s;a,b,x) and x2(s;a,b) . ... .. .. 2047
7. Series representation of ¢5(0;a,b,x), x5(0;a,b) and Ia(x;a,b) . ....... ... ... .. L. 2050
8.  Properties of the Barnes Gamma function as a function of x: Product representation, functional

equation, Taylor expansion, asymptotic expansion, and particular values ................... 2053

9. Asymptotic expansions for small and large a@ ... .......... .. . . i e 2057

APPENAiX A, L e e e 2062

R OIEICES . . . ottt e e 2062

1. Introduction

Let a and b be real positive numbers and x a real number such that am + bn + x > 0 for all natural
numbers n and m. Let s be a complex number. For Re(s) > 2, the Barnes double zeta function is
defined by the double series [3,8]
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ta(s;a,b,x)= Y (am+bn+x)"",

m,n=0

while the Barnes double Gamma function is defined as

log I (x; a,b) = ¢5(0; a, b, x) + log p2(a, b),

where
log p2(a, b) = — lirrg)(;z/(o; a,b, x) + logx).
X—>

Note that the range for the parameters has been chosen for convenience. Larger ranges could be
chosen (for example, a, b and x to be real numbers such that am + bn+ x > 0 for all natural numbers n
and m). Furthermore, all the parameters can be analytically extended to suitable complex domains
(cpr. Sections 7 and 9).

The double zeta function was introduced and studied by Barnes [3] in order to study the double
Gamma function [3-5]. Nowadays, double zeta and Gamma functions are quite important in number
theory in particular by the works of Shintani [20-22] and Zagier [33,34], and different properties
of these functions have been investigated by various authors, and are strictly related, by methods
and applications, to many works appeared in the recent literature, where different analytic properties
of various type of zeta functions are investigated (see for example [28] for a list of reference). In
particular, the asymptotic expansion of double and multiple Gamma functions as functions of x in
the case when a =b =1, has been investigated by Shuster [23] with applications to the study of
topological zeros of the Selberg zeta function on forms for compact hyperbolic space forms, and a
first attempt to the study of the case with a non-trivial parameter (namely a # 1) has been done by
Actor [1], where however the formula for the derivative of the double zeta function at zero seems
to have some problems. More recently, in a series of works, Matsumoto has studied the asymptotic
series for both the double zeta and Gamma function, as functions of one of the parameters a or b,
with applications to asymptotic series of Hecke L-functions of real quadratic fields, while a formula
for £5(0;a, 1,a) has been given in [28] as a particular case of a more general Kronecker limit formula
for double quadratic zeta series. Eventually, note that multiple and in particular double zeta and
Gamma functions appear very frequently in mathematical physics in zeta regularization methods (see
works of Sarnak [19], Vardi [30] and Voros [31] or more recently [17] or [9] for a list of formulas and
applications in theoretical physics).

Motivated by these works, we present here a complete investigation of the main analytic prop-
erties of these functions. A few comments on our results. About the zeta function, we have three
remarks. First, applying standard heat kernels methods [10] we can obtain all information on poles,
residues and values at non-positive integers. Second, using classical techniques (in particular the Plana
theorem [18]), we can easily provide an integral representation of the zeta function that determines
its analytic extension. This gives, on one side another way to reobtain poles, residues and particu-
lar values, and on the other side also an integral representation for the derivative at zero; from this
equation, an integral representation for the Gamma function can also be obtained. Third, using more
recent techniques introduced in [27-29], we obtain a series representation for the zeta function. This
representation can be differentiated and therefore provides a series representation for the derivative
at zero of the zeta function and hence also for the Gamma function. About the Gamma function,
first we provide the integral and series representation just mentioned. Second, applying the approach
of [27], we perform a detailed study of the analytic properties of I';(x;a,b) as a function of x, re-
producing some of the basic properties of the classical Euler function (compare with [23] or [25]).
We conclude our analysis by presenting a very simple proof of the asymptotic formulas for large and
small a given by Matsumoto [14,15].

We conclude this section introducing some notation and some elementary equations. First, mimic
the duality Riemann/Hurwitz zeta function, it is natural to introduce the corresponding Riemann
Barnes double zeta function
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X(s;a,by= " (am+bn)~*,

2
(m,n)eN0

defined for similar range of the parameters and Re(s) > 2, and where the notation is N2 =N x N —
{(0,0)}, with N={0,1,2,...}.

The following equations are clear, and will be used to obtain all the results concerning the function
x (s; a, b), that will be stated in form of corollaries of the related results for the function ¢, (s; a, b, x).

t2(s;a,b,a) = x(s;a,b) — b g (s), (1)
L2(s;a,b,b) = x(s;a,b) —a S¢r(s). (2)

Also, note that all these functions have the symmetry ¢»(s;a,b,x) = {2(s;b,a,x), x(s;a,b) =
x(s; b, a).

In the following, we will use classical methods and some new techniques defined in [27,29]. Using
the approach of those works, we obtain the analytic properties of the zeta and of the Gamma function
from the defining sequences, namely the sequence: Sy = {am + bn}(m,n) N2 and the shifted sequence
Sy={am+bn + x}(m’n) eN2» and the sequence S = {am +bn + X}, )2, With the previous restrictions
on the coefficients. All these sequences have a unique accumulation point at infinity, exponent of con-
vergence 2 and genus 2. Moreover they are regular sequences of spectral type as defined in [27], and
totally regular as defined in [29]. This can be immediately proved using heat kernel techniques and
Lemma 2.2 of [27]. Following [27], we introduce the associated spectral functions: the heat function
(t>0)

f(t, Sy) = Z e—(am—i—bn—l—x)t’

(m,n)eN2

the logarithmic Fredholm determinant or logarithmic Gamma function (see also [29]), where the vari-
able X belongs to the domain C — Xy ., where Xy . is the sector Yy ={z € C| |arg(z—¢)| < %}, with
0 <c <min{a,b,x},and 0 <6 <,

A L.FL
log F(—)\., SO) = — log 1—[ <1 — m)Eaerbn 2(am+bn)? y

2
(m,n)eNg

and the zeta functions:

£(s,S0)= Y (am+bn)~* = x(s;a,b),

(m,n)eNg
(5,50 = Y (am+bn+x~",
(m,n)eNg

0(s.9)= Y (@m+bn+x) " =0(s:a,b,X) = (s, Sx) +x7°.

(m,n)eN2

The further zeta function ¢(s, Sx) has been introduced for technical reasons, in order to apply
directly the results of [27]. It is clear that it could be taken as the main zeta function instead of the
function ¢3(s;a, b, x). In particular, note that we can take the limit x — 0 and obtain the function
x(s;a,b).

As a first application, we have the following generalization of the classical Lerch formula (see for
example [12,27] for other generalizations).
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Proposition 1.1 (Lerch formula).

£5(0;a, b, x) =log I'y(x; a, b) + x'(0; a, b). (3)

We will give in Section 8 the relation between the Barnes Gamma function and I"(—A, Sgp), that
shows that they are the same function up to some normalization.

Eventually, we recall some basic formulas concerning the Riemann zeta function ¢z and Hurwitz
zeta function ¢y (see for example [11, 9.5] for the definitions) that will be implicitly used in the
following without further comment.

Res1¢u(s,q) =1,

s=1
Re510 CH(S,q) = =¥ (q),
S=
1 e 1o 1,1
§H ?q - 2 2 ‘12’

1
¢tH(0,9) == —q,
1

¢4(0,q) =log I'(q) — 5 log2r.

2. Heat kernel asymptotics, poles residues and particular values of ¢»(s; a, b, x) and x2(s; a, b)

The asymptotic expansion of the heat function can be immediately obtained by using classical
expansions of elementary functions (here the Bj are the Bernoulli numbers in the notation of [11]).

Lemma 2.1. For small t,

FE. S0~ Y Ptk

k=—2
where
Pi(x) = kf (_j1!)lek_1x1,
j=0
and
1

_11

a 2a
e—1+1 a+b
0_4 12\p " a)

1 Bs 1 3 op3
el (a+b)+6 b( +b°),
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1 B B ak+2 bk+2 k=2
k+1 (ak bk)+ k+2 +

_ Bk—jBji2 qk—i—1pi+1
2 (k+1)! ’

+ Y
(k+2)! ab = k— DG +2)!

<%

k>1.

Corollary 2.2. For small t,

o0
f&.So)~ > ett.

k=-2

From this information, we can easily localize the poles of the zeta functions, and obtain the values
of the residues and the values at negative integers using standard heat kernel methods (see [10]).

Proposition 2.3. The function ¢, (s; a, b, x) has an analytic extension to the complex s-plane with simple poles
at s =1 and 2. The residues at the poles are

Res s;:a,b,x)=—,
3221 &( ) s

Res (S'abx)—l 1+1 x
S eEan0=o\a% ) T

The values at zero and at negative integers —k = —1, —2, -3, ... are

(O'abx)—1+1 a by _x(1. 1 +X2
QOab0=7+3\p ) 2\ats) T 2
k+2

t2(—k; a, b, x) = (—=1Dkk! Z

j=0

(-1)/

J!

ex—jx’.

Proof. Consider the Mellin transform of the zeta function

. _ L i s—1
$a(s;a,b,x) = F(s)_/t f(t, Sy)dt.
0

Then, we can split the integral at t = 1: the part with large ¢ gives an integral function of s, in

the part with small t we can use the expansion given in Lemma 2.1 and integrate. This gives the
result. O

Corollary 2.4. The function x (s; a, b) has a regular analytic extension to the complex s-plane up to two simple
poles at s = 1 and s = 2, with residues:

1
Res s;a,b)=—,
1 X( ) s

o=}

N =

Resy x(s;a,b) =

s=1

Q| =
+
S| o=
N~
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The values at zero and at negative integers —k = —1, —2, -3, ... are

XSG ==0T\a ")

x (—k; a, b) = (=1)*kley.
3. Analytic extensions: Integral representation of ¢»(s; a, b, x) and x2(s; a, b)

We give in this section some integral representations that can be used to obtain the analytic con-
tinuation of the function ¢»(s; a, x), and x (s; a, b) (see also [16], in particular Section 4). These results
are obtained by application of the theorem of Plana [18], as for example in [24], and consequently
they are particularly interesting because of the simplicity of the proofs. The importance of these rep-
resentations, beside the analytic continuation, is double. From one side, they will be used in the next
section when computing the finite part of the zeta functions at the poles, from the other, in Section 5
in order to analyze the behavior near s =0, and consequently to obtain formulas for the derivative
at zero of the zeta functions. Observe that similar equations hold when exchanging the parameters a
and b.

Proposition 3.1 (Hermite formula).

(s;a,b x)—1a_S S X +a1_s ! s—1 X
& (s;a, b, =3 CH ' b 5_1§H >
o0 . .

_I_ia_s/fH(S,#)—fH(S, %)

77 1 dy.

0

Proof. Assume Re(s) > 2, and apply the Plana theorem to the sum over n. Uniform convergence of
series and integrals allows to do the following computations.

1 (o) (o] o0
&H(s;a, b, x) = ) Z(am +x) 7+ Z f(am + bt +x)" dt
m=0 m:OO

e /oo(am+x+iby)_5 — (am+x —iby)~S
+1Z

m=0 ey —1 dy
-0
1 = N 11 & s
=—a m+ — - am + x
5 Z( +a) +b5_12( +X)
m=0 m=0
00 oo(m i x+iby)_5 —(m+ x—iby)_s
s —S a a
+ia Z/ Ty — 1 dy,

and after some simplification this gives the thesis. O

A similar equation holds for the function ¢ (s, Sx), and in particular for x (s; a, b).
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Corollary 3.2.

1-s

b

1 1
x(s;a,b) =b"tr(s) + za_SCR (s)+ STOR (s—1)

Fon(s, by +1) — (s, —ily +1)

. _S 9 a bl a

+ia / Ty — 1 dy.
0

Note that we cannot simplify further the integrals using the relation

CH(S,x+1) =¢u(s, %) —x°,
because of convergence’s problems.
4. Finite part at the poles of ¢2(s; a, b, x) and x2(s; a, b)
The equations given in the previous section for the analytic extensions allow easy detection of the

poles and calculation not only of the residues but also of the finite part. In all the equations, in fact,
the integral is a regular function of s for all s, and therefore can be evaluated by simple substitution.

Proposition 4.1.

Resg &2(s;a, b, x) = X 11-i—1 loghb 1¢x 11027r—|—1101“x
0N =\ " 2\a ) T Vb)) T 2a BT T8\

- 1‘/ Y () -y (52 @,
b
0

27y — 1

1 X 1 X
R sa,b,x)==—=¢l2, - ) - — — ) +1+1logh
Siszofz(s,a, s X) 2b2§H< ’b) ab(w<b)+ + 0g>

00 . .
, 2, x+iayy 2, X=iay
+I;_2/§H( b ) — CH( b )dy.
0

2y — 1

Proof. We must compute

lim (s;a,b,x) ! 1+1 X !
s—>1§2”’ 2\a b ab)s—1)°

Using the equation given in Proposition 3.1, we compute

0.¢] . .
1 1-s xfiayy | x—iay
lim (—b‘S;H <s, f) T (s— 1, f) +ib—5f i i Y
2 a b
0

s—1 b s—1 e27Ty_1

(G- 2
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The non-regular term is the one in the first line; we expand it near s =1
1 1 1lob 1WX+11 OX 1lob OX
ws—1 262" " Y\p) a1\ %) TP (D
1 X 1
+ —\logl'l — | — =log2m | + O(s—1).
a b 2

The singular part cancels out, and substitution of the value of s =1 in the other regular terms
gives the thesis. Similar computations give the second equation. O

Corollary 4.2.

1 1/1 Yy ¥
R ;a,b)y=—-1 —(=——=)logh ———1 27
Se:slox(sa ) aOga+2<a b) ogh+ -+ o, —5_log

/ Yigy+1) — W(—lby+1)

e2ny —1

1 1
1362520 x(s;a,b) = a—zé'R(z) + ﬁé’R(z) + E(J/ —1—logbh)

b

[ tn. igy+1) —¢h(2, —lbY+1)
bz ey — 1

where recall that (g (2) = %=

Next, we give some series representation for the finite parts.

Proposition 4.3.

respersiannon =—(3(2+ 1) = ogt Ly () - Liogar+ Lgr(2)
eptasabn=—(3(g+5) - g) s 5 o2 + g log
1% i(—l)i (,bn+x)_ a

a j ¢\ J: a 2(bn+x) )’

1 bn + x a 1 < (=g a, b, x)ad
_ 2 _ _ 1,
2a O<§H( ’ ) bn+x)+aZ j lal<L;

j=3
1 X 1 bn + x a
Siszoé“z(s,a, ) ab< o8 +w(b))+a2 §<§”<’ a > bn+x>

Proof. For the first, we start from the first formula given in Proposition 4.1. We must treat the fol-
lowing integral, and this can be done using the definition of the digamma function and [11, 3.415.1].

__/vf("““y) (5 "’y>

27y — 1
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B l/i 2iy 4 dy
| L e

_1%(10 bn+x_ a _w(bn+x))
T a — 5 2(bn + x) a

n=0
Sy © (_1)it1 —j
(e ) )
Ji ZZ( 1)) ( bn+x)_j_L>
R P a 2(bn +x)
T~ (=D (. bn+x a
:Eg 2 §”<J’ a >_2(bn—|—x)>;

j=2
alternatively, from the triple sum

_Z<ZZ(1)1< bn:x)-f_m>

n=0 \ k=0 j=2

xS 0 0

(— 1)J(ak+bn+x) Jal
_Z<Zz(bn+ak+x)2 2(bn+x)> ZZZ

n0k0]3

For the second, we proceed as follows.

Resogz(sabx)_hm(gz(sabx) ! 1)
s=2 abs —

= lim (s;a,b,x) 167 s—1 X

) ¢2(s:a.b, as—lgH b

+1lim b S 1§ l !
as—2 s—lgH i) bs—2)

Note that the splitting in the two limits is allowed by the equation given in Proposition 3.1. For,
that equation shows that the function in the first limit is regular at s = 2.
The second limit can be computed expanding near s = 2:

b1 S 1x b~ _ 1 1+ loghb + X +0(s—2)
s_1°H 'p) Ts—2 b gb+v{3p '

For the first, using the definitions of the zeta functions:

lim (s;a,b,x) b1 1 S 1X
Jm $a(s;a, b, , 3_1§H "

00 _ fo'e) 1-—s

bn + x pl=s 1 X

=1i § —S : _ E + —
s—%(nzoa ¢H (s a ) a s—1 n:()(n b) )
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_Z< —2§H( bn+x> B %bnl-i_x).

Summing up, this gives the thesis. O

Corollary 4.4.
1 1/1 1 y Yy 1
R ;a,b)y=——1 —{-—=)logh+ —+ — — —log2m
52510)((5 a.5) a oga+2<a b) 080+ a +2b 2a °%
1 onf e (1) bn 1a
_Z Z . ;H 19_ - 357 I
a ; j 2 bn
n=1 \ j=2
+ 3 1§: 2bn+1 +—logI'{ 1+ +)/
20 ~ H\% 3 b 8 b
,1 o0
Z igd, .
—|—aZ Z(am—l—bn) a la] < 1;
Jj=3 m,n=1

1 1 1 & b a
Resp x (s;a,b) = a—ZCR(Z) + E(y —1—1logb) + a—zng;(;H(Z, En> — E)

s=2

Proof. The unique point that is not a direct consequence of the result given in the proposition, is the
second part of the first equation. Using the formula given in the proposition with x =b we have

—Z Y i a.b. bl = iii(w( )

n=1k=0 j=3
(1)1bnj1°O°O(1)1 -
) B LI 3 Sl (R
n=1 j=3 k.,n=1 j=3
1= ) 1S & i
_EZ i §R(])(5> +EZ ] > (@m+bnyJdl.
j=3 j=3 m,n=1
The first term simplifies as follows
> (¢ " togr(14%) 4812 0
& R ) =08 p)TVp T 22t

n=1
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_i i k_|_b_n _2_1 _ﬁ 2)
N a bn bzgR

n=1 \ k=0

e bn a a?
=> (2~ ) -5 ) - @ O
n=1

Remark 4.5. It can be interesting to compare the results when a =b = 1. In fact,

X (51, 1) =Cr(s) +Lr(s — 1),

thus

1
ReSlox(S; 1,1)=y +O0)=y — >
S=

2
T
ReSZOX(S; 1,1)=¢0rQ2)+y = 5 + V.
S=

For the first we can use Corollary 4.2; we have

P[Py vy eD
ey — 1

’

3 1
Resp x(s;1,1) ==y — = log2m —
s=1 2 2
0

and numerical computation agrees with y — % For the second, by Corollary 4.4, we have
> 1
Reso x (5;1,1) = 2¢r(2) +Z<5H<z,n+ 1) — —) 1+,
$=2 n=1 n
and we can compute (see [26]) that

> 1
Z(m(z,w 1) - 5) =1-r(2).
n=1
5. Integral representation of ¢, (0; a, b, X), x,(0; a, b) and I>(x; a, b)
We can use the equations obtained in Section 3 in order to give some formulas for the derivative

at s =0 of the functions ¢»(s;a, b, x) and x(s;a, b). As a consequence, this will also give a formula
for the function I;(x; a, b).

Proposition 5.1.

/(O'abx)—<—1 0. %)+ ey -1.2 _ 10D lo a—l—llo r f)
QO:a.b.0={ =m0 7 )+l —h g 12a) 9T 2% 4

00 .
1 a X a._, X . F()%lby) dy
_ Zlogzn — Eg,(—l, E) — E{,,(—l, E) +1/10g F(x—‘;'by) Ty 1"
0
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Proof. Using Proposition 3.1

/(O'abx)——l 0, %) 1o a+1 0, XY + Leu( =1, % ) 1oga
é'z s Uy Uy - ng 1a g 2;[—] 7a b;H 7a g
_a _1)_< _ 8. _1§
bé-H ’a bé-H 9a

_uogafémo,w> £H (0, X2

e2ny — 1 dy

+i70§H(O x—Hby) é_H(O X— lby)

2y — 1

The two integrals can be simplified as follows. For the first one:

00 ; 0 .
| @ M — @5 ~2igy
—iloga Ty — 1 dy =—iloga oy 1 y

where we have used [11, 9.611.1 and 9.71]. For the second one:

o0 . s o0 .
e I T 1 e sl P D O G e B
! 2y 1 dy=i | log x—iby\ 27y _1°
exy - ST ey -

Corollary 5.2.

'(0:a,b) = 11ob+1 la 1b), ., 1027'[+1a (—1)
X 2 12b 12a) %% & 12 b gR

o0 iby
) ra+-=> dy
+1/10g by 227y — 1"
ra--=)

Observe that similar formulas hold exchanging a and b.
Using the previous results and Proposition 1.1, we can also obtain the following integral represen-
tation formula for the double Gamma function.
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Corollary 5.3.

lo F(x-ab)—110271 1lob 1X+X 1 x loga

+110FX aé_, 1x +a§,( 1)+1X X 1
2 8 a b>H “a bR 2b\a
(0,0] . .
+if10 réeyyra -y gy
—ib ib 2y _1°
r&ra+=)e 1

0
6. Series representation of ¢»(s; a, b, x) and x»(s; a, b)

In the case under study, the method of [29] is particularly useful because it gives an exact result,
namely a decomposition of the zeta function as an infinite sum of the same zeta function shifted by
positive integer values. This is an interesting kind of functional equation. See also the works of Carletti
and Monti Bragadin [6,7]. One interesting application of this result is due to the simple behavior of
the series at zero, that allows to obtain a formula for the derivative at zero and consequently also a
formula for I;(x; a, b), as it will be shown in the next section.

We will use the method introduced in [29] to deal with double series. We refer to that work
for definitions and complete proofs. Consider the double sequence S = {am + bn + x}m n—o- The rel-
ative genus are (po, p1, p2) = (2,1,1). We decompose on the sequence U = {bn + x}7° ;, with order
ro =1 and genus q = 1. Decomposability can be checked using Theorem 4.2 of [29]. The main spectral
function appearing in order to apply the spectral decomposition technique of [29] is the logarithmic

Gamma function associated to the sequence S, = {¥Ttb14x100 namely the function

bn+x JIm=0’

(0,0)
S b —A n(
log I"(A, Sp) = —log 1_[ (1 + (n+—x)())e—(b +0(2)
m=0

am+bn-+x
am + bn +x

bn+x( O\ - bndx ()
)e bn;—x +m

bn—l—x +m

—log(1 — 1)e* — log 1_[ (1 +

m=1

Observing that

ix(—y) () (B2
Sy m m(PX )
we have
i bn+x( ) bn;—x(_)\)
log I'(A, Sp) = —log(1 — 1) — A —log l_[ ( bn+x )e "
+m
(bTH—X)Z

_ —A),
Zm(bn—i-x +m)( )

that can be rewritten as
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) b b
log I'(A, Sp) = — + ynTH(—x) n logF(nTerﬂ _ A))
o~ )’

bn + x
_1 [‘ _
og (") =3

m=1

(=2). (4)

m(PE +m)

Next, by Lemma 3.4 of [29], we have

to(s:a. b, x) = L]OtHi / LMT(s ) dadt (5)
YT ) i | T !
0 Ag ¢

where Ag,c={AeC||arg(A—c)|=%},0<C<x,0<9<ﬂ,and

T(s, 1) = Z(bn +x)"Slog "' (X, Sn).

n=0

We can do the X integration appearing in Eq. (5) for all the terms appearing in formula for the
function 7 (A, s) as follows. First, use Eq. (4) in the definition of 7 (A, s). This gives

o0

T(s,\) = Z(bn +x)7° (—A + ybnaj(—x)) (6)
n=0
+> (bn+x)~* logF(bn;_x(l —x)) (7)
n=0

ad s bn + x > (%)2
_Z(bn+x) (logF( p, )+Z—(—k)>. (8)

bn+x
n=0 m=1 m( a +m)

Using Eq. (18) of Appendix A, we see that the unique term that gives a non-zero A-integral is
the one in the second line (7). Second, we can decompose the term (7) using the classical series
representation for the Euler Gamma function, namely [11, 8.343], that converges uniformly in the
domain allowed for A,

logF(bnaj(l - A))

=(b”+"<1—x>—1>log<w<1—x>) (9)
a 2 a
—bn+x(1—k)+%log27( (10)
1S k X /bn+x A
+§};(k+1)(k+2)§( a (1_k)+]) ' (1

Let consider the terms appearing in the three lines independently. The term in the first line (9)
can be rewritten as
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1 1
(bn#—x(1 - _)log<bn+x(1 —k)) _ (bn+x A — —)log bn + x
a 2 a 2 a

bn + x
+

(1—2)log(1 —A) — 1log(l —A).

The XA-integral of the term in the first line is zero, again by Eq. (18). The complete integrals of the
terms in the second line can be done using Eq. (20). We obtain,

o0
1 —Mp b rs—1
/ts_l ,/e X 43y log( — aydide = EX G =D
—A a a S
0

0
1 M 1

2 —A S
0 Agc

The term in the second line (10) has zero A-integral by Eq. (18). The general term appearing in
the sum in the last line (11) can be computed using Eq. (22). We obtain

T 1 e * /bn+x —k=1

51 f 1—0)+] dadt
f 2mi —A ( a ( )+ J)
0

AG,C
) e 1 (s+k+1)
— (b s k+1 b s—k—1 )
(bn 4+ x)’a* "' (bn 4+ aj + x) —F(k—l—1)s
Summing up we obtain
bn+xI'(s—1) 17I(s)
. b b N
£2(s;a,b,x) = r()Z( n+x)°" ( — + 35—
1 k > F(s+k+1)
- b s k+1 b : —s—k—1
+2,§<k+1><k+2) Z} nhRaT oA et s
1

Z(bn-ﬁ—x)] S4 = Z(bn-ﬁ—x) s

ClS

L1 =k T(s+k+1) e
= bn+a +x) 7Sk

_bl_s 1 s X +1b_s X
=g s_1%H "b 27 (S

e k TI(s+k+1) e ,
+ — bn+aj+x) 5%
2 k; k+2)!  T'(s) %;( J+x)

Recalling the representation of the binomial coefficients in terms of Euler Gamma functions, we
get the following result.
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Proposition 6.1.

(s-abx)—bl_s ! s lx +1b_s sX
26:a.0,% === ¢ "b 27 %

k s+k I
- k+1:a.b k+1
+ = Z(k+1)(k+2)( )§2(5+ +1;a,b,x+a)

_bl_s 1 1 X +lb_s X
T a s—]gH b 2 ¢H b

1 k s+k bn + x
- — k+1, —— +1
3% ;(k+1)(l<+2)< >Z§”<S+<+ a )

Corollary 6.2.

1-s

1
1CR(S — 1)+ =b°¢r(s)

x(s;a,b) =a>¢r(s) + >

o0

+lsa_52—k stk i s+k+1 b—n+1
27 S k+DEk+2)\ Kk nsz ' a

1-—s 1
é“R(S -1+ —b_SCR (s)

k s +kY et s—k—
2 E:m+4Xk+m( )e . (aneony

m,n=1

=a *{r(s) +

7. Series representation of ¢,(0; a, b, x), x;(0; a, b) and I>(x; a, b)

We can use the equations obtained in Section 6 in order to give more formulas for the derivative
at s =0 of the functions ¢(s;a, b, x) and x(s;a,b). As a consequence, this will also give a formula
for the function I3 (x;a, b).

Proposition 7.1.

(0 a.b.x) — b 1 X 1 0 X a logh b 1 X b, 1 X
;2(5617 ,X)_ aé‘H _aE _5§H 95 _ﬁ Og _agH _75 _aé‘H _75
1,/ x 1 — bn+x+a a
+5¢H( 5)+—Zo<f”(2’ a )‘bn+x>—ﬁ‘”( )

1S k
=Y —————(k+1;a,b, s
+2]2_;(1<+1)(1<+2)§2( +1a,bx+aa

(Db 1x 1 OX a logh b 1x
—<54H “bp) T ’5>‘@ ozb—zen( 1.5 ) = 335% (5

1,(.x\ b, X\ T emkink+1,2241) 1 g
+§§H(0, E>—ECH(—1,E)+§Z<Z k+1Dk+2)  6bn+x)

n=0 \ k=1
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Proof. First we prove the first equation. We decompose the sum appearing in the equation given in
Proposition 6.1 as follows.
1 2
S(s;a,b,x) = ES(S+ 1éa(s+2;a,b,x+a)a

I

1 o k s+k |
- o~ ! 1; ,b, k41
+2$;(k+1)(k+2)( )§2(5+ k+1;a,b,x+a)a

k
= Si(s;a,b,x) + Sy(s;a, b, x).

We deal with the two terms independently. Some care is necessary to treat the first one, due to
the pole of the double zeta function. Namely, near s =0

a? a?

Si(s;a,b,x) = —R1+ —(R1 +R 0(s?
1(s;a,b, x) D 1+12( 1+ Ro)s + 0(s%),

where

Ri =Res; ¢a(s;a,b,x+a),
s=2

that have been computed in Proposition 2.3 and in Proposition 4.1 or 4.3, respectively. Thus

a S ad bn+x+a a a X-+a
165,05, 12b+12<n220(§H<’ a ) bn+x+a) b(og +"”( b ))

+0(s?).

For the second term, we have already observed that it is vanishing at s =0, and we compute

1 o k s+k v
S ; ’b’ = = DN ’ 1; ’b’ +1
2(s;a,b, %) 25;(k+1)(k+2)( ) >§2(5+ k+1;a,b, x+ a)a
zlilégz(k—l—l'a b x—|—a)ak+ls—|—0(sz)
2 &= (k+1)(k +2) B ’
near s =0.
This gives

/O-b—b 1 X 1 OX albb 1 X b, 1 X
é‘Z( ;a, ,X)— a;H - aE _EgH 75 _ﬁ Og _EZH - 95 _agH - ’E

1, X 1 — bn+x+a a a Xx+a
-t 0 = — 2 — -
+2§”< ’b>+122(§H<’ a ) bn+x+a> 12b‘”( b )

n=0
1 k
N I 1, ,b, k—l—].
+2’;(k+1)(k+2)§2(<+ a.b,x+aja

The term in the third line can be simplified as follows. First, recalling the definition of the digamma
function, we have that
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e 1 1 x+a b /1 1
,§O<H+x/b N n+(><+a)/b) _w(T> A _nz<ﬁ a n+x/b)

=1

Second, note the following series of equivalences:
1 & bn+x+a a a " x+a
12 H a bn+x+a 12b b
1 & bn+x+a a
== ¢\ 2, -
12 a bn + x
n=0
1 & a a a X+a
* ﬁzo<bn+x B bn+x+a> a ﬁw( b )

. 1 & 5 bn+x+a a a " X
12 . SH| % a bn + x 12b " \b )’

n=

Next, we obtain the second equation from the first. For, consider the following

1 k
- I 1: b k+1
2,;_2—(k+1)(k+2)§2(<+ ;a,b, x4+ a)a

o0

1 k
- Zm Z (am + bn + x + a) "k 1gk+1

_1% k i et 1 bn—i—x_H
o 2 &= (k+1)k+2) nzogH " a

i’—< (]<+1 M+])_l <2 bn+x+l>
\ & i+ U T =i (2. —
=32 k+ Dk M\ 6 bn + x

=0 \ k=1

1 & bn +x a
- — 1) - .
5 2 (on(2. 75 1) bnﬂ) .

2

N —

3

0]

=

Corollary 7.2.

1 1 b b b
X’(O;a,b):iloga—i-(———— )logb——log2n+—+ = 25(-D)

12 12b
1 ke (k+ 1,20 T+ 1a
+EZ(; (k+1)(k+2) Eﬁ)
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1 b 3 b
:—loga+<———— a >logb——log2n+—+ uld

/_
4 12a = 12b afR( D

1 k e
- k+1 b —k—1
*3 ’; k+Dk+2)" mél(am +bn)

Corollary 7.3.

1 1 1 X\ /X 1 X
logl“z(x;a.b):—iloga—l—510g27t+5 1—5 a—l logb—i I—E X

11 r X b .
+ 5 log <E)——<§H< ) Cr(— ))
_sz(gm(kﬂ DEX 4 1) — gu(k+1, b"+b+1))
(k+1k+2)

n=0 k=1

Note that the values of Iy (b;a,b) follows immediately from this equation. However it will be
reobtained in the following section together with other particular values of the Gamma function.

8. Properties of the Barnes Gamma function as a function of x: Product representation, functional
equation, Taylor expansion, asymptotic expansion, and particular values

In this section we study the function I;(x; a, b) as a function of x. We start by giving a Lerch type
formula for the zeta function ¢(s, Sx), and a product representation for the Barnes double Gamma
function. This representation will make clear that we can extend the domain of definition to complex
values of the variable x. Next, we give the principal analytic properties of the double Gamma function,
following the natural line of investigation dictated by the analogy with the classical Euler Gamma
function, and already followed when investigating other generalizations [23,25,27].

Our first result follows by direct application of the generalized Lerch formula given in Proposi-
tion 2.9 of [27].

Proposition 8.1.

1
¢'(0, Sx) = x'(0;a,b) — Resg x (s; a, b)x + 5 (ReSO Xx(s;a,b) +Resy x(s; a, b))x2 +log I' (x, So).
s=1 s=2 s=2

Note that we have explicit formulas for the residues in the previous sections. As promised, we give
now a product definition for the Barnes Gamma function. This follows from the definition and from
the two Lerch formulas, Propositions 1.1 and 8.1, that also give the following relation on the Gamma
functions:

Lemma 8.2.

1
log I>(x;a,b) = —logx — Resg x (s; a, b)x + §<Reso X (s;a,b) 4+ Resy x (s;a, )b))x2 +log I' (x, So).
s=1 s=2 s=2
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Proposition 8.3 (Product representation).

—Res x (s:a,b)x+3 (Resg x (s:a.b)+Resy x (s;a.b))x? x___ 2
s=1 s=2 s=2 eam‘H’” 2(am+bn)2

I (x;a,b) = ¢

X X
(m,n)eNé am-+bn

From this equation it is apparent that the function I;(x; a, b) (originally defined for real x) has an analytic
extension to the whole complex x-plane except at the points x = —(am + bn), (m,n) € N2, where it is has a
pole.

Remark 8.4. Note that the poles of the function I (x;a, b) are not necessarily simple poles, in fact,
for example when a =b =1, they are all double, as can be seen using Proposition 8.5 below.

The case a =b =1 deserves some comments. Recalling that x(s; 1,1) = ¢r(s) 4+ ¢r(s — 1), after
some computation we obtain

X X2

2 __x
e~ (V= DX+ 3T 4y+Dx? X Wy

NHx1,1)=

X ’

X m-+n

(m,n)eNé
and we see that I>(x; 1,1) corresponds to the particular case m =1 of the multiple Gamma function

Im(x + 1) studied in [27] (see also [30]). In fact, comparing with the definition of the corresponding
function I'1(x + 1), given at the beginning of Section 3.2 of [27], we have

loglh(x;1,1) =logli(x+1) —logx.
Moreover, we have the following relation with the Barnes G-function [5], [32, p. 264].

Proposition 8.5.

I"(%)

Gx+1)= ————,
*HtD=F1

where G(x + 1) = G1(x + 1) is the Barnes G-function, as defined classically (see for example [27, 3.2] or
[19, (1.13)]).

Proposition 8.6 (Functional equation).

Dy(x+bia, by =a O e 40 1y (x; a, b)

V2ma

N—=
QIx

=———7+—1I%(x;a,b).
I 2(x;a,b)
Proof. We have that
o0
s(s;a,b,x+b)= Z (am-i—b(n—l—l)—i—x)_S
m,n=0

= Z Z(am +bn4+x)"°

m=0n=1
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= Z (am+bn+x)"° — Z(am +x)°
m=0

m,n=0
_ X
=0(sia,b,x) —a”¢y (s, E)‘
Therefore, taking the derivative and applying the Lerch formula 1.1, we obtain
X X
log I (x + b; a,b) + x'(0;a,b) =log I'y(s; a,b) + x'(0;a,b) + ¢y (0, E) loga — ¢}, (O, E)’

and the thesis. O

Corollary 8.7.
Dx+1:a,1)=a#CDe= 410D 1y(x: a, 1)
1 X
V2maz"a
= 7XF2(X; a, 1)
')
Corollary 8.8.
! =siny(x; a, b)
La,bh(—xab) 2"
where
) b , (Reso x(s:a.b)+Resy x (s:a.b)x’ . x? 2 3
siny(x; a,b) = —x“e s=2 s=2 4+ )e@ntn?
2 ) 1_[ ( am+bn)

2
(m,n)eN0

The function sy (x; 1, 1) is similarly strictly related with the double sine function, see the works of
Kurokawa (for example [13] and references therein), see also Section 3.2 of [27].

Proposition 8.9 (Series expansion). For x < 1,

1
log I>(x;a,b) = —logx — Resg x (s;a,b)x + = (Reso X (s;a,b) +Resq x (s;a, b))x2
s=1 2 s=2 s=2

© (—1)J .
3 5 G,
== 7

Proof. This follows directly from Lemma 8.2. O

Using the results of Sections 2 and 4, Remark 2.6 and Proposition 2.14 of [29], we have the follow-
ing result.

Lemma 8.10. For large A with |arg(—A)| < T,

(.¢]
log I'(—4, So) ~ a2,1(—1)* log(—1) + a1,1(—2) log(—1) + dg.1 log(—4) + Y @y po(—2)* 7",
h=0
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a—e—3 1a+b
01=""0=2 " 12\p " a )

2\2 2\2ab o

s=1 a b

ao0 =—x'(0;a,b),
az—n,0 = I'(h— 2)ep_o, h > 2.

Using Lemmas 8.2 and 8.10 we get the following expansion.

Proposition 8.11 (Asymptotic expansion). For large x with |arg(x)| < m,

1, 1/1 1 1 1
long(x;a,b)w—Tx logx + — E+_ xlogx — [ — +

2ab 2 b 412

+ 3 2 ] 1+1 X ’(O'ab)—i-il“(h 2)ep_ox>h

4ab 2 b

We conclude with some particular values.

Proposition 8.12 (Particular values).

2
y(@;a,b) = (@ b,a) =, T’T

Ib(a+b;a,b) = 2_71
~/ab
Da+1;a,1)=@+1;1,a) = 2_7r’
Ja
Hx+1;1,1) = 2 In(x;1,1),
I'(x)

D(a;a, 1) =1(1;1,1) =27,

nEe:i1,1) =2mr.

Proof. All formulas follow from Proposition 8.6, Corollary 8.7, and Eq. (1).

1/1 1/ 1
a20==|ze-2—Resp x(s;a,b) | = =| = —Resp x(s:a,b)
s=2

a

_+_

b

)

b
a

1/1 1
ajo= —(6—1 — Resp x (s; a, b)) =-3 (— + —) + Res10 Xx(s;a,b),
S=

)
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9. Asymptotic expansions for small and large a

We present in this section asymptotic expansions of the functions ¢»(s; a, b, x) and log I>(x; a, b),
for small and large a. Let us start with small a. Expansions for these functions for small a have been
given by Matsumoto in [15], where an estimate for the remainder is also proved. We present here
a different proof, based on a simple application of the technique introduced in [29], already used in
Section 6. We also note that an even simpler proof can be obtained using the method that we apply
in the proof of Proposition 9.7 below.

Proposition 9.1. For small a, we have the asymptotic expansion

bl1=s 1 1
&o(s;a,b,x) ~ p —y (s -1, f) + Eb_sg“H (s, i)

s—1 b b

o0

Box I'(s+2k—1), 1 5y X\ 21
Dol K D) prosa 2k —1,= Ja? .
+1; 2k T(s)I"(2k) A b)"

Proof. Suppose we apply the same approach as in Section 7, as far as we obtain the following repre-
sentation of the zeta function

(s;a,b x)—i])ots_1L / LMT(s A)dadt
) 2wi | T ’
0 Ap.c
where
o0
T(s, ) = Z(bn +x) " log I'(s, Sn),
n=0

and (see Eq. (4))
) b b
log I'(h, §p) = —A + ynTJFX(—A) + logF(nTH(l _ A))

bn + x X, (bnixy2
()

bn+x
m=1 m( a +m)

Next, instead of using the series representation of the Euler Gamma function, we use the asymp-
totic expansion for a < 1:

logF(bn+X(l _)\)) N (anrx(1 - %>log<bn+x(l —A))

a a a

b 1
- n+x(1—k)+§log2n
- By
4 1-2k 1-2k 2k—1
7 S— 1-2 .
+;2k(2k—1)( nx) =0T

We can perform all A-integrations as in Section 6 using the equations provided in Appendix A.
After some computations this gives the thesis. O
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Remark 9.2. Note that the coefficients can be written in a different form using the equation

's+2k-1) o =S
- () (2k) _<2k—1>

that follows easily from classical properties of the binomial coefficient and of the Euler Gamma func-
tion.

Corollary 9.3. For small a,

1 1'%
X (sia,b) ~ ¢r(s)a™* + Eb_sz(S)‘i‘— Sr(s—1)
as—1
s S sz
_ - _ 1-s5—2k 2k—1
,;_1 (Zk— 1) K Cr(s+2k—1)b a ,

where the series is a finite sum whenever s is a non-positive integer.

Corollary 9.4. For small a,

/ X X , X _
cs0ia.6,0 ~b(cn (1.3 Jtogs = cu (1.5 ) ~ (1.5 ) o~
1 X 1, X 1
—5§H<075)108b+§§1{(0, E) 12b<logb—|—w< ))

00 2k—1
(=1) Bak 12k X\ ok—1
— -— -  —~b 2k—1, - )
,; 2k—1 2k H\s— Ly )e

Corollary 9.5. For small a,

1 1 3
x'(0; a,b)~b<ﬁ—ﬁlogb—§§(—l))a loga+ logb——loan
(D" Bo 5 2%k—1
— ——(logh — — ——b 2k — 1)a*™"
12b(°g v kZ; k—1 2k SrEK—Da

Corollary 9.6. For small a,

log Ix(x;a,b) ~b <2b<1—5>10gb+2<5—1)——§H( b>+§,’3(—1)>a—1
1 1 X 1
—Eloga—§< —B)logb—i— logF(E>+§log27t
() )
126\ "\5) T

ZOO (=D By x
_ — K p1-2k e A _ 2k—1
2 K —1 Zkb (é’H(Zk Lb) Cr(2k 1))0
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Next, we consider the expansions for large a. Such expansions were also given by Matsumoto in
the cited papers. However, we present here an elementary proof. As observed at the beginning of this
section, the method used in the following proof can be used to prove the previous expansions for
small a as well.

Proposition 9.7. For large a,

bs CR(S—1)

+asy Js)ms + J>cH( b)bfa—f,

j=0

{a2(s;a,b,x) ~b™ @(&Z) —

where the series is a finite sum whenever s is a non-positive integer.

Proof. For Re(s) > 2, applying the Plana theorem as in Proposition 3.1, we have

o(s;a, b, x) = Z(am-l—x) S—1—2:/(am+bt+x) Sdt +I(s;a, b, x)

—1a_s sx +1al—s S 1x +I(s;a, b, x)
_2 CH 7a bs_lgH aa s Uy Uy )

where

I(s;a,b,x) =

_Sf;H(s, ) — s )

2y — 1

(x +iby)™ — (x —iby)~*

N ey — 1 dy
0
0 (am 4 x + iby)™ — (am +x — iby)~S
+IZ e2ry 1 dy

For the first term,

o0 S
(x+1by) S—(x—iby)~® x\2 2\ % . by dy
Ty — 1 dy 2/ 5 +y sin sarctan7 Ty — 1
0

) f _l—s s_X1__s s—1
b <§H<s,b> 2x b s—1b .
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For the second term,

e2ry —1
m=1

0 00 . 3 S
. (am +x+iby)™ — (am + x — iby)~
iy | dy
0

: .d
_1Z(am)_ fZ( ) (x+1by)1 (x—iby)])(am)_]rﬂyy_1

o0 c0 2 I
s X 2\ 2 by dy
~_22< ) Z(am) Jf<(5> +y> sm<1arctan )m
0

m=0
o~ (S i X xi+1
:Z( ,)asbe;R(s—l—j)(;H(—j, E)__X]b i pi- 1),
= 2 j+1

where note that the series is only asymptotic and can be extended to include the term with j=0.
Summing up

f _1 —s_l sOo S —Jjphi
I(s;a,b,x)=b" §H<s,b> 2x b Z(J){R(S+J)§H< b)a b

j=0
Ly (—s) e (—s)@(sﬂ) Y
——a , s+ jaix + — C ) a Xt
> ; j SR(S+J) 5 j;) i) i

Now consider the following equivalences:

1 ad .
EG_SCH (S, 2) =z - Z < )CR(S-F pxla,

j=0

and

1—s 1—s 1-—s S ;

a X X a _ 1—s\¢r(S+J) _:
s—1,2 )= s—1)+a* 2R g IxtT

5—1§H< a) s—l+s—1§R( )+ ;(j—F]) s—1

Using this equalities and the expression for I(s; a, b, x), we obtain

_ x\  1a=® e[S , CX\ o
ta(s;a,b,x) =b S§H<S, E>+ES_1§R(S—1)+G SZ(J.)CR(SJrJ)CH(—J»E)bJG !

j=0

L s & 1-5s\ 1 -
E N A—Jv]+1

and the thesis. O
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Corollary 9.8. For large a,

1 ql—s x s o
X(s:0,b) ~ Lr($)a™ +b7Lr(S) + Sa_ TRG=D+a™ ; ( js) CR(S+ DEr(=bla™,

where the series is a finite sum whenever s is a non-positive integer.

Using these equations, it is immediate to obtain the value of the zeta functions at negative integers.
This result was given in [14, Theorem 5], and for k even in [2, (2.6)].

Corollary 9.9. For —k=—-1,-2,-3,...,

k k+2
,ZBJ B J+2( )bk JH1gi=1

—k:a,b,x) =
§2(=k;a,b, x) k=t

From these equations follow the expansions of the derivative at s =0 and the expansion of the
Gamma function.

Proposition 9.10. For large aq,

(0;a,b, x) —Lalo a+1 ! (-1 Ja+ = loga — 0.2 logh
{2 s Uy Ly 12b g b 12 {R {H b g é‘H ’b g

, X 1 X X\ _4
+ ¢y O’E —EgH O’E log2m + b¢y —1,5 a "loga

—Vb§H< 1, —) ‘1+Z ;R(J);H< b)bja_j.

Corollary 9.11. For large a,

x'(0;a,b) = —ialogajLl ! —tp(=1) |Ja+ = 10ga+110gb—§10g27c
T 12b p\12 °R 4 2 4

b vb 1 (=D N
— ;¢ loga+oa +]§ ; tR(J)CR(—j)ba™.

Corollary 9.12. For large aq,

log I (x; a,b) 1x loga + 1) logh +log I’ X + log 27 X(X 1)a 'loga
g12 bg b g g b 2bg o\ 3 g

_1J . .
+§(E—l) ‘1+Z( J) ER(J)(Q“H( J,b)—cR(—j))bJa‘J.

Remark 9.13. As observed by Matsumoto in [15], the above expansions extend analytically to complex
values of the parameter a in the opportune domains.
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Appendix A
We give in this appendix some complex contour integrals used in the text. Let Ay, =
{LeC|larg(h —0)| = %}, O0<O<m,0<c<1,areal, k=0,1,2,.... Then we have the following
formulas.
1 —A a
— e "(—A)"da =0, (18)
2mi
AG,C
r 1 M r
e s+a
fts—l : / dnde= L8TY (19)
2mi —A (1 =2)¢ I'(a)s
0 Ag,c
See [26].
T 1 Mlog(1 —A) I( )
_ e log(1 — s+a
51 f didt = ————= (¥ (a) — ¥ (s +a)). 20
_/ 21i -2 (1=x)¢ I'(a)s (W( S )) (20)
0 Ag ¢
Take logarithmic derivative of Eq. (19).
r 1 M I'(s—h
e s—k
/ts_l—_ —— (1 —)Klog(1 — 1) drdt = (—1)"+1k!¥. (21)
2mi —A S
0 Ap.c
This is a particular case of (20), with integer a.
r 1 A 1 r
e” s+a
/ts—l , / dnde = q—s—aps TETD (22)
2mi —A (x — BA) I'(a)s
0 Ag.c
; _B _
For, with x = ~, and then xA = u,
® 1 At 1 S ® 1 At 1
e e
fts—l : f dndt =a—P- fts—l , f dadt,
27T —) (ax — Br)¢ o 27T -1 (1 =104
0 Ag.c 0 Ap ¢

and we can use Eq. (19).
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